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ABSTRACT
In this paper, we consider a new one-way two-hop
amplify-and-forward (AF) relaying scheme with a tensor
space-time coding under frequency-selective fading
channels. The signals received at the destination of the
multi-input multi-output (MIMO) system define a 6-order
tensor which satisfies a tensor-train decomposition (TTD).
We propose a new TTD based receiver for a joint channel
and symbol estimation. The proposed receiver avoids the use
of long training sequences and resort to very few pilots to
provide unique estimates of the individual channel matrices
and the symbol matrix. Numerical simulations show the
performance of the new proposed TTD-based semi-blind
receiver.

Index Terms— Channel estimation, MIMO relay systems,
tensor coding, tensor-train decomposition, semi-blind
receiver.

I. INTRODUCTION

The use of relay stations in MIMO communication
systems has shown to have a great potential to enhance
coverage and increase system capacity [8], [10], [3]. In
the case of one-way two-hop MIMO relay systems, the
communication can be divided into two phases. In the first
one, the source node transmits the symbols to the relay. In
the second one, the relay amplifies and forwards the signals
to the destination node, meanwhile the source stays silent.
To achieve the predictable gains of cooperative diversity, an
accurate knowledge of channels associated with the multiple
hops involved in the communication is required for the
design of smart antenna schemes, such as beamforming or
precoding [13].

In relay-assisted MIMO communication systems, the
instantaneous channel for each hop is usually estimated
by means of training sequences transmitted by the source
and relay nodes during successive transmission phases. The
works [9], [12] proposed training sequence based schemes
to estimate the individual channel matrices for two-hop
MIMO relaying systems. The first one [9] relies on an

SVD-based solution, while the second [12] is based on
a parallel factor (PARAFAC) modeling of the received
signals at the destination. By aiming at a joint channel
and symbol estimation in a semi-blind fashion, tensor-based
receivers have been proposed in several works [15], [4]
for two-hop MIMO relaying systems. Of particular interest
to this work is the approach of [4], which is based on
tensor coding-and-forwarding (TCF) scheme by means of
a tensor space-time coding applied at both the source and
relay nodes. More recently, generalizations to multihop
systems [5] and to two-way systems [6] have also been
proposed. All these works have assumed that the propagation
channels are frequency-flat, which is the case of narrowband
communication systems.

In this work, we assume a more general and practical
scenario where the MIMO relaying system is operating in
frequency-selective fading environment. As will be shown
later, when generalizing the scheme of [4] to the wideband
communication scenario, the tensor modeling of the received
signals involves the estimation of larger quantities compared
to the narrowband case. These quantities are represented
by third-order channel tensors and one symbol matrix, the
third dimension being associated to the frequency domain.
By resorting to multicarrier modulation using orthogonal
frequency division multiplexing (OFDM), we propose a
new receiver design for a TCF MIMO-OFDM relaying
system that is capable to solve the joint channel and symbol
estimation problem. The proposed receiver fits the resulting
6-order received signal tensor to a tensor train decomposition
(TTD), where the knowledge of the tensor coding structure
is used to ensure identifiability of the channel tensors and the
symbol matrix. It is important to note that our methodology
is able to manage the case of any number of relays. To the
best of our knowledge, this is the first work where the TTD
approach is used to design a semi-blind receiver for a MIMO
communication system.

The notations used in this paper are as follows. Scalars,
vectors, matrices and tensors are represented by x, x, X
and X , respectively. The symbols (·)T and (·)−1 denote,
respectively, the transpose and the inverse. The Frobenius



norm is defined by || · ||F . IN denotes the identity matrix
of size N × N . The matrix unfoldkX of size Nk ×
N1 · · ·Nk−1Nk+1 · · ·NQ refers to the k-mode unfolding of
X of size N1 × · · · ×NQ. The n-mode product is denoted
by ×n. The contraction product ×p

q [1] between A and B
of size N1× · · · ×NQ and M1× · · · ×MP , with Nq = Mp

is a tensor of order (Q+ P − 2) such that

[A×p
q B]n1,...,nq−1,nq+1,...,nQ,m1,...,mp−1,mp+1,...,mP

=

Nq∑
k=1

[A]n1,...,nq−1,k,nq+1,...,nQ
[B]m1,...,mp−1,k,mp+1,...,mP

.

The rest of the paper is organized as follows. Section II
presents the new one-way two-hop TCF MIMO-OFDM
system. In Section III, we recall the TTD and its ambiguity
results. Section IV introduces the structure of the TT-cores
when the system is decomposed in the TTD. Then, the
proposed TTD based algorithm for the joint channels and
symbols estimation is described. The performance of this
latter is evaluated in Section V. Finally, the conclusions and
some perspectives for future research are drawn in Section
VI.

II. SYSTEM MODEL
In this paper, we consider a MIMO-OFDM relaying

system, where the communication is divided into two hops1

as illustrated in Fig. 1. The 6 dimensions/diversities of the
system are associated with time, source code, frequency
(during the first hop), relay code, frequency (during the
second hop), and space. At both source and relay nodes,
we consider a tensor space-time coding (TSTC) scheme,
following the idea of [4]. Note, however, that the system
model considered in this work is a generalization of that of
[4] to a MIMO-OFDM system. Due to the added frequency
dimensions at both the source → relay (SR), and relay
→ destination (RD) channels, the SR and RD channels
are modeled as third-order tensors and denoted as H(SR)

and H(RD) . Let X be the 6-order tensor, of dimensions

Fig. 1. One-way two-hop MIMO-OFDM relay system
illustration.

MD×F1×K×F2×P×N , representing the received signals
at the destination. In a free-noise scenario, this tensor X can
be expressed as follows:

1A generalization with more than two hops can be easily derived from
the contribution of our work.

[X ]mD,f1,k,f2,p,n =

M̄R∑
m̄R=1

MR∑
mR=1

MS∑
ms=1

R∑
r=1

[H(RD)]mD,f1,m̄R

[C(R)]m̄R,k,mR
[H(SR)]mR,f2,mS

[C(S)]mS ,p,r[S]r,n. (1)

We provide in Table I the description and dimensions of
tensors used in eq. (1).

Table I. Description of tensors used in eq. (1).
Symbols Description Dimensions
H(RD) RD channel tensor MD × F1 × M̄R

C(R) Coding tensor at the relay M̄R ×K ×MR

H(SR) SR channel tensor MR × F2 ×MS

C(S) Coding tensor at the source MS × P ×R
S Transmitted symbols matrix R×N

It is worth mentioning that the tensor X results from
the transmission of R data streams, each composed of
N symbols, during N different time-blocks. During each
block n, each antenna mS transmits a combination of R
information symbols [S]r,n to the relay after a space-time
coding by means of the coding tensor C(S) and through
the channel H(SR). The signals received at the relay are
encoded by means of the coding tensor C(R) and then
transmitted to the destination through the channel H(RD).
The received signals satisfy eq. (1). Different assumptions
are considered for the model of eq. (1): (i) the coding
tensors are constant during the whole transmission (ii)
the channels are quasi-static, i.e. do not change, whitin a
transmission cycle, and (iii) the coding tensors and the
structural parameters (tensor dimensions) are known. Note
that MD, M̄R,MR, MS , and R refer to the number of
antennas at the destination, transmitting antennas at the relay,
receiving antennas at the relay, antennas at the source, and
the data streams, respectively.

III. TENSOR TRAIN DECOMPOSITION (TTD)
III-A. Definition of the TTD
Definition 1. Let {R1, . . . , RQ−1} be the TT-ranks with
bounding conditions R0 = RQ = 1. A Q-order tensor of
size N1 × . . .×NQ admits a decomposition into a train of
low-order tensors if

X = G1 ×1
2 G2 ×1

3 G3 ×1
4 . . .×1

Q−1 GQ−1 ×1
Q GQ, (2)

where the TT-cores G1,Gq , and GQ are, respectively, of
dimensions N1×R1, Rq−1×Nq×Rq , and RQ−1×NQ, for
2 ≤ q ≤ Q− 1, with rank(G1) = R1, rank(GQ) = RQ−1,
rank(unfold1Gq) = Rq−1, and rank(unfold3Gq) = Rq .

Using the contraction product, the model in eq. (1) can
be written in a compact form such that:

X = IMD
×1

2 H
(RD) ×1

3 C
(R) ×1

4 H
(SR) ×1

5 C
(S) ×1

6 S,
(3)

to match the definition of the TTD given in eq. (2).



III-B. The TTD multiplicative ambiguities
As shown in eq. (3), the considered MIMO system is

modeled as a 6-order TTD with a priori known TT-ranks
{MD, M̄R,MR,MS , R}. The multiplicative ambiguities in
the TTD correspond to post- and pre-multiplications by
nonsingular matrices, i.e., we can replace two successive
TT-cores Gq and Gq+1 in eq. (2), respectively, by G′q and
G′q+1 such that

G′q = Gq ×1
3 U
−1
q ,

G′q+1 = Uq ×1
2 Gq+1,

to recover the same tensor X of eq. (2), where Uq is a
nonsingular matrix of size Rq ×Rq .
Applying the state-of-art TT-SVD algorithm [11], [2] to
tensor X allows to recover the original TT-cores Gq up
to these nonsingular matrices, called Uq in the sequel.
The TT-SVD algorithm is based on sequentially truncated
SVD(s). Knowing the TT-ranks and in the noise-free case,
the TT-SVD algorithm recovers exactly the TT-cores. In the
context of the TT-SVD algorithm these nonsingular matrices
correspond to transformation (change-of-basis) matrices due
to the extraction of the dominant singular subspaces using
the SVD.

IV. TT-SVD BASED RECEIVER
IV-A. TT-cores structure

The following theorem gives the structure of the TT-cores
when the TT-SVD algorithm is applied to tensor X in eq. (3).

Theorem 1. Consider the 6-order tensor X defined in
eq. (3). In the noise-free scenario and knowing a priori the
TT-ranks, the structure of the recovered TT-cores is given by

G1 = U−1
1 ,

G2 = H(RD) ×1 U1 ×3 U
−T
2 ,

G3 = C(R) ×1 U2 ×3 U
−T
3 ,

G4 = H(SR) ×1 U3 ×3 U
−T
4 ,

G5 = C(S) ×1 U4 ×3 U
−T
5 ,

G6 = U5S,

where U1, · · · ,U5 are square nonsingular transformation
matrices of ranks MD, M̄R,MR,MS and R, respectively,
corresponding to the TT-ranks of the model.

It is worth noting that the above theorem is the result of
the application of the multiplicative ambiguities of the TTD
given in eq. (3). This means that the cores of eq. (3) are
estimated up to post- and pre-multiplications by nonsingular
matrices as shown in Section III-B. In Theorem 1, the
TT-cores follow a Tucker decomposition (TD) with the
following equivalence:

T ′ = A1 ×1
2 T ×1

3 A2 = T ×1 A1 ×3 A
T
2 .

The TD formalism helps us to introduce our estimation
scheme in the next section.

IV-B. Estimation algorithm: TT-MRS
In this section, we propose an estimation scheme of tensor

channels H(RD), H(SR), and of the transmitted symbols
matrix S, assuming the knowledge of the code tensors
C(R) and C(S). It is a TT-based semi-blind receiver for
MIMO relay systems (TT-MRS). The idea of Algorithm 1
is to eliminate the latent ambiguity matrices U1, · · · ,U5 of
Theorem 1 using the knowledge of tensors C(R) and C(S).
The proposed algorithm is a 3 steps scheme that is based on:
(i) the TT-SVD algorithm to decompose X into the TTD,
(ii) the estimation of the transformation matrices using C(R)

and C(S), and (iii) channels and symbols estimation using
the TT-cores of step 1 and the ambiguity matrices of step 2.
It is worth mentioning that the processing of step 2 (same
for step 3) can be done in a parallel way.
Note that tensors C(R) and C(S) represent the core tensors

Algorithm 1 TT-MRS algorithm

Input: 6-order tensor X , C(R) and C(S) defined in eq. (3).
Output: Ĥ

(RD)
, Ĥ

(SR)
, and Ŝ.

1: TTD: (using the TT-SVD algorithm)

X = G1 ×1
2 G2 ×1

3 G3 ×1
4 G4 ×1

5 G5 ×1
6 G6.

2: Transformation matrices estimation:

Û−1
1 = G1.

[Û2, Û
−T
3 ] = Tucker-ALS(G3,C(R)).

[Û4, Û
−T
5 ] = Tucker-ALS(G5,C(S)).

3: Channels and symbols estimation:

Ĥ
(RD)

= G2 ×1 Û
−1
1 ×3 Û

T
2 .

Ĥ
(SR)

= G4 ×1 Û
−1
3 ×3 Û

T
4 .

Ŝ = Û−1
5 G6.

of the respective TDs of G3 and G5, as shown in Theorem
1, and we have

unfold1G3 = U2 · unfold1C(R) ·
(
U−T3 ⊗ IK

)T
, (4)

unfold2G3 = IK · unfold2C(R) ·
(
U−T3 ⊗U2

)T
, (5)

unfold3G3 = U−T3 · unfold3C(R) ·
(
IK ⊗U2

)T
. (6)

Regarding eq. (4) and eq. (6), we can notice that recovering
matrices U2 and U3 (the same reasoning is valid for U4

and U5), using C(R) and G3, can be done in a general case
using an iterative Tucker-ALS algorithm [7].

One may note that U2 and U3 invloved in eq. (5) are
estimated up to a scalar multiplication, since

A⊗B = α ·A⊗ (
1

α
) ·B.

Applying this property on the proposed scheme, and taking
into account that matrices U2, · · · ,U5 are estimated up to



scalar multiplication, the outputs of Algorithm 1 are then
expressed as

Ĥ
(RD)

= α1 ·H(RD),

Ĥ
(SR)

= α2 ·H(SR),

Ŝ = (
1

α1α2
) · S,

this means that the parameters of interest are estimated
up to a scalar multiplication. To resolve this ambiguity,
two assumptions are possible. Firstly, the knowledge of the
first-order statistic (the mean) of channels H(RD) and H(SR)

can be assumed as in [14], or, secondly, one may assume
the knowledge of one entry of tensors H(RD) and H(SR)

as assumed in [4].

V. SIMULATION RESULTS
In this section, we evaluate the performance of the

proposed receiver by means of numerical computer
simulations for various system configurations. The aim of the
following experiments is twofold. First, we want to validate
the TT modeling for the proposed MIMO relay system,
and show that the proposed method allows a joint channels
and symbols estimation. Second, we want to evaluate the
influence of the system configurations on the quality of
estimation, in particular, the choice and interest of the
new introduced parameter F . The 6-order MIMO relay
system is generated with random channel and coding tensors
whose elements are drawn from a Gaussian distribution
with zero mean and unit variance. The transmitted symbols
are uniform random variables from a 4-QAM constellation.
The additive noise tensors at relay and destination, noted
respectively N (R) and N (D), are assumed to be composed
of elements which are zero-mean Gaussian variables, with a
unit variance. The final noise, noted N (SRD) corresponding
to N (D) at destination, and N (R) at relay filtered by
the relay coding tensor C(R) and the channel H(RD) is
expressed as

N (SRD) = H(RD) ×1
3 C

(R) ×1
4 N

(R) + N (D),

where N (R) and N (D) are respectively of size MR×F1×
P×N and MD×F1×K×F2×P×N . The depicted NMSE
are obtained by averaging the NSE over 104 independent
Monte Carlo runs, with

NSE =

∥∥∥X̂ −X
∥∥∥2

F

‖X‖2F
,

where X and X̂ denote, respectively, the received and
reconstructed signals tensors.

Fig. 2 shows the NMSE of X after the TTD using
the TT-SVD algorithm (1st step of Algo. 1), i.e., the
reconstruction error for the TTD of the received signals at
the destination, when F1 = F2 = K = P = N = DTT

and MD = M̄R = MR = MS = R = RTT . This shows
how the TT modeling fits successfully the considered MIMO
relay system. Moreover, it can be concluded that the bigger
is the dimension DTT for a fixed TT-rank RTT , the better
is the estimation. In the opposite, when RTT grows for a
fixed DTT , the estimation is degrading. Indeed, increasing
DTT implies higher diversity gains due to spreading across
a higher number of subcarriers and time slots. On the other
hand, increasing RTT corresponds to a higher number of
parameters (channel and symbols) to be estimated at the
receiver. In Fig. 3, we plot the NMSE of the estimation of
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Fig. 2. NMSE vs SNR in dB with the TTD.

H(RD) by fixing F2 = K = P = R = 4, N = 10 and
MD = M̄R = MR = MS = 2, and varying the parameter
F1. This result shows the correct estimation of the channel
tensors using Algo. 1. Furthermore, it shows that the canal
estimation becomes more difficult when several frequencies
F1 are considered.
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Fig. 3. NMSE of H(RD) for the proposed algorithm.

Finally, Fig. 4 shows the symbol error rate (SER) of the
estimation of the symbols S as a function of the SNR. The
system configuration is as follows, F1 = F2 = K = P = 4,
N = 10 and MD = M̄R = MR = MS = 2. The conclusions
of this experiment join the previous one in the sense that
the symbols matrix S is correctly estimated using Algo.
1, which means that this latter allows a joint channels and
symbols estimation. In addition, we can see the influence of
the parameter R, one may note that the estimation becomes
a difficult task when there is more symbols to transmit.
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Fig. 4. NMSE of symbols S for the proposed algorithm.

VI. CONCLUSION

A new TTD modeling approach has been proposed for
MIMO-OFDM relay systems to jointly estimate the channels
and the information symbols. Our approach generalizes the
NTD based system of [4] by considering the case of an
OFDM relay system. A new semi-blind receiver which uses
a closed-form TTD algorithm and Tucker-ALS algorithms,
and which relays on some TTD ambiguity results, had also
been proposed. The effectiveness of the proposed receiver is
demonstrated by means of Monte Carlo simulations. Some
extensions of this work include a generalization to TCF
MIMO-OFDM with multiple relays.
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