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An analytic cancellation theorem and 
exotic algebraic structures on C n , n > 3 

M. G. Zaidenberg 

Introduction 

Zariski's problem on cancellation (by an affine space) is usually formulated 
as follows * : 

Let X x An ~ Y x A" be an isomorphism of algebraic varieties. Does it 
follows that X ~ Y ? 

In gênerai, the answer is négative even for surfaces over C [Da] , [tDi] . 
In an important spécial case, when Y = Ak , it is known only that the answer is 
positive for k £ 2 (M. Miyanishi - T. Sugie and T. Fujita, see [Fu 2] or [Km]). 

It was C. P. Ramanujam, who in his earlier attempt to prove the latter 
resuit noticed a connection of the problem with the question of existence of 
exotic algebraic structures on affine spaces [Ra] . The main theorem in [Ra] 
on a characterization of the affine plane implies that the only complex algebraic 
structure on R4 is the standard structure of C2 . (The proof of this theorem 
contains a great deal of tools that are used now in a study of acyclic algebraic 
surfaces.) Producing the first example of a topologically contractible smooth 
complex algebraic surface X , non-isomorphic to C2 , C. P. Ramanujam remarked 
that by the h-cobordism theorem the threefold X x C is diffeomorphic to C3 , 
but it is not isomorphic as algebraic variety to C3 provided that the above version 
of the cancellation problem is answered affirmatively. Thus, this does lead to an 
exotic complex algebraic structure on R6 . 

In 1987-1989 many new examples of acyclic and contractible algebraic 
surfaces were constructed (see for instance, [Gu Mi], [tDi Pe], [Su], [Za 2]). In 
the Appendix to this paper we shall describe two countable séries of examples 
in which each surface X carries a family of curves X -» C with a generic 
fibre C** := C\{0,1}. We shall distinguish thèse surfaces up to isomorphism and 
calculate their logarithmic Kodaira dimensions k(X). For most of them k(X) = 2, 
so they are of hyperbolic (or log-general) type. In [Za 1], [Za 3] it is proved that 

* for the original setting see, for instance, [Ab Ha Ea] 
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M. ZAIDENBERG 

they are the only examples of acyclic surfaces of log-general type which support 
isotrivial families of curves with the base C (i.e. families with pairwise isomorphic 
generic fibres). Following [Ra] we use thèse surfaces in order to introduce exotic 
algebraic structures on affine spaces. 

Main Theorem. For any n ^ 3 there exists a countable set of complex affine 
algebraic structures on R2n which are pairwise bïholomorphically nonequivalent. 

Thèse structures can be distinguished in an algebraic sensé, using the Strong 
Cancellation Theorem of Iitaka and Fujita [Ii Fu] . And by Strong Analytic 
Cancellation Theorem 1.10 they differ even in the analytic sensé. Indeed, by the 
Iitaka-Fujita Theorem given an isomorphism X x Cn —> Y x Cn the Cn can 
be cancelled if k(Y) > 0 . By Theorem 1.10 below, given a biholomorphism 
X x Cn -* Y x Cn , where X and Y are quasiprojective, the Cn can be 
cancelled, giving an isomorphism X -* Y if k(Y) = d imcY , i.e. if Y is 
of hyperbolic type. The examples of non-cancellation for (Q-acyclic) smooth 
affine surfaces with k = — oo [Da] , [tDi] show that the assumptions of the first 
theorem are necessary, while for the second one this is unknown. I do not know 
also, whether there exist two différent complex algebraic structures on R2n which 
are analytically the same. 

Furthermore, we show that for an acyclic surface X of hyperbolic type, Cn 
cannot be isomorphic to (and even cannot injectively dominate) a hypersurface of 
X x Cn """"1 (Theorem 2.4). (In particular, 'exotic Cn constructed in such a way 
do not contain Cn 1 .) This is a generalization of a theorem in [Za 3] on the 
absence of simply connected curves in acyclic surfaces of gênerai type. 

A report on this paper was done at the 29-th Arbeitstagung in Bonn, 1990. It 
was prepared during the author's stay at the Max Planck Institut fur Mathematik 
at Bonn and as a guest of the SFB-170 'Algebra and Geometry' at the Mathe-
matisches Institut of Gottingen University. I am very thankful to thèse Institutes 
for their hospitality. 

Remark. Recently A. Dimca, Sh. Kaliman and P. Russell have obtained new 
examples of exotic C3 - s, which are hypersurfaces in C4. For some of them k = 2. 
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A CANCELLATION THEOREM AND EXOTIC ALGEBRAIC STRUCTURES ON €n 

1. An analytic cancellation theorem 

Let us first recall some known facts about holomorphic mappings into man-
ifolds of hyperbolic type. 

1.1. Définition [Ii 1]. A nonsingular quasiprojective variety X is called a 
manifold of hyperbolic type iffits logarithmic Kodaira dimension k(X) coïncides 
with the dimension dimcX. 

1.2. Theorem. Let X be a nonsingular quasiprojective variety and Y be a 
manifold of hyperbolic type. Then 

a) [Sa, Theorem 4.1] Y is a volume hyperbolic complex manifold; 
b) [Sa, Proposition 4.2] Every dominant holomorphic mapping X —• Y is 

regular; 
c) [Ii 1, p. 182, CoroIIary] Every dominant holomorphic mapping Y -» Y 

is a biregular automorphism; 
d) [Ts] The set Dom(X, Y) of ail dominant holomorphic mappings X —• Y 

is finite. 

In Corollaries 13 —1.5 below we préserve the assumptions of Theorem 1.2. 

13. Corollary ( [Ii 1, Theorem 6]; [Sa, Theorem 5.2] ). The group Aut Y 
of biregular automorphisms of Y is finite. 

1.4. Corollary. Dom(X, Y) is an open and closed subspace of the space 
Hol(X, Y) ofall holomorphic mappings X —• Y, endowed with the compact-open 
topology. 

1.5. Corollary. Suppose that there exist mappings <p € Dom(X, Y) and x\) G 
Dom(Y, X). Then both <p and \\) are biregular isomorphisms. 

1.6. Définition [Ur]. A complex manifold Y belongs to class C ifffor any 
connected complex manifold Z and any holomorphic mapping (p: Y x Z —• Y 
such that for some z 0 G Z the mapping <p7t := y>| Y x { z 0 } belongs to the group 
Aut Y y itfollows that <p7,= </?z for every z € Z. 

Let us recall that for manifolds of class C the cancellation theorem and the 
theorem of the uniqueness of a primary product-decomposition hold [Ur] . 
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1.10. Theorem. Let X and Y be smooth irreducible quasiprojective manifolds 
of hyperbolic type. Let for some k and m * 0 a biholomorphism X x Ck —> 
Y x Cm be given. Then k = m and there exists a unique biregular isomorphism 
<p: X —• Y making the following diagram commutative: 

X x C 
dr 

s 

Y x Ck 

X 

dd 

Y 

In particular, * has a triangular form *(x , z) = (<^(X),î/>(X,Z)) , where 
(x,z) G X x Ck and where for eachx G X the mapping î/;x:=?/> | {x} x Ck 
belongs to the group Aut Ck 0 / biregular automorphisms of Ck . 

Proo/ By Theorem 1.2, a) X and Y are volume hyperbolic manifolds. 
Hence by Corollary 1.9 dimcX = dimcY and k = m . Let us consider the 
holomorphic mapping <P:= 7r Y o $ | X x { O k } : X —• Y . We will show that 
TP is a dominant regular mapping. 

The holomorphic mapping f := 7rYo4>:XxCk —• Y is dominant, there-
fore dim Ker df(uo) = k for some uo = (xo , zo) € X x Ck . Let Ï C X be an 
affine chart containing the point xo . There exists a regular mapping A : X' —> Ck 
such that o:(xo) = uo and the graph Y(A) C X ' x Ck is transversal to the subspace 
Ker df (uo) • Let A : = (idx/ , AJ : X ' M X ' x C k be the embedding onto 
the graph T(A) . It is easily seen that the mapping TP1 : = f o A : X; -> Y is 
dominant. 

Consider a family of mappings <PT : = f o 5 1 , where A T : = (idx/ , TAJ, 
t G C . By Corollary 1.4 <PT, = IPX for ail t G C , and by Theorem 1.2, b) (P1 
is regular. Hence y? = v?0=v?1 i sa dominant regular mapping. 

The same arguments applied to the mapping 77 := tx O $ ~ * | Y x {0} : 
Y -» X show that 7/ is a dominant regular mapping too. Therefore TP : X -> Y 
is a biregular isomorphism (see Corollary 1.5). 

By Corollary 1.4 the mapping <PK : = f | X x {z} : X -> Y , z G Ck, 
does not dépend on z. Hence * has a triangular form *(x,z) = (<^(x), V;(x,z)). 
Since * is a biholomorphism the mapping \j)x : Ck -> Ck is biholomorphic for 
ail x G Ck . This complètes the proof. 
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A CANCELLA TION THEOREM AND EXOTIC ALGEBRAIC STRUCTURES ON <Cn 

1.7. Corollary. Manifolds of hyperbolic type belong to class C. 

The next simple lemma and its corollary will allow us to distinguish the exotic 
complex algebraic structures on affine spaces, constructed in section 2 below, from 
the standard ones up to biholomorphisms. 

1.8. Lemma. Let X, Y and Z be connected complex manifolds, and Y be 
volume hyperbolic. If for some k * 0 there exists a dominant holomorphic mapping 
*: X x Ck -> Y x Z , then dimcX * dimcY . 

Proof Consider the dominant holomorphic mapping <p := irY o & : X x 
Ck -* Y , where -K\ : Y x Z —• Y is the canonical projection. Let dimcX = 
= n , dimcY = m and m = n + r . Suppose that m > n , i.e. r > 0 . It 
is clear that r 22 k . 

Let us fix a point uo= (xo, zo) G X x Ck such that rank dc/?(uo) = m. 
Restricting to a neighborhood of the point xo we may assume that X = Bn is 
the unit bail in Cn and xo is the origin. 

For an arbitrary affine mapping a : X x Cr —• Ck "~ r we shall dénote by 
a the embedding onto the graph of a (i.e. a := (idx X ( ^ ^ ) « X x C r ^ X x Ck). 
Let 7r': X x Ck -> X x Cr be the natural projection, and u'o = ^'(uo) . 

Since codim Ker d</?(u<)) =m there exists an affine mapping a as above such 
that uo = <*(u'o) and Im dâ(u'o) fl Ker d</?(uo) = {0} . Therefore the mapping 
(po a : X x Cr —>Y isa dominant mapping of manifolds of equal dimensions. 
This leads to a contradiction with the volume-decreasing property of holomorphic 
mappings with respect to the Eisenman — Kobayashi pseudovolume forms. 
Indeed, since by the above assumption r > 0, this form is identically zéro on the 
manifold X x Cr, while by Theorem 1.2, a) it is nondegenerate on the manifold 
Y of hyperbolic type. Hence r * 0 , i.e. m ^ n. Q. E. D. 

1.9. Corollary. Let X and Y be volume hyperbolic connected complex 
manifolds. If for some k and m the manifolds X x Ck and Y x Cm are 
biholomorphically équivalent, then dimcX = dimcY . In particular, if 
dimcX > 0, then for any natural numbers k and m the manifold X x Ck is not 

biholomorphically équivalent to Cm . 

In order to distinguish différent exotic complex algebraic structures on R2n 
(n > 2) up to biholomorphisms we will use the following Strong Analytic 
Cancellation Theorem. 
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2. Exotic complex algebraic structures on affine spaces 

As follows from the Ramanujam's characterization of the complex affine plane 
[Ra], any nonsingular complex algebraic surface, which is homeomorphic to C2, 
in fact is isomorphic to C2. The situation turns out to be différent in higher 
dimensions. 

2.1. Main Theorem. For any n ^ 3 there exists a countable set of 
complex affine algebraic structures on R2n which are pairwise biholomorphically 
nonequivalent 

Proof The proof follows an idea of Ramanujam [Ra]. Let {Xk)k £ N be 
a countable set of pairwise biregularly non-isomorphic smooth complex affine 
algebraic surfaces, each of which is topologically contractible and has hyperbolic 
type, i.e. its logarithmic Kodaira dimension equals 2 . There are différent 
constructions of such countable collections of surfaces; see [Su], [tDi Pe], [Zal], 
[Za2] or the Appendix to the présent paper. As follows from the h-cobordism 
theorem, for each k G N the smooth manifold Xk x R2n 4 is diffeomorphic 
to R2n (see [Ra] , [Mil]) .This allows us to endow the manifold R2n with the 
countable set {Xk x Cn 2} k G N of complex affine algebraic structures. By 
Corollary 1.9 each of the manifolds {Xk x Cn "~ 2} k ç. N is not biholomorphically 
équivalent to Cn . By Theorem 1.10 for k ^ m manifolds Xk x Cn "~ 2 and 
Xm x Cn "~ 2 are biholomorphically nonequivalent. This complètes the proof. 

2.2. Remarks. 1. The first example of a topologically contractible smooth 
algebraic surface X not isomorphic to C2 was constructed in [Ra] . This surface 
is of hyperbolic type [Ii 2] . It easily follows that X x C is not biregularly 
isomorphic to C3, hence one gets an example of exotic algebraic structure on C3. 
In fact, X x C is not biholomorphically équivalent to C3 (see Corollary 1.9). The 
latter answers a question, posed to me by J. Winkelman (1988) (another, more 
complicated, proof of this fact was suggested by M. Chinak). 

2. There exists a complète list of topologically contractible surfaces of 
logarithmic Kodaira dimension 1 [Gu Mi] . Using thèse surfaces in the same 
way as before one can introduce new complex algebraic structures on R2n for 
n * 3 . The Strong Cancellation Theorem of Iitaka and Fujita [Ii Fu] allows one 
to distinguish thèse structures up to biregular isomorphisms. Moduli of surfaces 
lead to moduli of exotic structures. I do not know whether thèse structures are 
différent up to biholomorphisms. 
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3. Let X = Yl i=i , Y = I l j=i t>e two products of quasiprojective 
manifolds of hyperbolic type. By Corollary 1.7 and Urata's theorem [Ur] thèse 
décompositions are unique. Therefore, if <p : X —• Y is an isomorphism, then 
n = m and there exists a permutation a G Sn such that <p= Yl <Pi > where 

: X. —> ^ <T(\) » * = •̂••>n > are isomorphisms. 
Thus, one could get additional exotic algebraic structures on affine spaces by 

looking at the manifolds X x C k ( k > 0 ) , where X is aproduct of topologically 
contractible surfaces of hyperbolic type. 

2.3. Our next goal is to show the non-existence of a regular embedding 
of C11""1 into "exotic Cn,s " constructed above. It is known [Za 3] that a 
smooth acyclic complex algebraic surface* Y of hyperbolic type does not contain 
simply connected curves, i.e. there are no injective regular mappings C -> Y. 
(Moreover, from a theorem of Nishino and Suzuki [Ni Suz] it follows that there are 
no injective proper holomorphic mappings C —> Y .) This fact has the following 
generalization to higher dimensions : 

2.4. Theorem. Let Y be a nonsingular acyclic complex algebraic surface of 
hyperbolic type. Then for any natural k there are no injective regular mappings 
Ck —> Y x C1*"1 . 

2.5. Remark It is known (see the addition to [Za 3]) that any acyclic surface 
Z of logarithmic Kodaira dimension 1 contains smooth simply connected curves 
(but it does not contain singular or reducible simply connected curves). Therefore 
Z x Ck contains submanifolds isomorphic to Ckmml. 

Theorem 2.4 can be easily deduced from the following more gênerai: 

2.6. Theorem. Let Y be a surface satisfying the assumptions of Theorem 
2.4. Let Xbe a nonsingular irreducible simply connected quasiprojective variety 
of positive dimension k. 
a) If X —• Y x Ck-1 is an injective regular mapping, then the mapping 
f := 7r y o <t> : X —* Y is dominant 
b) Furthermore, ifX = Zx Ck"2, then the mapping <p : = f | Z x {0} : Z -> Y 

is dominant, and $ has a triangular form $ ( z , v ) = (y>(z),?/>(z,v)) , where 
(z,v) £ Z x Ck-2 and where x\>7> := x\> \ {z} x Ck"2 : Ck"2 -> C*"1 is 
an injective regular mapping for each z E Z . 

* As usual, acyclicity of Y means that ail reduced homology groups of Y 
with coefficients in Z vanish. 
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Proof of a). Suppose that the mapping f is not dominant. Then its image is 
contained in some irreducible closed algebraic curve A in Y . The acyclic surface 
Y is affine [Fu 1, (2,5)] , hence the curve A is affine too. Let v : B -> A be 
the normalization and 8 : U -> B be the universal covering map. Since X is 
simply connected there exist covering mappings tv : X —• B (y o f v = f) and 
ffj : X —> U (S o f 8 = f If A is a hyperbolic curve, then U must be the unit 
dise and hence the bounded holomorphic fonction : X —» U is constant. This 
is impossible, since the constancy of f under the assumptions on the dimensions 
contradicts the injectivity of * . The case when B = C* := C \ {0} can also be 
excluded, since in this case the non-constant regular function iv : X —> C* on 
the simply connected variety X would have a logarithm, — which is impossible. 
Therefore, B = C . 

Let us show that the normalization mapping v : C —• A is injective. This 
will lead to a contradiction with Theorem 9.1 in [Za 3] , quoted above, which 
in particular states that an acyclic surface Y of hyperbolic type does not contain 
simply connected curves. 

Suppose that v is not injective, i.e. i/(zi) = vfa) = ao G A for some zi , 
Z2 G C , where zi ^ Z2 . Let Z\ = f^-1 fa) , g = 7rck-i o $ : X —> Ck~1 
and 7/i = g | Zj , i = 1, 2 . Since f | Zj = v(Z[) = ao and $ is injective, the 
mappings rj[ would also be injective. Thèse regular mappings are equidimensional 
and therefore dominant, hence the intersection of their images is nonempty, i.e. 
*7l(xl) = 772(X2) for some X| G Zj . Finally, this implies that $(xl) = $(x2) , which 
contradicts the assumption of injectivity of This complètes the proof of a) . 

Proof of h) . It follows from a) that k * 2 and for k = 2 that the mapping 
(p= f is dominant. We shall now consider the case when k > 2 . Suppose 
that the mapping <p is not dominant, and therefore its image is contained in an 
irreducible curve A in Y . First consider the case when ip is non-constant. Let D 
be a generic curve in the surface Z and L be an arbitrary affine line passing throw 
the origin in Ck " 2 . Consider the surface D x L c X = Z x C k " 2 . Since Y is 
a surface of gênerai type, it is clear that the restriction f | D x L : D x L — > Y 
is degenerate. Therefore its image is contained in an irreducible curve, which 
coincides with the Zariski closure of the curve f(D x {0}) = <p(D) and hence 
with the curve A (recall that (p \ D is non-constant). The genericity of D and 
L implies that f(X) C A . Therefore, f would be a degenerate mapping in 
contradiction with what has been proven in a) . 

Now consider the case, when <p is constant. Let ip(Z) = {y0} C Y and let 
E be a generic closed algebraic curve in Y, which does not pass through the point 
yo . Since f is dominant (as was proved in a) ) and E is generic, there exists a 
curve D C f""*1© such that the restriction f | D : D —> E is dominant. 
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Let S be the developed surface in X containing the curve D, and let 
À : D x C —> S be the natural regular mapping 

A: D x C B (d,£) i-> ( TT ( d ) , ^ c k - i ( d ) ) e s 

Consider the mapping f o À : D x C -» Y. Since Y is of hyperbolic type, 
this mapping must be degenerate and its image has to be contained in a closed 
irreducible curve in Y , which evidently must coincide with E . But then yo = 
=V?(d) = f(d, 0) G E , contradicting to the choice of the curve E . 

Thus, the mapping <P is dominant. The proof of the other statements in b) 
follows that of the analogues statements of Theorem 1.10 . Q. E. D. 
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APPENDIX 

Two constructions of smooth topologically 

contractible affine surfaces of hyperbolic type 

A 1. Generalities on acyclic surfaces 

Ail surfaces here assumed to be quasiprojective, nonsingular and irreducible. 
The next theorem will be the most useful in the constructions below. It actually 
was established in [Ra] and supplemented in [Fu 1] (see also [Gu 1] , [Gu 2] ) . 

A 1.1. Theorem (Ramanujam - Fujita). Consider a surface X = V \ D , 
where V is a nonsingular projective surface and D is a curve in V . The surface 
X is acyclic iff the following two conditions are fulfilled: 

1) V and D are connected and simply connected; 
2) The embedding i: D V induces the isomorphism 

i+ : H2(D;Z) - H2(V;Z). 

In addition: 

A 1.2. Lemma (Fujita [Fu 1, (2.5)]) . Any nonsingular acyclic surface is 
affine. 

The following theorem had been conjectured first by A. Van de Ven [VdV] . 

A 1.3. Rationality Theorem (Gurjar - Shastri [Gu Sha]). Any nonsingular 
acyclic surface is rational 

Let e(X) be the Euler characteristic of the surface X , R(X) = H°(X, Ox) the 
algebra of regular functions on X and R*(X) its group of invertible éléments. 
Recall the following: 

A 1.4. Définition [Za 3] . A nonsingular affine surface X is called simple 
iff the following two conditions are fulfilled: 

1') e(X) = 1 ; 
2') R(X) is UFD (a unique factorization domain) and R*(X) = C . 
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The next theorem gives an inner characterization of acyclicity. 

A 1.5. Theorem. A nonsingular surface is acyclic if and only ifit is simple. 

Proof By [Fu, (2.5) — (2.9)] , condition 2') is équivalent to condition 2) 
of Theorem A 1.1. For an acyclic surface X , condition 1') is fulfilled and, by 
Fujita's Lemma A 1.2 , X is affine. The 'only if part follows immediately from 
thèse remarks. 

Let us further assume that X is simple. Since X is affine and therefore Stein, 
H4(X; Z) = H3(X; Z) = 0 and H2(X; Z) is a free group. Hence by 1') 
bi(X) = biÇX) . Now the acyclicity of X follows from the equality Hi(X; Z) = 
= 0, which is proven in Lemma 2.2 in [Gu Mi] . Q. E. D. 

A 1.6. Rational trees on rational surfaces 

Let V be a nonsingular completion of an acyclic surface X = V \ D . Then, 
by the Gurjar — Shastri Theorem A 1.3 , V is a rational surface, and by the 
Ramanujam — Fujita Theorem A 1.1, the curve D is simply connected. In partic-
ular, ail its irreducible components are rational curves. Resolving singularises of 
D one can assume D to be of simple normal crossing type (or an SNC-curve for 
short). In the latter case the pair (V, D) is called an SNC-completion of X . The 
weighted dual graph * F© of D is a tree, and we will call D itself a rational tree. 
An SNC-completion (V, D) of X is called minimal if the graph does not 
contain linear or end (-l)-vertices, i.e. vertices of weight —1 and a valency not 
exceeding 2. A minimal completion always exists, but it could be non-unique. 

The next theorem gives a useful characterization of C2 as an acyclic surface. 

A 1.7. Ramanujam's Theorem [Ra] . Let (V, D) be a minimal SNC-
completion of a nonsingular acyclic surface X . Then X is isomorphic to C2 if 
and only if the graph TD is linear. 

Ail possible dual graphs (weighted linear chains) of minimal SNC-completions 
of C2 are described in [Ra] and, in more détail, in [Mo] . 

* i.e. the graph, whose vertices correspond to the irreducible components of 
D , wedges correspond to intersection points of thèse components and the weight 
of a vertex is the self-intersection index of the corresponding component 
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A 1.8. 'Cutting cycle' construction 

Let W be a nonsingular rational projective surface and B be a connected 
SNC-curve in W with rational irreducible components {B\} j - i,...^ . 

Let 8 be a cycle of the dual graph TB of B and [Bo: , Bo ] be a wedge in 8, 
which corresponds to the intersection point zo of the curves Ba , B^ . Choose a 
coordinate chart (x , y) at zo such that locally BO' = {x = 0 } , B ^ = { y = 0 } . 

Consider the meromorphic fonction f := m̂- , where n , m are coprime 
natural numbers. Let 7rn 9 m : V —> W be the minimal resolution of the point 
zo of indeterminacy of the fonction f . Then 7n>m:= 7rn>m""1 )̂ is a linear 
chain of rational curves. By the same symbol 7n, m we will dénote its dual graph. 
Let v be the last curve gluing by Tr̂ nT"1 , and let 7n'm, 7 n ^ be the linear 
branches of the graph 7n, m at the vertex v . 

Consider forther the curve D := 7rn,m—1(B) G v in V . The graph TD is 
obtained from the graph TB by changing the wedge [B^ , B^ ] by the union of 
two disjoint branches 7n'm, 7n'^ : 

d s d 
' n,m O 

v 
7 " 
' n,m dv 

Définition [tDi Pe] . The above procédure of changing the pair (W, B) by 
the pair (V, D) is called cutting a cycle. 

A 1.9. The graphs 7n, m 

In the following we need the description of the graph 7n, m • Consider the 
continued fraction development ™ = [q0,qx,.».,qt] (here qt > 1 if t > 0). If 
t = 2k is even, then 7n, m is the following graph : 

x+b4 
x+b4 ds+b4 

-2-q4 
^2k-l - 1 

x+b4d 

-1 
dx+b4d 

-2-qa 
q 2 - ! 

-2-q, 
q0 - 1 
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Here by [k] we dénote the weighted linear chain of length k of the form : 

-2 -2 -2 -2 

If t = 2k + 1 is odd, the graph 7n, m bas the following form: 

q i - i 

-2-q, 
q 3 - i 

-2-q4 
<Ï2k+l - 1 

-1 

- 1 - 1 , M . , 
qi-i 

-2-q3 
q 2 - ! 

-2-q, 

q « - i 

It is clear that 7n'm = 7 j n and vice versa. The vertex 
of the weighted graph has the weight 

K2 = B „ 2 - [ ^ ] - < r ( m ) ( 2 = Ba 2 ] <r(n) ) , 

where 

<r(k) := 
1, k > 1 

10, k = l 

Furthermore, for the divisors B* , we have: 

B* = mv + ... , B^ = nv + ... . 

A 1.10. Construction of acyclic surfaces by cutting cycles 

Let the pair (W, B) as in A 1.8 in addition has the following properties: 

i) B is connected and the components {Bj}j, iv..)m of B generate Pic W ; 

ii) m = P + k , where P = rank Pic W and k = bi(B) = bi(TB) . 

Choose k différent wedges Bp , Bft , i = 1,..., k , of T B on k basic 
cycles Si 6^ respectively and numerical data {(ni, mO} \ »1 ^ , consisting 
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of the pairs of relatively prime natural numbers. Cutting cycles in the chosen 
wedges according to this numerical data we get a new pair (V, D) , where V is 
a smooth rational surface with a rational tree D , and the birational morphism 
* :== I l fn m : V —• W such that 7r(D) = B . Let zi, Zk be the double 
points of the curve B , which correspond to the chosen wedges of TB and vi, 

Vk be (-l)-curves, which are the last ones gluing by t"""1 over thèse points 
respectively. Then D = B' U E , where B; is the proper pre-image of B and E 
consists of the components of the exceptional locus of 7T""1, excluding v i V k . 

Let PicW be freely generated by the classes of irreducible curves Ci, 
Cp .Then PicV is freely generated by the classes of the curves 
,C'p , va vk ^ and the components of E . Dénote by S the 

m x m matrix of an expansion of the System of vectors ( B ) by 
the System C'p , vx vk^ modulo the subgroup of PicW gener

ated by the components of E . The 'vi—line* of S contains two nonzero entries 
s.p = m . ,sÎ8 = n. only (see A 1.9) . 

By Theorem A 1.4 the surface X := V \ D is acyclic iff the matrix S 
is unimodular. In particular cases, considered in section A 3 below we have 
Q s Bj , 1 s 1, p9 and the condition équivalent to the above one is the 
unimodularity of the k x k submatrix T of S of the expansion of the System 
^ B ^ , B ^ ^ by the System ( v j , v k ) modulo the subgroup of PicW, 

generated by (C^ and the components of E . 

A 2. Absolutely minimal complétions 

A 2.1. Définition [Za 1] . Let V be a nonsingular projective surface and 
D be an SNC-curve in V . The pair (V, D) mil be called absolutely minimal 
iff the following holds: if (V', D7) is an other SNC-pair and <p : V' -> V is a 
birational mapping such that the restriction <p \ V; \ D' is an isomorphism of 
V' \ D' onto V \ D , then ip is actually a morphism. 

This means that an absolutely minimal completion (V, D) of a given surface 

X : = V \ D 

is dominated by any other of its SNC-completions. In particular, if an absolutely 
minimal completion exists it is unique. 
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A 2.2. Définition [Za 1] . A weighted graph F will be called absolutely 
minimal iffthe weight ofany of its at most linear (Le. linear or end) vertices does 
not exceed —2 . 

It is clear that F is absolutely minimal iff it is minimal and has no linear or 
end vertex of a non-negative weight. 

A 2.3. Proposition. Let D be an SNC-curve with rational components in a 
nonsingular projective surface V . The pair (V, D) is absolutely minimal if and 
only if the dual graph FD is absolutely minimal. 

Proof Assume that FD is not absolutely minimal. Let v be an at most 
linear vertex of FD of weight n ^ —1 . After n + 1 successive blowing ups in an 
incidental wedge, v will be an at most linear (-1)-vertex. Then the contraction of v 
gives a new SNC-pair (V', D'), and the composition of the above transformations 
is a birational mapping x : V -» V' , which induces an isomorphism V \ D 
—> V' \ D' . The inverse^ := 7r_1 : V' -> V is not a morphism, andhence 
the pair (V, D) is not absolutely minimal. 

The converse follows from Lemma 4 of [Gi] . Q.E.D. 

A 2.4. Theorem. Let X be an acyclic surface of hyperbolic type. Then X 
has a unique minimal SNC-completion (V, D), and this completion is absolutely 
minimal. 

Proof We shall prove that any minimal SNC-completion of X is in fact 
absolutely minimal, which suffices. Suppose that there exists a minimal SNC-
completion (V, D) of X which is not absolutely minimal. Then by A 2.3 the 
graph FD must have an at most linear vertex v of a non-negative weight n . 
After n successive blowing ups in an incidental wedge one can assume that 
n = 0. By Theorem A 1.3 the surface V is rational and so, applying the Riemann-
Roch Theorem, we conclude that the curve v varies in a linear pencil, which 
defines a morphism 7r : V —> P1 with a rational generic fibre F . Since F#D = 
= v D * 2 , the generic fibre F = F \ D of the restriction 7r | X : X —> P1 is 
isomorphic either to C (if v is an end vertex) or to C* = C \ {0} (if v is a linear 
one). By the well known inequality [Ii 1, Theorem 4] we have: 

k(X) < k(r) + d imP1 < 1. 

This contradicts to the assumption that X is of hyperbolic type. Q.E.D. 

A 2.5. Remark. If an acyclic surface X has an absolutely minimal completion 
(V, D), then the class of combinatorial équivalence of the graph FD is an invariant 
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of the isomorphism type of X . This will be used further in order to distinguish 
such surfaces up to isomorphism. 

A 3, Constructions of examples 

A 3.1. The surfaces Xx 

Consider the quadric Q = P1 x P1 as a completion of C2 with coordinates 
(x, y) by a pair of projective lines eo := { y = 00} and ei := { x = 00} . Dénote 
by co , ci , lo , H the generators of the quadric Q , given in affine coordinates by 
the équations y = 0 , y = l , x = 0 , x = l respectively. Let B be the union of six 
rational curves eo » ei , q> » ci , lo > h in Q . Fix four intersection points zy = 
= (i, j) and numerical data {(ny , my)} , i, j = 0, 1, such that the matrix 

T := 
moo 0 noo 0 
m10 0 0 n10 

O m01 n01 U 
0 m11L 0 n n 

is unimodular. Applying the cutting cycle procédure to the pair (Q, B) in four 
given points according to this numerical data, we obtain an SNC-pair 
( V T > D T ) > which satisfies to the conditions of A. 1.10. Therefore the surface 
Xj := V T \ D T is acyclic. 

A 3.2. Lemma. The dual graph Tj of the curve Dj is absolutely minimal 
and has the following form: 
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7 ' 
'm00'noo 

7m10>nio| 

/ 
7m01 >noi " 

7mll>nii 

x 

x0 

I 

x0 

d0 

R 

7 " 
/m00 'noo 

II 
7m01 >nm 

11 
7m10'nio 

II 
7mll>nn 

A 3.3. The surfaces X# 

Let h , cs , where s is an odd natural number, be the curves in the quadric 
Q , given in affine coordinates by équations x = 1 , y2 = xs respectively. Let 
7r : W —» Q be the minimal resolution of singularities of the curve ds := eo U 
U ex U li U cs and Bs := T T " " 1 ^ ) . 

Let zo , zi be two points of intersection of the curves h , cs . Fix numerical 
data {(nj , m\)} , i = 0, 1 , such that the matrix 

T := m 0 n0 
m1 ni 

is unimodular. Set 0 := (s, T) . Applying the cutting cycle procédure to the pair 
(W, Bs) over the points Zo , zi according to this numerical data, we obtain a pair 
ÇVff , D^) , which satisfies the conditions of A 1,10 . So, we get the second 
séries of acyclic surfaces X# := V# \ D# . We omit calculations, which lead to 
the following lemma. 

A 3.4. Lemma. Let TQ be the minimization of the dual graph of the curve 
Dfl . Then 

a) Ffl is a linear graph ijfs = 1 and (nj , mi) = (1, 1) for i = 0 or for i = 1. 
b) In the case, when s = 1 and (n; , mj) ^ (1, 1) for i = 0, 1, the graph VQ 

is absolutely minimal and has the following form: 
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7m0>n0 
- 2 

'm0'n0 

x0 0 > i \ 

7m0>n0 m1 mn1 

c) 7n f/ie case, when s = 2r+l > 1, w absolutely minimal and has the 
following form: 

i 
7m0,n0 

- 2 

- 3 
T — 1 

— 1 

n1 -n1 

a 

cl 

- 2 

7m0>n0 

- 2 —T — 1 

—1 

7m0>n0 

b 

xr 

A 3.5. Remarks. 1. As follows from Ramanujam's Theorem A 1.7 , in case 
a), and only in this case, the surface XQ is isomorphic to C2 . 

2. There is a countable set of pairwise non-isomorphic surfaces Xx (or X#) 
since there is such a set of pairwise non-equivalent graphs Tj (or TQ) (see A 
2.5). The complète description of ail isomorphisms on the set {Xj, X#} is given 
in [Za 1] , [Za 2] . It turned out that two surfaces from this set are isomorphic 
iff the corresponding dual graphs are combinatorially équivalent. In gênerai, this 
is not true for arbitrary acyclic surfaces. 

3. It is worth mentioning that the surface in Ramanujam's original example 

[Ra] is isomorphic to X̂ o , where 0° = (s0 , T) := (3 , but their 

constructions are différent. 
4. The canonical projection Q = P1 x P1 —• P1 onto the first factor induces 

families of curves Xx —> C , X# C with generic fibers isomorphic to C** := 
= C \ {0; 1} . As follows from [Za 1] , [Za 2], they are the only isotrivial 
families of curves, i.e. families with isomorphic generic fibres, with the base C 
on acyclic surfaces non-isomorphic to C2 . Furthermore, in [Za 1] , [Za 2] the 
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list of isotrivial polynomials on C2, which partially had been obtained in [Za 4], 
[Ka] , was completed. 

A 4. Contractibility of the surfaces X j , X# 

A 4.1. Proposition. Each of the surfaces Xx , Xq , constructed in A 3 , is 
topologically contractible. 

We précède the proof with some gênerai remarks. 

A 4.2. Since the surfaces Xx , Xq are acyclic, it is enough to show that they 
are simply connected. This is done for the surfaces Xx in Lemma A 4.6 below. 
In the case of the surfaces X# the proof is something more délicate, see [Za 1] 
, and will be omitted. 

A 43. Let H be an irreducible curve in a smooth surface X and x0 G X\H 
be a distinguished point. Then there is a naturally defined class of conjugate 
éléments [ÀH] G Ker (7ri(X \ H , x<>) —• niÇX , xo) ) , called vanishing loops of 
H . For a pair of irreducible curves H' , H", intersecting transversely in smooth 
points, their vanishing loops can be chosen commuting. If X = V \ D , where D 
is a curve in a smooth complète surface V , and H is smooth and intersects with 
D transversely, then one has the exact séquence 

1 ^ y v _ x 1 ( X \ H ) -> x1(X) - 1 , 

where N is generated by vanishing loops of H [Fu 1, (4.18)] . 

A 4.4. Lemma [Fu 1, (7.18)] . Let a pair (V , D) be obtained from an SNC-
pair (W, B) by applying the cutting cycle procédure over a point ZQ of intersection 
oftwo components B\ , B2 ofB according to the numerical data (n , m). Let H = 
v be the last gluing curve over zo . Then for suitably chosen commuting vanishing 
loops A. := AB, , i = 1 , 2 , the relation [AH] = [Ai]n[A2]m holds. 

The next lemma follows immediately from A 43 and A 4.4 . 

A 4.5. Lemma. Let X = V \ D be an acyclic surface, obtained by cutting 
cycles construction as in A 1.10. Let under the notations of A 1.10 Y := X \ v 
= V \ TT-^QS) = W \ B , where v := ( J . ^ v. . Then T T ^ X ) = TTI(Y) / N, 
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where N is a normal subgroup of 7ri(Y) generated by the éléments of the form 

x1d m. x1d n. i where the vanishing loops sdd1 d 
2s2 com

mute, i = 1,..., k . 

For the surfaces Xx , as was mentioned in A 4.2 , Proposition A 4.1 follows 
from the next lemma. 

A 4.6. Lemma. For any unimodular matrix T as in A 3.1 the surface Xx 
is simply connected. 

Proof Let Y := Q \ d be the complément of the union d of six generators of 
the quadric (see A 3.1) . Then 7ri(Y) = F2 x F2 , where F2 is a free group with 
two generators, has the following System of four generators: 

a := A 7m0>n0 A , i j = 0,1 , 

where [ai , bj] = 1 for any i , j = 0, 1 . By Lemma A 4.5 the group 7ri(Xx) 
has the following corepresentation: 

7T 
1 

G T br a .a .b .b 
0 1 0 1 

a ,b 
1 JJ 

= 1, a miJKny 
i j 

= 1, i,j = 0 , l 

Raising both sides of the latter équation to the power ni_i \ we get : 

a 
0 

moonio _ _ mionoo — a 
1 

qad mmnn _ 0 mnnoi — a 

Further, raising thèse équations to the powers mnn0i , mionoo respectively, we 
corne to a conséquence: 

a 
0 

moomiinoinio = a 
0 
moimionoonn , or a 

0 

detT 
= 1 

Since T is a unimodular matrix, ao = 1 . In the same way one can show that 
ai = b0 = bi = 1 , i.e. 7r!(XT) = 1 . Q.E.D. . 

A 5. Logarithmic Kodaira dimensions of the surfaces Xx , X# 

Here we shall show that most of the surfaces Xj , X# constructed above are 
of hyperbolic type. This will be done in two ways. The simplest one is based 
on the following facts. 
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A 5.1. Theorem of Miyanishi-Sugie-Fi\jita (see [Fu 2]). Let X be an acyclic 
surface. Then k(X) = —oo if and only ifX is isomorphic to C2 . 

A 5.2. Theorem ( [Fu 1, (8.70)] ; see also [Gu Mi]). There exists no acyclic 
surface X with k(X) = 0 . 

The complète list of acyclic surfaces with k(X) = 1 was obtained in 
[Gu Mi, § 3] . To formulate this resuit (in a particular case of topologically 
contracted surfaces) we need the following notion. 

A 5.3. Définition. Let (W, B) be an SNC-pair. Fix a smooth point b E B . 
Let v be the exceptional curve of the blowing up ir : V —> W at b and D := B' = 
n^ÇS) Q v . The procédure of replacing the pair (W, B) by the pair (V, D) is 
called a half-point attachment at the point b [Fu 1] . 

By a k-iterated half-point attachment we mean the following extension of this 
procédure: blow up in a point b = bi , then once more in a point hi G Ei \ B', 
where Ei is the gluing curve, and so on k times; put D := 7r"1(B) Q v, where 
7r : V —» W is the composition of thèse k blowing ups and v = E^ is the last 
gluing curve. 

A 5.4. Theorem [Gu Mi, Theorem 3] . Any topologically contracted surface 
X with k(X) = 1 can be obtained in the following way. Let W = E(l) be the 
Hirzebruch surface (which is a blowing up ofP2 in a point). Let the SNC-curve 
B in W be the union oftwo disjoint sections Ho and H\ of the natural projection 
S(l) —• P1 with Ho2 = —1 and Hi2 = 1, and three distinguished fibres Fo, Fi, 
Foo . Let Z{ be the intersection points of the cur\>es Y\ and Hi, i = 0, 1. Fix 
a natural number k and numerical data (mj , n§) , i = 0, 1, such that U[ < mj 
and moni + mino — momi = ±1 . Then X := V \ D, where an SNC-pair (V, 
D) is obtained from the pair (W, B) by the k—iterated half-point attachment at 
a point of the fibre Foo and the cutting cycles procédure over the points zo , zi 
according to the given numerical data. 

A 5.5. Corollary. Let (Vmin , Dmjn) be a minimal SNC-completion of a 
surface X as above. Then the dual graph of Dmin is absolutely minimal and has 
the following form: 
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7m0'n0f k - 1 
a 

'mft,nn 

7m0>n0 

' _1 _ 1 _1N 

b ! 'ml>nl 

if k > 1, and 

i 
7m0,n0| 

a 

1 'm0>n0 

7m0>n0 

7 M 1 >nl 
b 

'ml*nl 

(fk s 1 (fcere a, b * —2) . 

The next theorem is the main resuit of this section. 

A 5.6. Theorem. There exists a countable set of pairwise non-isomorphic 
surfaces Xj P^ff) of hyperbolic type. 

Proof. It is easily seen that most of the dual graphs , TQ (see A 
3.2, A 3.4) are not équivalent to any of the above graphs, and are pairwise 
non-equivalent. So, the corresponding surfaces Xj , X# , which by A 4.1 are 
topologically contractible, are pairwise non-isomorphic and are not isomorphic to 
any of contractible surfaces of logarithmic Kodaira dimension less than 2 (see 
remark A 2.5). Hence they are of hyperbolic type. Q. E. D. 

Another approach to the direct calculation of logarithmic Kodaira dimensions 
of the surfaces Xx , X# is based on the following facts. 

A 5.7. Kawamata's Theorem [Kaw] . Let (V, D) be an SNC-completion of 
a surface X = V \ D with k(X) > 0 . Consider the Zariski décomposition 
K + D = H + N, where K := Ky is the canonical divisor and H = (K + D)+ , 
N = (K • D)~ . Then 
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i) k(X) = 0 iff H = 0 ; 
ii) k(X) = 1 iff H ^ 0 and H2 = 0 ; 
iii) k(X) = 2 iff H2 > 0 . 

A 5.8. Since H and N are orthogonal we have: 

H2 = (K + D)2 — N2 = K(K + D) + D(K + D) — N2 . 

Here D(K + D) = —2 if D is a rational tree, — indeed, in this case 7ra(D) = 0 . 
The following simple lemma allows one to calculate K(K + D) in our examples. 

A 5.9. Lemma. a) The value of K(K + D) does not change under blowing 
down of a (—l)-vertex E of the graph Tj) if E is a linear vertex, it increases by 
lifE is an end vertex and increases by2ifE is an isolated vertex 

b) Let y be a component of a curve and D := D' © v . Then 
K(K + D) = K(K + D) + v2 + 2 . 
In particular, after deleting a (—lycomponent v of D' the value of 

K(K + D') increases by 1 . 

A 5.10. Corollary. Let a pair (V, D) be obtained from an SNC-pair (W, B) 
as a resuit of cutting of k cycles. Then 

KV(KV + D) = KW(KW + B) + k. 
In particular, for the minimal completion (V x * Dx) of the surface Xx we 

have Kx(Kx + Dx) = 0 , where Kx := K V T . 

Indeed, the pair (V x • Dx) is obtained from the pair (Q, d) by cutting four 
cycles (see A 3.1) , and Kq(Kq + d) = —2(e<> + ei) = —4 . 

A 5.11. Remark. In the same way one can easily check, that 
K9mîn (KQ™111 + D , ™ 1 1 ) = 0 for the minimal SNC-completion ( V ^ 1 1 , D ^ M I N ) 
of the surface X#, if this surface is not isomorphic to C2 (see [Zal]) . 

A 5.12. Corollary. Let (V, D) be a minimal SNC-completion of a surface 
X = XjorX = Xff, where X# is not isomorphic to C2 . Then H2 = —2 — N2. 
Therefore X is of hyperbolic type iff N2 < —2 . 

To calculate the value of N2 we make use of so called theory of peeling 
(see [Fu 1] , [Mi Tsu]) , which in some cases allows one to find the Zariski 
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décomposition K + D = H + N explicitly. We recall some necessary notions 
and facts. 

A 5,13. Let D be an SNC-curve with rational components in a smooth 
complète surface V . A twig L of D is an extremal linear branch of the dual 
graph TD , i.e. a linear branch [Di DJ of the form 

D l D2 Dk Dk+1 

where Di is an end vertex FD , called a tip ofL,, and D^ + i is a branching point 
of TD . L is called an admissible twig iff Dj2 £ —2 for every i = 1,..., k , or 
equivalently, iff L is minimal and its bilinear form is négative definite. For an 
admissible twig L the bark of L is defined to be the effective Q-divisor 
Bk (L) := i=i ^jD. > uniquely determined by the équations 

D.Bk(L) = D (K + D) = 
- 1 , i = l 
0, i = 2,...,k 

Let M l := (Dj Dj)y s i,..., ̂  be the intersection matrix of L , d(L) := 
= det ( — M L ) , L := [ D 2 D K ] and d(L) := d(L) . The rational number 

e(L) := 
d(L) 
d(L) 

is called the inductance of L [Fu 1, (3.5)] . 

A 5.14. Lemma [Fu 1, (6.16)] . (Bk (L) )2 = —e (L) . 

A 5.15. Lemma. 1) / / L = 7a'b , where a and b are relatively prime natural 

numbers9 then d(L) = a and d(L) = b' , where 0 < b' < a and 

bb' = —1 (mod a) , and so e(L) := — . 

2) 

ei 
sd 

7a.b 
xrd 

brd 
7 J v a,b/ 

= 1 -
1 

ab 

Proof. First we shall show that 2) is an easy conséquence of 1) . Indeed, in 
view of 1) , 2) is équivalent to the equality 

a' b' 
b T a 

= 1 -
1 

ab 
, or aa' + bb = ab — 1 
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Let t := ab — aa' — bb' . Then t = l(moda) and t = l(modb) by the 
définition of a' , b', and hence t = l(modab) since a and b are relatively 
prime. Thus, t = abs + 1 , where s E Z , s < 0 . If s * —1 , then t ^ 1 — 
— ab or 2ab * aa' + bb' . This contradicts to the inequalities aa' £ ab and 
bb' as ab . Therefore s = 0 , i.e. t = 1 and 2) follows. 

The proof of 1) consists of two steps. First of ail we make the following 
remarks. One can consider a cutting cycle procédure over a given normal 
intersection point zo of the curves co and ci in terms of dual graphs as a séquence 
of successive blowing ups of wedges of weighted linear graphs, such that at each 
step the corresponding graph has only one (—l)-vertex. The latter condition 
means that the next blowing up is always done at one of two wedges of the 
preceding graph, incidental to its unique (—l)-vertex. In fact, such a séquence 
can be arbitrary; for example, its starting steps could look like the following: 

C0 Cl 

- 1 

xs Ci bvr 

- 1 - 2 

dr 

At the same time this séquence is uniquely determined by the rational number 
£ , where a and b are defined by the conditions co* = bv + ... , ci* = av + 
... (here v is the last gluing (—l)-curve), and the resulting graph coincides with 
the graph 7 ^ (see A 1.9). 

Let L = 7'a,b = [Di Dr] and aj := —D? , a. > 2 , i = l,...,k . 
Dénote by [n1, n2 ,...] , where nj 2: 2 , the following continued fraction: 

v v •sd br 
1 

nl 1 
x+ nhd 

G (0:1) . 

Claim. [ a l 9 a 2 , a k ] = 
x 

A 

The proofofthe claim will be done by induction on the number n of blowing 
ups, i.e. the number of vertexes of the graph 7 ^ . For n = 2 the claim is 
evidently true. Let n > 2 . Assume first that ai > 2 . Then 7a,b is the resuit 
of blowing up of the graph 

- a , . . . - a 9 - a . + 1 - 1 

cd Dk D2 D1 D _ , D_2 .. D_m c , 
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at the wedge [Di , D_i] . Assume that before the last blowing up one has the 
following expansions: 

* 
c 

0 dd 

k 

i=—m 
i i 

P D and 
* 

c 
1 dd 

k 

i=—m 
i i 

By the inductive hypothesis we have: 

a — 1 , a , a 
1 2 kl 

p- ' i 
x0 1 

and a a 
2 ' ' k 

sdd 

x0d+ 
dd 

For the multiplicities b , a of the (-l)-vertex Do := v of the graph 7a>b in the 
divisors co*, ci* respectively we have: b = p_i + pi and a = q_i + qi . Set 

Po 
br 

d 
I 1 2 k 

where (po , qo) = 1 . To complète the induction we must show that a = qo and 
b = po , or equivalently, that po = p—i + pi and qo = q—i + qi . 

From the définitions of the above continued fractions it follows that 

x0 9d 

Pi 
= a — i 

d1s 

dr 
q - i 
P - i 

+ 1 

and therefore 

/ I F F F 
p = q = p , q = q = p , p = a p - q 

-1 1 O -1 O 0 1 1 0 0 

Hence the equality qo = q_i + qi holds. 
Rewrite the congruencies p.pi = —l(modq.) , i = —1,0,1 in the 

form: 

I 1 . , X 
x p = y q - 1 , 0 < x < q , 0 < y < p , i = 0 , 1 , - 1 . (*) 

Using the equalities above, the last two équations can be rewritten in the following 
form: 

a = i ) x fa D — a 
i V i o o > 

= y 1 P n - 1 
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(i = - 1 ) x p ' = y (q - p ' ) - 1 v ' - 1 0 - i V o o/ 

Let (xo, yo) be the least natural solution of the first équation. It is easily seen 
that the pairs 

(xi , yi) := (yo , aiy0 — xo) , (x_i , y_i) := (xo —y0 , yo) 

satisfy respectively the second and third équations. Since y0< Pq = 
qa =p_'1 we have x1<q1 and y_1<p_'1 . It follows that (xi , yi) , 
(x-i , y_i) are the least positive solutions of the above équations, and hence 
xo = Po > x i = yo = Pi a n d x ^ = x0 - y0 = p^. Therefore 
po = p—i + pi , and we are done. 

Consider further the case, when > 2 and hence 
a_i = n (see A 1.9) . In this case the graph 7 ^ has the following form: 

-ak " a n - l - 2 • - 2 - 1 - n 

C0 Dk D„-t D„-2 Dx D„ D_j D_2 dd 

Blowing down successively the vertexes Do , Di , D„_2 we get the 
following graph: 

~ak • " a n - l + 1 - 1 

co dr C0 Dk C0 Dk D -2 drd 

By the inductive hypothesis we have: 

P-'i 
«1-1 

a 
n- l 

- 1, a a 
n k 

Pi 
dr 

2 2.a 

n-3 
n- l 

dsg 

Let 

xcr 

dv 
br 2,...,2,a 

n-2 
n- l 

x+1 
k 
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As before, to prove our assertion it is enough to check that po = p_1 + pi (=b) 
and qp = q_i + qi (=a) . From the above developments one gets the following 
equalities: 

xg+ = ( n - l ) p - ( n - 2 ) q q - i 0 0 

p = 2 p - q , q = p 
1 o o 1 o 

As a conséquence, the equality qo = q_i + qi holds. Furthermore, the last two 
équations of (*) can be rewritten now as follows: 

(i = i ) (n-2)qx P = x q - 1 
/ o 1 0 

A = - i ) ( n - l ) x + y 
- i - i 

d 1d (n - 2)x + y 
- i - i 

x + 1 

If (xo , yo) is the least positive solution of the first équation of (*) , then it can 
be easily checked that the pairs 

(xi , yi) := (yo , 2y0 — XQ) , (x_i , y_i) := (XQ —y0 , (n - l)y0 — (n — 2)XQ) 

satisfy respectively the second and third équations. Hence x__i + xi = xo, i.e. 
P—i + Pi = Po . Q.E.D. 

Now we return to the proof of the equality e^7a'b) := ^- in 1) , or 
equivalently, of the equalities d(L) = a and d(L) = b' , where L = 7a'b (indeed, 
(d(L), d(L)) = 1 , see [Fu 1, (3.6)]). By the Euclidean algorithm, from the 

b* 
equality — = \SL1 , a2 , a k ] , which just has been proved, one gets: 

a = a1b/ — r1 

b = a 2 r i ~ r 2 

rk-2 - akrk-i 

or 

l - a — — î-
1 - al a a 

0 = - T + ^ ï - ? 

u - a +ak a 

Hère _ i = 1 and 0 < r| < rj _ \ , i = 1, k — 1 . Rewrite this System 
as the équation Ax = ë , where A := —Mr , ë := (1,0, ...,0) and 

x0 := V ri rk-l> 
a > a ' ***' a . By Cramer's rule we have: a — d(L)' 

a — d(L)' Q.E.D. 
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Remark. In [Za 1] another proof of Lemma A 5,15 is given. 

A 5.16. Theorem (see [Fu 1, (6.20) — (6.24)]) . Let X = V \ D , where D 
is a rational tree in a nonsingular projective surface V . Assume that X is affine, 
k(X) > 0 , the dual graph Y\Y has at least two branching points and that there 
is no —1-cwrve EinV, such that E £ D , ED = 1 = EL0 for some twig Lo 
o/D . Then N := (K + D)~" = Bk(D), where Bk(D) := EL Bk(L) and the sum 
is taken over ail twigs of D . 

A 5.17. Lemma. Let X = XT or X = XQ , where Xe QK C2 . Let (V, D) 
fte the minimal SNC-completion ofX . Then the assumptions of Theorem A 5.12 
are fulfilled and hence N = Bk(D) , 

Prao/ Since X ç£ C2 by the Theorem of Miyanishi — Sugie — Fujita A 
5.1, we have that k(X) > 0 . By Fujita's Lemma A 1.2, X is affine. In view 
of Lemmas A 3.2 and A 3.4 it is easily seen that the dual graph TJY has at least 
two branching points. 

Assume that for X = Xx , (V, D) = (Vx, Dx) there exists a (-l)-curve E 
(JL DT such that E»DT = E«(supp Bk(DT)) = 1 . Then E«(eo' + ei') = 0 , — 
indeed, the branching points e</ , ei' of TD do not belong to supp Bk(Dx) . 
Since the morphism TTJ : Vx —»• Q (the inverse to the cutting cycles procédure) is 
an isomorphism in a neighborhood of the curve U e^ (see A 3.1), we have: 
7rx(E) • (e<> + ei) = 0 . This means that 7rx(E) is a point in Q and therefore 
E should coincide with one of the curves vy , i, j = 0, 1 . Thus E#Dx = 2 , 
— a contradiction. 

The proof in the case, when X = X# , where X# ç£ C 2 , is based on a more 
detailed analysis (see [Za 1, (5.1.13)]) and will be ommited here. Q.E.D. 

A 5.18. Theorem. Let T be an unimodular matrix as in A 3.1, such that 
my > 1 , ny > 1 for ail i, j = 0, 1. Then the surface Xj is ofhyperbolic type. 

Proof Underour assumptions the graphs 7 m ' ? 7™ "„ (ï,j = 0, 1) 
are non-empty and coincide with twigs of the graph Tj (see A 3.2) . From Lem
mas A 5.14 , A 5.15 and A 5.17 it follows, that 

N 2 = B k ( D T 
2d 

' ij = 0,l 
Bk 7 

m „ , n y 

i 2 
+ 
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+ ' ij = 0,l 
Bk 7 

^ M « ' N U 

2 
br 

-' ij =0,1 
1 

M « N U 
- 4 < - 2 

(indeed, mjj njj a 6 since mi, j , iij, j are relatively prime and greater than 1 ). 
Now the assertion follows from Corollary A 5.12 . Q.E.D. 

More careful analysis leads to the following conclusion. 

A 5.19. Theorem ([Za 1, (5.12)] ; [Za2]) . 
a) k ( X T ) = 1 iff * either ma - na = 1 , i = 0,1, or my = ny = 1 , i = 

0 ,1 , j = 1 — i . In other cases k ( X T ) = 2 . 
b ) k ( X ( 9 ) < l # f 0 = ( l , T ) and the matrix T has a row, which is equal 

to (1, 1) , (1, 2) or (2, 1) . 

Theorem A 5.6 follows from Theorem A 5.18, Lemmas A 3.2 , A 3.4 and 
Remark A 2.5 . 
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