
HAL Id: hal-02146404
https://hal.science/hal-02146404

Submitted on 5 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Iterative Spaced Seed Hashing: Closing the Gap
Between Spaced Seed Hashing and k-mer Hashing

Enrico Petrucci, Laurent Noé, Cinzia Pizzi, Matteo Comin

To cite this version:
Enrico Petrucci, Laurent Noé, Cinzia Pizzi, Matteo Comin. Iterative Spaced Seed Hashing: Closing
the Gap Between Spaced Seed Hashing and k-mer Hashing. 15th International Symposium on Bioin-
formatics Research and Applications (ISBRA), Jun 2019, Barcelona, Spain. pp.208-219, �10.1007/978-
3-030-20242-2_18�. �hal-02146404�

https://hal.science/hal-02146404
https://hal.archives-ouvertes.fr

Iterative Spaced Seed Hashing: Closing the gap
between spaced seed hashing and k-mer hashing

E.Petrucci1, L.Noé2, C.Pizzi1, and M.Comin1

1 Department of Information Engineering, University of Padova, Padova, Italy
{cinzia.pizzi, comin}@dei.unipd.it

2 CRIStAL UMR9189, Université de Lille, France

Abstract. Alignment-free classification of sequences has enabled high-
throughput processing of sequencing data in many bioinformatics pipelines.
Much work has been done to speed-up the indexing of k-mers through
hash-table and other data structures. These efforts have led to very fast
indexes, but because they are k-mer based, they often lack sensitivity
due to sequencing errors or polymorphisms. Spaced seeds are a special
type of pattern that accounts for errors or mutations. They allow to
improve the sensitivity and they are now routinely used instead of k-mers
in many applications. The major drawback of spaced seeds is that they
cannot be efficiently hashed and thus their usage increases substantially
the computational time.
In this paper we address the problem of efficient spaced seed hashing.
We propose an iterative algorithm that combines multiple spaced seed
hashes by exploiting the similarity of adjacent hash values in order to
efficiently compute the next hash. We report a series of experiments on
HTS reads hashing, with several spaced seeds. Our algorithm can compute
the hashing values of spaced seeds with a speedup of 6.2x, outperforming
previous methods. Software and Datasets are available at ISSH

Keywords: k-mers · spaced seeds · gapped q-gram · efficient hashing

1 Introduction

In computational biology, sequence classification is a common task with many
applications such as phylogeny reconstruction [16], protein classification [20],
metagenomic [11,18,21]. Even if sequence classification is addressable via align-
ment, the scale of modern datasets has stimulated the development of faster
alignment-free similarity methods [1,3,4,16,23].

The most common alignment-free indexing methods are k-mer based. Large-
scale sequence analysis often relies on cataloguing or counting consecutive k-mers
(substring of length k) in DNA sequences for indexing, querying and similarity
searching. A common step is to break a reference sequence into k-mers and
indexing them. An efficient way of implementing this operation is through the use
of hash based data structures, e.g. hash tables. Then, to classify sequences are
also broken into k-mers and queried against the hash table to check for shared
k-mers.

http://www.dei.unipd.it/~ciompin/main/issh.html

2 E.Petrucci et al.

In [17] it has been shown that requiring the matches to be non-consecutive
increases the chance of finding similarities and they introduced spaced seeds.
They are a modification to the standard k-mer where some positions on the
k-mer are set to be “don’t care” or wildcard to catch the spaced matches between
sequences. In spaced seeds, the matches are distributed so as to maximize the
sensitivity, that is the probability to find a local similarity.

Spaced seeds are widely used for approximate sequence matching in bioinfor-
matics and they have been increasingly applied to improve the sensitivity and
specificity of homology search algorithms [15,19]. Spaced seeds are now routinely
used, instead of k-mers, in many problems involving sequence comparison like:
multiple sequence alignment [5], protein classification [20], read mapping [22],
phylogeny reconstruction [16], metagenome reads clustering and classification
[2,8,21].

In all these applications, the use of spaced seeds, as opposed to k-mers, has
been reported to improve the performance in terms of sensitivity and specificity.
However, the major drawback is that the computational cost increases. For
example, when k-mers are replaced by spaced seeds, the metagenomic classification
of reads of Clark-S [21] increases the quality of classification, but it also produces
a slowdown of 17x with respect to the non-seed version. A similar reduction in
time performance when using spaced seeds is reported also in other applications
[2,20,22].

The main reason is that k-mers can be efficiently hashed. In fact, the hashing
of a k-mer can be easily computed from the hashing of its predecessor, since
they share k − 1 symbols. For this reason, indexing all consecutive k-mers in
a string can be a very efficient process. However, when using spaced seeds
these observations do not longer hold. Therefore, improving the performance
of spaced seed hashing algorithms would have a great impact on a wide range
of bioinformatics applications. The first attempt to address this question was
in the Thesis of R. Harris [13], but hard coding was used to speed-up a non
linear packing. Recently, we develop an algorithm based on the indexing of
small blocks of runs of matching positions that can be combined to obtain the
hashing of spaced-seeds [9]. In [6,10] we proposed a more promising direction,
based on spaced seed self-correlation, in order to reuse part of the hashes already
computed. We showed how the hash at position i can be computed based on one
best previous hash. Despite the improvement in terms of speedup, the number of
symbols that need to be encoded in order to complete the hash could still be high.
In this paper we solved this problem through: 1) a better way to use previous
hashes, maximizing re-use ; 2) an iterative algorithm that combines multiple
previous hashes. In fact, our algorithm arranges multiple previous hashes in order
to recover all k − 1 symbols of a spaced seed, so that we only need to encode the
new symbol, like with k-mer hashing.

Iterative Spaced Seed Hashing 3

2 Methods: Iterative Spaced Seed Hashing

2.1 Spaced Seed Hashing: Background

A spaced-seed Q (or just a seed) is a string over the alphabet {1, 0} where the 1s
correspond to matching positions and 0 to non-matching positions or wildcards,
e.g. 1011001. A spaced seed Q can be represented as a set of non negative integers
corresponding to the matching positions (1s) in the seed, e.g. Q = {0, 2, 3, 6}, a
notation introduced in [14]. The weight of a seed, denoted as |Q|, corresponds to
the number of 1s, while the length, or span s(Q), is equal to max(Q) + 1.

Given a string x, the positioned spaced seed x[i + Q] identifies a string of
length |Q|, where 0 ≤ i ≤ n−s(Q). The positioned spaced seed x[i + Q], also
called Q-gram, is defined as the string x[i + Q] = {xi+k, k ∈ Q}.

Example 1. Given the seed 1011001, defined as Q = {0, 2, 3, 6}, with weight
|Q| = 4 and span s(Q) = 7. Let us consider the string x = AATCACTTG.

x A A T C A C T T G
Q 1 0 1 1 0 0 1

x[0 + Q] A T C T
The Q-gram at position 0 of x is defined as x[0 + Q] = ATCT . Similarly the

other Q-grams are x[1 + Q] = ACAT , and x[2 + Q] = TACG.

In this paper, for ease of discussion, we will consider as hashing function
the simple encoding of a string, that is a special case of the Rabin-Karp rolling
hash. Later, we will shown how more advanced hashing function can be im-
plemented at no extra cost. Let’s consider a coding function from the DNA
alphabet A = {A,C,G, T} to a binary codeword, encode : A → {0, 1}log2|A|,
where encode(A) = 00, encode(C) = 01, encode(G) = 10, and encode(T) = 11.
Following the above example, we can compute the encodings of all symbols of
the Q-gram x[0 + Q] as follows:

x[0 + Q] A T C T
encodings 00 11 01 11

Finally, the hashing value of the Q-gram ATCT is 11011100, that is the
merge of the encodings of all symbols using little-endian notation. More formally,
a standard approach to compute the hashing value of a Q-gram at position i of
the string x is the following function h(x[i + Q]):

h(x[i + Q]) =
∨
k∈Q

(encode(xi+k)� m(k) ∗ log2|A|) (1)

Where m(k) is the number of matching positions that appears to the left of k.
The function m is defined as m(k) = |{i ∈ Q, such that i < k}|. In other words,
given a position k in the seed, m stores the number of shifts that we need to
apply to the encoding of the k-th symbols in order to place it into the hashing.
The vector m is important for the computation of the hashing value of a Q-gram.

Example 2. In this example, we report an example of hashing value computation
for the Q-gram x[1 + Q].

4 E.Petrucci et al.

x A A T C A C T T G
Q 1 0 1 1 0 0 1
m 0 1 1 2 3 3 3

shifted encodings 00�0 01�2 00�4 11�6
00

0100

000100

hashing value
11000100

The above example shows how the hashing value of x(1+Q) can be computed
through the function h(x[1 + Q]) = h(ACAT) = 11000100. The hashing value of
the other Q-gram can be determined with a similar procedure, i.e. h(x[2 + Q]) =
h(TACG) = 10010011. The hashing function h(·) is a special case of the Rabin-
Karp rolling hash. However, more advanced hashing functions can be defined in
a similar way. For example, the cyclic polynomial rolling hash can be computed
by replacing: shifts with rotations, OR with XOR, and the function encode(·)
with a table, where DNA characters are mapped to random integers.

In this paper we want to address the following problem.

Problem 1. Let us consider a string x = x0x1 . . . xi . . . xn−1, of length n, a spaced
seed Q and a hash function h that maps strings into a binary codeword. We want
to compute all hashing values H(x,Q) for all the Q-grams of x, starting from
the first position 0 of x to the last n− s(Q).

H(x,Q) = 〈h(x[0 + Q]), h(x[1 + Q]), . . . h(x[n− s(Q)])〉

To compute the hash of a contiguous k-mer it is possible to use the hash of
its predecessor. In fact, given the hashing value at position i, the hashing for
position i + 1 can be obtained with two operations, a shift and the insertion
of the encoding of the new symbol, since the two hashes share k − 1 symbols.
However, if we consider the case of a spaced seed Q, we can clearly see that
this observation does not hold. In fact, in the above example, two consecutive
Q-grams, like x[0 + Q] = ATCT and x[1 + Q] = ACAT , do not necessarily have
much in common. Since the hashing values are computed in order, the idea is to
speed up the computation of the hash at a position i by reusing part of the hashes
already computed at previous positions. In this paper we present a solution for
Problem 1 that maximizes the re-use of previous hashes so that only one symbol
needs to be encoded in the new hash, as with k-mers hashing.

2.2 Iterative Spaced Seed Hashing

In the case of spaced seeds, one can reuse part of previous hashes to compute the
next one, however we need to explore not only the hash at the previous position,
as with k-mers, but the s(Q)− 1 previous hashes. A first attempt to solve this

Iterative Spaced Seed Hashing 5

problem was recently proposed in [10], where the hash at position i is computed
based on one best previous hash. Despite the improvement in terms of speedup
with respect to the standard hashing method, the number of symbols that need
to be read in order to complete the hash could still be high. In this paper we
reduced this value to just one symbol by working in two directions: 1) we devise
a better way to use a previous hash, maximizing re-use 2) we propose an iterative
algorithm that combines multiple previous hashes.

Let us assume that we want to compute the hashing value at position i and
that we already know the hashing value at position i − j, with j < s(Q). We
can introduce the following definition of Cg,j = {k ∈ Q : k + j ∈ Q ∧m(k) =
m(k + j) −m(j) + m(g)} as the positions in Q that after j shifts are still in
Q with the propriety that k and k + j positions are both in Q and they are
separated by j − g − 1 (not necessarily consecutive) ones. In other words if we
are processing the position i of x and we want to reuse the hashing value already
computed at position i− j, Cg,j represents the symbols, starting at position g of
h(x[i− j + Q]), that we can keep while computing h(x[i + Q]).

Example 3. Let’s consider Q = {0, 1, 2, 4, 6, 8, 10}. If we know the first hashing
value h(x[0 + Q]) and we want to compute the second hash h(x[1 + Q]), the
following example show how to construct C0,1.

k 0 1 2 3 4 5 6 7 8 9 10
Q 1 1 1 0 1 0 1 0 1 0 1

Q�1 1 1 1 0 1 0 1 0 1 0 1
m(k) 0 1 2 3 3 4 4 5 5 6 6

m(k+1)-m(1)+m(0) -1 0 1 2 2 3 3 4 4 5 5
C0,1 0 1

The symbols at positions C0,1 = {0, 1} of the hash h(x[1 +Q]) have already been
encoded in the hash h(x[0 + Q]) and we can keep them. In order to complete
h(x[1 + Q]), the number of remaining symbols are |Q| − |C0,1| = 5.

In the paper [10] we use only the symbols in C0,j , that is g was always 0. As
we will see in the next examples, if we are allowed to remove the first g symbols
from the hash of h(x[i−j+Q]), we can recover more symbols in order to compute
h(x[i + Q]).

Example 4. Let us consider the hash at position 2 h(x[2 + Q]), and the hash at
position 0 h(x[0 + Q]). In this case we are interested in C0,2.

k 0 1 2 3 4 5 6 7 8 9 10
Q 1 1 1 0 1 0 1 0 1 0 1

Q�2 1 1 1 0 1 0 1 0 1 0 1
m(k) 0 1 2 3 3 4 4 5 5 6 6

m(k+2)-m(2)+m(0) -2 -1 0 1 1 2 2 3 3 4 4
C0,2 0

Thus, the only position that we can recover is C0,2 = {0}. On the other hand,
if we are allowed to skip the first position of the hash h(x[0 + Q]) and consider
C1,2, instead of C0,2, we have:

6 E.Petrucci et al.

k 0 1 2 3 4 5 6 7 8 9 10
Q 1 1 1 0 1 0 1 0 1 0 1

Q�2 1 1 1 0 1 0 1 0 1 0 1
m(k) 0 1 2 3 3 4 4 5 5 6 6

m(k+2)-m(2)+m(1) -1 0 1 2 2 3 3 4 4 5 5
C1,2 2 4 6 8

Where, we can re-use the symbols C1,2 = {2, 4, 6, 8} of h(x[0 + Q]) in order
to compute h(x[2 + Q]). This example shows how the original definition of Cj

in [10], that in this work corresponds to C0,2 = {0}, was not optimal and more
symbols could be recovered from the same hash with C1,2 = {2, 4, 6, 8}.

In [10], the hash value at a given position was reconstructed starting from the
best previous hash. However, the number of symbols to be inserted to complete
the hash could still be high. In this paper we propose a new method that not
only consider the best previous hash, but all previous hashes at once. For a given
hash to be computed hi, we devised an iterative algorithm that is able to find
a combination of the previous hashes that covers all symbols of hi, apart from
the last one. That is, we can combine multiple hashes in order to recover |Q| − 1
symbols of hi, so that we only need to read the new symbol, like with k-mer
hashing.

Let’s assume that we have already computed a portion of the hash hi, and
that the remaining symbols are Q′ ⊂ Q. We can search the best previous hash
that covers the largest number of positions of Q′. To this end, we define the
function BestPrev(s,Q′) that searches for this best previous hash:

BestPrev(s,Q′) = argmaxz∈[0,s−1],k∈[1,s]|Cz,k ∩Q′|

This function will return a pair (g, j) that identifies the best previous hash
at position hi−j from which, after removing the first g symbols, we can recover
|Cg,j ∩Q′| symbols. In order to extract these symbols from hi−j we define a mask,
Maskg,j , that filters these positions. The algorithm iteratively searches the best
previous hashes, until all |Q| − 1 symbols have been recovered. An overview of
the method is shown below:

Our iterative algorithm scans the input string x and computes all hashing
values according to the spaced seed Q. In order to better understand the amount
of savings we evaluate the algorithm by counting the number of symbols that are
read and encoded. First, we can consider the input string to be long enough so
that we can discard the transient of the first s(Q)− 1 hashes. Let us continue to
analyze the spaced seed 11101010101, that corresponds to Q = {0, 1, 2, 4, 6, 8, 10}.
If we use the standard function h(x[i + Q]) to compute all hashes, each symbol
of x is read |Q| = 7 times.

Iterative Spaced Seed Hashing 7

Algorithm 1 Iterative Spaced Seed Hashing

1: Compute Cg,k and Mask(g, k) ∀g, k;
2: h0 := compute h(x[0 + Q]) ;
3: for i := 1 to s(Q)− 1 do
4: Q′ = Q;
5: while |Q′| 6= 1 do
6: (g, k) = BestPrev(i, Q′);
7: if (Q′ ∩ Cg,k) == ∅ then
8: Exit while;
9: else

10: hi := hi OR ((hi−k AND Mask(g, k)) >> k ∗ log2|A|) ;
11: Q′ = Q′ − Cg,k ;
12: end if
13: end while
14: for all k ∈ Q′ do
15: insert encode(xi+k) at position m(k) ∗ log2|A| of hi;
16: end for
17: end for
18: for i := s(Q) to |x| − s(Q) do
19: Q′ = Q;
20: while |Q′| 6= 1 do
21: (g, k) = BestPrev(s(Q)− 1, Q′);
22: hi := hi OR ((hi−k AND Mask(g, k)) >> k ∗ log2|A|) ;
23: Q′ = Q′ − Cg,k ;
24: end while
25: insert encode(xi+s(Q)−1) at last position of hi ;
26: end for

In the first iteration of our algorithm (lines=19-25) Q′ = Q and the best
previous hash BestPrev(s(Q)− 1, Q′) = (1, 2) is C1,2 = {2, 4, 6, 8}. Thus, while
computing hi we can recover these 4 symbols from hi−2. At the end of the first
iteration Q′ is updated to {0, 1, 10}. During the second iteration the best previous
hash BestPrev(s(Q)− 1, Q′) = (0, 1) is C0,1 = {0, 1}. As above, we can append
these two symbols from hi−1 to the hash hi. Now, we have that Q′ = {10}, that
is only one symbol is left. The last symbol is read and encoded into hi, and
the hash is complete. In summary, after two iterations all |Q| − 1 symbols of
hi have been encoded into the hash, and we only need to read one new symbol
from the sequence. Moreover, if one needs to scan a string with a spaced seed
and to compute all hashing values, the above algorithm guarantees to minimize
the number of symbols to read. In fact, with our algorithm, we can compute all
hashing values while reading each symbol of the input string only once, as with
k-mers.

8 E.Petrucci et al.

3 Results and discussion

In this section we will present the results of some experiments in which ISSH is
compared against two other approaches available in literature: FISH [9] (block-
based) and FSH [10] (overlap-based).

3.1 Experimental settings

We use the same settings as in previous studies [9,10]. The spaced seeds belong
to three different types of spaced seeds, according to the objective function used
to generate them: maximizing the hit probability [21]; minimizing the overlap
complexity [12]; and maximizing the sensitivity [12]. We tested three spaced
seeds for each type, all with weight W = 22 and length L = 31 (see Appendix of
[9]). Furthermore, we used other sets of spaced seeds, built with rashbari [12],
which have weights from 11 to 32 and the same length. The complete list of the
spaced seeds used is reported in the Appendix of [9].The datasets of metagenomic
reads to be hashed were taken from previous papers on binning and classification
[11,7,23]. All the experiments have been performed on a laptop equipped with
an Intel i7-3537U CPU at 2 GHz and 8 GB of RAM.

3.2 Analysis of the Time Performances

The first comparison we present is between the performances of ISSH, FISH and
FSH in terms of speedup with respect to the standard hash computation (i.e.
applying Eq.1 to each position). Figure 1 shows the average speedup among all
datasets, for each of the spaced seeds Q1-Q9, obtained by the three different
methods.

Fig. 1. The average speedup obtaind by ISSH, FISH and FSH with respect to the
standard computation.

Iterative Spaced Seed Hashing 9

It can be seen that ISSH is much faster than both FISH and FSH for all
the spaced seeds. In terms of actual running time, the standard approach (Eq.1)
requires about 14 minutes to compute the hashes for a single spaced seed on all
datasets. ISSH takes just over 2 minutes with an average speedup of 6.2. As for
the other two approaches, FISH and FSH, they compute the hashes in 6 and 9
minutes respectively, with an average speedup of 2 (FISH) and 1.5 (FSH).

We also notice that the variation among the speedups, relative to different
spaced seeds using the same method, are lower for ISSH, for which the speedups
are in the range [6.05-6.25] while for FISH and FSH the range is [1.89-2.16]
and [1.18-1.58], respectively. For all the tested methods there is a correlation
between the spaced seed structure and the time needed for the computation.
FISH depends on the number of blocks of 1s, while both ISSH and FSH depend
on the spaced seed self-correlation. ISSH performances are also sensitive to the
number of iterations. However, the experiments show that, even if FSH performs
a single iteration, the time required to naively compute the hash for all the
non-overlapping positions is more than the time required by ISSH to perform
more iterations. Moreover, for all the tested spaced seeds the number of iterations
needed by ISSH was on average 4.

Figure 2 gives an insight on the performance of ISSH with respect to each
spaced seed and each datasets considered.

Fig. 2. Speedup of ISSH of all the single spaced seeds for each of the considered datasets,
ordered by reads length.

First of all, we notice that the performances are basically independent on
the spaced seed used. Next, for what concerns the datasets characteristics, it
can be observed that the speedup increases with the reads length, reaching the
highest values for the datasets R7, R8 and R9, which have the longest reads.
This behavior is expected: when considering longer reads the slowdown caused

10 E.Petrucci et al.

by the initial transient – in which more than one symbol has to be encoded – is
less relevant with respect to the total running time.

In Figure 3 we report the speedups on each datasets obtained by Q7, a typical
spaced seed (the other spaced seeds performances are similar) using ISSH, FISH
and FSH.

Fig. 3. Details of the speedup on the spaced seed Q7 on each datasets, ordered by reads
length, using ISSH, FISH and FSH.

All the results are compatible with the above observations: ISSH, if compared
to FISH and FSH, allows to compute the hashing values faster for all the datasets.
Futhermore, by using ISSH, the improvement on long reads datasets is larger
than the improvement obtained with FISH or FSH.

3.3 Effect of Spaced Seeds Weight on Time Performances

The experiments presented here point out the connection between the density
of a spaced seed and the speedup. We considered four sets of nine spaced seeds,
generated with rasbhari [12], with weights 14, 18, 22 and 26 and a fixed length
of 31.

In Figure 4 we compare the average speedup of ISSH, FISH and FSH for these
sets of spaced seeds as a function of the weight W . We notice that the speedup
grows as the weight increases. This phenomenon is consistent among all the
methods we analyzed. It is reasonable to think that such difference is due to how
the hashes are computed with the standard method using Eq.1 (against which
all methods are compared), because denser spaced seeds imply hashes with a
larger number of symbols that need to be encoded and joined together. Moreover,
for ISSH we have that denser spaced seeds have more chances of needing fewer
previously calculated hashes to compute each of the |Q| − 1 symbols, thus saving
further iterations.

Iterative Spaced Seed Hashing 11

Fig. 4. The speedup of ISSH, FISH and FSH as a function of the spaced seeds density
(L=31 and W=14, 18, 22, and 26).

Both these effects are emphasized when looking at the actual running times
needed by the least dense group (W = 14) and by the most dense group (W =
26) of spaced seeds. The standard method requires 9.73 and 15.11 minutes,
respectively, while ISSH spends only 2.75 and 2.16 minutes to perform the same
task.

4 Conclusions

In this paper we present ISSH (Iterative Spaced Seed Hashing), an iterative
algorithm that combines multiple previous hashes in order to maximize the re-use
of already computed hash values. The average speedup of ISSH with respect to the
standard computation of hash values is in range of [3.5x- 7x], depending on spaced
seed density and reads length. In all experiments ISSH outperforms previously
proposed algorithms. Possible directions of research are the combination of
multiple spaced seeds and the investigation of global optimization schemes.

References

1. Apostolico, A., Guerra, C., Landau, G.M., Pizzi, C.: Sequence similarity measures
based on bounded hamming distance. Theoretical Computer Science 638, 76 – 90
(2016)

2. Břinda, K., Sykulski, M., Kucherov, G.: Spaced seeds improve k-mer-based metage-
nomic classification. Bioinformatics 31(22), 3584 (2015)

3. Comin, M., Verzotto, D.: Beyond fixed-resolution alignment-free measures for mam-
malian enhancers sequence comparison. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 11(4), 628–637 (July 2014)

4. Comin, M., Leoni, A., Schimd, M.: Clustering of reads with alignment-free measures
and quality values. Algorithms for Molecular Biology 10(1), 4 (2015)

12 E.Petrucci et al.

5. Darling, A.E., Treangen, T.J., Zhang, L., Kuiken, C., Messeguer, X., Perna, N.T.:
Procrastination Leads to Efficient Filtration for Local Multiple Alignment, pp.
126–137. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

6. Girotto, S., Comin, M., Pizzi, C.: Fast spaced seed hashing. In: Proceedings of the
17th Workshop on Algorithms in Bioinformatics (WABI). Leibniz International
Proceedings in Informatics, vol. 88, pp. 7:1–7:14 (2017)

7. Girotto, S., Comin, M., Pizzi, C.: Higher recall in metagenomic sequence classifica-
tion exploiting overlapping reads. BMC Genomics 18(10), 917 (Dec 2017)

8. Girotto, S., Comin, M., Pizzi, C.: Metagenomic reads binning with spaced seeds.
Theoretical Computer Science 698, 88–99 (October 2017)

9. Girotto, S., Comin, M., Pizzi, C.: Efficient computation of spaced seed hashing
with block indexing. BMC Bioinformatics 19(15), 441 (Nov 2018)

10. Girotto, S., Comin, M., Pizzi, C.: Fsh: fast spaced seed hashing exploiting adjacent
hashes. Algorithms for Molecular Biology 13(1), 8 (Mar 2018)

11. Girotto, S., Pizzi, C., Comin, M.: MetaProb: accurate metagenomic reads binning
based on probabilistic sequence signatures. Bioinformatics 32(17), i567–i575 (Sep
2016)

12. Hahn, L., Leimeister, C.A., Ounit, R., Lonardi, S., Morgenstern, B.: Rasbhari:
Optimizing spaced seeds for database searching, read mapping and alignment-free
sequence comparison. PLOS Computational Biology 12(10), 1–18 (10 2016)

13. Harris, R.S.: Improved Pairwise Alignment of Genomic Dna. Ph.D. thesis, University
Park, PA, USA (2007)

14. Keich, U., Li, M., Ma, B., Tromp, J.: On spaced seeds for similarity search. Discrete
Applied Mathematics 138(3), 253 – 263 (2004)

15. Kucherov, G., Noé, L., Roytberg, M.A.: A unifying framework for seed sensitivity
and its application to subset seeds. Journal of Bioinformatics and Computational
Biology 4(2), 553–569 (November 2006)

16. Leimeister, C.A., Boden, M., Horwege, S., Lindner, S., Morgenstern, B.: Fast
alignment-free sequence comparison using spaced-word frequencies. Bioinformatics
30(14), 1991 (2014)

17. Ma, B., Tromp, J., Li, M.: Patternhunter: faster and more sensitive homology
search. Bioinformatics 18(3), 440 (2002)

18. Marchiori, D., Comin, M.: Skraken: Fast and sensitive classification of short metage-
nomic reads based on filtering uninformative k-mers. In: Proceedings of the 10th
International Joint Conference on Biomedical Engineering Systems and Technolo-
gies - Volume 3: BIOINFORMATICS, (BIOSTEC 2017). pp. 59–67. INSTICC,
SciTePress (2017)

19. Noé, L., Martin, D.E.K.: A coverage criterion for spaced seeds and its applications to
support vector machine string kernels and k-mer distances. Journal of Computational
Biology 21(12), 947–963 (December 2014)

20. Onodera, T., Shibuya, T.: The gapped spectrum kernel for support vector machines.
In: Proceedings of the 9th Conference on Machine Learning and Data Mining in
Pattern Recognition. pp. 1–15. MLDM’13, Springer-Verlag (2013)

21. Ounit, R., Lonardi, S.: Higher classification sensitivity of short metagenomic reads
with clark-s. Bioinformatics 32(24), 3823 (2016)

22. Rumble, S.M., Lacroute, P., Dalca, A.V., Fiume, M., Sidow, A., Brudno, M.: Shrimp:
Accurate mapping of short color-space reads. PLOS Computational Biology 5(5),
1–11 (05 2009)

23. Wood, D.E., Salzberg, S.L.: Kraken: ultrafast metagenomic sequence classification
using exact alignments. Genome Biology 15, R46 (2014)

	Iterative Spaced Seed Hashing: Closing the gap between spaced seed hashing and k-mer hashing

