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Abstract

The so-called `0 pseudonorm on Rd counts the number of nonzero components
of a vector. It is well-known that the `0 pseudonorm is not convex, as its Fenchel
biconjugate is zero. In this paper, we introduce a suitable conjugacy, induced by a
novel coupling, E-Capra, that has the property of being constant along primal rays
like the `0 pseudonorm. The coupling E-Capra belongs to the class of one-sided linear
couplings, that we introduce; we show that they induce conjugacies that share nice
properties with the classic Fenchel conjugacy. For the E-Capra conjugacy, induced
by the coupling E-Capra, we relate the E-Capra conjugate and biconjugate of the
`0 pseudonorm, the characteristic functions of its level sets and the sequence of so-called
top-k norms. In particular, we prove that the `0 pseudonorm is equal to its biconjugate:
hence, the `0 pseudonorm is E-Capra-convex in the sense of generalized convexity. As
a corollary, we show that there exists a proper convex lower semicontinuous function
on Rd such that this function and the `0 pseudonorm coincide on the Euclidian unit
sphere. This hidden convexity property is somewhat surprising as the `0 pseudonorm is
a highly nonconvex function of combinatorial nature. We provide different expressions
for this proper convex lower semicontinuous function, and we give explicit formulas in
the two-dimensional case.

Keywords: `0 pseudonorm, coupling, Fenchel-Moreau conjugacy, top-k norms, k-support
norms, hidden convexity.

1 Introduction

The counting function, also called cardinality function or `0 pseudonorm, counts the number
of nonzero components of a vector in Rd. It is related to the rank function defined over
matrices [7]. It is well-known that the `0 pseudonorm is lower semi continuous (lsc) but is
not convex, and that the Fenchel conjugacy fails to provide relevant analysis. Indeed, the
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Fenchel biconjugate of the characteristic function of the level sets of the `0 pseudonorm is
zero, and the Fenchel biconjugate of the `0 pseudonorm is also zero.

In this paper, we display a suitable conjugacy for which we prove that the `0 pseudonorm
is “convex” in the sense of generalized convexity, that is, is equal to its biconjugate. As a
corollary, we also show that the `0 pseudonorm function displays hidden convexity in the
following sense1: the `0 pseudonorm is equal to the composition of a proper convex lower
semicontinuous function on Rd with the normalization mapping from Rd to the Euclidian
unit sphere.

The paper is organized as follows. In Sect. 2, we provide background on Fenchel-Moreau
conjugacies, then we introduce a novel class of one-sided linear couplings, which includes
the Euclidian constant along primal rays coupling ¢ (E-Capra). We show that one-sided
linear couplings induce conjugacies that share nice properties with the classic Fenchel con-
jugacy, by giving expressions for conjugate and biconjugate functions. We also elucidate the
structure of E-Capra-convex functions. Then, in Sect. 3, we relate the E-Capra conjugate
and biconjugate of the `0 pseudonorm, the characteristic functions of its level sets and the
top-k norms. In particular, we show that the `0 pseudonorm is E-Capra biconjugate (that
is, a E-Capra-convex function). In Sect. 4, we deduce that the `0 pseudonorm coincides, on
the Euclidian unit sphere, with a proper convex lsc function L0 defined on Rd. We provide
various expression for the function L0. The Appendix A gathers properties of top-k norms
and of k-support norms, properties of the `0 pseudonorm level sets, and technical results on
the function L0.

2 One-sided linear couplings

After having recalled background on Fenchel-Moreau conjugacies in §2.1, we introduce one-
sided linear couplings in §2.2.

When we manipulate functions with values in R = [−∞,+∞], we adopt the Moreau
lower addition [10] that extends the usual addition with (+∞) ·+ (−∞) = (−∞) ·+
(+∞) = −∞. Let W be a set. For any function h : W → R, its epigraph is epih ={

(w, t) ∈W× R
∣∣h(w) ≤ t

}
, its effective domain is domh =

{
w ∈W

∣∣h(w) < +∞
}

. A

function h : W → R is said to be proper if it never takes the value −∞ and if domh 6= ∅.
When W is equipped with a topology, the function h : W → R is said to be lower semi
continuous (lsc) if its epigraph is a closed subset of W× R.

2.1 Background on Fenchel-Moreau conjugacies

We review concepts and notations related to the Fenchel conjugacy (we refer the reader to
[11]), then present how they are extended to general conjugacies [15, 14, 9].

1In [3], the vocable “hidden convexity” refers to optimization problems (when an original problem is
equivalent to a convex optimization problem). Here, the vocable “hidden convexity” refers to functions
(when a function is the composition of a convex function with a mapping).
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The Fenchel conjugacy

Let X and Y be two (real) vector spaces that are paired in the following sense [11, p. 13]: there
exists a bilinear form 〈 , 〉 : X × Y → R and locally convex topologies that are compatible
in the sense that the continuous linear forms on X are the functions x ∈ X 7→ 〈x , y〉, for
all y ∈ Y, and that the continuous linear forms on Y are the functions y ∈ Y 7→ 〈x , y〉,
for all x ∈ X. The classic Fenchel conjugacy ? is defined, for any functions f : X → R and
g : Y→ R, by2

f ?(y) = sup
x∈X

(
〈x , y〉 ·+

(
−f(x)

))
, ∀y ∈ Y , (1a)

g?
′
(x) = sup

y∈Y

(
〈x , y〉 ·+

(
−g(y)

))
, ∀x ∈ X , (1b)

f ??
′
(x) = sup

y∈Y

(
〈x , y〉 ·+

(
−f ?(y)

))
, ∀x ∈ X . (1c)

Recall that a function is said to be convex if its epigraph is a convex subset of X×R. Recall
that a function is said to be closed if it is either lsc and nowhere having the value −∞, or
is the constant function −∞ [11, p. 15]. It is proved that the Fenchel conjugacy induces a
one-to-one correspondence between the closed convex functions on X and the closed convex
functions on Y [11, Theorem 5]. Closed convex functions are the two constant functions −∞
and +∞ united with all proper convex lsc functions.3

The general case

Let be given two sets X (“primal”), Y (“dual”), not necessarily vector spaces, together with
a coupling function

c : X× Y→ R . (2)

With any coupling, one associates conjugacies from the set RX
of functions X → R to the

set RY
of functions Y→ R, and from RY

to RX
as follows.

Definition 1 The c-Fenchel-Moreau conjugate of a function f : X→ R, with respect to the
coupling c, is the function f c : Y→ R defined by

f c(y) = sup
x∈X

(
c(x, y) ·+

(
−f(x)

))
, ∀y ∈ Y . (3a)

With the coupling c, we associate the reverse coupling c′ defined by

c′ : Y× X→ R , c′(y, x) = c(x, y) , ∀(y, x) ∈ Y× X . (3b)

2In convex analysis, one does not use the notation ?′
, but simply ?. We use ?′

to be consistent with the
notation (3c) for general conjugacies.

3In particular, any closed convex function that takes at least one finite value is necessarily proper con-
vex lsc.
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The c′-Fenchel-Moreau conjugate of a function g : Y→ R, with respect to the coupling c′, is
the function gc

′
: X→ R defined by

gc
′
(x) = sup

y∈Y

(
c(x, y) ·+

(
−g(y)

))
, ∀x ∈ X . (3c)

The c-Fenchel-Moreau biconjugate of a function f : X → R, with respect to the coupling c,
is the function f cc

′
: X→ R defined by

f cc
′
(x) =

(
f c
)c′

(x) = sup
y∈Y

(
c(x, y) ·+

(
−f c(y)

))
, ∀x ∈ X . (3d)

The biconjugate of a function f : X→ R satisfies

f cc
′
(x) ≤ f(x) , ∀x ∈ X . (4)

With the notion of c-biconjugate, the classic notion of convex function is generalized.

Definition 2 A function f : X→ R is said to be c-convex it is equal to its c-biconjugate:

f is c-convex ⇐⇒ f cc
′
= f . (5)

In generalized convexity, it is established that c-convex functions are all functions of the form
gc
′
, for any g : Y → R, or, equivalently, all functions of the form f cc

′
, for any f : X → R

[15, 14, 9]. As an illustration, the ?-convex functions are the closed convex functions since,
as recalled above, the Fenchel conjugacy induces a one-to-one correspondence between the
closed convex functions on X and the closed convex functions on Y.

2.2 One-sided linear couplings

Now, we introduce one-sided linear couplings, and we show that they induce conjugacies
that share nice properties with the classic Fenchel conjugacy. In what follows, we let X and
Y be two paired vector spaces, W be a set and θ : W→ X be a mapping.

Definition 3 We define the one-sided linear coupling cθ between the set W and the vector
space Y by4

cθ : W× Y→ R , cθ(w, y) = 〈θ(w) , y〉 , ∀(w, y) ∈W× Y . (6)

4In a one-sided linear coupling, the second set Y posesses a linear structure (and is even paired with a
vector space by means of a bilinear form), whereas the first set W is not required to carry any structure.
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For any subset W ⊂W, δW : W→ R denotes the characteristic function of the set W :

δW (w) = 0 if w ∈ W , δW (w) = +∞ if w 6∈ W . (7)

For any subset X ⊂ X, σX : Y→ R denotes the support function of the subset X:

σX(y) = sup
x∈X
〈x , y〉 , ∀y ∈ Y . (8)

Now, we turn to the cθ-conjugacy induced by the coupling cθ. For this purpose, we introduce
the notion of conditional infimum.

Definition 4 Let h : W → R be a function. We define the conditional infimum (of the
function h knowing the mapping θ) as the function inf

[
h | θ

]
: X→ R given by(

inf
[
h | θ

])
(x) = inf

{
h(w)

∣∣w ∈W , θ(w) = x
}
, ∀x ∈ X . (9)

If x 6∈ θ(W), we get that
(
inf
[
h | θ

])
(x) = +∞ by the convention inf ∅ = +∞. Therefore,

regarding effective domains, we have the inclusion dom
(
inf
[
h | θ

])
⊂ θ(W). The notation

inf
[
h | θ

]
comes from the analogy with a conditional expectation, and the expression “con-

ditional infimum” is taken from [17]. The conditional infimum is also called epi-composition
in [12, p. 27] and infimal postcomposition in [2, p. 214].

Here are expressions for the cθ-conjugates and cθ-biconjugates of a function.

Proposition 5 For any function g : Y→ R, the c′θ-Fenchel-Moreau conjugate gcθ
′
: W→ R

is given by
gcθ
′
= g?

′ ◦ θ . (10a)

For any function h : W→ R, the cθ-Fenchel-Moreau conjugate hcθ : Y→ R is given by

hcθ =
(
inf
[
h | θ

])?
, (10b)

and the cθ-Fenchel-Moreau biconjugate hcθcθ
′
: W→ R is given by

hcθcθ
′
=
(
hcθ
)?′ ◦ θ =

(
inf
[
h | θ

])??′ ◦ θ . (10c)

For any subset W ⊂W, we have
δcθW = σθ(W ) . (10d)

Proof. We prove (10a). Letting w ∈W, we have that(
g
)c′θ(w) = sup

y∈Y

(
〈θ(w) , y〉 ·+

(
−g(y)

))
(by the conjugate formula (3a) and the coupling (6))

= g?
′(
θ(w)

)
. (by the expression (1b) of the Fenchel conjugate)

We prove (10b). Letting y ∈ Y, we have that
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hcθ(y) = sup
w∈W

(
〈θ(w) , y〉 ·+

(
−h(w)

))
(by the conjugate formula (3a) and the coupling (6))

= sup
x∈X

sup
w∈W,θ(w)=x

(
〈θ(w) , y〉 ·+

(
−h(w)

))
= sup

x∈X
sup

w∈W,θ(w)=x

(
〈x , y〉 ·+

(
−h(w)

))
= sup

x∈X

(
〈x , y〉 ·+ sup

w∈W,θ(w)=x

(
−h(w)

))
(since supb∈B(a ·+ g(b)) = a ·+ supb∈B g(w) [10])

= sup
x∈X

(
〈x , y〉 ·+

(
− inf
w∈W,θ(w)=x

h(w)
))

= sup
x∈X

(
〈x , y〉 ·+

(
−
(
inf
[
h | θ

])
(x)
))

(by the conditional infimum expression (9))

=
(
inf
[
h | θ

])?
(y) . (by the expression (1a) of the Fenchel conjugate)

We prove (10c). Letting w ∈W, we have that

hcθcθ
′
(w) =

(
hcθ
)c′θ(w) (by the definition (3d) of the biconjugate)

=
((

inf
[
h | θ

])?)c′θ(w) (by (10b))

=
(
inf
[
h | θ

])??′(
θ(w)

)
. (by (10a))

We prove (10d):

δcθW =
(
inf
[
δW | θ

])?
(by (10b))

= δ?θ(W ) (because inf
[
δW | θ

]
= δθ(W ) by (9) and (7))

= σθ(W ) . (by (1a), (7) and (8))

This ends the proof. 2

Now, we are able to characterize the so-called cθ-convex functions (see Definition 2).

Proposition 6 A function h : W → R is cθ-convex if and only if it is the composition of
a closed convex function f : X → R with the mapping θ : W → X. More precisely, for any
function h : W→ R, we have the equivalences

h is cθ-convex (11a)

⇐⇒ h = hcθcθ
′

(11b)

⇐⇒ h =
(
hcθ
)?′ ◦ θ (where

(
hcθ
)?′

: X→ R is a closed convex function) (11c)

⇐⇒ there exists a closed convex function f : X→ R such that h = f ◦ θ . (11d)

Proof. The equivalence between (11a) and (11b) follows from Definition 2. The equivalence

between (11b) and (11c) follows from (10c); Moreover, the function
(
hcθ
)?′

is closed convex since,
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as recalled above, the Fenchel conjugacy induces a one-to-one correspondence between the closed
convex functions on X and the closed convex functions on Y. Obviously, (11c) implies (11d).

Finally, there remains to prove that (11d) implies (11b). If there exists a closed convex function
f : X → R such that h = f ◦ θ, then inf

[
h | θ

]
= f u δθ(W) as easily computed, and therefore

hcθcθ
′

=
(
inf
[
h | θ

])??′ ◦ θ =
(
f u δθ(W)

)??′ ◦ θ by (10c). Now, as f u δθ(W) ≥ f by (7), we get that(
f u δθ(W)

)??′ ≥ f??
′

= f , where the last equality holds because the function f : X → R is closed

convex. As a consequence, we obtain that hcθcθ
′ ≥ f ◦ θ = h. Now, by (4), we always have the

inequality hcθcθ
′ ≤ h. Thus, we conclude that hcθcθ

′
= h.

This ends the proof. 2

Let us say that a function h : W → R displays hidden convexity with respect to the
mapping θ : W→ X if there exists a closed convex function f : X→ R such that h = f ◦ θ.
Then, we have just proved that this notion of hidden convexity for functions (see Footnote 1)
coincides with the notion of cθ-convex functions.

3 The E-Capra conjugacy and the `0 pseudonorm

From now on, we work on the Euclidian space Rd (with d ∈ N∗), equipped with the scalar
product 〈· , ·〉 and with the Euclidian norm ‖ · ‖ =

√
〈· , ·〉. In particular, we consider the

following Euclidian unit sphere S and Euclidian unit ball B:

S =
{
x ∈ Rd

∣∣ ‖x‖ = 1
}

and B =
{
x ∈ Rd

∣∣ ‖x‖ ≤ 1
}
. (12)

In §3.1, we introduce the (Euclidian) constant along primal rays coupling ¢ (E-Capra). Then,
we recall definitions of the `0 pseudonorm, and of the top-k and k-support norms in §3.2.
Finally, in §3.3, we provide expressions for the E-Capra-conjugates and E-Capra-biconjugates
of functions related to the `0 pseudonorm.

3.1 Euclidian Constant along primal rays coupling (E-Capra)

We introduce a novel coupling, which is a special case of one-sided linear coupling.

Definition 7 The E-Capra coupling ¢ between Rd and Rd is defined by

∀y ∈ Rd ,


¢(x, y) =

〈x , y〉
‖x‖

=
〈x , y〉√
〈x , x〉

, ∀x ∈ Rd\{0} ,

¢(0, y) = 0.

(13)

The coupling E-Capra has the property of being constant along primal rays, hence the
acronym5 E-Capra (Euclidian Constant Along Primal RAys Coupling). We introduce the

5In fact, there is large class of couplings that are constant along primal rays. It suffices to replace the
Euclidian norm in (13) with any norm. Such couplings are studied in [4, 5]. In this paper, we focus on the
constant along primal rays coupling induced by the Euclidian norm, hence the acronym E-Capra.
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primal normalization mapping n as follows:

n : Rd → S ∪ {0} , n(x) =

{
x
‖x‖ if x 6= 0 ,

0 if x = 0 .
(14)

With these notations, the coupling E-Capra in (13) is a special case of one-sided linear
coupling (see Definition 3): ¢ = cn, as in (6) with θ = n, is the Fenchel coupling after
primal normalization. The following Proposition — that provides expressions for the E-
Capra-conjugates and E-Capra-biconjugates of a function — simply is Proposition 5 in the
case where the mapping θ is the normalization mapping n in (14).

Proposition 8 For any function g : Rd → R, the ¢′-Fenchel-Moreau conjugate g¢
′
: Rd → R

is given by

g¢
′

= g? ◦ n . (15a)

For any function f : Rd → R, the ¢-Fenchel-Moreau conjugate f¢ : Rd → R is given by

f¢ =
(
inf
[
f | n

])?
, (15b)

where the conditional infimum (9) has the expression

(
inf
[
f | n

])
(x) = inf

{
f(x′)

∣∣n(x′) = x
}

=

{
infλ>0 f(λx) if x ∈ S ∪ {0} ,
+∞ if x 6∈ S ∪ {0} ,

(15c)

and the ¢-Fenchel-Moreau biconjugate f¢¢′ : Rd → R is given by

f¢¢′ =
(
f¢)?′ ◦ n =

(
inf
[
f | n

])??′ ◦ n . (15d)

Thanks to Proposition 6, we easily deduce the following result.

Proposition 9 A function on Rd is ¢-convex if and only if it is the composition of a closed
convex function on Rd with the normalization mapping (14). More precisely, for any function
h : Rd → R, we have the equivalences

h is ¢-convex

⇐⇒ h = h¢¢′

⇐⇒ h =
(
h¢
)?′ ◦ n (where

(
h¢
)?′

: Rd → R is a closed convex function)

⇐⇒ there exists a closed convex function f : Rd → R such that h = f ◦ n .

Now, we turn to analyze the `0 pseudonorm by means of the E-Capra conjugacy.

3.2 The `0 pseudonorm, and the top-k and k-support norms

We recall definitions of the so-called `0 pseudonorm, and of the top-k and k-support norms.
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The `0 pseudonorm. The `0 pseudonorm is the function `0 : Rd → {0, 1, . . . , d} defined by

`0(x) =
∣∣{j ∈ {1, . . . , d} ∣∣xj 6= 0

}∣∣ , ∀x ∈ Rd , (17)

where |K| denotes the cardinal of a subset K ⊂ {1, . . . , d}. The `0 pseudonorm shares three
out of the four axioms of a norm: nonnegativity, positivity except for x = 0, subadditiv-
ity. The axiom of 1-homogeneity does not hold true; by contrast, the `0 pseudonorm is
0-homogeneous as `0(ρx) = `0(x), ∀ρ ∈ R\{0}, ∀x ∈ Rd. Thus, the `0 pseudonorm displays
the invariance property

`0 ◦ n = `0 (18)

with respect to the normalization mapping (14). This property will be instrumental to show
that the `0 pseudonorm is a ¢-convex function.

The level sets of the `0 pseudonorm. The `0 pseudonorm is used in exact sparse
optimization problems of the form inf`0(x)≤k f(x). Thus, we introduce the level sets

`≤k0 =
{
x ∈ Rd

∣∣ `0(x) ≤ k
}
, ∀k ∈

{
0, 1, . . . , d

}
, (19a)

and the level curves

`=k
0 =

{
x ∈ Rd

∣∣ `0(x) = k
}
, ∀k ∈

{
0, 1, . . . , d

}
. (19b)

For any subset K ⊂ {1, . . . , d}, we denote the subspace of Rd made of vectors whose
components vanish outside of K by6

RK = RK × {0}−K =
{
x ∈ Rd

∣∣xj = 0 , ∀j 6∈ K
}
⊂ Rd , (20)

where R∅ = {0}. For any x ∈ Rd and K ⊂
{

1, . . . , d
}

, we denote by xK ∈ Rd the vector
which coincides with x, except for the components outside of K that vanish: xK is the
orthogonal projection of x onto the subspace RK . The level sets of the `0 pseudonorm
in (19a) are easily related to the subspaces RK of Rd, as defined in (20), by7

`≤k0 =
{
x ∈ Rd

∣∣ `0(x) ≤ k
}

=
⋃
|K|≤k

RK , ∀k = 0, 1, . . . , d . (21)

The top-k and k-support norms.

Definition 10 For k ∈
{

1, . . . , d
}

, we define8

‖x‖tn
(k) = sup

|K|≤k
‖xK‖ = sup

|K|=k
‖xK‖ , ∀x ∈ Rd . (22)

6Here, following notation from Game Theory, we have denoted by −K the complementary subset of K
in {1, . . . , d}: K ∪ (−K) = {1, . . . , d} and K ∩ (−K) = ∅.

7The notation
⋃
|K|≤k is a shorthand for

⋃
K⊂{1,...,d},|K|≤k (and the same for

⋃
|K|=k).

8The notation sup|K|≤k is a shorthand for supK⊂{1,...,d},|K|≤k (and the same for sup|K|=k). The property
that sup|K|≤k ‖xK‖ = sup|K|=k ‖xK‖ in (22) comes from the easy observation thatK ⊂ K ′ ⇒ ‖xK‖ ≤ ‖xK′‖.
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Thus defined, ‖ · ‖tn
(k) is a norm, the so-called top-k norm. Its dual norm, as in (39a), denoted

by9 ‖ · ‖?sn(k) , is called the k-support norm [1]:

‖ · ‖?sn(k) =
(
‖ · ‖tn

(k)

)
?
. (23)

We follow the terminology of [16], where the top-k norm is also called the top-(k, 1) norm.
Indeed, the norm of a vector is obtained with a subvector of size k having the k largest
components in module: letting σ be a permutation of {1, . . . , d} such that |xσ(1)| ≥ |xσ(2)| ≥
· · · ≥ |xσ(d)|, we have that ‖x‖tn

(k) =
√∑k

l=1 |xσ(l)|2. The top-k norm is also known as the

2-k-symmetric gauge norm, or Ky Fan vector norm.

3.3 E-Capra-conjugates and biconjugates of the `0 pseudonorm

With the Fenchel conjugacy, we calculate that δ?
`≤k0

= δ{0} and δ??
′

`≤k0

= 0, for all k = 1, . . . , d,

and that `?0 = δ{0} and `??
′

0 = 0. Hence, the Fenchel conjugacy is not suitable to handle the
`0 pseudonorm. We will now see that we obtain more interesting formulas with the E-Capra-
conjugacy. Indeed, the `0 pseudonorm in (17), the characteristic functions δ

`≤k0
of its level

sets (21) and the top-k norms in (22) are related by the following conjugate formulas. The
proof relies on results gathered in the Appendix A.

Theorem 11 Let ¢ be the Euclidian coupling E-Capra as defined in (13). Let k ∈
{

0, 1, . . . , d
}

.

We have that (with the convention, in (24a) and in (24c), that ‖ · ‖tn
(0) = 0)

δ
−¢
`≤k0

= δ
¢
`≤k0

= ‖ · ‖tn
(k) , (24a)

δ
¢¢′

`≤k0

= δ
`≤k0

, (24b)

`
¢
0 = sup

l=0,1,...,d

[
‖ · ‖tn

(l) − l
]
, (24c)

`
¢¢′
0 = `0 . (24d)

Proof. We will use the framework and results of Sect. 2 with X = Y = Rd, equipped with the
scalar product 〈· , ·〉 and with the Euclidian norm ‖ · ‖ =

√
〈· , ·〉.

• We prove the first equality in (24a):

δ
−¢
`≤k0

= σ−n(`≤k0 )
(by (10d) because −¢ = c−n in (6))

= σ
n(`≤k0 )

(by symmetry of the set `≤k0 in (19a) and of the mapping n in (14))

= δ
¢
`≤k0

. (by (10d))

9We use the symbol ? in the superscript to indicate that the k-support norm ‖ · ‖?sn(k) is a dual norm.
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We now turn to prove the second equality in (24a):

δ
−¢
`≤k0

= σ
n(`≤k0 )

(by (10d))

= σ
(`≤k0 ∩S)∪{0} (by the expression (14) of the normalization mapping n)

= sup
{
σ
`≤k0 ∩S

, 0
}

(as the support function turns a union of sets into a supremum)

= sup
{
σ⋃
|K|≤k(RK∩S), 0

}
(as `≤k0 ∩ S =

⋃
|K|≤k(RK ∩ S) by (21))

= sup
{

sup
|K|≤k

σ(RK∩S), 0
}

(as the support function turns a union of sets into a supremum)

= sup
{
‖ · ‖tn(k), 0

}
(as sup|K|≤k σ(RK∩S) = ‖ · ‖tn(k) by (43))

= ‖ · ‖tn(k) .

• Before proving (24b), observe that, by definition (14) of the normalization mapping n, we have:

0 ∈ D ⊂ Rd ⇒ n−1(D) = n−1
(
({0} ∪ S) ∩D

)
= {0} ∪ n−1(S ∩D) . (25)

• We prove (24b):

δ
¢¢′

`≤k0

=
(
δ
¢
`≤k0

)? ◦ n (by the formula (15d) for the biconjugate)

=
(
‖ · ‖tn(k)

)? ◦ n (by (24a))

=
(
σB?sn

(k)

)? ◦ n
(by (39b), that expresses a norm as the support function of the unit ball of the dual norm)

= δB?sn
(k)
◦ n (as

(
σB?sn

(k)

)?
= δB?sn

(k)
since B?sn(k) is closed convex [13, Theorem 13.2])

= δn−1(B?sn
(k)

) (by the definition (7) of a characteristic function)

= δ{0}∪n−1(B?sn
(k)
∩S) (by (25) since 0 ∈ B?sn(k) )

= δ{0}∪n−1(`≤k0 ∩S)
(as B?sn(k) ∩ S = `≤k0 ∩ S by (54a))

= δ
n−1(`≤k0 )

(by (25) since 0 ∈ `≤k0 )

= δ
`≤k0

. (as `0 ◦ n = `0 by (18))

• We prove (24c):

`
¢
0 =

(
inf

l=0,1,...,d

{
δ`=l0

u l
})¢

(since `0 = inf l=0,1,...,d

{
δ`=l0

u l
}

by using the level curves (19b))

= sup
l=0,1,...,d

{
δ
¢
`=k0 ·+ (−l)

}
(as conjugacies, being dualities, turn infima into suprema)

= sup
l=0,1,...,d

{
σn(`=l0 ) ·+ (−l)

}
(as δ

¢
`=k0

= σn(`=l0 ) by (10d))

= sup
{

0, sup
l=1,...,d

{
σ`=l0 ∩S ·+ (−l)

}}
(as σ{0} = 0 and n(`=l0 ) = `=l0 ∩ S when l ≥ 1 by (14))
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= sup
{

0, sup
l=1,...,d

{
σ
`=l0 ∩S ·

+ (−l)
}}

(as σX = σX for any X ⊂ Rd [8, Proposition 2.2.1])

= sup
{

0, sup
l=1,...,d

{
σ
`≤l0 ∩S ·+ (−l)

}}
(as `=l0 ∩ S = `≤l0 ∩ S by (54b))

= sup
{

0, sup
l=1,...,d

{
σ∪|K|≤l(RK∩S) ·+ (−l)

}}
(as `≤l0 ∩ S = ∪|K|≤l(RK ∩ S) by (21))

= sup
{

0, sup
l=1,...,d

{
sup
|K|≤l

σRK∩S ·+ (−l)
}}

(as the support function turns a union of sets into a supremum)

= sup
{

0, sup
l=1,...,d

[
‖y‖tn(l) − l

]}
(as sup|K|≤l σRK∩S = ‖ · ‖tn(l) by (43))

= sup
l=0,1,...,d

[
‖y‖tn(l) − l

]
. (using the convention that ‖ · ‖tn(0) = 0)

• We prove (24d). It is easy to check that `
¢¢′
0 (0) = 0 = `0(0). Therefore, let x ∈ Rd\{0} be given

and assume that `0(x) = l ∈
{

1, . . . , d
}

. We consider the mapping φ :]0,+∞[→ R defined by

φ(λ) =
〈x , λx〉
‖x‖

+
(
− sup

{
0, sup
j=1,...,d

[
‖λx‖tn(j) − j

]})
, ∀λ > 0 , (26)

and we are going to show that limλ→+∞ φ(λ) = l. We have

φ(λ) = λ‖x‖+
(
− sup

{
0, sup
j=1,...,d

[
‖λx‖tn(j) − j

]})
(by definition (26) of φ)

= λ‖x‖tn(l) + inf
{

0,− sup
j=1,...,d

[
λ‖x‖tn(j) − j

]}
(as ‖x‖ = ‖x‖tn(l) when `0(x) = l by (53a))

= inf
{
λ‖x‖tn(l), λ‖x‖

tn
(l) + inf

j=1,...,d

(
−
[
λ‖x‖tn(j) − j

])}
= inf

{
λ‖x‖tn(l), inf

j=1,...,d

(
λ
(
‖x‖tn(l) − ‖x‖

tn
(j)

)
+ j
)}

= inf
{
λ‖x‖tn(l), inf

j=1,...,l−1

(
λ
(
‖x‖tn(l) − ‖x‖

tn
(j)

)
+ j
)
, inf
j=l,...,d

(
λ
(
‖x‖tn(l) − ‖x‖

tn
(j)

)
+ j
)}

= inf
{
λ‖x‖tn(l), inf

j=1,...,l−1

(
λ
(
‖x‖tn(l) − ‖x‖

tn
(j)

)
+ j
)
, l
}

as ‖x‖tn(j) = ‖x‖tn(l) for j ≥ l by (53a). Let us show that the two first terms in the infimum go to +∞
when λ→ +∞. The first term λ‖x‖tn(l) goes to +∞ because ‖x‖tn(l) = ‖x‖ > 0 by assumption (x 6= 0).

The second term infj=1,...,l−1

(
λ
(
‖x‖tn(l) − ‖x‖

tn
(j)

)
+ j
)

also goes to +∞ because `0(x) = l, so that

‖x‖ = ‖x‖tn(l) > ‖x‖
tn
(j) for j = 1, . . . , l−1 by (53a). Therefore, limλ→+∞ φ(λ) = inf{+∞,+∞, l} = l.
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This concludes the proof since

l = lim
λ→+∞

φ(λ) ≤ sup
y∈Rd

(
〈x , y〉
‖x‖ ·+

(
− sup

{
0, sup
j=1,...,d

[
‖y‖tn(j) − j

]}))
(by definition (26) of φ)

= sup
y∈Rd

(
〈x , y〉
‖x‖ ·+

(
− sup
j=0,1,...,d

[
‖y‖tn(j) − j

]))
(by the convention ‖ · ‖tn(0) = 0)

= sup
y∈Rd

(
〈x , y〉
‖x‖ ·+

(
−`¢0 (y)

))
(by the formula (24c) for `

¢
0 )

= `
¢¢′
0 (x) (by the biconjugate formula (3d))

≤ `0(x) (by (4) giving `
¢¢′
0 ≤ `0)

= l . (by assumption)

Therefore, we have obtained l = `
¢¢′
0 (x) = `0(x).

This ends the proof. 2

In the next Section, we present a (rather unexpected) consequence of the just established

property that `
¢¢′
0 = `0.

4 Hidden convexity in the pseudonorm `0

In §4.1, we show that there exists a proper convex lsc function on Rd which takes the
same values as the `0 pseudonorm on the Euclidian unit sphere S. This property of hidden
convexity somehow comes as a surprise as the `0 pseudonorm is a highly nonconvex function of
combinatorial nature. Then, we provide various expression for the underlying proper convex
lsc function and, in §4.2, we display mathematical expressions and graphical representations
in the two-dimensional case.

4.1 Hidden convexity in the pseudonorm `0

We introduce the function L0 : Rd → R defined by

L0 =
(

sup
l=0,1,...,d

[
‖ · ‖tn

(l) − l
])?′

. (27)

Theorem 12 The function L0 in (27) is a proper convex lsc function on Rd. The pseudo-
norm `0 coincides, on the Euclidian unit sphere S of Rd, with the function L0, that is,

`0(x) = L0(x) , ∀x ∈ S . (28)

As a consequence, the pseudonorm `0 displays hidden convexity, as it can be expressed as the
composition of the proper convex lsc function L0 in (27) with the normalization mapping n
in (14):

`0(x) = L0

( x

‖x‖

)
, ∀x ∈ Rd\{0} . (29)
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The proper convex lsc function L0 has the property

L0

(
(x1, . . . , xd)

)
= L0

(
(|x1|, . . . , |xd|)

)
, ∀(x1, . . . , xd) ∈ Rd . (30)

Proof. First, it is easily seen that the closed convex function L0 in (27) is proper lsc (see
Footnote 3).

Second, we prove (28). For x ∈ S, we have

`0(x) = `
¢¢′
0 (x) (by (24d))

= sup
y∈Rd

(
¢(x, y) ·+

(
−`¢0 (y)

))
(by the biconjugate formula (3d))

= sup
y∈Rd

(
〈x , y〉 ·+

(
−`¢0 (y)

))
(by (13) with ‖x‖ = 1 since x ∈ S)

= sup
y∈Rd

(
〈x , y〉 ·+

(
−
(

sup
l=0,1,...,d

[
‖y‖tn(l) − l

])))
(by (24c))

=
(

sup
l=0,1,...,d

[
‖y‖tn(l) − l

])?′
(x) (by the expression (1a) of the Fenchel conjugate)

= L0(x) . (by (27))

Third, the equality (29) is an easy consequence of the property (18) that the pseudonorm `0 is
invariant along any open ray of Rd.

Fourth, we prove (30). For this purpose, we take any ε ∈ {−1, 1}d and we consider the symme-
try ε̃ of Rd, defined by ε̃(x1, . . . , xd) = (ε1x1, . . . , εdxd), for all (x1, . . . , xd) ∈ Rd. We will show that
the proper convex lsc function L0 is invariant under the symmetry ε̃, hence satisfies (30). Indeed,
for any x ∈ Rd, we have

L0(ε̃x) =
(

sup
l=0,1,...,d

[
‖ · ‖tn(l) − l

])?′
(ε̃x) (by (27))

= sup
y∈Rd

(
〈ε̃x , y〉 ·+

(
−
(

sup
l=0,1,...,d

[
‖y‖tn(l) − l

])))
(by the expression (3c) of the reverse Fenchel conjugate)

= sup
y∈Rd

(
〈x , ε̃y〉 ·+

(
−
(

sup
l=0,1,...,d

[
‖y‖tn(l) − l

])))
(as easily seen)

= sup
y∈Rd

(
〈x , ε̃y〉 ·+

(
−
(

sup
l=0,1,...,d

[
‖ε̃y‖tn(l) − l

])))
as ‖ · ‖tn(0) ≡ 0 (by convention) and all norms ‖ · ‖tn(l), l = 1, . . . , d, are invariant under the symmetry ε̃

=
(

sup
l=0,1,...,d

[
‖ · ‖tn(l) − l

])?′
(x) (as ε̃−1(Rd) = Rd)

= L0(x) . (by (27))

This ends the proof. 2

Now, we provide three expressions for the proper convex lsc function L0 in (27).

14



Proposition 13 The proper convex lsc function L0 in (27) can also be characterized

• either by its epigraph

epiL0 = co
( d⋃
l=0

B?sn(l) × [l,+∞[
)
, (31)

where B?sn(0) = {0} (by convention) and B?sn(1) ⊂ · · · ⊂ B?sn(l−1) ⊂ B?sn(l) ⊂ · · · ⊂ B?sn(d) = B
denote the unit balls associated with the l-support norms defined in (23) for l = 1, . . . , d,

• or, as the largest proper convex lsc function below the (extended integers valued) func-
tion L0 defined by

L0(x) =


0 if x = 0,

l if x ∈ B?sn(l) \B?sn(l−1) , l = 1, . . . , d,

+∞ if x 6∈ B?sn(d) = B,
(32)

• or also by the expression

L0(x) = min
x(1)∈Rd,...,x(d)∈Rd∑d

l=1 ‖x(l)‖
?sn
(l) ≤1∑d

l=1 x
(l)=x

d∑
l=1

l‖x(l)‖?sn(l) , ∀x ∈ Rd . (33)

Proof.
• First, we prove that the epigraph of L0 in (27) is given by (31). Indeed, we have that

epiL0 = epi
(

sup
l=0,1,...,d

[
‖ · ‖tn(l) − l

])?′
(by (27))

= co
( d⋃
l=0

epi
[
‖ · ‖tn(l) − l

]?′)
(by [13, Theorem 16.5])

= co
( d⋃
l=0

epi
[
σB?sn

(l)
− l
]?′)

(by (52))

= co
( d⋃
l=0

epi
[
δB?sn

(l)
+ l
])

(as
[
σB?sn

(l)
− l
]?′

= δB?sn
(l)

+ l)

= co
( d⋃
l=0

B?sn(l) × [l,+∞[
)
. (as is easily concluded)
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• Second, we prove that the function L0 in (27) is the largest proper convex lsc function below the
function L0 defined by (32). Indeed, we have that

L0 =
(

sup
l=0,1,...,d

[
‖ · ‖tn(l) − l

])?′
(by (27))

=
(

sup
l=0,1,...,d

[
σB?sn

(l)
− l
])?′

(by (52))

=
(

sup
l=0,1,...,d

[
δB?sn

(l)
+ l
]?)?′

(as
[
δB?sn

(l)
+ l
]?

= σB?sn
(l)
− l)

=
([

inf
l=0,1,...,d

[
δB?sn

(l)
+ l
]]?)?′

(as conjugacies, being dualities, turn infima into suprema)

=
(

inf
l=0,1,...,d

[
δB?sn

(l)
+ l
])??′

(by definition (1c) of the Fenchel biconjugate)

= L??
′

0

as it is easy to establish that the function inf l=0,1,...,d

[
δB?sn

(l)
+ l
]

coincides with the function L0

defined by (32). Indeed, it is deduced from (51) that {0} = B?sn(0) ⊂ B?sn(1) ⊂ · · · ⊂ B?sn(l−1) ⊂ B?sn(l) ⊂
· · · ⊂ B?sn(d) = B. Finally, from L0 = L??

′
0 , we conclude that L0 is the largest proper convex lsc

function below the function L0.

• Third, we prove that L0 in (27) is given by (33). For this purpose, we use a general formula [18,
Corollary 2.8.11] for the Fenchel conjugate of the supremum of proper convex functions fl : Rd → R,
l = 0, 1, . . . , d: ⋂

l=0,1,...,d

dom fl 6= ∅ ⇒
(

sup
l=0,1,...,d

fl
)?

= min
λ∈∆d+1

( d∑
l=0

λlfl

)?
, (34)

where ∆d+1 is the simplex of Rd. As the functions fl = ‖ · ‖tn(l) − l are proper convex, we obtain

L0 =
(

sup
l=0,1,...,d

[
‖ · ‖tn(l) − l

])?′
(by (27))

=
(

sup
l=0,1,...,d

[
σB?sn

(l)
− l
])?′

(by (52))

= min
λ∈∆d+1

( d∑
l=0

λl

[
σB?sn

(l)
− l
])?

(by (34))

= min
λ∈∆d+1

(
σ∑d

l=0 λlB?sn(l)
−

d∑
l=0

λll
)?

as, for all l = 0, . . . , d, λlσB?sn
(l)

= σλlB?sn(l)
since λl ≥ 0, and then using the well-known property

that the support function of a Minkowski sum of subsets is the sum of the support functions of the
individual subsets [13, p. 113]
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= min
λ∈∆d+1

(
δ∑d

l=0 λlB?sn(l)
+

d∑
l=0

λll
)
. (as

[
σC − t

]?′
= δC + t for any closed convex subset C)

Therefore, for all x ∈ Rd, we have

L0(x) = min
λ∈∆d+1

x∈
∑d
l=0 λlB?sn(l)

d∑
l=0

λll , (35a)

= min
z(1)∈B?sn

(1)
,...,z(d)∈B?sn

(d)

λ1≥0,...,λd≥0∑d
l=1 λl≤1∑d

l=1 λlz
(l)=x

d∑
l=1

λll (35b)

by ignoring λ0 ≥ 0 since B?sn(0) = {0} by convention

= min
s(1)∈S?sn

(1)
,...,s(d)∈S?sn

(d)

µ1≥0,...,µd≥0∑d
l=1 µl≤1∑d

l=1 µls
(l)=x

d∑
l=1

µll (35c)

where S?sn(l) is the unit sphere of the l-support norm ‖ · ‖?sn(l) , and the inequality ≤ is obvious as

S?sn(l) ⊂ B?sn(l) for all l = 1, . . . , d; the inequality ≥ comes from putting, for l = 1, . . . , d, µl = λl‖z(l)‖?sn(l)

and observing that i) there exist s(l) ∈ S?sn(l) such that λlz
(l) = µls

(l) (take any s(l) when z(l) = 0

and s(l) = z(l)

‖z(l)‖?sn(l)

when z(l) 6= 0) ii)
∑d

l=1 λll ≥
∑d

l=1 λl‖z(l)‖?sn(l) l =
∑d

l=1 µll because ‖z(l)‖?sn(l) ≤ 1

= min
x(1)∈Rd,...,x(d)∈Rd∑d

l=1 ‖x(l)‖
?sn
(l) ≤1∑d

l=1 x
(l)=x

d∑
l=1

‖x(l)‖?sn(l) l , (35d)

by putting x(l) = µls
(l), for all l = 1, . . . , d.

This ends the proof. 2

With Proposition 13, we dispose of expressions that make it possible to obtain more
involved formulas for the function L0 in (27). In particular, we will now obtain graphical
representations and mathematical formulas for the proper convex lsc function L0 on R2.

4.2 Graphical representations of the function L0 on R2

In dimension d = 1, it is easily computed that the function L0 in (27) is the absolute value
function | · | on the segment [−1, 1] and +∞ outside the segment [−1, 1]. The pseudonorm `0

17



Figure 1: Topological closure of the graph, between heights z = 0 and z = 2, of the
proper convex lsc function L0 which coincides, on the Euclidian unit sphere S, with the
`0 pseudonorm

coincides with L0 on the one-dimensional unit sphere {−1, 1} — but also with any convex
function taking the value 1 on {−1, 1} (the function | · |, the constant function 1, etc.).

In dimension d = 2, the function L0 in (27) is, by Proposition 13, the largest proper
convex lsc function which is below the function which takes the value 0 on the zero (0, 0),
the value 1 on the unit lozenge of R2 deprived of (0, 0), and the value 2 on the unit disk
of R2 deprived of the unit lozenge (see Proposition 13). As a consequence, the graph of L0

contains segments (in R3) that join the zero (0, 0, 0) of the horizontal plane at height z = 0
with the unit lozenge of the horizontal plane at height z = 1, and this latter with the unit
circle of the horizontal plane at height z = 2. In Figure 1, we have displayed two views of
the topological closure of the graph of L0. As the function L0 is not continuous at the four
extremal points — (0, 1), (1, 0), (0,−1), (−1, 0) — of the unit lozenge, it is delicate to depict
the graph and easier to do so for its topological closure. In dimension d = 2, the function L0

in (27) is given by the following explicit formulas (see also Figure 2).

Proposition 14 In dimension d = 2, the function L0 in (27) is given by

L0(x1, x2) =


+∞ if x2

1 + x2
2 > 1 , (36a)

1 if (x1, x2) ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)} , (36b)

2 if x2
1 + x2

2 = 1 and (x1, x2) 6∈ {(1, 0), (0, 1), (−1, 0), (0,−1)} ,(36c)
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(36d)

Figure 2: Companion figure for Proposition 14

and, for any (x1, x2) such that x2
1 + x2

2 < 1 by

L0(x1, x2) =



|x1|+ |x2| if |x1|+ |x2| ≤ 1 , (36d)

|x1|+ |x2| − 2 +
√

2√
2− 1

if


(
√

2− 1)|x1|+ |x2| < 1 < |x1|+ |x2|
or

|x1|+ (
√

2− 1)|x2| < 1 < |x1|+ |x2| ,
(36e)

3− |x2|
2

+
x2

1

2(1− |x2|)
if (
√

2− 1)|x1|+ |x2| ≥ 1 and |x2| > |x1| , (36f)

3− |x1|
2

+
x2

2

2(1− |x1|)
if |x1|+ (

√
2− 1)|x2| ≥ 1 and |x1| > |x2| .(36g)

Proof. By (33) for d = 2, we find that

L0(x) = min
(x(1),x(2))∈C(x)

‖x(1)‖?sn(1) + 2‖x(2)‖?sn(2) , (37a)

where the constraints set is given by

C(x) =
{(
x(1), x(2)

)
∈ (R2)2

∣∣∣ ‖x(1)‖?sn(1) + ‖x(2)‖?sn(2) ≤ 1 , x(1) + x(2) = x
}
. (37b)
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If (x(1), x(2)) ∈ C(x), we have that

‖x‖ ≤ ‖x(1)‖?sn(1) + ‖x(2)‖?sn(2) ≤ 1 , (38a)

‖x‖ = 1⇒ ‖x(1)‖?sn(2) = ‖x(1)‖?sn(1) and ‖x(1)‖?sn(1) + ‖x(2)‖?sn(2) = 1 , (38b)

because ‖x‖ = ‖x‖?sn(2) (by (50))

≤ ‖x(1)‖?sn(2) + ‖x(2)‖?sn(2) (because (x(1), x(2)) ∈ C(x)⇒ x(1) + x(2) = x)

≤ ‖x(1)‖?sn(1) + ‖x(2)‖?sn(2) (because ‖x(1)‖?sn(2) ≤ ‖x(1)‖?sn(1) by (50))

≤ 1 . (because (x(1), x(2)) ∈ C(x)⇒ ‖x(1)‖?sn(1) + ‖x(2)‖?sn(2) ≤ 1)

We are now going to describe the constraints set C(x) in (37b) according to ‖x‖, then to de-
duce L0(x) from (37a).

1. Suppose that ‖x‖ =
√
x2

1 + x2
2 > 1. Then, by (38a), we deduce that C(x) = ∅ in (37b), hence

that L0(x) = +∞ by (37a).

2. Suppose that ‖x‖ =
√
x2

1 + x2
2 = 1. If (x(1), x(2)) ∈ C(x), we obtain by (38b) that√

|x(1)
1 |2 + |x(1)

2 |2 = ‖x(1)‖?sn(2) = ‖x(1)‖?sn(1) = |x(1)
1 |+ |x

(1)
2 | ,

from which we deduce that |x(1)
1 |×|x

(1)
2 | = 0. From x(1)+x(2) = x and ‖x(1)‖?sn(1) +‖x(2)‖?sn(2) = 1,

by (38a), we deduce that either x
(1)
1 = 0 and |x(1)

2 |+
√
x2

1 + (x2 − x(1)
2 )2 = 1, or x

(1)
2 = 0 and

|x(1)
1 |+

√
(x1 − x(1)

1 )2 + x2
2 = 1, that is, after calculations, either x

(1)
1 = 0 and |x(1)

2 | = x2×x(1)
2 ,

or x
(1)
2 = 0 and |x(1)

1 | = x1 × x(1)
1 . Therefore, we have the following two subcases.

(a) If x 6∈ {(1, 0), (0, 1), (−1, 0), (0,−1)}, then necessarily (x(1), x(2)) = (0, x), that is,
C(x) = {(0, x)}. As a consequence, L0(x) = ‖0‖?sn(1) + 2‖x‖?sn(2) = 2‖x‖ = 2 by (37a).

(b) If x ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)}, it is easy to check that (x, 0) ∈ C(x) by (37b).
Therefore, L0(x) ≤ ‖x‖?sn(1) + 2‖0‖?sn(2) = 1 by (37a). Now, for any (x(1), x(2)) ∈ C(x), we
have that

‖x(1)‖?sn(1) + 2‖x(2)‖?sn(2) ≥ ‖x
(1)‖?sn(1) + ‖x(2)‖?sn(2) ≥ ‖x‖ = 1

by (38a). To conclude, we obtain that 1 ≤ L0(x) by (37a), hence that L0(x) = 1.

3. Suppose that ‖x‖ =
√
x2

1 + x2
2 < 1. Then, the proof is an application of Proposition 20 in

Appendix A, combined with the formula (30).

This ends the proof. 2
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5 Conclusion

In this paper, we have introduced a novel class of one-sided linear couplings, and we have
shown that they induce conjugacies that share nice properties with the classic Fenchel con-
jugacy. Among them, we have distinguished a novel coupling, E-Capra, having the property
of being constant along primal rays, like the `0 pseudonorm. For the E-Capra conjugacy,
induced by the coupling E-Capra, we have proved that the `0 pseudonorm is equal to its
biconjugate: hence, the `0 pseudonorm is E-Capra-convex in the sense of generalized con-
vexity. We have also provided expressions for the E-Capra conjugate and biconjugate of the
`0 pseudonorm, and of the characteristic functions of its level sets, in terms of the sequence
of so-called top-k norms. Finally, we have shown that the `0 pseudonorm displays hidden
convexity as we have proved that it coincides, on the Euclidian unit sphere, with a proper
convex lsc function. This is somewhat surprising as the `0 pseudonorm is a highly nonconvex
function of combinatorial nature.

A Appendix

A.1 Properties of top-k norms and of k-support norms

Before studying properties of top-k norms and of k-support norms, we recall the notion
of dual norm. Suppose that Rd is equipped with a norm |||·||| with unit ball denoted by
B|||·||| =

{
x ∈ Rd

∣∣ |||x||| ≤ 1
}

. The expression

|||y|||? = sup
|||x|||≤1

〈x , y〉 , ∀y ∈ Rd (39a)

defines a norm on Rd, called the dual norm |||·|||?. We have

|||·|||? = σB|||·||| and |||·||| = σB|||·|||? , (39b)

where B|||·|||? , the unit ball of the dual norm, is the polar set B�|||·||| of the unit ball B|||·|||:

B|||·|||? =
{
y ∈ Rd

∣∣ |||y|||? ≤ 1
}

= B�|||·||| =
{
y ∈ Rd

∣∣ 〈x , y〉 ≤ 1 , ∀x ∈ B|||·|||
}
. (39c)

A.1.1 Properties of top-k norms

For all K ⊂
{

1, . . . , d
}

, we introduce degenerate unit “spheres” and “balls” of Rd, equipped
with the Euclidian norm ‖ · ‖, by

SK =
{
x ∈ Rd

∣∣ ‖xK‖ = 1
}
, (40a)

BK =
{
x ∈ Rd

∣∣ ‖xK‖ ≤ 1
}
, (40b)

where xK has been defined as the orthogonal projection of x onto the subspace RK in (20).
In what follows, the Euclidian unit sphere S and ball B have been defined in (12), and the
top-k norm ‖ · ‖tn

(k) has been introduced in Definition 10.
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Proposition 15 Let k ∈
{

1, . . . , d
}

.

• For any x ∈ Rd, the following equalities and inequalities hold true

sup
j=1,...,d

|xj| = ‖x‖∞ = ‖x‖tn
(1) ≤ · · · ≤ ‖x‖

tn
(l) ≤ ‖x‖

tn
(l+1) ≤ · · · ≤ ‖x‖

tn
(d) = ‖x‖ . (41)

• We have
RK ∩ S = SK ∩ S , ∀K ⊂

{
1, . . . , d

}
. (42)

• The top-k norm ‖ · ‖tn
(k) satisfies

‖ · ‖tn
(k) = σ∪|K|≤k(RK∩B) = sup

|K|≤k
σ(RK∩B) = sup

|K|≤k
σ(RK∩S) = σ∪|K|≤k(RK∩S) . (43)

• The unit sphere Stn
(k) and ball Btn

(k) of Rd for the top-k norm ‖ · ‖tn
(k) satisfy

Btn
(k) =

{
x ∈ Rd

∣∣ ‖x‖tn
(k) ≤ 1

}
=
⋂
|K|≤k

BK , (44a)

Stn
(k) =

{
x ∈ Rd

∣∣ ‖x‖tn
(k) = 1

}
= Btn

(k) ∩
( ⋃
|K|≤k

SK
)
. (44b)

• The unit balls Btn
(l) satisfy the inclusions

B = Btn
(d) ⊂ · · · ⊂ Btn

(l+1) ⊂ Btn
(l) ⊂ · · · ⊂ Btn

(1) . (45)

• We have
‖y‖tn

(k) ≤
√
k‖y‖tn

(1) , ∀y ∈ Rd , ∀k = 1, . . . , d . (46)

Proof.
• The Equalities and Inequalities (41) derive from the very definition (22) of the top-k norm ‖ · ‖tn(k).

• We prove Equation (42). We have that x = xK + x−K , for any x ∈ Rd, and the decomposition is
orthogonal, leading to(

∀x ∈ Rd
)

x = xK + x−K , xK ⊥ x−K and ‖x‖2 = ‖xK‖2 + ‖x−K‖2 . (47)

For K ⊂
{

1, . . . , d
}

, we have that

x ∈ S and x ∈ SK ⇐⇒ 1 = ‖x‖2 and 1 = ‖xK‖2 (by (12) and (40a))

⇐⇒ 1 = ‖x‖2 = ‖xK‖2 + ‖x−K‖2 and 1 = ‖xK‖2 (by (47))

⇐⇒ ‖x−K‖ = 0 and 1 = ‖xK‖ (by (47))

⇐⇒ x ∈ RK ∩ S . (by (20) and (12))

22



• We prove Equation (43). For this purpose, we first establish that

σRK∩B(y) = ‖yK‖ , ∀y ∈ Rd . (48)

Indeed, for y ∈ Rd, we have

σRK∩B(y) = sup
x∈RK∩B

〈x , y〉 (by definition (8) of a support function)

= sup
x∈RK∩B

〈xK + x−K , yK + y−K〉 (by the decomposition (47))

= sup
x∈RK∩B

(
〈xK , yK〉+ 〈x−K , y−K〉

)
(because xK ⊥ y−K and x−K ⊥ yK by (47))

= sup
{
〈xK , yK〉+ 〈x−K , y−K〉 |x−K = 0 and ‖xK‖ ≤ 1

}
(by definition of RK ∩ B)

= sup
{
〈xK , yK〉 | ‖xK‖ ≤ 1

}
= ‖yK‖

as is well-known for the Euclidian norm ‖ · ‖, when restricted to the subspace RK (because it is
equal to its dual norm). Then, for all y ∈ Rd, we have that

σ∪|K|≤kRK∩B(y) = sup
|K|≤k

σRK∩B(y)

(as the support function turns a union of sets into a supremum)

= sup
|K|≤k

‖yK‖ (by (48))

= ‖y‖tn(k) . (by definition (22) of ‖ · ‖tn(k))

Now, by (12) and (20), it is straightforward that co(RK ∩ S) = RK ∩ B and we deduce that

‖ · ‖tn(k) = σ∪|K|≤k(RK∩B) = sup
|K|≤k

σ(RK∩B) = sup
|K|≤k

σco((RK∩S)) = sup
|K|≤k

σ(RK∩S) = σ∪|K|≤k(RK∩S) ,

giving Equation (43).

• We prove Equation (44a):

Btn
(k) =

{
x ∈ Rd

∣∣ ‖x‖tn(k) ≤ 1
}

(by definition of the ball Btn
(k))

=
{
x ∈ Rd

∣∣ sup
|K|≤k

‖xK‖ ≤ 1
}

(by definition (22) of ‖ · ‖tn(k))

=
⋂
|K|≤k

{
x ∈ Rd

∣∣ ‖xK‖ ≤ 1
}

=
⋂
|K|≤k

BK . (by definition (40b) of BK)

• We prove Equation (44b):

Stn
(k) =

{
x ∈ Rd

∣∣ ‖x‖tn(k) = 1
}

(by definition of the unit sphere Stn
(k))

=
{
x ∈ Rd

∣∣ sup
|K|≤k

‖xK‖ = 1
}

(by definition (22) of ‖ · ‖tn(k))

=
{
x ∈ Rd

∣∣ sup
|K|≤k

‖xK‖ ≤ 1
}

⋂{
x ∈ Rd

∣∣ ∃K ⊂ {1, . . . , d
}
, |K| ≤ k , ‖xK‖ = 1

}
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= Btn
(k) ∩

( ⋃
|K|≤k

{
x ∈ Rd

∣∣ ‖xK‖ = 1
})

(by definition of the ball Btn
(k))

= Btn
(k) ∩

( ⋃
|K|≤k

SK
)
. (by definition (40a) of SK)

• The inclusions (45) directly follow from the Equalities and Inequalities (41).

•We prove the Inequality (46). Indeed, by definition (22) of ‖ · ‖tn(k), for a given y ∈ Rd, there exists

K ⊂
{

1, . . . , d
}

with |K| ≤ k such that
(
‖y‖tn(k)

)2
=
∑

k∈K |yk|2 ≤
∑

k∈K
(
‖y‖tn(1)

)2 ≤ k(‖y‖tn(1)

)2
.

This ends the proof. 2

A.1.2 Properties of k-support norms

The k-support norm ‖ · ‖?sn(k) has been introduced in Definition 10 as the dual norm of the

top-k norm ‖ · ‖tn
(k).

Proposition 16 Let k ∈
{

1, . . . , d
}

.

• The unit balls B?sn(l) satisfy the inclusions

B?sn(1) ⊂ · · · ⊂ B?sn(l) ⊂ B?sn(l+1) ⊂ · · · ⊂ B?sn(d) = B . (49)

• For any x ∈ Rd, the following equalities and inequalities hold true

‖x‖ = ‖x‖?sn(d) ≤ · · · ≤ ‖x‖
?sn
(l+1) ≤ ‖x‖

?sn
(l) ≤ · · · ≤ ‖x‖

?sn
(1) =

d∑
j=1

|xj| . (50)

• The unit ball B?sn(k) of the k-support norm ‖ · ‖?sn(k) satisfies

B?sn(k) =
{
x ∈ Rd

∣∣ ‖x‖?sn(k) ≤ 1
}

= co
( ⋃
|K|≤k

(RK ∩ B)
)

= co
( ⋃
|K|≤k

(RK ∩ S)
)
. (51)

• For l = 0, 1, . . . , d, we have
‖ · ‖tn

(l) = σB?sn
(l)
. (52)

Proof.
• The inclusions (49) directly follow from the inclusions (45) and from (39c) as B?sn(k) =

(
Btn

(k)

)�
.

• The Inequalities in (50) derive from the inclusions (49). The Equalities in (50) are well-known.

• We prove Equation (51). On the one hand, by the first relation in (39b), we have that ‖ · ‖tn(k) =

σB?sn
(k)

. On the other hand, by (43), we have that ‖ · ‖tn(k) = σ∪|K|≤k(RK∩B) = σ∪|K|≤k(RK∩S).
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Then, as is well-known in convex analysis, we deduce that co
(
B?sn(k)

)
= co

(⋃
|K|≤k(RK ∩ B)

)
=

co
(⋃
|K|≤k(RK ∩ S)

)
. As the unit ball B?sn(k) is closed and convex, we immediately obtain (51).

•We prove Equation (52). By Definition 10, the l-support norm is the dual norm of the top-l norm.
Therefore, the top-l norm is the dual norm of the l-support norm and (52) follows from (39b) for
l = 1, . . . , d. For l = 0, both conventions ‖ · ‖tn(0) = 0 and B?sn(0) = {0} lead to ‖ · ‖tn(0) = 0 = σ0 = σB?sn

(l)
.

This ends the proof. 2

A.2 Properties of the level sets of the `0 pseudonorm

We establish useful connections between the `0 pseudonorm in (17) and the top-k norm
‖ · ‖tn

(k) in (22).

Proposition 17 Let k ∈
{

0, 1, . . . , d
}

. We have(
∀x ∈ Rd

)
`0(x) = k ⇐⇒ 0 ≤ · · · ≤ ‖x‖tn

(k−1) < ‖x‖
tn
(k) = · · · = ‖x‖tn

(d) = ‖x‖ , (53a)(
∀x ∈ Rd

)
x ∈ `≤k0 ⇐⇒ `0(x) ≤ k ⇐⇒ ‖x‖tn

(k) = ‖x‖ , (53b)(
∀x ∈ Rd

)
x ∈ `≤k0 \{0} ⇐⇒ 0 < `0(x) ≤ k ⇐⇒ x 6= 0 and

x

‖x‖
∈ S ∩ Stn

(k) . (53c)

The intersection of the level set `≤k0 in (21) of the `0 pseudonorm in (17) with the Euclidian
unit sphere S has the two following expressions

`≤k0 ∩ S = B?sn(k) ∩ S , (54a)

`≤k0 ∩ S = `=k
0 ∩ S . (54b)

Proof.
• The Equivalences (53a) and (53b) are well-known and easy to prove.

• We prove the Equivalence (53c). Indeed, using Equation (53b) we have that, for x ∈ Rd\{0}:

`0(x) ≤ k ⇐⇒ ‖x‖tn(k) = ‖x‖ ⇐⇒ ‖ x

‖x‖
‖

tn

(k)

= 1 ⇐⇒ x

‖x‖
∈ Stn

(k) ⇐⇒
x

‖x‖
∈ S ∩ Stn

(k) .

• We prove Equation (54a). First, we observe that the level set `≤k0 is closed because, by (53b), it

can be expressed as `≤k0 =
{
x ∈ Rd

∣∣ ‖x‖tn(k) = ‖x‖
}

. This also follows from the well-known property
that the pseudonorm `0 is lower semi continuous. Second, we have

`≤k0 ∩ S = S ∩ co
(
`≤k0 ∩ S

)
(by Lemma 18 since `≤k0 ∩ S ⊂ S and is closed)

= S ∩ co
( ⋃
|K|≤k

(RK ∩ S)
)

(as `≤k0 ∩ S =
⋃
|K|≤k(RK ∩ S) by (21))

= B?sn(k) ∩ S . (as co
(⋃
|K|≤k(RK ∩ S)

)
= B?sn(k) by (51))
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• We prove Equation (54b). For this purpose, we first establish the (known) fact that `=k0 = `≤k0 .

The inclusion `=k0 ⊂ `≤k0 is easy. Indeed, as we have seen that `≤k0 is closed, we have `=k0 ⊂ `≤k0 ⇒
`=k0 ⊂ `≤k0 = `≤k0 . There remains to prove the reverse inclusion `≤k0 ⊂ `=k0 . For this purpose, we

consider x ∈ `≤k0 . If x ∈ `=k0 , obviously x ∈ `=k0 . Therefore, we suppose that `0(x) = l < k. By
definition of `0(x), there exists L ⊂

{
1, . . . , d

}
such that |L| = l < k and x = xL. For ε > 0, define

xε as coinciding with x except for k − l indices outside L for which the components are ε > 0. By

construction `0(xε) = k and xε → x when ε→ 0. This proves that `≤k0 ⊂ `=k0 .

Second, we prove that `≤k0 ∩ S = `=k0 ∩ S. The inclusion `=k0 ∩ S ⊂ `≤k0 ∩ S, is easy. Indeed,

`=k0 = `≤k0 ⇒ `=k0 ∩ S ⊂ S ∩ `=k0 = `≤k0 ∩ S. To prove the reverse inclusion `≤k0 ∩ S ⊂ `=k0 ∩ S, we

consider x ∈ `≤k0 ∩S. As we have just seen that `≤k0 = `=k0 , we deduce that x ∈ `=k0 . Therefore, there
exists a sequence {zn}n∈N in `=k0 such that zn → x when n → +∞. Since x ∈ S, we can always
suppose that zn 6= 0, for all n ∈ N. Therefore zn/‖zn‖ is well defined and, when n→ +∞, we have
zn/‖zn‖ → x/‖x‖ = x since x ∈ S =

{
x ∈ Rd

∣∣ ‖x‖ = 1
}

. Now, on the one hand, zn/‖zn‖ ∈ `=k0 ,
for all n ∈ N, and, on the other hand, zn/‖zn‖ ∈ S. As a consequence zn/‖zn‖ ∈ `=k0 ∩ S, and we

conclude that x ∈ `=k0 ∩ S. Thus, we have proved that `≤k0 ∩ S ⊂ `=k0 ∩ S.

This ends the proof. 2

Lemma 18 If A is a subset of the Euclidian unit sphere S of Rd, then A = co(A)∩ S. If A
is a closed subset of the Euclidian unit sphere S of Rd, then A = co(A) ∩ S.

Proof. We first prove that A = co(A) ∩ S when A ⊂ S. Since A ⊂ co(A) and A ⊂ S, we
immediately get that A ⊂ co(A) ∩ S. To prove the reverse inclusion, we first start by proving that
co(A) ∩ S ⊂ extr(co(A)), the set of extreme points of co(A).

The proof is by contradiction. Suppose indeed that there exists x ∈ co(A) ∩ S and x 6∈
extr(co(A)). Then, we could find y ∈ co(A) and z ∈ co(A), distinct from x, and such that
x = λy + (1 − λ)z for some λ ∈ (0, 1). Notice that necessarily y 6= z (because, else, we would
have x = y = z which would contradict y 6= x and z 6= x). By assumption A ⊂ S, we deduce
that co(A) ⊂ B =

{
x ∈ Rd

∣∣ ‖x‖ ≤ 1
}

, the unit ball, and therefore that ‖y‖ ≤ 1 and ‖z‖ ≤ 1.
If y or z were not in S — that is, if either ‖y‖ < 1 or ‖z‖ < 1 — then we would obtain that
‖x‖ ≤ λ‖y‖+ (1− λ)‖z‖ < 1 since λ ∈ (0, 1); we would thus arrive at a contradiction since x could
not be in S. Thus, both y and z must be in S, and we have a contradiction since no x ∈ S, the
Euclidian unit sphere, can be obtained as a convex combination of y ∈ S and z ∈ S, with y 6= z.

Hence, we have proved by contradiction that co(A) ∩ S ⊂ extr(co(A)). We can conclude using
the fact that extr(co(A)) ⊂ A (see [6, Exercice 6.4]).

Now, we consider the case where the subset A of the Euclidian unit sphere S is closed. Using
the first part of the proof we have that A = co(A) ∩ S. Now, A is closed by assumption and
bounded since A ⊂ S. Thus, A is compact and, in a finite dimensional space, we have that co(A)
is compact [13, Th. 17.2], thus closed. We conclude that A = co(A) ∩ S = co(A) ∩ S = co(A) ∩ S,
where the last equality comes from [2, Prop. 3.46].

This ends the proof. 2
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A.3 Additional results on the function L0

In Proposition 13, we have provided an expression, for the proper convex lsc function L0 in
Theorem 12, as the value of the minimization problem (33). Here, we provide a characteri-
zation of the optimal solutions of (33).

We recall that the exposed face of the closed convex set C ⊂ Rd at y ∈ Rd is [8, p.220]

FC(y) =
{
x ∈ C

∣∣ 〈x , y〉 = σC(y)
}

= arg max
x∈C

〈x , y〉 . (55)

In the sequel, we will use the following relations regarding faces of unit balls:

FBtn
(l)

(0) = Btn
(l) , ∀l = 1, . . . , d , (56a)

FBtn
(l)

(x̄(l)) ⊂ Stn
(l) , if x̄(l) 6= 0 , (56b)

FBtn
(d)

(x̄(d)) =
{ x̄(d)

‖x̄(d)‖

}
, if x̄(d) 6= 0 . (56c)

Proposition 19 Let x ∈ Rd be such that ‖x‖ < 1. The sequence (x̄(1), . . . , x̄(d)) of vectors
of Rd is solution of the minimization problem (33) or, equivalently, of the minimization
problem

min
x(1)∈Rd,...,x(d)∈Rd∑d
l=1 σBtn

(l)
(x(l))≤1∑d

l=1 x
(l)=x

d∑
l=1

lσBtn
(l)

(x(l)) (57)

if and only if

1. either
∑d

l=1 |xl| = ‖x‖?sn(1) ≤ 1 and (x̄(1), . . . , x̄(d)) = (x, 0, . . . , 0) (and then, the mini-

mum in (57) or (33) is equal to ‖x‖?sn(1) ),

2. or there exists λ > 0 such that

d⋂
l=1

(l + λ)FBtn
(l)

(x̄(l)) 6= ∅ , (58a)

d∑
l=1

σBtn
(l)

(x(l)) = 1 , (58b)

d∑
l=1

x̄(l) = x . (58c)

Proof. The minimization problems (33) and (57) are the same because σBtn
(l)

(·) = ‖ · ‖?sn(k) since

the k-support norm is the dual norm, as in (39a), of the top-k norm (see Definition 10). First,
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we establish necessary and sufficient Karush-Kuhn-Tucker (KKT) conditions for the optimization
problem (57). The optimization problem (57) is the minimization of the proper convex lsc function

f0(x(1), . . . , x(d)) =
d∑
l=1

lσBtn
(l)

(x(l)) (59a)

over a convex domain of
(
Rd
)d

defined by one scalar inequality constraint, f1(x(1), . . . , x(d)) ≤ 0,
represented by the proper convex lsc function

f1(x(1), . . . , x(d)) =

d∑
l=1

σBtn
(l)

(x(l))− 1 , (59b)

and d equality constraints, f1+k(x
(1), . . . , x(d)) = 0 for k = 1, . . . , d, represented by the d affine

functions

f1+k(x
(1), . . . , x(d)) =

〈
d∑
l=1

x̄(l) − x , ek

〉
, k = 1, . . . , d , (59c)

where ek is the k-canonical vector of Rd. It should be noted that all the functions f0, f1, f2, . . . ,

f1+d are proper and have
(
Rd
)d

for effective domain.

As ‖x‖?sn(d) = ‖x‖ < 1, the sequence
(
x̄(1), . . . , x̄(d)

)
=
(
0, 0, . . . , 0, x

)
strictly satisfies the inequal-

ity constraint, that is, f1(0, 0, . . . , 0, x) = ‖x‖ − 1 < 0 and satisfies also the equality constraints
f2(0, 0, . . . , 0, x) = · · · = f1+d(0, 0, . . . , 0, x) = 0. By the Slater condition, the constraints are qual-
ified. Therefore, the sequence

(
x̄(1), . . . , x̄(d)

)
is solution of the convex optimization problem (57)

if and only if it satisfies the KKT conditions ([13, Corollary 28.3.1], [11, Example 1
′′′

, p. 64], [8,
Chapter VII]), that is, there exists λ ≥ 0 and µ = (µ1, . . . , µd) ∈ Rd such that

0 ∈ ∂f0(x̄(1), . . . , x̄(d)) + λ∂f1(x̄(1), . . . , x̄(d)) +

d∑
k=1

µk∂f1+k(x̄
(1), . . . , x̄(d)) , (60a)

λf1(x̄(1), . . . , x̄(d)) = 0 , (60b)

f1(x̄(1), . . . , x̄(d)) ≤ 0 , (60c)

∀k = 1, . . . , d , f1+k(x̄
(1), . . . , x̄(d)) = 0 . (60d)

Since ∂σBtn
(l)

(x(l)) = FBtn
(l)

(x̄(l)) [12, Corollary 8.25], for l = 1, . . . , d, we have, by (59),

∂f0(x̄(1), . . . , x̄(d)) =
(
FBtn

(1)
(x̄(1)), . . . , lFBtn

(l)
(x̄(l)) . . . , dFBtn

(d)
(x̄(d))

)
, (61a)

∂f1(x̄(1), . . . , x̄(d)) =
(
FBtn

(1)
(x̄(1)), . . . , FBtn

(l)
(x̄(l)) . . . , FBtn

(d)
(x̄(d))

)
, (61b)

∂f1+k(x̄
(1), . . . , x̄(d)) = (ek, . . . , ek) , ∀k = 1, . . . , d . (61c)

With these expressions, Equation (60a) is equivalent to µ = (µ1, . . . , µd) =
∑d

k=1 µkek ∈ lFBtn
(l)

(x̄(l))+

λFBtn
(l)

(x̄(l)), for l = 1, . . . , d.

28



We conclude that the sequence
(
x̄(1), . . . , x̄(d)

)
of vectors of Rd is solution of the optimization

problem (57) if and only if there exists λ ≥ 0 such that the following conditions are satisfied

d⋂
l=1

[
lFBtn

(l)
(x̄(l)) + λFBtn

(l)
(x̄(l))

]
6= ∅ , (62a)

λ
( d∑
l=1

σBtn
(l)

(x(l))− 1
)

= 0 , (62b)

d∑
l=1

σBtn
(l)

(x(l)) ≤ 1 , (62c)

d∑
l=1

x̄(l) = x . (62d)

Second, we turn to prove Item 1 and Item 2.

1. If λ = 0 in (62), we obtain

d⋂
l=1

lFBtn
(l)

(x̄(l)) 6= ∅ , (63a)

d∑
l=1

σBtn
(l)

(x(l)) ≤ 1 , (63b)

d∑
l=1

x̄(l) = x . (63c)

We now show that (63) holds true if and only if ‖x‖?sn(1) ≤ 1 and (x̄(1), x̄(2), . . . , x̄(d)) =
(x, 0, . . . , 0).

On the one hand, let (x̄(1), . . . , x̄(d)) be a sequence of vectors of Rd which satisfies (63). If
(x̄(1), . . . , x̄(d)) = (0, . . . , 0), then x = 0 and we indeed conclude that ‖x‖?sn(1) = ‖0‖?sn(1) = 0 ≤ 1

and (x̄(1), x̄(2), . . . , x̄(d)) = (0, 0, . . . , 0) = (x, 0, . . . , 0).

If (x̄(1), . . . , x̄(d)) 6= (0, . . . , 0), then k = min
{
l ∈ {1, . . . , d}

∣∣ x̄(l) 6= 0
}

is well defined. By (63a),

there exists y ∈
⋂d
l=1 lFBtn

(l)
(x̄(l)), where FBtn

(l)
(x̄(l)) ⊂ Btn

(l) for any l = 1, . . . , d, by defini-

tion (55) of the face. Now, by the inclusion (56b), we have that FBtn
(k)

(x̄(k)) ⊂ Stn
(k) since

x̄(k) 6= 0 by definition of k. Therefore, there exists y ∈ Btn
(1) ∩ kS

tn
(k), that is, ‖y‖tn(1) =

maxi=1,...,d |yi| ≤ 1 and ‖y‖tn(k) = k. Hence, it easily follows from definition (22) of ‖ · ‖tn(k)

that (see also (46)) k2 =
(
‖y‖tn(k)

)2 ≤ k
(
‖y‖tn(1)

)2 ≤ k. This gives k = 1, hence x̄(1) 6= 0 and

x̄(l) = 0 for all l = 2, . . . , d by definition of k. We conclude that necessarily (x̄(1), . . . , x̄(d)) =
(x, 0, . . . , 0) by (63c) and σBtn

(1)
(x) = ‖x‖?sn(1) ≤ 1 by (63b).
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On the other hand, suppose that ‖x‖?sn(1) ≤ 1 and put (x̄(1), . . . , x̄(d)) = (x, 0, . . . , 0). Then,
Equations (63b) and (63c) are satisfied. So is (63a) because

d⋂
l=1

lFBtn
(l)

(x̄(l)) = FBtn
(1)

(x) ∩
[ d⋂
l=2

lBtn
(l)

]
(by (56a))

= FBtn
(1)

(x) 6= ∅ ,

because FBtn
(1)

(x) ⊂ Btn
(1) ⊂

⋂d
l=2

√
lBtn

(l) ⊂
⋂d
l=2 lBtn

(l) by the Inequality (46).

2. If λ > 0 in (62), we obtain item 2. Indeed, (62a) is equivalent to (58a) because lFBtn
(l)

(x̄(l)) +

λFBtn
(l)

(x̄(l)) = (l + λ)FBtn
(l)

(x̄(l)) since the face FBtn
(l)

(x̄(l)) is convex, and l > 0, λ > 0.

This ends the proof. 2

Now, we specialize in the two-dimensional case d = 2. Because the function L0 in (27)
satisfies (30), we restrict the following Proposition to x = (x1, x2) ∈ R2

+.

Proposition 20 Let x = (x1, x2) ∈ R2
+ be such that x2

1 + x2
2 < 1. The sequence

(
x̄(1), x̄(2)

)
of vectors of R2 is solution of the optimization problem

L0(x) = min
x(1)∈R2,x(2)∈R2

‖x(1)‖?sn(1) +‖x(2)‖?sn(2)≤1

x(1)+x(2)=x

‖x(1)‖?sn(1) + 2‖x(2)‖?sn(2) (64)

if and only if one of the following statements holds true:

1. x1 + x2 ≤ 1, and then
(
x̄(1), x̄(2)

)
= (x, 0), and

L0

(
(x1, x2)

)
= x1 + x2 , (65a)

2. x1 > 0, x1 + (
√

2− 1)x2 ≥ 1, x1 > x2, and then

x̄(1) =
(1− (x2

1 + x2
2)

2(1− x1)
, 0
)
, x̄(2) =

(2x1 − x2
1 + x2

2 − 1

2(1− x1)
, x2

)
,

L0

(
(x1, x2)

)
=

3

2
− x1

2
+

x2
2

2(1− x1)
, (65b)

3. x2 > 0, x2 + (
√

2− 1)x1 ≥ 1, x2 > x1, and then

x̄(1) =
(

0,
1− (x2

1 + x2
2)

2(1− x2)

)
, x̄(2) =

(
x1,

2x2 − x2
2 + x2

1 − 1

2(1− x2)

)
,

L0

(
(x1, x2)

)
=

3

2
− x2

2
+

x2
1

2(1− x2)
, (65c)
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4. x1 + x2 > 1, (
√

2− 1)x1 + x2 < 1, x1 + (
√

2− 1)x2 < 1, and then

x̄(1) =
(1− (

√
2− 1)x1 − x2

2(
√

2− 1)
,
1− x1 − (

√
2− 1)x2

2(
√

2− 1)

)
,

x̄(2) =
(x1 + x2 − 1

2(
√

2− 1)
,
x1 + x2 − 1

2(
√

2− 1)

)
,

L0

(
(x1, x2)

)
=
x1 + x2 − 2 +

√
2√

2− 1
. (65d)

Proof. By Proposition 19, the sequence
(
x̄(1), x̄(2)

)
of vectors of R2 is solution of the optimiza-

tion problem (64) if and only if
− either x1 + x2 = ‖x‖?sn(1) ≤ 1 and

(
x̄(1), x̄(2)

)
= (x, 0), which is equivalent to Item 1,

− or there exists λ > 0 such that

(1 + λ)FBtn
(1)

(x̄(1)) ∩ (2 + λ)FBtn
(2)

(x̄(2)) 6= ∅ , (66a)

‖x̄(1)‖?sn(1) + ‖x̄(2)‖?sn(2) = 1 , (66b)

x̄(1) + x̄(2) = x . (66c)

We are going to prove, in several steps, that
(
x̄(1), x̄(2)

)
satisfies (66) for a certain λ > 0 if and

only if it satisfies Item 2, Item 3 or Item 4. For this purpose, we will use the relations

Btn
(1) = [−1, 1]2 , (67a)

FBtn
(1)

(x̄(1)) =


[−1, 1]2 if `0(x̄(1)) = 0 ,

sign(x̄
(1)
1 )× [−1, 1] if `0(x̄(1)) = 1 with x̄

(1)
2 = 0 ,

[−1, 1]× sign(x̄
(1)
2 ) if `0(x̄(1)) = 1 with x̄

(1)
1 = 0 ,

sign(x̄(1)) if `0(x̄(1)) = 2 ,

(67b)

where sign(x̄(1)) =
(
sign(x̄

(1)
1 ), sign(x̄

(1)
2 )
)

is the vector of R2 made of the signs (−1, 0, 1) of the two
components.

• Suppose that
(
x̄(1), x̄(2)

)
= (x, 0) satisfies (66) for a certain λ > 0. We will show that this is

equivalent to 0 < x1, 0 < x2 and x1 + x2 = 1, which implies Item 1.

By (56a) for l = d = 2, we get that (2 + λ)FBtn
(2)

(0) = (2 + λ)B, where B is the Euclidian unit ball

of R2, so that Equation (66) is equivalent to

(1 + λ)FBtn
(1)

(x) ∩ (2 + λ)B 6= ∅ , ‖x‖?sn(1) = x1 + x2 = 1 . (68)

By (67b), we distinguish the following subcases that correspond to different expressions for FBtn
(1)

(x).

- If `0(x) = 0, then x1 = x2 = 0. But this contradicts x1 + x2 = 1 in (68).

- If `0(x) = 1 with x2 = 0, then x = (1, 0) because x1 + x2 = 1 by (68), and x = (x1, x2) ∈ R2
+

by hypothesis. But this contradicts the assumption that x2
1 + x2

2 < 1.
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- If `0(x) = 1 with x1 = 0, we also arrive at a contradiction.

- If `0(x) = 2, then (1 + λ)FBtn
(1)

(x) = {(1 + λ, 1 + λ)} by (67b).

On the one hand (necessity), we show that necessarily 0 < λ ≤
√

2. Indeed, (68) implies
that ‖((1 + λ)sign(x1), (1 + λ)sign(x2))‖ ≤ 2 + λ, which gives

√
2(1 + λ) ≤ 2 + λ, hence

0 < λ ≤
√

2.

On the other hand (sufficiency), if we put
(
x̄(1), x̄(2)

)
= (x, 0) where ‖x‖?sn(1) = x1 + x2 = 1

and `0(x) = 2, that is, 0 < x1, 0 < x2, then (68) is satisfied for any 0 < λ ≤
√

2.

Therefore, we have proven that
(
x̄(1), x̄(2)

)
= (x, 0) satisfies (66) for a certain λ > 0 if and only if

0 < x1, 0 < x2 and x1 + x2 = 1 (condition included in Item 1).

• Suppose that
(
x̄(1), x̄(2)

)
= (0, x) satisfies (66) for a certain λ > 0. We will show that this

case is impossible. Indeed, Equation (66b) implies that
√
x2

1 + x2
2 = ‖x‖ = ‖x‖?sn(2) = 1. But this

contradicts the assumption that x = (x1, x2) ∈ R2
+ is such that x2

1 + x2
2 < 1.

• Suppose that x̄(1) 6= 0 and x̄(2) 6= 0 are such that
(
x̄(1), x̄(2)

)
satisfies (66) for a certain λ > 0.

We will show that this is equivalent to Item 2, Item 3 or Item 4. But, before that, notice that, as
‖x̄(1)‖?sn(1) + ‖x̄(2)‖?sn(2) = 1, by (58b), then

L0(x) = 1 + ‖x̄(2)‖?sn(2) = 2− ‖x̄(1)‖?sn(1) , (69)

which will be practical to obtain formulas for L0(x).

As x̄(2) 6= 0, then FBtn
(2)

(x̄(2)) = { x̄(2)

‖x̄(2)‖} by (56c). Therefore, Equation (66) is equivalent to

(2 + λ)
x̄(2)

‖x̄(2)‖
∈ (1 + λ)FBtn

(1)
(x̄(1)) , (70a)

‖x̄(1)‖?sn(1) + ‖x̄(2)‖?sn(2) = |x̄(1)
1 |+ |x̄

(1)
2 |+

√
|x̄(2)

1 |2 + |x̄(2)
2 |2 = 1 , (70b)

x̄(1) + x̄(2) = x . (70c)

By (67b), we distinguish the following four subcases that correspond to different expressions for
the face FBtn

(1)
(x̄(1)).

- As x̄(1) 6= 0, we do not consider the case `0(x̄(1)) = 0.

- Suppose that `0(x̄(1)) = 1 with x̄
(1)
2 = 0. Then, on the one hand, FBtn

(1)
(x̄(1)) = sign(x̄

(1)
1 ) ×

[−1, 1] by (67b), so that Equation (70a) is equivalent to

x̄
(2)
1√

|x̄(2)
1 |2 + |x̄(2)

2 |2
=

1 + λ

2 + λ
sign(x̄

(1)
1 ) ,

|x̄(2)
2 |√

|x̄(2)
1 |2 + |x̄(2)

2 |2
≤ 1 + λ

2 + λ
.

On the other hand, x̄(1) = (x̄
(1)
1 , 0) where x̄

(1)
1 6= 0, so that Equations (70) are equivalent to

|x̄(1)
1 |+

√
|x̄(2)

1 |2 + |x̄(2)
2 |2 = 1 , x̄

(1)
1 + x̄

(2)
1 = x1 , x̄

(2)
2 = x2 .
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Therefore, Equation (70) is equivalent to

x̄
(2)
1

1− |x̄(1)
1 |

=
1 + λ

2 + λ
sign(x̄

(1)
1 ) , (72a)

|x̄(2)
2 | ≤ sign(x̄

(1)
1 )x̄

(2)
1 , (72b)

|x̄(1)
1 |+

√
|x̄(2)

1 |2 + |x̄(2)
2 |2 = 1 , (72c)

x̄
(1)
1 + x̄

(2)
1 = x1 , (72d)

x̄
(2)
2 = x2 , (72e)

and we will now show that there exists λ > 0 such that (72) holds true if and only if Item 2
holds true.

On the one hand (necessity), from (72a), we deduce that x̄
(2)
1 and x̄

(1)
1 have the same sign; this

common sign must therefore be sign(x1), as x̄
(1)
1 + x̄

(2)
1 = x1 by (72d); since x = (x1, x2) ∈

R2
+, we obtain that x1 ≥ 0, hence x̄

(1)
1 > 0 and x1 > 0. Therefore, we easily get that

x̄(1) = (x̄
(1)
1 , 0), where x̄

(1)
1 > 0, and that x̄(2) = (x1 − x̄(1)

1 , x2), by (72d)–(72e), with x1 >

x̄
(1)
1 , since x̄

(2)
1 > 0. Replacing the values in (72c) — where x1 > x̄

(1)
1 > 0 and 1 > x1

since x2
1 + x2

2 < 1 — we get x̄
(1)
1 +

√
(x1 − x̄(1)

1 )2 + x2
2 = 1, from which we deduce that

x̄
(1)
1 =

1−(x21+x22)
2(1−x1) ; we have that x̄

(1)
1 > 0 because x1 < 1; the condition x1 > x̄

(1)
1 implies that

x1 + x2 > 1. From (72a), we deduce that
x̄
(2)
1

1−|x̄(1)1 |
= 1+λ

2+λ ∈]1/2, 1[, hence that
x1−x̄(1)1

1−x̄(1)1

< 1

and 1/2 <
x1−x̄(1)1

1−x̄(1)1

by (72b); we are going to detail these two inequalities, one after the

other. We have that
x1−x̄(1)1

1−x̄(1)1

< 1 because 1 > x1 > x̄
(1)
1 . The condition 1/2 <

x1−x̄(1)1

1−x̄(1)1

implies that 0 < x2 −
√

3(1 − x1); from (72b), with x̄
(1)
1 > 0 and x̄

(2)
2 = x2 > 0, we get

that x2 ≤ x1 − x̄(1)
1 = x1 −

1−(x21+x22)
2(1−x1) ; rearranging terms, we find that this latter inequality

is equivalent to
(
x2 − (

√
2 + 1)(1− x1)

)(
x2 + (

√
2− 1)(1− x1)

)
≥ 0; as x1 < 1 and x2 > 0,

we finally get that x2 − (
√

2 + 1)(1− x1) ≥ 0. From x2 ≤ x1 − x̄(1)
1 where x̄

(1)
1 > 0, we also

deduce that necessarily x1 > x2.

Finally, Equation (72) implies that x1 > 0, x1 + x2 > 1, x2 −
√

3(1 − x1) > 0, x2 −
(
√

2 + 1)(1− x1) ≥ 0, x1 > x2, and x̄(1) =
(1−(x21+x22)

2(1−x1) , 0
)
, x̄(2) =

(2x1−x21+x22−1
2(1−x1) , x2

)
: thus,

using the property that

x2− (
√

2 + 1)(1− x1) ≥ 0 and 1 > x1 ⇒

{
x1 + x2 ≥

√
2(1− x1) + 1 > 1

x2 −
√

3(1− x1) > x2 − (
√

2 + 1)(1− x1) ≥ 0 ,

we obtain that x2 − (
√

2 + 1)(1− x1) ≥ 0 and 1 > x1; multiplying the first inequality by√
2− 1, we finally obtain x1 + (

√
2− 1)x2 ≥ 1 and 1 > x1, that is, Item 2.

On the other hand (sufficiency), if we suppose that Item 2 holds it is straightforward to
follow all the above computations and to obtain that Equation (72) holds true with λ > 0

the unique solution to
x̄
(2)
1

1−|x̄(1)1 |
= 1+λ

2+λ ∈]1/2, 1[.
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By (69), we obtain that L0

(
(x1, x2)

)
= 2− |x̄(1)

1 | − |x̄
(1)
2 | = 3

2 −
x1
2 +

x22
2(1−x1) .

- If `0(x̄(1)) = 1 with x̄
(1)
1 = 0, we do the same analysis, and we obtain Item 3, and L0

(
(x1, x2)

)
=

3
2 −

x2
2 +

x21
2(1−x2) .

- Suppose that `0(x̄(1)) = 2. In this case, we have that FBtn
(1)

(x̄(1)) = {
(
sign(x̄

(1)
1 ), sign(x̄

(1)
2 )
)
}

by (67b). Therefore, Equation (70) is equivalent to

x̄
(2)
1√∣∣x̄(2)

1

∣∣2 +
∣∣x̄(2)

2

∣∣2 =
1 + λ

2 + λ
sign(x̄

(1)
1 ) , (73a)

x̄
(2)
2√∣∣x̄(2)

1

∣∣2 +
∣∣x̄(2)

2

∣∣2 =
1 + λ

2 + λ
sign(x̄

(1)
2 ) , (73b)

∣∣x̄(1)
1

∣∣+
∣∣x̄(1)

2

∣∣+

√∣∣x̄(2)
1

∣∣2 +
∣∣x̄(2)

2

∣∣2 = 1 , (73c)

x̄
(1)
1 + x̄

(2)
1 = x1 , (73d)

x̄
(1)
2 + x̄

(2)
2 = x2 , (73e)

and we will now show that there exists λ > 0 such that Equation (73) holds true if and only
if Item 4 holds true.

On the one hand (necessity), from (73a)–(73b), we deduce that |x̄(2)
1 | = |x̄(2)

2 | — because

|sign(x̄
(1)
1 )| = |sign(x̄

(1)
2 )| = 1 since `0(x̄(1)) = 2 — and that sign(x̄(1)) = sign(x̄(2)). This

common sign must therefore be sign(x), as x̄(1) + x̄(2) = x by (73d)–(73e). Since `0(x̄(1)) = 2

and x = (x1, x2) ∈ R2
+, we get that x1 > 0 and x2 > 0, so that we put x̄

(2)
1 = x̄

(2)
2 = β > 0.

By (73d)–(73e), we get that x̄
(1)
1 = x1 − β > 0 and x̄

(1)
2 = x2 − β > 0; replacing the values

in (73c), we obtain that x1 − β + x2 − β +
√

2β = 1; this gives β = x1+x2−1
2−
√

2
. Therefore, β >

0 ⇐⇒ x1 +x2 > 1, β < x1 ⇐⇒ (
√

2− 1)x1 +x2 < 1 and β < x2 ⇐⇒ x1 +(
√

2− 1)x2 < 1.

Finally, Equation (73) implies that x1 + x2 > 1, (
√

2− 1)x1 + x2 < 1, x1 + (
√

2− 1)x2 < 1,

and x̄(1) =
(1−(

√
2−1)x1−x2

2(
√

2−1)
, 1−x1−(

√
2−1)x2

2(
√

2−1)

)
, x̄(2) =

(
x1+x2−1
2(
√

2−1)
, x1+x2−1

2(
√

2−1)

)
: thus, Item 4 holds

true.

On the other hand (sufficiency), if we suppose that Item 4 holds true, it is straightforward to
follow all the above computations and to obtain that Equation (73) holds true with λ =

√
2.

By (69), we obtain that L0

(
(x1, x2)

)
= 1 +

√∣∣x̄(2)
1

∣∣2 +
∣∣x̄(2)

2

∣∣2 = 1 + x1+x2−1√
2−1

.

This ends the proof. 2
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