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Age determination and lifespan of marine animal species
Baptiste Le Bourg, University of Liège, Belgium

Eric Le Bourg, CNRS and University of Toulouse, France

Glossary
Ectotherms: species whose internal temperature is dependent on the ambient temperature.

Endotherms: species whose internal temperature is fixed and regulated by the organism.

Fish: paraphyletic group of fin and gill-bearing aquatic vertebrates. The term is used for

convenience and refers usually to the teleosts taxa, but some authors may also include other taxa

(e.g. elasmobranchs).

Iteroparity: a reproductive strategy with several reproductive events during life, these

events possibly occurring in successive years.

Life-history strategies: strategies selected by natural selection during evolution allowing

species to develop, live, and propagate (e.g. species with a short lifespan and many offspring, like

mice, vs long-lived species with a few offspring, like elephants).

Life-history traits: traits moulding life-history strategies (e.g. body size, age at maturity,

duration of development, number of offspring, lifespan).

Marine species: aquatic species living in seas and oceans, as opposed to freshwater species

living in rivers, ponds, lakes and so on.

Record lifespan: longest duration of life of individuals observed in a species. In most

marine species, this age can reflect the age at capture and not the maximal lifespan, i.e. the lifespan

of the last survivors.

Key-words
Age determination — growth bands — life-history strategies — lifespan — marine species

— predation —  sclerochronology — stable isotopes — temperature —

Abstract
Determining the lifespan of marine animals is not easy because they live underwater, in the

wild, and not in the laboratory. Various indirect methods have been used to overcome this issue.

This article describes these methods and tries to explain why some non-mammalian marine species

can live so long, when compared to mammals, terrestrial or not.
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Introduction
Lifespan of species does not evolve independently of other life-history traits such as

fecundity, gestation time, parental care, but also body size, predatory pressure and so on. In

terrestrial mammals, there is a continuum with, on one end, short-lived species (e.g. mice) with a

small body size maturing quickly after a short gestation time and giving birth at short intervals to

many offspring. On the other end of the continuum, there are large species (e.g. humans) with a

long lifespan, a long gestation time and parental care, and giving birth to a few offspring during

successive years [1]. The predatory pressure is linked to body size, mice being at a higher risk than,

say, elephants. For the time being, it seems that the longest-lived terrestrial mammal is Homo

sapiens with a 122 years recorded lifespan [2].

Marine animals include mammals, crustaceans, so-called fish (i.e. non-tetrapod craniates

with gills and fins), molluscs, urchins, sea stars, sea turtles, and so on (marine birds are not within

the scope of this article). When one compares the lifespan of marine animals to that of the longest-

lived terrestrial mammal, modesty is in order, because many species outlive it, not by decades, but

by centuries. These long lifespans often intrigue people, like the roses in D’Alembert’s Dream [3]

saying that “in the memory of a rose no one had ever seen a gardener die”.

How to explain the disparate lifespans of marine and other aquatic animals? Short life spans

are not an issue, because they can be linked to ecological conditions prohibiting long lives. For
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instance, Notobranchius furzeri fish live in African ponds that dry every year. When it comes to

happen, fish die and desiccation-resistant eggs survive in diapause in the mud, waiting for months

for better times, i.e. for the rainy season. Because of such conditions that shaped life-history traits,

N. furzeri live for less than 3 months in the laboratory [4]. A more extreme example is the coral reef

fish Eviota sigillata whose adults are seemingly subjected to a high extrinsic mortality and live only

for four weeks (larval stage: three weeks, [5]). Thus, while explaining short lifespans is not always

an issue, the challenge could be to explain record lifespans of some marine animals.

As for other species, the lifespan depends on other life-history traits but, contrary to

mammals, it can also depend on environmental conditions such as temperature, because most

marine animals are ectotherms. Another difference with mammals is that fish can grow for many

years, with a lower growth rate at older ages, but some species do not grow during their entire life

[6]. The fecundity of fish also increases with age [7], which is opposite to mammals.

Table 1 lists recorded or inferred record lifespans, from shortest to longest lifespans, of

various long-lived marine animals. However, determining lifespans of marine species is not easy

because they live underwater in the wild, and it can be needed to rely on indirect methods (see

below), because capturing and re-capturing animals living underwater is difficult. It is thus not

surprising that it has been stated that a given species can live for, say, one century, even if there are

no robust data to support this conclusion. For instance, it is commonly said that green sea turtles

Chelonia mydas can live for 80 years, but not a single article has been published in support of this

statement: these claims are not reported in Table 1. In the absence of a direct lifespan record,

reported lifespans in Table 1 should be only considered as estimates, whose precision is dependent

on the method used for estimation.



- 4 -

Species Record lifespan (years) Measuring method Reference
North Atlantic right 
whale Eubalaena 
glacialis

 ≥ 65 Sighting [8]

European lobster 
Homarus gamarrus

72 ± 9 Age pigment 
accumulation

[9]

Antarctic sea star 
Odontaster validus

> 100 Growth rates [10]

Orange roughy 
Hoplostethus 
atlanticus

149 ± 12 (SD) Radiometric analysis [11]

Red sea urchin 
Strongylocentrotus 
franciscanus

> 200 Radiocarbon analysis [12]

Tube worm 
Lamellibrachia sp.

170-250 Staining of growing 
tube worms and 
growth rates

[13]

Bowhead whale 
Balaena mysticetus

211 ± 35 (SEM) Aspartic acid 
racemisation in the eye
lens

[14]

Greenland shark 
Somniosus 
microcephalus

392 ± 120 (95.4% 
probability range)

Radiocarbon analysis 
and growth rates

[15]

Bivalve clam Arctica 
islandica

> 507 Growth bands count 
on shells

[16]

deep-sea sponge 
Monorhaphis chuni

11,000 ± 3,000 Stable isotopes [17]

Table 1. Some record lifespans, from shortest to longest, of some marine animals. Short-

lived species are not reported. These records should not be considered as definitive, as they can

reflect the age at capture and not the real lifespan. Abbreviations: SD: standard-deviation, SEM:

standard-error of the mean.

Measuring lifespans in marine organisms
Most studies estimating the age of marine animals are done for fisheries stock management

purpose. Indeed, poor age estimation (usually underestimation) may result in wrong estimation of

growth and natural mortality rates, leading to risk of overexploitation of populations and their

eventual collapse [18]. Consequently, it is critical to use accurate methods to estimate the age of

marine animals. 

Table 1 shows that various methods are used to determine age and lifespan. In the laboratory,
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recording birth and death date allows knowing lifespans of model species, e.g. flies or mice, which

is not possible in most of the cases for marine animals not kept in the laboratory. Therefore, it is

needed to implement other, indirect, methods to determine the age or lifespan of samples. The

methodologies used to estimate age or lifespan of marine animals are more or less taxa or tissue-

specific. For example, measurement of lead 210 and radium 226 ratio and quantification of

lipofuscin are limited to teleost otoliths and crustacean brains respectively. By contrast, growth

band counts and growth models are used in various taxa.

Most of the ageing methods are part of the discipline of sclerochronology, i.e. the study of

physical and chemical variations in hard tissues in animals.

Growth bands count

Growth bands count is one of the most commonly used ageing method for marine animals.

Alternation of growth bands, formed regularly from diurnal to annual time scales, can be observed

on various hard tissues in various animal taxa. In some of these tissues, annual growth bands may

appear as an alternation of opaque and translucent bands of different widths. Opaque bands appear

as dark when observed with transmitted light but as bright when observed with reflected light or

naked eye. They are wide and highlight a period of fast growth [19,20]. By contrast, translucent

bands appear as bright when observed with transmitted light but as dark when observed with

reflected light or naked eye. They are narrow and highlight a period of slow growth [19,20].

Opaque and translucent bands are also frequently associated with summer and winter temperatures

respectively [19,20,21,22], although variations of this pattern may appear in some cases

[22,23,24]. As a result, direct estimation of age is possible by counting alternations of growth

bands.

Various tissues may be studied in order to estimate the age of marine animals with growth

band counts (Fig. 1). For teleosts, age was previously estimated by counting annuli on scales but

this method underestimates the age of old individuals [25,26]. From now on, age is usually

estimated by counting growth increments in otoliths (Fig. 1a). Otoliths are present in various

vertebrate taxa, but have been mainly studied in teleosts (e.g. [21,27,28]). Otoliths are calcified

structures in the inner ears of teleosts and play a role in equilibration. They continue to grow as

teleosts age [29,30] and are not resorbed even under conditions of high stress [31,32]. As a result,

otoliths are considered as one of the best tools to estimate age of teleosts [30]. Analysis of sectioned

otoliths appears to produce the highest and most accurate estimation of age by improving the

readability of growth bands [26]. Statoliths (Fig. 1b) are a structure similar to otoliths present in

various invertebrate taxa, and annual or daily growth increments in these structures can be used to
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estimate the age of box jellyfish [33,34], gastropods [35,36,37] and cephalopods [38,39,40]. In

elasmobranchs (sharks and rays), growth bands are usually counted on sectioned vertebrae (e.g.

[41,42,43], Fig. 1c). In squaliforme sharks, because annual growth bands are poorly visible on the

vertebrae [44,45,46], dorsal spines are used to estimate age, either by counting growth bands on

the enameled surface [45,46] or in the sectioned spine [44,45]. In holocephalans (chimaeras), a

relative taxon of elasmobranchs, dorsal spines have no enameled surface and thus sectioned dorsal

spines are used to estimate age [47]. In bivalves, age is estimated by counting annual growth

increments in internal shells (Fig. 1d), which are less affected by environmental disturbances than

external shells [23]. Other hard tissues displaying growth rings and being used or having the

potential to be used for age estimation include jaws in errand polychaete [48,49], cephalopod

beaks [40,50], fin spines in billfish (Istiophoridae and Xiphiidae; [51,52] and teeth from

odontocete whales [53].

However, using growth bands has several limitations and validation is still needed [18]. In

old individuals, the increasing narrowness of growth bands at the edge of the studied structure

[21,54,55,56] reduces their visibility, leading to underestimation of age [39,54,57]. The increasing

narrowness of growth bands is the result of a reduction of somatic growth rates with age.

Overestimation of age may also occur when counting growth bands [58,59,60] as non-annual

growth bands may appear [56,60,61]. It may be due to environmental factors that may alter the

pattern of growth bands such as salinity [62] and food availability [55,62]. For example, slow

growth translucent bands were previously known to be formed only during winter in internal shells

of hard clams Mercenaria mercenaria in Rhode Island [63] but reduction of phytoplankton

availability in summer led to the formation of slow growth translucent bands also in summer,

meaning that a pattern of four bands instead of two became yearly for this species in this region.

Furthermore, the compression of growth bands in older individuals reduces the visibility of the fall

opaque band at the edge of the shell [55]. The pattern of growth bands may also not be yearly in

hard tissues of some taxa [58,62,64,65] making them invalid for age estimation. Moulting has also

hampered direct estimation of crustacean age. As a result, the possibilities to directly estimate age

of crustaceans using growth bands has begun to be investigated only recently in gastric mill and

eyestalks (Fig. 1e) with contrasting results [66,67,68,69].

Analysing chemistry of hard tissues

Calcified structures also incorporate environmental elements during their formations but are

usually metabolically inert once formed. As a result, compounds present in growth bands are
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preserved over time and variations of chemical composition occur from the core to the edge of the

chemical structures [24]. These variations may be a tool for estimating age of marine animals but

are mainly used to validate age estimation obtained by band counting [18] as these methods are

more expensive than growth band counting.

Stable isotope ratios of oxygen  (18O:16O, denoted δ18O) in calcified structures are negatively

linked to seawater temperature [70,71]. Consequently, cyclical variations of δ18O occur in calcified

structures along seasons, with maximum δ18O during winter and minimum δ18O during summer.

Thus, the number of δ18O cycles from the core to the edge of calcified structures may indicate the

age of the organism. This method has been used either for age determination [72,73] or for

validation of other methods [37,60].

Another well-known methodology is bomb radiocarbon. Atmospheric nuclear testings in the

late 1950s led to an sharp increase of 14C levels in the atmosphere and in the marine dissolved

organic carbon. Indeed, the levels of 14C in the environment are also integrated in the successive

growth layers of calcified tissues of growing individuals [54,74,75,76], and in particular, in the

core of the calcified tissues, i.e. the birth mark. The integration of environmental 14C levels in

organisms resulted in the appearance of a temporal profile of 14C levels in environment and species

that reflects the pre and post-bomb testing 14C levels in the environment [76,77,78,79] (Fig. 2). As

a result, 14C levels in the core of calcified tissues reflect 14C levels in the environment at the birth of

individuals and thus can be used to estimate the age of animals [80,81] or, more frequently, to

validate [53,78,79,82,83] or adjust [54,75] the year of birth determined with sclerochronology by

comparing 14C levels in studied organisms with a reference chronology of known-age animals (Fig.

2). The main drawbacks for this technique are that it is dependent on a time-specific event and that

there are regional variations of 14C levels and trends [84,85].

The radiometric method consists in comparing the abundance of a radioactive isotope with

its daughter product [86]. For ageing marine animals, the use of this method is limited to teleost

otoliths as an assumption to this methodology is that the carbonate acts as a closed system. The

most commonly used pair of radioactive isotopes are radium 226 (226Ra) and lead 210 (210Pb).

Radium is a naturally occurring radioactive element. Its isotopes are highly soluble in water in

comparison of their parent and daughter radio-isotopes and efficiently absorbed by tissues as a

proxy of calcium. As a result, radium is integrated in calcified tissues. In particular, teleost otoliths

integrate 226Ra and discriminate against its daughter radio-isotope 210Pb. Consequently, the

subsequent decay of 226Ra into 210Pb, which is itself retained by the otoliths, occurs at predictable

rates according to the half-life of the two isotopes. As a result, the ratio of 210Pb over 226Ra
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(210Pb/226Ra) increases consistently and thus can be used as an independent chronometer to estimate

the otolith’s, and thus the teleost’s, age. It is possible to determine 210Pb/226Ra in both the whole

otolith or the core of the otolith. However, analysing 210Pb/226Ra in the whole otolith requires to take

into account the growth of the otolith [11]. Indeed, as the otolith grows, it continuously integrates

radium that subsequently decays, leading to variation of 210Pb/226Ra from the core to the edge of the

otolith. By contrast, 210Pb/226Ra in the core provides more accurate ages [86] and improvement of

technology made it possible to work on small amounts of samples. 210Pb/226Ra has been used either

to assess the age of teleosts of age up to 100 years or as a validation tool for growth zones count

(e.g. [11,56,76,87,88]. Another pair of isotopes that can used to estimate teleost age is thorium 228

(228Th) and radium 228 (228Ra). However, as the age limit with this dating method is 10 years [86],

this method is more suited to estimate the age of short-lived teleosts. However, it has only been

used once [89] since its first documentary reference [86]. 

Other methods outside of the sclerochronology discipline 

Lipofuscin are fluorescent aggregates made of oxidised proteins and lipids that are no more

degraded by cell metabolism and thus continuously accumulate within lysosomal residual bodies.

Consequently, in areas of the brain where neurons persist throughout life, lipofuscin is accumulated

with age in various taxa, notably crustaceans [90]. The correlation between lipofuscin content and

age of crustaceans [9,91] led lipofuscin quantification to be a common tool to estimate the age of

crustaceans [68]. Lipofuscin quantification can be done by using successive histological sections of

the brain where lipofuscin is quantified as an area fraction (e.g. [92,93]) or percent volume fraction

(e.g. [9,91]). Lipofuscin content can also be determined using spectrophotometry and is expressed

as a concentration relative to protein content (e.g. µg.mg-1 protein, e.g. [94,95]). Age determination

can thus be done by using the relationship between lipofuscin content and age in individuals of

known age (e.g. [9,91]), or by separating age groups derived from lipofuscin content frequency

histograms (e.g. [92,93,95]).

Limited knowledge on growth rates of an organism may allow a preliminary estimation of

lifespan. However, these lifespans are highly likely to be inaccurate or imprecise. For example, the

antarctic sea star Odontaster validus was estimated to live between 50 and 100 years but these ages

were estimated assuming that the growth rate of O. validus with age is linear [10]. However,

animals grow until a maximum size and then continue to live. Actually, growth of animals usually

follows the von Bertalanffy’s [96] growth model, where growth rates decrease with age as length is

approaching an asymptote. Knowledge on variations of growth rates during life and several given

parameters (e.g. size at birth) allow to generate growth models. These growth models then help to
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estimate the age of animals according to their size, and longevity is estimated according to the age

estimated for the largest organism (e.g. [12,13,15]).

Attempting to explain long lifespans of some species
Some long-lived marine animals can live strikingly longer than terrestrial ones. While the

maximal recorded lifespan of humans is 122 years, clams can live at least for 5 centuries and sharks

for ca 400 years and, at a first sight, such lifespans are astounding. Yet, some mechanisms

explaining lifespan of terrestrial species may be applied to marine animals too.

Longevity and life-history strategies

Longevity is an integral part of life history strategies. Species reproducing in a single season,

as mice do [97], are not expected to live long simply because a long life is not necessary to make

the species thrive. These species are well able to quickly take advantage of plentiful food to

reproduce heavily: they are called opportunistic species [98]. This life-history strategy is also

present in the marine environment. Opportunistic species include animals such as small pelagic

teleosts (i.e. anchovies and sardines), with a small size, a fast maturation, a rather short lifespan

(from 1.5 to 15 years, [58,99]), and strong abundance fluctuations over time. One can thus

understand why the stock of these species (e.g. the numerous anchovies) can recover if overfished

[100]. However, some of these opportunistic species still have a lifespan (e.g. 13 years in Pacific

sardines and 15 years in herrings) that may be considered as long in, say, dogs, and a challenge is to

explain why “short-lived” fish can live so long. Another example of opportunistic species are

planktonic cladocerans which have population maxima during periods of favourable conditions but

are practically absent from the water column for the rest of the year. Indeed, their life cycle is

characterised by fast maturation and a period of asexual reproduction followed by a period of sexual

reproduction, resulting in the seasonal abundance fluctuations for this group [101,102].

By contrast, species unable to quickly reproduce and thrive even if resources are plentiful are

called equilibrium species [98], such as for instance humans that can only have one offspring every

two years at a maximum and need parental care for ca 15 years. This pattern is not only observed in

terrestrial species but also in marine ones. Marine species with low fecundity reproduce repeatedly

during life, and the offspring need time to reach maturity. This is the case for whales or sharks. For

instance, short-finned pilot whales have their first calf at 8-10 years of age, after a ca 16 months

gestation, sucking lasting for ca 5 years and up to 15 years for the last calf [103]. Such a life-
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history strategy requires living long for whales being able to survive and the species to thrive.

However, a main difference between the so-called fish and mammals is that, even if marine

biologists make use of the term “parental investment” in fish [104], this investment is rudimentary

when compared to parental care in mammals. In the best of the cases, parents will simply protect

larvae from predators, like the male lingcod Ophiodion elongatus does [105]. As a result, while

elasmobranchs are still considered as equilibrium species because of low fecundity, large eggs and

important parental investment (e.g. gestation), long-living teleosts may instead be considered as

“periodic strategists” [99]. Periodic strategists are “slow-growing, long-lived demersal species

(with) a lower degree of variability in abundance” and the authors stressed that lifespans greater

than 20 years ensure “a relatively long reproductive cycle, which minimises the risk that periods of

unfavourable environmental conditions will result in the loss of a stock”. However, teleosts, like

most other marine taxa, actually display a great fecundity by releasing large numbers of eggs in the

water column. It is a little bit surprising that long-lived animals can display a great fecundity, by

contrast to terrestrial mammals, but one should not forget that one million of eggs of an oviparous

marine organism does not mean one million of new adults, because of a high predatory pressure on

eggs and juveniles for instance. Fish often grow throughout life and their fecundity increases with

age [7], but the increased number of eggs produced by older fish could result in only a few more

adult fish than at younger ages. Yet, laying as many eggs as possible may be the only available life-

history strategy when eggs are simply dispersed in water, and thus offered to predators. Therefore,

the increased fecundity with age could explain why many fish live long: without a long lifespan,

these fish could not reproduce and these species would be extinct.

Temperature and metabolism of ectotherm species

Fish and other marine animals, except mammals, are ectotherms and, as for any ectotherm

species, their lifespan is expected to be longer at lower temperatures [106]. However,

experimentally testing this hypothesis can only be done with very short-lived species for obvious

reasons. For instance, mean lifespans of the freshwater fish Cynolebias belotti are 14 months at 25

°C and 19 months at 20 °C: transfer at 8 months of age from 20 °C to 15 °C increases lifespan to 23

months, while the reverse change has nearly no effect (15 months; [107]).

Because temperature is lower in deep sea than near the surface, it has been hypothesised that

deeper-dwelling fish live long, but as deep sea also means higher pressure, lower light, oxygen, and

food levels than near the surface (references in [108]), it is rather difficult to tease apart these

factors. In any case, the evidence showing that deep-sea fish live longer is fragile: in a review on

deep-dwelling fish, Cailliet et al. [108] concluded that metabolic rate was lower with increasing
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depth, and that because of a lower oxygen pressure, oxidative stress could be lower, all of this

possibly explaining long lives but, as stressed by the authors “our findings are at best correlative”.

Another review on bivalves showed that depth only explains 4% or the variance of lifespan (Fig. S4

in [109], and see also [110]), bivalves living longer at higher depths, but there is a caveat in the

fact that most of depths were in the 0-100 m range.

Nevertheless, it remains that a low temperature could explain partly why fish and other

ectotherm marine species can live so long. For instance, sampled Salmo trutta trouts are older at

higher latitudes in Norway where water temperature decreases [111]. Bivalves of various species

have been shown to live longer at higher latitudes, and thus in increasingly cold waters, even if this

is not always observed (Fig. S2 in [109]). This results not only from temperature decrease per se,

because predation is more important in the tropics and metabolism could be lower at higher

latitudes because of a reduced food supply during winter [109]. If food supply is lower at high

latitudes, starvation could occur. It has been argued that species unable to emigrate in the event of

starvation have to wait at the same place for better times and thus that food restriction can make

them living longer (e.g. nematodes, mice), while larger and less predated species (e.g. elephants,

humans) do not need to live longer because they can emigrate to discover new food sources [112].

Because bivalves cannot emigrate, one could make the hypothesis that food restriction would

increase their lifespan: such a hypothesis could be tested with short-lived bivalves. By contrast,

whales or sharks could try to discover new food sources and thus food restriction could have no

effect on lifespan: anyway, it is simply impossible to test this hypothesis by recording lifespan of

food-restricted whales or sharks.

Therefore, it seems possible to explain why ectotherm marine species can live long. Their

metabolism is highly dependent on their environment, not only regarding temperature, but also food

supply, and it is not surprising that a long lifespan, for instance in some bivalve species, has been

selected. Because bivalves can hardly move away, populations could become extinct and possibly

the whole species, too, if they were unable to sustain a low food supply: like spiders on their web,

Arctica islandica clams have to wait for food coming to them and, as spiders [113], living longer

can be a strategy to wait for better times. Combined with a low temperature under the surface, and

thus a longer life with lower temperature as in other ectotherms, this could make they can live long.

However, this would not be observed if life would be ended at an early age because of a severe

predatory pressure.

A low predatory pressure…except from fishery

Overfishing is an issue, particularly for slow-growing long-lived species. Fisheries predate
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preferably large subjects, while marine predators usually prefer prey smaller than their own size,

because gape limitation prohibits ingesting too large individuals (see e.g. [114]). Indeed, as large

subjects need an extended time to grow, catching them means catching the most prolific ones,

which can make soon a species becoming endangered, at risk not to recover even after years or

decades [115,116], and these consequences are similar to those of hunting adult African elephants,

even if does not result in extinction [117]. Predating large subjects could select for animals

investing their resources in reproduction at an earlier age at the expense of their size [118].

Therefore, the main predator of marine species is the fisherman and not the marine predators.

It has been estimated that “among nonhuman predators across all oceans, 50 % of exploitation rates

were less than 1 % of annual adult biomass. In contrast, fisheries exploited more than 10 % of adult

biomass in 62 % of cases. Overall, the median fishing rate (0.14) was 14.1 times the take (0.01) by

marine predators” [119]. Therefore, in the absence of fishing, it can be assumed that the predatory

pressure is low and sustainable. Oceans are immense, and for many species they are a three-

dimensional world allowing more escape than for mice in sight of a cat, for instance. This may

explain why even the highly predated sardines during the sardine run in South Africa [120] can

sustain such an annual toll in a few days, and this every year from ancient times.

For slow-growing species, a long lifespan is mandatory; thus, if protected from predators,

because they can escape or hide in the ground like clams do, individuals of these species can indeed

live long. The clam A. islandica is buried in sands and is hardly visible, waiting for carbon particles

and, as stressed by Morton [121], “the lifestyle of A. islandica is characterised by slow, deliberate,

near undetectable, movements possibly to avoid detection”. Therefore, if the predatory pressure is

low, there is no selective pressure for a reduced lifespan combined with a higher fecundity at

younger ages (see [122]) and longer lifespan can evolve, as in opossums living on an island free

from predators for millenaries [123]. This could be particularly the case for the clam A. islandica

that can live for 5 centuries [16]. 

However, it may happen that a mere accident has dire consequences and kill most animals.

For instance, A. islandica clams were subjected to a mass extinction in Iceland after a storm.

Innumerable clams were “swept from their natural sandy habitat at depth of more than 9 m, up onto

the hard bottom in shallower water (7-9 m)” and thus, “lying exposed, unable to escape, they were

easy prey for fish as wolffish… and invertebrate predators” [124]. One year after the storm, only

empty shells and no living clam were seen on the ground.

Marine ectotherms and mammals



- 13 -

Therefore, taking into account a lower metabolism at lower temperatures in ectotherms, a

low predation rate, a fecundity often increasing with age, and iteroparity, it seems possible to

(partly?) explain why marine species can live so long. However, it remains that marine ectotherms

can live much longer than marine mammals. Table 1 shows that Greenland shark Somniosus

microcephalus can live for 4 centuries while the whales Eubalaena glacialis live only for several

decades and Balaena mysticetus up to 200 years. Thus, in the best case, mammals live for only half

the lifespan of large Greenland sharks: it could be linked to the fact that sharks are ectotherms and

not endotherms like whales. 

The 211-year lifespan of the bowhead whale B. mysticetus is however not exceptional, given

that this whale is the largest living mammal and that larger mammals usually live longer [1].

Indeed, bowhead whales live only twice as long as humans, a species with a small body size when

compared to the up to 100 tonnes whales. However, it is a caveat that the 122-years lifespan of the

recordwoman Jeanne Calment has been observed among several billions of people, while sharply

less bowhead whales can be observed, with a lower chance to observe exceptional individuals. The

other massive blue and fin whales (Balaenoptera musculus and Balaenoptera physalus, indicated

respectively just below the bowhead whales point on Fig. 3) do not display an extraordinary

lifespan. Therefore, the long lifespan of marine mammals is far from being exceptional when

compared to other mammals, even if they are long-lived, and does not depart from the general trend

linking the log of body mass and the log of maximal lifespan in mammals (Fig. 3): explaining the

lifespan of marine mammals is not an issue but explaining why only rather large marine mammals

exist is surely an issue. The marine otter Lontra felina, which weighs ca 4 kg and whose lifespan is

unknown (and thus not shown on Fig. 3), is probably the smallest marine mammal [125].

By contrast, lifespans of marine ectotherms can be impressive and are not so easy to explain:

more studies are necessary to ascertain and explain the variation of lifespan among marine species.
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Figure 1. Examples of tissues displaying growth bands and being used to estimate the age of

marine animals. a) sectioned otolith from a 23 year-old teleost (Dentex dentex) . Annual growth

bands are indicated by white dots. Picture from [126]. b) Statolith from a gastropod (Polinices

pulchellus) with larval ring (LR), settlement ring (SR), and two years growth rings (1st and 2nd).

Picture from [127]. c) Sagittally sectioned vertebrae from a 4 year-old shark (Spyrna lewini).
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Picture from [128]. d) Sectioned shell from a bivalve (Arctica islandica) with each black bar

showing one year of growth. Picture from [129]. e) Sectioned eyestalk of a 4 year-old crustacean

(Euphausia superba). Annual growth bands are indicated by green dots. Green and white arrows

respectively indicate the epicuticle and endocuticle layers. Picture modified from [69]. Reprinted

with permission.
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Figure 2. Temporal evolution of 14C levels (∆14C) recorded in coral layers from Kure Atoll

(Northwestern Hawaiian Islands, [76]), in otolith cores from Lutjanus campechanus from the

northern Gulf of Mexico [78], Chrysophrys auratus from New Zealand [77] and Sebastes

ruberrimus from southeast Alaska [79] and in the atmosphere of the northern hemisphere (zone 2,

[130]).
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Figure 3. Relationship between body mass and maximal lifespan in mammal species (log

scales). Drawn from the database AnAge (http://genomics.senescence.info/species/, [131]. Each

point is for a species and marine mammals are shown with black squares.
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