Valentin Bura

The Polynomial Hierarchy Collapses. A Fresh Perspective

Keywords: Computational Complexity, Boolean Satisfiability, Kernelization

In a previous article we prove the Polynomial Hierarchy collapses by making use of a method based essentially on Gaussian Elimination. In this paper we replace completely our use of Gaussian Elimination and formulate an equivalent approach based on the method of Substitution. We give the usual argument that a non-trivial kernel for Exact Satisfiability may be found. Our proof shows the structure formerly known as the Polynomial Hierarchy collapses to the level above P = N P . That is, we show that coNP ⊆ NP \ P.

Introduction

One-in-three satisfiability was first studied in the late seventies as an elaboration relating to Schaefer's Dichotomy Theorem [START_REF] Schaefer | The complexity of satisfiability problems[END_REF].

It is proved in [START_REF] Schaefer | The complexity of satisfiability problems[END_REF], using certain assumptions, that boolean satisfiability problems are either in P or they are NP-complete.

In [START_REF] Bura | The polynomial hierarchy collapses[END_REF] we give a method based on Gaussian Elimination and we use this method to construct a non-trivial kernel for 1-3-SAT + . The implication is that coNP ⊆ NP \ P Boolean Satisfiability SAT and its restrictions cnf-SAT, k-cnf-SAT, 3-cnf-SAT are NP-complete as shown in [START_REF] Cook | The complexity of theorem-proving procedures[END_REF][START_REF] Karp | Reducibility among combinatorial problems[END_REF][START_REF] Levin | Universal sequential search problems[END_REF].

The 1-3-SAT problem [START_REF] Schaefer | The complexity of satisfiability problems[END_REF] is that, given a collection of triples over some variables, to determine whether there exists a truth assignment to the variables so that each triple contains exactly one true literal.

1-3-SAT is well-known to be complete for the class NP while a parsimonious reduction from 1-3-SAT also shows 1-3-SAT + to be complete for NP.

It is widely believed counting to be harder than the corresponding decision problem, since counting sat-assignments of a formula in 2-CNF is complete for #P, while the decision problem is known to be in P [START_REF] Valiant | The complexity of computing the permanent[END_REF].

We mention Sinosuke Toda showed in [START_REF] Toda | Pp is as hard as the polynomial-time hierarchy[END_REF] counting to be as hard as the Polynomial Hierarchy. Our results here imply counting to be just as hard as NP, this being the essential implication of our result of [START_REF] Bura | The polynomial hierarchy collapses[END_REF].

In [START_REF] Soos | Enhanced gaussian elimination in dpll-based sat solvers[END_REF] the author uses a similar method to ours for handling xor types of constraints. Other recent examples of Gaussian elimination used in exact algorithms or kernelization may be indeed found in the literature [START_REF] Wahlström | Abusing the tutte matrix: An algebraic instance compression for the k-set-cycle problem[END_REF][START_REF] Giannopoulou | Tree deletion set has a polynomial kernel but no optˆo(1) approximation[END_REF].

Hence the idea that constraints of the type implying this type of exclusivity can be formulated in terms of equations, and therefore processed using Gaussian Elimination or an equivalent method, is not new and the intuition behind it is very straightforward.

Our method shows that positive instances of 1-in-3 SAT may be reduced to significantly smaller instances of I.P. That is, any such instance with |V | variables and |C| clauses can be poly-time reduced to an instance of 0/1 Integer Programming with equality only, of size at most 2/3|V | and |C| clauses.

The extremely influential papers of Dell and Van Melkebeek [START_REF] Dell | Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses[END_REF], and of Jansen and Pieterse [START_REF] Jansen | Optimal sparsification for some binary csps using low-degree polynomials[END_REF][START_REF] Jansen | Sparsification upper and lower bounds for graph problems and not-all-equal sat[END_REF] show that, under the assumption that coNP NP \ P, there cannot exist a "significantly small" kernel for various problems, of which exact 1-3-SAT is one. We use these results directly in our current approach, as we have done in [START_REF] Bura | The polynomial hierarchy collapses[END_REF].

Our preprocessing induces a certain type of "order" on the variables, such that some of the non-satisfying assignments can be omitted by the solution search.

We define Substitution and show this method alone suffices for identifying a non-trivial kernel for 1-3-SAT + .

We then proceed to define formally the notion of a non-trivial kernel. For this, we define the problems considered as Constraint Satisfaction Problems.

We conclude by showing that the method presented here, giving a non-trivial kernel for 1-3-SAT + , implies the existence of a non-trivial kernel for 1-3-SAT.

Notation

We denote boolean variables by p 1 , p 2 , . . . , p i , . . . Denote the true and false constants by and ⊥ respectively. For any SAT formula ϕ, write Σ(ϕ) if ϕ is satisfiable and write Σ(ϕ) otherwise. Reserve the notation a(p) for a truth assignment to the variable p.

We write Φ(r, k) for the set of formulas in 3-CNF with r variables and k unique clauses. We also write ϕ(V, C) to specify concretely such a formula, where V, C

shall denote the sets of variables and clauses of ϕ. We write κ(ϕ) = k r .

We will make use of the following properties of a given map f :

subadditivity: f (A + B) ≤ f (A) + f (B) scalability: f (cA) = cf (A) for constant c.
For a given tuple s = (s 1 , s 2 , . . . , s n) we let s(m) denote the element s m . Finally, for given linear constraints L :

i≤n d i x i = R for some n and x i ∈ {0, 1}, denote by coef (x i) the value d i .
Let L[x/L] be the result of substituting uniformly the expression of constraint L for variable x in constraint L, to be performed in restricted circumstances.

Exact Satisfiability

Definition 3.1 (1-3-SAT). 1-3-SAT is defined as determining whether ϕ ∈ Φ(r, k) is satisfiable, where the formula is defined as

ϕ = {{p 1 1 , p 1 2 , p 1 3 }, {p 2 1 , p 2 2 , p 2 3 }, . . . , {p k 1 , p k 2 , p k 3 }} such that p i 1 , p i 2 , p i 3 ∈ V = {p 1 , ¬p 1 , p 2 , ¬p 2 , . . . , p r , ¬p r } ∪ {⊥}
For any clause exactly one of the literals is allowed to be true in an assignment.

No clause is allowed to contain repeated literals or a literal and its negation.

Every variable in V appears in at least one clause.

In the restricted case that p i 1 , p i 2 , p i 3 ∈ V + = {p 1 , p 2 , . . . , p r } ∪ {⊥} for 1 ≤ i ≤ r we denote the problem as 1-3-SAT + .

Example 3.1. The 1-3-SAT + formula ϕ = {{p 1 , p 2 , p 3 }, {p 2 , p 3 , p 4 }} is satisfiable by the assignment a(p 2) = and a(p j) =⊥ for j = 1, 3, 4. The 1-3-SAT + formula ϕ = {{p 1 , p 2 , p 3 }, {p 2 , p 3 , p 4 }, {p 1 , p 2 , p 4 }, {p 1 , p 3 , p 4 }} is not satisfiable. Lemma 3.1 (Bura [START_REF] Bura | The polynomial hierarchy collapses[END_REF]). Up to uniqueness of clauses and variable naming the set Φ(r, r/3) determines one 1-3-SAT + formula and this formula is trivially satisfiable.

Remark 3.1 (Bura [START_REF] Bura | The polynomial hierarchy collapses[END_REF]). For 1-3-SAT + , the sets Φ(r, k) for k < r/3 are empty.

Schaefer [START_REF] Schaefer | The complexity of satisfiability problems[END_REF] gives a polynomial time parsimonious reduction from 3-cnf-SAT to 1-3-SAT hence showing that 1-3-SAT and its counting version #1-3-SAT are NP-complete and respectively #P-complete. Proposition 3.1 (Schaefer, [START_REF] Schaefer | The complexity of satisfiability problems[END_REF]). 1-3-SAT is NP-complete. Proposition 3.2 (Garey and Johnson [START_REF] Garey | Computers and intractability[END_REF]). 1-3-SAT + is NP-complete. Remark 3.2 (Bura [START_REF] Bura | The polynomial hierarchy collapses[END_REF]). In virtue of Theorem 3.1 and Theorem 3.2 we restrict our study to instances of 1-3-SAT + ϕ ∈ Φ(r, k) with r ≥ k.

For if an instance of 3-cnf-SAT φ ∈ Φ(r , k) is reduced to an instance of 1-3-SAT φ ∈ Φ(r , k) then our reduction entails r = r + 4k and k = 3k .

We analyze the further reduction to the instance of 1-3-SAT + ϕ ∈ Φ(r, k). Let C, C , C , C be the collections of clauses in φ containing, no negation, one negation, two negations and three negations respectively.

Our reduction implies r

= r + |C | + 2|C | + 3|C | and k = |C| + 2|C | + 3|C | + 4|C | = k + |C | + 2|C | + 3|C |. Then, r -k = r + |C | + 2|C | + 3|C | -k -|C | -2|C | -3|C | = r -k = r + 4k -3k = r + k > 0.

Rank of a Formula

Rank and nullity are used as measures of independence, and of dependence, for members of a given set. If formula is clear from context, we also use the shorthand η and η. We define the binary integer programming problem with equality here and infer briefly that 1-3-SAT + is reducible to a "smaller" instance of this problem. Definition 4.3 (0, 1-integer programming with equality). The 0-1-IP = problem is defined as follows. Given a family of finite tuples s 1 , s 2 , . . . , s k with each s i ∈ Q S for some fixed S ∈ N, and given a sequence q 1 , q 2 , . . . , q k ∈ Q, decide whether there exists a tuple T ∈ {0, 1} S such that S j=1 s i (j)T (j) = q i for each i ∈ {1, 2, . . . , k}

Definition 4.1. A rank function R obeys the following 1. R(∅) = 0, 2. R(A ∪ B) ≤ R(A) + R(B), 3. R(A) ≤ R(A ∪ {a}) ≤ R(A) + 1.
The following bound is obtained through applying an exhaustive search.

Remark 4.2 (Bura [2]). 0-1-IP = ∈ O(k2 S)
where k is the number of 0-1-IP = tuples and S is the size of the tuples.

An observation on the rank of a formula, which cannot exceed the number of clauses.

Lemma 4.2 (Bura [2]). Let ϕ ∈ Φ(r, k) be a 1-3-SAT + formula, then η(ϕ) ≤ k and η(ϕ) ≥ r -k.
We give a bound for the case of the formula being full-rank.

Lemma 4.3 (Bura [2]). Consider a 1-3-SAT + formula ϕ and suppose η(ϕ) = k and η(ϕ) = r -k. The satisfiability of ϕ is decidable in O(2k2 r-k).
We mention the polynomial-time reduction to Integer Programming with Equality only.

Corollary 4.2 (Bura [2]). 1-3-SAT + ≤ poly 0-1-IP = .
Hence, we give the worst-time scenario for a brute-force approach, applied to I.P. Proposition 4.2 (Bura [START_REF] Bura | The polynomial hierarchy collapses[END_REF]). #1-3-SAT + ∈ O(η2 η+1) for formula rank and nullity η and η.

And an interesting variation on problem hardness, with modifications on the clauses-to-variables ratio.

Corollary 4.3 (Bura [2]). #1-3-SAT + ∈ O(2κr2 (1-κ)r) for any instance ϕ ∈ Φ(r, k) and κ = k/r.

The Method of Substitution

The substitution algorithm is depicted below in Fig. 1. We give a brief textual explanation of the algorithm below. 3. Sort the formula ϕ in ascending order of n(c).

Pre-processing phase

Substitution phase

1. Initialize i ← |C|, 2. For each c i : n(i) = a(i) -m(i) -s(i) = a(i) -M (i), 3. Initialize j ← |C|, 4.
For each clause c j ∈ ϕ with j = i with c j : n(j) = a(j) -m(j) -s(j) such that n(j) is found in the variables of m(i), or n(j) is found in the variables of s(i), do 5. Perform the substitution c i ← c i [n(j)/n(i)], and normalize the result. 6. Decrement variable j. Continue step 4. Denote by σ(ϕ) or by σ, when clear from context, the structure thus obtained, denote by η(σ) and η(σ) the rank and nullity thus induced, and denote by N (σ) and N (σ) the sets of independent, and dependent variables generated through our process.

Decrement variable

i. Continue step 2. i ← k while i ≥ 1 do j ← k while j ≥ 1 do if j = i then if c(j) : n(j) = a(j) -(x<r d(x) + n(i)), and c(i) : n(i) = a(i) -(t<r d(t)) then c(j) ← n(j) = (a(j) -a(i)) -(x<r d(x) + t<r d(t)) end if end if j ← j -1 end while i ← i -1 end while
We remark the operator σ is idempotent.

Remark 5.2. σ(σ(ϕ)) = σ(ϕ).
Proof. Each clause c(j) is read, and each read clause is compared with every other clause c(i), in search for a common variable n(i), if this variable is found, a replacement is performed on c(j).

Suppose there exists a clause c such that

L = σ(ϕ)(c) = σ(σ(ϕ))(c) = L .
Consider the case L \ L = ∅. Let variable v be in this set difference. It cannot be the case that v = n(c) since this means the procedure missed a mandatory substitution of n(c), which the second iteration picked up.

Therefore v = n(c). In this case, v is a result of a single substitution, or of a chain of substitutions ending with c. An induction on this chain of substitutions, shows the procedure missed a mandatory substitution of an n-variable, which the second iteration picked up.

Consider the case L \ L = ∅. Let variable v be in this set difference. It cannot be the case that v = n(c) since this means the procedure introduced a new substitution of n(c), which the first iteration missed.

Therefore v = n(c). In this case, v is a result of a single substitution, or of a chain of substitutions ending with c. An induction on this chain of substitutions, shows the first iteration of the procedure missed a mandatory substitution of an n-variable which the second iteration picked up.

As a consequence, any set of formulas is closed under substitution.

Remark 5.3. σ[σ[Φ]] = σ[Φ].

An example

Consider the 1-3-SAT formula

ϕ = {{p 1 , p 2 , p 3 }, {p 4 , p 5 , p 6 }, {p 2 , p 5 , p 6 }, {p 1 , p 2 , p5}}
We outline the meaning of the rows and columns within our tabular format.

c i : n(i) m(i) c(i) C(i): n(i) a(i) m(i) c(i)
The formula ϕ is represented in tabular format. Sort according to n(i). The formula is encoded as below. Use a tabular data structure for the algorithm, initialized to empty.

1.

C(1):

∅ ∅ ∅ ∅ C(4): ∅ ∅ ∅ ∅ C(3): ∅ ∅ ∅ ∅ C(2): ∅ ∅ ∅ ∅ 2.
C Obtain the following partial result.

5.

C Rearrange the tabular structure. After the substitution process is finished, each of the clauses is expressed in terms of independent variables, variables which cannot be expressed in terms of other variables. We denote by |n(i)| the number of variables in constraint c(i)

induced by the substitution method, excluding the variable n(i).

Algorithm Analysis

We maximize the number of substitutions performed at each step. Hence, at first step we encounter two substitutions, at the second we encounter three substitutions, while at every subsequent step we must assume there exist two variables for which we can substitute in terms of previously found variables, which indicates that the formula for the Fibonacci expansion describes our process. Proof. In this case we have 2k independent variables, for a value of k of 1/3r. Proof. It suffices to show that η(ϕ) ≥ η(σ).

Suppose for a contradiction this is not the case. We have that η(ϕ) < η(σ).

That is, that the dependent variables of the system of equations exceed in number the dependent variables obtained through our substitution algorithm.

We let η(ϕ) = η(σ) + K. What this means is there exist variables

p 1 , p 2 , • • • , p K such that p i ∈ N (σ) \ N (ϕ) for 1 ≤ i ≤ K.
Take any such variable in this list and perform another substitution such as to decrease K by one. The existence of the list p 1 , p 2 , • • • , p K hence violates Remark 5.2.

Implications

Proposition 9.1 (Schroeppel and Shamir [START_REF] Schroeppel | A t=o(2ˆn/2), s=o(2ˆn/4) algorithm for certain np-complete problems[END_REF]). #1-3-SAT can be solved in time

O(2 |V |/2
) and space O(2 |V |/4).

Proposition 9.2 (Schroeppel and Shamir [START_REF] Schroeppel | A t=o(2ˆn/2), s=o(2ˆn/4) algorithm for certain np-complete problems[END_REF]). #0-1-IP = can be solved in time).

O(2|C|2 |V |/2)
Dell and Melkebeek [START_REF] Dell | Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses[END_REF] give a rigorous treatment of the concept of "sparsification". In their framework, an oracle communication protocol for a language L is a communication protocol between two players.

The first player is given the input x and is only allowed to run in time polynomial in the length of x. The second player is computationally unbounded, without initial access to x. At the end of communication, the first player should be able to decide membership in L. The cost of the protocol is the length in bits of the communication from the first player to the second.

Therefore, if the first player is able to reduce, in polynomial time, the problem instance significantly, the cost of communicating the "kernel" to the second player would also decrease, hence providing us with a very natural formal account for the notion of sparsification.

Jansen and Pieterse in [START_REF] Jansen | Optimal sparsification for some binary csps using low-degree polynomials[END_REF] state and give a procedure for any instance of Exact Satisfiability with unbounded clause length to be reduced to an equivalent instance of the same problem with only |V | + 1 clauses, for number of variables

|V |.
The concern regarding the number of clauses in 1-3-SAT + can be addressed, as we have done above. We observe that for any instance C of 3-cnf-SAT, the chain of polynomial-time parsimonious reductions C → Ĉ → C, for Ĉ and C instances of 1-3-SAT and 1-3-SAT + respectively, implies that the variables of Ĉ and C outnumber the clauses.

What is also claimed in [START_REF] Jansen | Optimal sparsification for some binary csps using low-degree polynomials[END_REF] is that, assuming coNP NP \ P, no polynomial time algorithm can in general transform an instance of Exact Satisfiability of Remark 9.2 (Dell and Melkebeek [START_REF] Dell | Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses[END_REF]). 3-cnf-SAT admits a trivial kernel (f (r), g(k)) with g(k) ≤ h(k, r) and h(k, r) ∈ O(r 3).) for an encoding h of ϕ and some > 0.

Remark 9.3 (Jansen and Pieterse [START_REF] Jansen | Optimal sparsification for some binary csps using low-degree polynomials[END_REF]). 1-3-SAT admits a kernel (f (r), g(k))

with g(k) ≤ h(k, r) and h(k, r) ∈ O(r 2).
The following statement is given in [START_REF] Jansen | Optimal sparsification for some binary csps using low-degree polynomials[END_REF]. The authors elaborate on the results

of [START_REF] Dell | Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses[END_REF] to analyze combinatorial problems from the perspective of sparsification, and give several arguments that non-trivial kernels for such problems would entail a collapse of the Polynomial Hierarchy to the level above P = NP.

It is essential to note here that this line of reasoning was used by researchers studying sparsification with the intention of proving lower bounds on the existence of kernels, while the results presented by us are slightly more optimistic.

Lemma 9.2 (Jansen and Pieterse [START_REF] Jansen | Optimal sparsification for some binary csps using low-degree polynomials[END_REF]). If 1-3-SAT admits a non-trivial kernel, then coNP ⊆ NP \ P.

Lemma 9.3 (Bura [START_REF] Bura | The polynomial hierarchy collapses[END_REF]). If 1-3-SAT + admits a non-trivial kernel, then 1-3-SAT admits a non-trivial kernel.

Proof. Let ϕ ∈ Φ(r, k) be an instance of 1-3-SAT. By Schaeffer's results it follows ϕ can be parsimoniously polynomial time reduced to a 1-3-SAT + formula φ ∈ Φ(r , k) with r = r + 4k and k = 3k.

Assuming 1-3-SAT + admits a non-trivial kernel, this implies 1-3-SAT admits a non-trivial kernel, and therefore through Lemma 9.1 coNP ⊆ NP \ P.

To spell this out, suppose we have non-trivial kernel (f (r), g(k)) for the problem 1-3-SAT, with g(k) ≤ h(k , r) and h(k , r) ∈ O(r 2-). We observe using the reduction from 1-3-SAT, f (r + 4k) ≤ f (r) + 4f (k) ≤ 5f (r) and therefore f (r) ∈ O(r) and, we obtain via the reduction the existence of a non-trivial

kernel for 1-3-SAT, that is g(3k) ≤ 3g(k) ≤ 3h(k, r) with h(k, r) ∈ O(r 2-).
Essentially the following result is a restatement of Corollary 4.3.

Theorem 9.1 (Bura [START_REF] Bura | The polynomial hierarchy collapses[END_REF]). 1-3-SAT + admits a non-trivial kernel.

Proof. Follows from Lemma 4.3. The first player preprocesses the input in polynomial time using Substitution, and passes the input to the second player which makes use of its unbounded resources to provide a solution to this kernel.

It remains to show the cost of this computation is bounded non-trivially, i.e.

h(k, r) ∈ O(r 2-) for > 0.

This requirement follows from Lemma 4.3. For the instance of 0-1-IP = to which we reduce has at most f (r) ≤ 2/3r variables and at most g(k) ≤ r clauses.

We store the resulting instance of 0-1-IP = in a (2/3r + 1) × r matrix M with polynomial-bounded entries, such that M (i, j) = d iff d is the coefficient of variable i in constraint j, to which we add the result column.

From Remark 7.5 we obtain indeed that the bit representation of this kernel is indeed r 2-for some non-negative .

Corollary 9.2 (Bura [START_REF] Bura | The polynomial hierarchy collapses[END_REF]). coNP ⊆ NP \ P Proof. Follows from Lemma 9.3, Theorem 9.1 and Lemma 9.2.

Conclusion

We have shown the mechanism through which a 1-3-SAT + instance can be transformed into an integer programming version 0-1-IP = instance with variables at most two-thirds of the number of variables in the 1-3-SAT + instance.

This was done by a straightforward preprocessing of the 1-3-SAT + instance using the method of Substitution.

We manage to count satisfying assignments to the 1-3-SAT + instance through a type of brute-force search on the 0-1-IP = instance.

The method we have presented before in the shape of Gaussian Elimination gives interesting upper bounds on 1-3-SAT + , and shows how instances become harder to solve with variations on the clauses-to-variables ratio.

An essential observation here is that in this case this ratio cannot go below 1/3 up to uniqueness of clauses. This can be easily checked in polynomial time.. By reduction from 3-cnf-SAT any instance of 1-3-SAT in which the number of clauses does not exceed the number of variables is also NP-complete.

Our contribution is in pointing out how the method of Substitution together with a type of brute-force approach suffice to find, constructively, a non-trivial kernel for 1-3-SAT + .

The most important question in Theoretical Computer Science remains open.

Definition 4 . 2 (

 42 rank and nullity). For a 1-3-SAT + formula ϕ(V, C) define the system of linear equations Sys(ϕ) as follows:for any clause {p, p , p } ∈ C add to Sys(ϕ) equation p + p + p = 1;Define the rank and nullity of ϕ as η(ϕ) = R(Sys(ϕ)) and η(ϕ) = |V | -η(ϕ).

Remark 4 . 1 (Lemma 4 . 1 .Proposition 4 . 1 .

 414141 Bura [2]). η is a rank function with respect to sets of 1-3-SAT triples. For any 1-3-SAT + instance ϕ transformed into a linear system Sys(ϕ) one observes the following: p + p + p = 1 has a solution S ⊂ {0, 1} 3 if and only if exactly one of p, p , p is equal to 1 and the other two are equal to 0. For any formula ϕ ∈ Φ(r, k) we have Σ(ϕ) if and only if Sys(ϕ) has at least one solution over {0, 1} r . Corollary 4.1. A formula ϕ ∈ Φ(r, k) has as many satisfiability assignments as the number of solutions of Sys(ϕ) over {0, 1} r .

1 .

 1 Let n(c), m(c), s(c) be the lowest, middle and highest labeled variable in clause c. These values are distinct. 2. Represent clause c in normal form as n(c) = 1 -m(c) -s(c).

Figure 1 :Remark 5 . 1 .

 151 Figure 1: Substitution algorithm

c 1 : 1 2 3 c 2 : 4 5 6 c 3 : 2 5 6 c 4 : 1 2 5 c 1 : 1 2 3 c 4 : 1 2 5 c 3 : 2 5 6 c 2 : 4 5 6

 1326364513453626

1): 1 0 2 3 C(4): 1 0 2 5 C(3): 2 0 5 6 C(2): 4 0 5 6

 13453626 Substitution phase. Operate on the data structure.

C 1 : 6 C 4 : p 1 = 1 -p 5 , p 5 , p 6 C 3 : p 2 = 1 - p 5 , p 6 C 2 : p 4 = 1 - p 5 , p 6 Note the independent variables are {p 1 , p 2 , p 4 }

 164115631562156124 p 1 = 0 -p 3 , p 5 , p hence the rank and nullity of the formula are η(ϕ) = 3 and η(ϕ) = 3. A Brute-Force Search on the set {p 3 , p 5 , p 6 } of dependent variables yields the desired result to the 1-3-SAT + formula.

Remark 7 . 1 (Remark 7 . 2 .Remark 7 . 3 .Remark 7 . 4 .

 71727374 Bura [2]). The largest number of expansions determined by running substitution on the collection of clauses, is|n(k)| = 2, |n(k -1)| = 3, |n(k -2)| = 5, . . . , |n(k -i)| = F ib(i + 3).Definition 7.1 (Representation). The size of a representation for a given instance of 1-3-SAT + ∈ Φ(r, k) expressed by substitution as n(1), n(2), . . . , n(k) is given by the formula r × log(i≤k |n(i)|) The size of the resulting representation associated to formulas treated by Remark 7.1 converges asymptotically to r 2 × log(1.62).Proof. The bound is given by an analysis of the growth of the Fibonacci sequence. It is well known the rate of growth of the sequence converges approximately to 1.62 n . Contrast the scenario in Remark 7.1, to the case in which there are no substitutions induced, i.e. ϕ = {{p 3i+1 , p 3i+2 , p 3i+3 }, i ≤ 1/3k}. The size of the resulting representation associated to formulas treated by Remark 7.3 is r × log(2/3r).

Theorem 7 . 1 .Remark 7 . 5 .Proof. r 2 - 1 .

 717521 Any 1-3-SAT + formula admits a representation with size S for r × log(2/3r) ≤ S ≤ r 2 × log(1.62) The size of any representation is bounded above by r 2-= r 2 × log(1.62) implies 2 -= 2 + log log(1Let ϕ be a 1-3-SAT + formula and let σ = σ(ϕ) be the resulting structure obtained by performing substitution on ϕ. Then, η(ϕ) ≤ η(σ) and η(ϕ) ≥ η(σ).

Remark 9 . 1 .

 91 |V |-many variables to a significantly smaller equivalent instance, i.e. an instance encoded using O(|V | 2-) for any > 0.We believe it is already transparent that, in fact, we have obtained a significantly smaller kernel for 1-3-SAT + above, i.e. transforming parsimoniously an instance of |V | variables to a "compressed" instance of 0-1-IP = of at most 2/3|V | variables. Definition 9.1 (Constraint Satisfaction Problem). A csp is a triple (S, D, T) where -S is a set of variables, -D is the discrete domain the variables may range over,and -T is a set of constraints. Every constraint c ∈ T is of the form (t, R) where t is a subset of S and R is a relation on D. An evaluation of the variables is a function v : S → D. An evaluation v satisfies a constraint (t, R) if the values assigned to elements of t by v satisfies relation R. The following are constraint satisfaction problems: -3-cnf-SAT -1-3-SAT -1-3-SAT + In what follows we switch between notations and write a csp in a more general form, with a problem (S, D, T) written as L ⊆ N × Σ * , with instances (k, x) such that k = |S| and x a string representation of D and T . Definition 9.2 (Kernelization). Let L, M be two parameterized decision problems, i.e. L, M ⊆ N × Σ * for some finite alphabet Σ. A kernelization for the problem L parameterized by k is a polynomial time reduction of an instance (k, x) to an instance (k , x) such that: -(k, x) ∈ L if and only if (k , x) ∈ M , -k ∈ O(k), and -|x | ∈ O(|x|).Definition 9.3 (Encoding). An encoding of a problem L ⊆ N×Σ * is a bijection h : L → N such that for any (k, x) ∈ N × Σ * we have h(k, x) ∈ O(|x|). Definition 9.4. A non-trivial kernel for 3-cnf-SAT is a kernelization of this problem transforming any instance ϕ ∈ Φ(r, k) to an instance (f (r), g(k)) of an arbitrary NP-complete csp M , such that f (r) ∈ O(r) and g(k) ≤ h(k, r) with h(k, r) ∈ O(r 3-) for an encoding h of ϕ and some > 0.

Lemma 9 . 1 (

 91 Dell and Melkebeek [11]). If 3-cnf-SAT admits a non-trivial kernel, then coNP ⊆ NP \ P. Definition 9.5. A non-trivial kernel for 1-3-SAT is a kernelization of this problem transforming any instance ϕ ∈ Φ(r, k) to an instance (f (r), g(k)) of an arbitrary NP-complete csp M , such that f (r) ∈ O(r) and g(k) ≤ h(k, r) with h(k, r) ∈ O(r 2-

 and space O(2 |V |/4).

	Corollary 9.1. #1-3-SAT + can be solved in time in time O(4/3|V |2 3|V |/8) and
	space O(4/3|V |2 3|V |/16

Acknowledgments

Foremost thanks are due to Igor Potapov for the support and benevolence shown towards this project. Most of the ideas presented here have crystallized while the author was studying with Rod Downey at Victoria University of Wellington, in the New Zealand winter of 2010. I am very much indebted to Noam Greenberg for supervising my Master of Science Dissertation in the year of 2012, one hundred years after the birth of Alan Turing. I thank Asher Kach, Dan Turetzky and David Diamondstone for many useful thoughts on Computability, Complexity and Model Theory. I have also found useful Dillon Mayhew's insights in Combinatorics, and Cristian Calude's research on Algorithmic Information Theory. Exceptional logicians such as Rob Goldblatt, Max Cresswell and Ed Mares have also supervised various projects in which I was involved.

Western Australia is also in my thoughts, and I wish to thank Mark Reynolds and Tim French for teaching me to think, and act under pressure. Special acknowledgments are given to my former colleague Reino Niskanen for many useful comments and for proof reading an initial compressed version of this manuscript.