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Abstract

In this paper, we study backward stochastic Volterra integral equations introduced
in [36] and extend the existence, uniqueness or comparison results for general filtration
(not only Brownian-Poisson setting) and Lp-data with p < 2. Moreover the time
regularity of the solution is explored, which is also new in this jump setting.
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Introduction

In this paper, we deal with a backward stochastic Volterra integral equations (BSVIE in
short) of the following type1:

Y (t) = Φ(t) +

∫ T

t
f(t, s, Y (s), Z(t, s), Z(s, t), U(t, s), U(s, t))ds−

∫ T

t
Z(t, s)dWs

−
∫ T

t

∫
E
U(t, s, e)π̃(de, ds)−

∫ T

t
dM(t, s). (1)

The unknown processes, called an adapted solution, are the quadruplet (Y, Z, U,M) valued
in Rd+(d×k)+d+d such that Y (·) is F-adapted and (Z(t, ·), U(t, ·),M(t, ·)) are F-progressively
measurable for almost all t ∈ [0, T ]. f is called the generator or the driver of the BSVIE
and Φ is the free term (or sometimes the terminal condition).
∗e-mail: Alexandre.Popier@univ-lemans.fr.
1In the whole paper, dM(t, s) is the integration w.r.t. the second time parameter s where t is fixed. In

particular
∫ v
u
dM(t, s) = M(t, v)−M(t, u) is the increment of M(t, ·) between the time u and v.
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A particular case of the preceding BSVIE is:

Y (t) = ξ +

∫ T

t
f(s, Y (s), Z(s), U(s))ds−

∫ T

t
Z(s)dWs

−
∫ T

t

∫
E
U(s, e)π̃(de, ds)− (M(T )−M(t)). (2)

This equation is a backward stochastic differential equation (BSDE for short) and since the
seminal paper [24], it has been intensively studied (see among many others [8, 10, 26, 32]).
Since we are interesting here by Lp-solution for BSVIE, let us mention also [6, 16, 18] which
deal with Lp-solution for BSDE in a general filtration.

The goal of this paper is to generalize or to adapt some results concerning BSVIEs. To
our best knowledge, [20, 36, 37] were the first papers dealing with BSVIEs and the authors
considered the following class of BSVIEs:

Y (t) = Φ(t) +

∫ T

t
f(t, s, Y (s), Z(t, s), Z(s, t))ds−

∫ T

t
Z(t, s)dWs. (3)

They proved existence and uniqueness of the solution (Y, Z) (M-solution in [37]) under the
natural Lipschitz continuity regularity of f and square integrability condition on the data.
The extension to Lp-solution (1 < p < 2) has been done in [33]. In these four papers, the
filtration is generated by the Brownian motion W . In [35], the authors introduced the jump
component π̃. In the filtration generated by W and π̃, they consider:

Y (t) = Φ(t) +

∫ T

t
f(t, s, Y (s), Z(t, s), U(t, s))ds

−
∫ T

t
Z(t, s)dWs −

∫ T

t

∫
E
U(t, s, e)π̃(de, ds)

and prove existence and uniqueness of the solution in the L2 setting. The result has been
extended in [23, 30] (see also [21] for the Lévy case).

Another real issue for BSVIE concerns the comparison principle. In the BSDE theory,
comparison principle holds under quite general conditions (see e.g. [16, 18, 26]). Roughly
speaking, the comparison result is proved by a linearization procedure and by an explicit
form for the solution of a linear BSDE. For BSVIE, these arguments fail and comparison
is a difficult problem. The paper [34] is the most relevant paper on this topic. It provides
comparison results and gives several counter-examples where comparison principle fails.

Our initial motivation comes from the existence of a solution for a singular BSDE (see
[17, 27]). A key ingredient to overcome the singularity is an a priori estimate. If the
generator is bounded from above by a polynomial function of y, this a priori estimate is
obtained using classical results concerning BSDEs (or some particular control as in [1]). In
our forthcoming paper we want to remove this polynomial growth assumption on f . In
general the a priori estimate on the solution takes the following form:

∀t ∈ [0, T ), Y(t) =
1

T − t
E
[∫ T

t
Γ

(
T − t
ηs

)
ds

∣∣∣∣Ft] .
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Formally Y is the first component of the BSVIE: for 0 ≤ t ≤ τ < T

Y(t) = Φ(t) +

∫ τ

t

(
− 1

T − s
Y(s) + γ(t, s) + g(s, Z(t, s), U(t, s))

)
ds

−
∫ τ

t
Ẑ(t, s)dWs −

∫ τ

t

∫
E
Û(t, s, e)π̃(de, ds)−

∫ τ

t
dM̂(t, s).

To get the desired a priori estimate, we need some new existence and comparison results
on BSVIEs. This will be a new application for BSVIEs (see the previous papers for other
applications of BSVIEs).

Main contributions

Let us outline the main contributions of our paper compared to the existing literature. First
of all our paper generalizes the preceding results (of course only some of them) since we
allow for a more general filtration. This is the reason of the presence of the additional
martingale term M in (1).

Moreover we provide existence and uniqueness of M-solutions in L2-space of (1). We
also extend this result to Lp-spaces, p > 1 for BSVIE of the form

Y (t) = Φ(t) +

∫ T

t
f(t, s, Y (s), Z(t, s), U(t, s))ds−

∫ T

t
Z(t, s)dWs

−
∫ T

t

∫
E
U(t, s, e)π̃(de, ds)−

∫ T

t
dM(t, s). (4)

The reason why we do not consider the full generality here, is due the lack of symmetry for
(t, s) 7→ Z(t, s) when p 6= 2. Indeed since Z is integrated w.r.t. the Brownian motion W ,
the natural norm on Z is

E
∫ T

0

[(∫ T

0
|Z(t, s)|2ds

) p
2

]
dt < +∞,

which is symmetric w.r.t. (t, s) only for p = 2. Let us also mention that in the case where
the generator depends on the stochastic integrand w.r.t. a Poisson random measure, the
case when p < 2 has to be handled carefully. Indeed in this case Burkholder-Davis-Gundy
inequality with p/2 < 1 does not apply and the Lp/2-norm of the predictable projection
cannot be controlled by the Lp/2-norm of the quadratic variation (see [19] and the discussion
in [18]). To the best of our knowledge, there is no existence and uniqueness result for BSVIEs
with Lp coefficients in a general filtration.

Another contribution is the study of the regularity of the map t 7→ Y (t). For the
solution of the BSDE (2), from the càdlàg regularity of all martingales, Y inherits the same
time regularity. For BSVIE, we only require that the paths of Y are in L2(0, T ). Essentially
because we assume that Φ and t 7→ f(t, . . .) are also only in L2(0, T ). In [37], it is proved that
under weak regularity conditions on the data, then the solution of (3) t 7→ Y (t) is continuous
from [0, T ] to L2(Ω). Let us stress that the Malliavin calculus is used to control the Z(s, t)

term in the generator. Similarly we show that the paths t ∈ [0, T ] 7→ Y (t) ∈ Lp(Ω) of the
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solution of the BSVIE (4) are càdlàg if roughly speaking Φ and t 7→ f(t, . . .) satisfy the
same property.

However this first property does not give a.s. continuity of the paths of Y in general.
Getting an almost sure continuity is a more challenging issue and is proved in [35] for the
BSVIE (3) when f does not depend on Z(s, t), assuming a Hölder continuity property of
t 7→ f(t, . . .) for a constant Φ(t) = ξ. To understand the difficulty, let us recall that if f does
not depend on y, the solution Y of the BSVIE (4) is obtained by the formula: Y (t) = λ(t, t)

where λ(t, ·) is the solution of the related BSDE parametrized by t. In the Brownian setting,
a.s. s 7→ λ(t, s) is continuous. Using the Kolmogorov continuity criterion, the authors show
that (t, s) 7→ λ(t, s) is bi-continuous, which leads to a continuous version of Y . Our goal
is to extend this point and to obtain that a.s. the paths of Y are càdlàg if we know the
regularity of Φ and f w.r.t. t. To our best knowledge, there is not equivalent result to
the Kolmogorov criterion for càdlàg paths. Hence we assume that the free term Φ and the
generator f are Hölder continuous. Thus we sketch the arguments of [35] to obtain the
desired result. To summarize, we are only able to prove that Y is a.s. càdlàg if the data
are Hölder continuous, meaning that the jumps only come from the martingale parts in the
BSVIE. Relaxing the regularity of the data is still an open question.

Finally we study two classical properties concerning BSVIE. The duality principle holds
in our setting provided we know that the solution X of the forward SVIE is itself càdlàg (see
[28]). Note the importance of the time regularity here. In the BSDE theory, comparison
principle holds under quite general conditions (see e.g. [8, 16, 18, 26]). Roughly speaking,
the comparison result is proved by a linearization procedure and by an explicit form for the
solution of a linear BSDE. For BSVIE, these arguments fail and comparison is a difficult
issue. The paper [34] is the most relevant paper on this topic. It provides comparison results
and gives several counter-examples where comparison principle fails. The comparison results
of [34] can be extended to our setting. Of course all their counter-examples are still valid
in our case; thereby we do not have intrinsically better results. Somehow we show that the
additional martingale terms do not destroy the comparison result.

We point out that all results proved in this paper are used in the study of singular
BSDEs with general generator.

Decomposition of the paper

The paper is decomposed as follows. In the first section, we give the mathematical setting.
In the second part, we prove existence and uniqueness of the M-solution of the BSVIE (1).
The proof follows exactly the scheme of [37, Section 3] with the required modifications due
to U and M . Even if we present all results in a self-contained way, some details are skipped
here. The third section is devoted to the time regularity of the solution. In the last section,
we show that the duality principle and some comparison results of [34] can be quite easily
extended to our setting. We also provide a half-explicit formula for linear w.r.t. Z and U
BSVIEs.
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1 Setting and notations

Along this paper, we consider a filtered probability space (Ω,F ,P,F = (Ft)t≥0). The
filtration F is supposed to be complete and right continuous. Without loss of generality we
suppose that all semimartingales are càdlàg2, that is they have a.s. right continuous paths
with left limits. This probability space supports a k-dimensional Brownian motionW and a
compensated Poisson random measure π̃. More precisely there is a Poisson random measure
π with intensity µ(de)dt on the space E ⊂ Rm \ {0}. The measure µ is σ-finite on E such
that ∫

E
(1 ∧ |e|2)µ(de) < +∞.

The compensated Poisson random measure π̃(de, dt) = π(de, dt) − µ(de)dt is a martingale
w.r.t. the filtration F.

Remark 1 All results obtained in this paper can be generalized to the case where the com-
pensator of π is random and equivalent to the measure µ ⊗ dt with a bounded density for
example (see the introduction of [2] for example). Nevertheless since we refer to [16, 18] for
the existence and uniqueness of the solution of BSDE, we keep this setting for π.

On Rd, |.| denotes the Euclidean norm and Rd×k is identified with the space of real
matrices with d rows and k columns. If z ∈ Rd×k, we have |z|2 = Trace(zz∗). For any
metric space G, B(G) is the Borel σ-field.

Let us first recall some standard notations.

• If M is a Rd-valued F-martingale inM, the bracket process [M ]t is

[M ]t =

d∑
i=1

[M i]t,

where M i is the i-th component of the vector M . For s ≤ t, [M ]s,t denotes the
difference [M ]t − [M ]s.

• P is the predictable σ-field on Ω× [0, T ] and P̃ = P ⊗ B(E). On Ω̃ = Ω× [0, T ]× E ,
a function that is P̃-measurable, is called predictable.

• Gloc(µ) is the set of predictable functions ψ on Ω̃ such that for any t ≥ 0 a.s.∫ t

0

∫
E
(|ψs(e)|2 ∧ |ψs(e)|)µ(de) < +∞.

• Mloc: the set of càdlàg local martingales orthogonal to W and π̃. If M ∈Mloc then

[M,W i]t = 0, 1 ≤ i ≤ k [M, π̃(A, .)]t = 0

for all A ∈ B(E). In other words, E(∆M ∗ π|P̃) = 0, where the product ∗ denotes the
integral process (see II.1.5 in [12]).

M is the subspace ofMloc of martingales.
2French acronym for right continuous with left limit
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• Dp(0, T ) is the space of all F-adapted càdlàg processesX such that E
(

supt∈[0,T ] |Xt|p
)
<

+∞.

• Hp(0, T ) is the subspace of all predictable processesX such that E
[(∫ T

0 |Xt|2dt
)p/2]

<

+∞.

• Mp(0, T ) is the space of all martingales such that E
[
([M ]T )p/2

]
< +∞. The space

Mp(0, T ) ∩M is denoted by Mp,⊥(0, T ).

• Lpπ(0, T ) = Lpπ(Ω× [0, T ]× E) is the set of processes ψ ∈ Gloc(µ) such that

E

[(∫ T

0

∫
E
|ψs(e)|2π(de, ds)

)p/2]
< +∞.

• Lpµ = Lp(E , µ;Rd) is the set of measurable functions ψ : E → Rd such that ‖ψ‖pLpµ =∫
E |ψ(e)|pµ(de) < +∞.

• Sp(0, T ) = Dp(0, T )×Hp(0, T )× Lpπ(0, T )×Mp,⊥(0, T ).

The next result is proved in [18].

Proposition 1 Assume that

• For any (y, z, ψ), f(·, y, z, ψ) is progressively measurable.

• Uniform Lipschitz regularity: there exists a constant K such that for any ω, t and y,
y′ in Rd, for any z, z′ in Rd×k and ψ, ψ′ in L1

µ + L2
µ (this space is defined below)

|f(ω, t, y, z, ψ)− f(ω, t, y′, z′, ψ′)| ≤ K
(
|y − y′|+ |z − z′|+ ‖ψ − ψ′‖L1

µ+L2
µ

)
.

If

E
(
|ξ|p +

∫ T

0
|f(t, 0, 0, 0)|pdt

)
< +∞,

there exists a unique solution (Y,Z, U,M) in Sp(0, T ) to the BSDE (2). Moreover for some
constant C = Cp,K,T

E

[
sup
t∈[0,T ]

|Yt|p +

(∫ T

0
|Zt|2dt

)p/2
+

(∫ T

0

∫
E
|Us(e)|2π(de, ds)

)p/2
+ ([M ]T )p/2

]

≤ CE

[
|ξ|p +

(∫ T

0
|f(r, 0, 0, 0)|dr

)p]
.

Concerning BSVIE, we take the same notations as in [37] and thus we skip some details
(see [37, Section 2.1] for interesting readers). For 0 ≤ R ≤ S ≤ T we denote

∆[R,S] = {(t, s) ∈ [R,S]2, R ≤ s ≤ t ≤ S},
∆c[R,S] = {(t, s) ∈ [R,S]2, R ≤ t < s ≤ S} = [R,S]2 \∆[R,S].
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In R = 0 and S = T , we simply write: ∆ = ∆[0, T ] and ∆c = ∆c[0, T ]. For any p, q in
[0,+∞), H = Rd or Rd×k, and S ∈ [0, T ],

LpFS (Ω) = {ξ : Ω→ H, ξ is FS −measurable, E(|ξ|p) < +∞},

LpFS (Ω;Lq(0, T )) =

{
φ : (0, T )× Ω→ H, B([0, T ])⊗FS −measurable with

E
(∫ T

0
|φ(t)|qdt

) p
q

< +∞

}
,

LqFS (0, T ;LpFS (Ω)) =

{
φ : (0, T )× Ω→ H, B([0, T ])⊗FS −measurable with∫ T

0
(E|φ(t)|pdt)

q
p < +∞

}
,

We identity
LpFS (Ω;Lp(0, T )) = LpFS (0, T ;LpFS (Ω)) = LpFS (0, T ).

The cases where p or q are equal to ∞ can be defined in a similar way. When adaptiveness
is required, we replace the subscript FS by F. The above spaces are for the free term Φ(·)
(for which the F-adaptiveness is not required) and for Y (·) (for which F-adaptiveness is
required). Sometimes we also use the subscript P if we require predictability.

To control the martingale terms in the BSVIE, we need other spaces. We define for any
p, q ≥ 1

Lq(S, T ;Mp(S, T ))

the set of processes M(·, ·) such that for almost all t ∈ [0, T ], M(t, ·) belongs to Mp(S, T )

and ∫ T

S

[
E ([M(t, ·)]S,T )

p
2

] q
p
dt < +∞.

In the particular case whereM(t, ·) =
∫ ·
S Z(t, s)dWs, thenM ∈ Lq(S, T ;Mp(S, T )) is equiv-

alent to
Z ∈ Lq(S, T ;LpP(Ω;L2(S, T ))) = Lq(S, T ;Hp(S, T )),

that is Z belongs to the set of all processes Z : [S, T ]2 × Ω → Rk such that for almost all
t ∈ [S, T ], Z(t, ·) ∈ Hp(S, T ) = LpP(Ω;L2(S, T )) satisfying

∫ T

S

[
E
(∫ T

S
|Z(t, s)|2ds

) p
2

] q
p

dt < +∞.

Let us also consider the case:

N(t, s) =

∫ s

S

∫
E
ψ(t, u, e)π̃(de, du), t ≥ S, s ≥ S,

where ψ(t, ·, ·) ∈ Gloc(µ). It follows that the compensator is given by

[N(t, ·)]S,s =

∫ s

S

∫
E
|ψ(t, u, e)|2π(de, du).
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Thus N ∈ Lq(S, T ;Mp(S, T )) if and only if

ψ ∈ Lq(S, T ;Lpπ(S, T )),

namely ψ is in the set of all processes ψ : [S, T ]2×E → H such that for almost all t ∈ [S, T ],
ψ(t, ·, ·) ∈ Lpπ(S, T ) verifying

∫ T

S

[
E
(∫ T

S

∫
E
|ψ(t, s, e)|2π(de, ds)

) p
2

] q
p

dt < +∞.

Sometimes to lighten the notations, we define the martingale

M](t, u) =

∫ u

0
Z(t, s)dWs +

∫ u

0

∫
E
U(t, s, e)π̃(de, ds) +M(t, u)

on [S, T ]× [S, T ], such that the BSVIE (1) becomes

Y (t) = Φ(t) +

∫ T

t
f(t, s, Y (s), Z(t, s), Z(s, t), U(t, s), U(s, t))ds−

(
M](t, T )−M](t, t)

)
.

Note that due to the orthogonality of the components of M], for any p > 1, there exist two
universal constants cp and Cp such that

cpE

[(∫ T

S
|Z(t, s)|2ds

) p
2

+

(∫ T

S

∫
E
|U(t, s, e)|2π(de, ds)

) p
2

+
(

[M(t, ·)]S,T
) p

2

]

≤ E

[([
M](t, ·)

]
S,T

) p
2

]

≤ CpE

[(∫ T

S
|Z(t, s)|2ds

) p
2

+

(∫ T

S

∫
E
|U(t, s, e)|2π(de, ds)

) p
2

+
(

[M(t, ·)]S,T
) p

2

]
.

And M] belongs to Lq(S, T ;Mp(S, T )) if and only if the triplet (Z,U,M) is in Lq(0, T ;Hp(0, T ))×
Lq(0, T ;Lpπ(0, T ))× Lq(0, T ;Mp,⊥(0, T )).

Finally we define

Mp(0, T ) = Lp(0, T ;Hp(0, T ))× Lp(0, T ;Lpπ(0, T ))× Lp(0, T ;Mp,⊥(0, T ))

Hp(0, T ) = LpF(0, T )× Lp(0, T ;Hp(0, T ))× Lp(0, T ;Lpπ(0, T ))× Lp(0, T ;Mp,⊥(0, T ))

= LpF(0, T )×Mp(S, T ).

with the naturally induced norm.
The notion of solution of a BSVIE is the following.

Definition 1 (Adapted solution) A quadruple (Y,Z, U,M) ∈ Hp(0, T ) is called an adapted
solution of the BSVIE (1) if the equation is satisfied a.s. for almost all t ∈ [0, T ].

As it pointed out in [37], uniqueness of an adapted solution fails. Roughly speaking, there
is a additional freedom on ∆. To avoid this problem, the next definition is formulated in
[37].

8



Definition 2 (M-solution) Let S ∈ [0, T ). A quadruple (Y,Z, U,M) ∈ H1(S, T ) is called
an adapted M-solution of (1) on [S, T ] if (1) holds in the usual Itô sense for almost all
t ∈ [S, T ] and, in addition, the following holds: for a.e. t ∈ [S, T ]

Y (t) = E [Y (t)|FS ] +

∫ t

S
Z(t, s)dWs +

∫ t

S

∫
E
U(t, s, e)π̃(de, ds) +

∫ t

S
dM(t, s). (5)

Note that we keep the notion of M-solution of [37], where the letter M stands for “a martin-
gale representation” for Y (t) to determine Z(·, ·), U(·, ·) and M(·, ·) on ∆[S, T ]. It should
not be confused with the orthogonal martingale part M .

As in [37], any M-solution on [S, T ] is also a M-solution on [S̄, T ] with S̄ ∈ (S, T ).
Moreover if (Y,Z, U,M) is a solution of the BSDE (2) in Sp(0, T ), then by the martingale
representation ([12, Lemma III.4.24]), we have

Y (t) = E(Y (t)) +

∫ t

0
ζ(t, s)dWs +

∫ t

0

∫
E
υ(t, s, e)π̃(de, ds) +m(t, s),

where (ζ, υ,m) ∈ Lp(0, T ;L2
F(0, T )) × Lp(0, T ;L2

π(0, T )) × Lp(0, T ;M2,⊥(0, T )). Thus we
define

(Z(t, s), U(t, s, e),M(t, s)) =

{
(ζ(t, s), υ(t, s, e),m(t, s)), (t, s) ∈ ∆

(Z(s), U(s),M(s)), (t, s) ∈ ∆c

and we get that (Y,Z, U,M) is an adapted M-solution of the BSVIE (2) on [0, T ], and in
fact it is the unique solution (see Theorem 2)

To complete this presentation, let us recall some facts concerning the Poisson integral.
From the Burkholder-Davis-Gundy inequality (see [29, Theorem 48]), for all p ∈ [1,∞)

there exist two universal constants cp and Cp (not depending on M) such that for any
càdlàg F-martingale M(·) and for any T ≥ 0

cpE
(

[M ]
p/2
T

)
≤ E

[(
sup
t∈[0,T ]

|M(t)|

)p]
≤ CpE

(
[M ]

p/2
T

)
. (6)

In particular (6) means that the Poisson martingale N is well-defined on [0, T ] (see Chapter
II in [11]) provided we can control the expectation of [N ]

p/2
T for some p ≥ 1.

From the Bichteler-Jacod inequality (see for example [22]), we distinguish the two cases:
p ≥ 2 and p < 2.

• Assume that p ≥ 2. If E([N ]
p/2
T ) < +∞, then P ⊗ Leb-a.s. on Ω × [0, T ], ψ(t, ·) is in

L2
µ. Hence the generator of our BSVIE can be defined on L2

µ.

• But if p < 2, P⊗Leb-a.s. on Ω× [0, T ], ψ(t, ·) is in Lpµ +L2
µ if again E([N ]

p/2
T ) < +∞.

Moreover ψt is also in L1
µ + L2

µ. Thereby for p < 2, our generator is be defined on
L1
µ + L2

µ (for the definition of the sum of two Banach spaces, see for example [15]).

See [18, Section 1] for details on this point. In particular for any ψ ∈ Gloc(µ) and N defined
by

Nt =

∫ t

0

∫
U
ψs(u)π̃(du, ds), t ≥ 0,

9



if p ≥ 2, there exist two universal constants κp and Kp such that

κp

[
E
(

[N ]
p/2
T

)]
≤ E

(∫ T

0
‖ψt‖2L2

µ
dt

)p/2
≤ Kp

[
E
(

[N ]
p/2
T

)]
. (7)

But if 1 < p < 2, we only have the existence of a universal constant Kp,T such that

E
[∫ T

0
‖ψs‖pLpµ+L2

µ
ds

]
≤ Kp,TE

(
[N ]

p/2
T

)
. (8)

And it holds that Lpµ + L2
µ ⊂ L1

µ + L2
µ.

2 Existence and uniqueness of an adapted M-solution.

Let us precise the assumptions on the generator f of the BSVIE (1). We suppose that f is
defined on Ω×∆c×Rd×(1+2k)×(L1

µ+L2
µ)2 and we assume that for any fixed (t, y, z, ζ, u, ν) the

process f(t, ·, y, z, ζ, u, ν) is progressively measurable. Moreover the next condition holds:

(H1) There exists a constant K such that for any (ω, t, s), (y, ȳ), (z, z̄), (ζ, ζ̄), (u, ū), (ν, ν̄)

we have

|f(ω, t, s, y, z, ζ, u, ν)− f(ω, t, s, ȳ, z̄, ζ̄, ū, ν̄)

≤ K(|y − ȳ|+ |z − z̄|+ |ζ − ζ̄|+ ‖u− ū‖L1
µ+L2

µ
+ ‖ν − ν̄‖L1

µ+L2
µ
).

To simplify the notation in the sequel

f0(t, s) = f(t, s, 0, 0, 0, 0, 0).

Our result can be extended to non Lipschitz-continuous w.r.t. y driver f as in [35] (using
a concave function ρ) or if K becomes a function of (ω, t, s) with a suitable integrability
condition (see [37] Condition (3.13)), since the arguments remain almost the same.

Let us emphasize that we do not require any regularity of the paths t 7→ Y (t), which are
a priori not continuous nor càdlàg. The component Y is only supposed to be in LpF(0, T ).

2.1 Preliminary results

First we consider for any R and S in [0, T ) a driver h : Ω×[S, T ]×[R, T ]×Rd×k×(L1
µ+L2

µ)→
Rd such that (H1) holds and for some p > 1

E
∫ T

S

(∫ T

R
|h(t, s, 0, 0)|ds

)p
dt < +∞. (9)

Then let us define the BSDE on [R, T ] parameterized by t ∈ [S, T ]:

λ(t, r) = Φ(t) +

∫ T

r
h(t, s, z(t, s), u(t, s))ds−

∫ T

r
z(t, s)dWs

−
∫ T

r

∫
E
u(t, s, e)π̃(de, ds)−

∫ T

r
dm(t, s), (10)

10



where t ∈ [S, T ] and r ∈ [R, T ]. From Proposition 1, for any Φ(·) ∈ LpFT (S, T ) the previous
BSDE has a unique solution (λ(t, ·), z(t, ·), u(t, ·),m(t, ·)) in Sp(R, T ) and for a.e. t ∈ [S, T ]

E

[
sup

r∈[R,T ]
|λ(t, r)|p +

(∫ T

R
|z(t, r)|2dr

)p/2
+ ([m(t, ·)]R,T )p/2

+

(∫ T

R

∫
E
|u(t, r, e)|2π(de, dr)

)p/2]
≤ CE

[
|Φ(t)|p +

(∫ T

R
|h(t, r, 0, 0)|dr

)p]
.(11)

Moreover we have a stability result for BSDEs ([16, Lemma 5 and proof of Proposition 2] for
p ≥ 2, [18, Proposition 3]). Let (Φ̄, h̄) be a couple of data each satisfying the above assump-
tion (H1) and the required integrability conditions on the data. Let (λ̄(t, ·), z̄(t, ·), ū(t, ·), m̄(t, ·))
the solution of the BSDE (10) with data (Φ̄, h̄). Define

(λ̂(t, ·), ẑ(t, ·), û(t, ·), m̂(t, ·)) = (λ(t, ·)−λ̄(t, ·), z(t, ·)−z̄(t, ·), u(t, ·)−ū(t, ·),m(t, ·)−m̄(t, ·)).

Then there exists a constant C depending on p, K and T , such that

E

[
sup

r∈[R,T ]
|λ̂(t, r)|p +

(∫ T

R
|ẑ(t, r)|2dr

)p/2
+ ([m̂(t, ·)]R,T )p/2

+

(∫ T

R

∫
E
|û(t, r, e)|2π(de, dr)

)p/2]
(12)

≤ CE

[
|Φ(t)− Φ̄(t)|p +

(∫ T

R
|h(t, r, z(t, r), u(t, r))− h̄(t, r, z(t, r), u(t, r))|dr

)p]
.

Let us derive two consequences, one for stochastic Fredholm integral equation (SFIE in
abbreviated form) and one for a particular BSVIE.

Indeed let us fix r = S ∈ [R, T ) and define for t ∈ [R,S] and s ∈ [S, T ]:

ψS(t) = λ(t, S), Z(t, s) = z(t, s), U(t, s) = u(t, s), M(t, s) = m(t, s).

Then Equation (10) becomes a SFIE: for t ∈ [R,S]

ψS(t) = Φ(t) +

∫ T

S
h(t, s, Z(t, s), U(t, s))ds−

∫ T

S
Z(t, s)dWs

−
∫ T

S

∫
E
U(t, s, e)π̃(de, ds)−

∫ T

S
dM(t, s). (13)

Lemma 1 If (9) holds and if Φ ∈ LpFT (S, T ), then the SFIE (13) has a unique solution
such that ψS belongs to LpFS (R,S) and

(Z,U,M) ∈ ×Lp(R,S;H2(S, T ))× Lp(R,S;L2
π(S, T ))× Lp(R,S;M2,⊥(S, T ))

and for t ∈ [R,S]

E

[
|ψS(t)|p +

(∫ T

S
|Z(t, r)|2dr

)p/2
+ ([M(t, ·)]S,T )p/2

+

(∫ T

S

∫
E
|U(t, r, e)|2π(de, dr)

)p/2]
≤ CE

[
|Φ(t)|p +

(∫ T

S
|h(t, r, 0, 0)|dr

)p]
.(14)

11



Note that here ψS(t) is only required to be FS-measurable for almost all t and not F-adapted.
Again let us consider (10), but fix R = S and define Y (t) = λ(t, t), t ∈ [S, T ], Z(t, s) =

z(t, s), U(t, s, e) = u(t, s, e), M(t, s) = m(t, s) for (t, s) ∈ ∆c[S, T ]. Equation (10) becomes

Y (t) = Φ(t) +

∫ T

t
h(t, s, Z(t, s), U(t, s))ds−

∫ T

t
Z(t, s)dWs

−
∫ T

t

∫
E
U(t, s, e)π̃(de, ds)−

∫ T

t
dM(t, s), (15)

which a special case of (1) where h does not depend on y, ζ and ν. We can define Z, U and
M on ∆[S, T ] by the martingale representation:

Y (t) = E [Y (t)|FS ] +

∫ t

S
Z(t, s)dWs +

∫ t

S

∫
E
U(t, s, e)π̃(de, ds) +

∫ t

S
dM(t, s).

Let us stress that z(t, s), Z(t, s), u(t, s), U(t, s), m(t, s) and M(t, s) might be different for
(t, s) ∈ ∆[S, T ]. We obtain immediately the next result.

Lemma 2 If (9) holds and if Φ ∈ LpFT (S, T ), then the BSVIE (15) has a unique adapted
M-solution in Hp(S, T ) and for t ∈ [S, T ]:

E

[
|Y (t)|p +

(∫ T

S
|Z(t, r)|2dr

)p/2
+ ([M(t, ·)]S,T )p/2

+

(∫ T

S

∫
E
|U(t, r, e)|2π(de, dr)

)p/2]
≤ CE

[
|Φ(t)|p +

(∫ T

S
|h(t, r, 0, 0)|dr

)p]
.(16)

Moreover we have a stability result for this BSVIE. Let (Φ̄, h̄) be a couple of data each sat-
isfying the above assumption (H1) and the same integrability conditions. Let (Ȳ , Z̄, Ū , M̄)

the solution of the BSVIE (15) with data (Φ̄, h̄). Define

(Ŷ , Ẑ, Ŷ , M̂) = (Y − Ȳ , Z − Z̄, U − Ū ,M − M̄).

Then there exists a constant C depending on p, K and T , such that for t ∈ [S, T ]

E

[
|Ŷ (t)|p +

(∫ T

S
|Ẑ(t, r)|2dr

)p/2
+
(

[M̂(t, ·)]S,T
)p/2

+

(∫ T

S

∫
E
|Û(t, r, e)|2π(de, dr)

)p/2]
≤ CE

[
|Φ(t)− Φ̄(t)|p

+

(∫ T

S
|h(t, r, Z(t, r), U(t, r))− h̄(t, r, Z(t, r), U(t, r))|dr

)p]
. (17)

In the rest of this section, we distinguish the particular case p = 2. The reason can be
understood just by considering the term Z. Indeed if Z ∈ Lp(0, T ;Hp(0, T )) then

E
∫ T

0

[∫ T

0
|Z(t, r)|2dr

] p
2

dt < +∞.

12



The two time variables t and r don’t play the same role and the integrability property is not
the same w.r.t. t or w.r.t. r, except if p = 2. Thereby in the BSVIE (1), we can use both
Z(t, s) and Z(s, t) if p = 2. For p 6= 2, we will assume that f does not depend on Z(s, t) nor
on U(s, t). The extension to the general case seems difficult to prove and is left for further
research. We also point out that p ≥ 2 implies that Lp(S, T ;Hp(R, T )) ⊂ L2(S, T ;H2(R, T ))

and Lp(S, T ;Lpπ(R, T )) ⊂ L2(S, T ;L2
π(R, T )):

E
∫ T

S

(∫ T

R
|Z(t, r)|2dr

)
dt ≤ C

(
E
∫ T

S

[(∫ T

R
|Z(t, r)|2dr

) p
2

]
dt

) 2
p

and

E
∫ T

S
‖U(t, ·)|2L2

π(R,T ) dt ≤ C
[
E
∫ T

S

(
‖U(t, ·)|2L2

π(R,T )

) p
2
dt

] 2
p

.

For 1 < p < 2, this property fails.

2.2 The case p = 2

Now we come back to the BSVIE (1).

Theorem 1 Assume that Φ ∈ L2
FT (0, T ), that (H1) holds3 and

E
∫ T

0

(∫ T

t
|f0(t, s)|ds

)2

dt < +∞. (18)

Then the BSVIE (1) has a unique adapted M-solution (Y, Z, U,M) in H2(0, T ) on [0, T ].
Moreover for any S ∈ [0, T ]

‖(Y, Z, U,M)‖2H2(S,T ) = E
[∫ T

S
|Y (t)|2dt+

∫ T

S

(∫ T

S
|Z(t, r)|2dr

)
dt

+

∫ T

S

(
‖U(t, ·)‖2L2

π(S,T )

)
dt+

∫ T

S
([M(t, ·)]S,T ) dt

]
≤ CE

[∫ T

S
|Φ(t)|2dt+

∫ T

S

(∫ T

t
|f0(t, r)|dr

)2

dt

]
. (19)

Recall that

‖U(t, ·)‖2L2
π(S,T ) =

∫ T

S

∫
E
|U(t, r, e)|2π(de, dr).

Proof. Let us stress again that we follow the scheme of the proof of [37, Theorem 3.7] and
that p = 2 allows us to use Inequality (7), that is the “equivalence” between L2

µ and L2
π.

Step 1. For any S ∈ [0, T ], let us consider the space Ĥ2(S, T ) be the space of all (y, z, u,m)

in H2(S, T ) such that for a.e. t ∈ [S, T ] a.s.

y(t) = E [y(t)|FS ] +

∫ t

S
z(t, s)dWs +

∫ t

S

∫
E
u(t, s, e)π̃(de, ds) +

∫ t

S
dm(t, s).

3The L1
µ + L2

µ norm in (H1) is replaced by the L2
µ norm in this case.

13



From this representation, Doob’s martingale inequality and the Burkholder-Davis-Gundy
inequality, we have for t ∈ [S, T ]

E
[(∫ t

S
|z(t, r)|2dr

)
+ ([m(t, ·)]S,t) +

(∫ t

S

∫
E
|u(t, r, e)|2π(de, dr)

)]
≤ CE|y(t)|2.

Using (7) we deduce that there exists a constant C such that

E
[(∫ t

S
‖u(t, r, ·)‖2L2

µ
dr

)]
≤ CE|y(t)|2.

We take on Ĥ2(S, T ) the following norm:

‖(y, z, u,m)‖2Ĥ2(S,T )
= E

[∫ T

S
|y(t)|2dt+

∫ T

S

(∫ T

t
|z(t, r)|2dr

)
dt

+

∫ T

S

(∫ T

t
‖u(t, r)‖2L2

µ
dr

)
dt+

∫ T

S
([m(t, ·)]t,T ) dt

]
.

The same arguments as [37, Inequality (3.48)] show that

‖(y, z, u,m)‖2Ĥ2(S,T )
≤ E

[∫ T

S
|y(t)|2dt+

∫ T

S

(∫ T

S
|z(t, r)|2dr

)
dt

+

∫ T

S

(∫ T

S
‖u(t, r)‖2L2

µ
dr

)
dt+

∫ T

S
([m(t, ·)]S,T ) dt

]
≤ (C + 1)‖(y, z, u,m)‖2Ĥ2(S,T )

. (20)

Hence we have an equivalent norm for Ĥ2(S, T ).
Fix Φ ∈ L2

FT (S, T ) and (y, ζ, ν,m) ∈ Ĥ2(S, T ) and consider the BSVIE on [S, T ]

Y (t) = Φ(t) +

∫ T

t
f(t, s, y(s), Z(t, s), ζ(s, t), U(t, s), ν(s, t))ds−

∫ T

t
Z(t, s)dWs

−
∫ T

t

∫
E
U(t, s, e)π̃(de, ds)−

∫ T

t
dM(t, s), (21)

We want to apply Lemma 2. If

h(t, s, z, ψ) = f(t, s, y(s), z, ζ(s, t), ψ, ν(s, t)),

we need to check that

E

[(∫ T

S
|h(t, r, 0, 0)|dr

)2
]
< +∞.

The Lipschitz property of f leads to

|h(t, r, 0, 0)| ≤ |f0(t, r)|+K|y(r)|+K|ζ(r, t)|+K‖ν(r, t)‖L2
µ

14



thus by Hölder’s inequality

E

[(∫ T

S
|h(t, r, 0, 0)|dr

)2
]
≤ CE

[(∫ T

S
|f0(t, r)|dr

)2
]

+ CK2E

[(∫ T

S
|y(r)|dr

)2
]

+CK2E

[(∫ T

S
|ζ(r, t)|dr

)2
]

+ CK2E

[(∫ T

S
‖ν(r, t)‖L2

µ
dr

)2
]

≤ CE

[(∫ T

S
|f0(t, r)|dr

)2
]

+ CK2E
[∫ T

S
|y(r)|2dr

]
+CK2E

[(∫ T

S
|ζ(r, t)|2dr

)]
+ CK2E

[(∫ T

S
‖ν(r, t)‖2L2

µ
dr

)]
< +∞.

Here we use the “symmetry” between the two time variables when p = 2. Thus the BSVIE
(21) has a unique adapted M-solution (Y,Z, U,M) ∈ H2(S, T ) and for any t ∈ [S, T ]

E
[
|Y (t)|2 +

(∫ T

t
|Z(t, r)|2dr

)
+ ([M(t, ·)]t,T ) +

(∫ T

t

∫
E
|U(t, r, e)|2π(de, dr)

)]
≤ CE

[
|Φ(t)|2 +

(∫ T

t
|f(t, r, y(r), 0, ζ(r, t), 0, ν(r, t))|dr

)2
]

≤ CE

[
|Φ(t)|2 +

(∫ T

t
|f0(t, r)|dr

)2

+

∫ T

t
|y(r)|2dr

+

(∫ T

t
|ζ(r, t)|2dr

)
+

(∫ T

t
‖ν(r, t)‖2L2

µ
dr

)]
.

Then using (7) we deduce that

E
[∫ T

S
|Y (t)|2dt+

∫ T

S

(∫ T

t
|Z(t, r)|2dr

)
dt+

∫ T

S
([M(t, ·)]t,T ) dt

+

∫ T

S

(∫ T

t
‖U(t, r)‖2L2

µ
dr

)
dt

]
≤ CE

[∫ T

S
|Φ(t)|2dt+

∫ T

S

(∫ T

t
|f0(t, r)|dr

)2

dt+

∫ T

S
|y(r)|2dr

+

∫ T

S

(∫ T

t
|ζ(r, t)|2dr

)
dt+

∫ T

S

(∫ T

t
‖ν(r, t)‖2L2

µ
dr

)
dt

]
. (22)

Therefore (Y,Z, U,M) ∈ Ĥ2(S, T ). In other words we have a map Θ from Ĥ2(S, T ) to
Ĥ2(S, T ). Moreover arguing as in [37], we obtain that for (y, ζ, ν,m) and (ū, ζ̄, ν̄, m̄) in
Ĥ2(S, T ), if (Y,Z, U,M) and (Ȳ , Z̄, Ū , M̄) are the solutions of the BSVIE (21), then from
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(17) the difference satisfies:

E
[
|Ŷ (t)|2 +

(∫ T

S
|Ẑ(t, r)|2dr

)
+
(

[M̂(t, ·)]S,T
)

+

(∫ T

S

∫
E
|Û(t, r, e)|2π(de, dr)

)]
≤ CE

[(∫ T

S
K
(
|ŷ(r)|+ |ζ̂(t, r)|+ ‖ν̂(t, r)‖L2

µ

)
dr

)2
]

≤ CK2(T − S)E
[(∫ T

S

(
|ŷ(r)|2 + |ζ̂(t, r)|2 + ‖ν̂(t, r)‖2L2

µ

)
dr

)]
.

For T−S sufficiently small, this map is a contraction and thus it admits a unique fixed point
(Y, Z, U,M) ∈ Ĥ2(S, T ) which is the unique adapted M-solution of (1) on [S, T ]. Moreover
Estimate (19) holds. This step determines the values (Y (t), Z(t, s), U(t, s),M(t, s)) for
(t, s) ∈ [S, T ]× [S, T ].
Step 2. We use the martingale representation theorem to define (Z,U,M) on [S, T ]× [R,S]

for any R ∈ [0, S). Indeed since E[Y (t)|FS ] ∈ L2(S, T ;L2
FS (Ω)), there exists a unique triple

(Z,U,M) in L2(S, T ;H2(R,S)) × L2(S, T ;L2
π(R,S)) × L2(S, T ;M2,⊥(R,S)) such that for

t ∈ [S, T ]:

E[Y (t)|FS ] = E [Y (t)|FR] +

∫ S

R
Z(t, s)dWs +

∫ S

R

∫
E
U(t, s, e)π̃(de, ds) +

∫ S

R
dM(t, s),

and

E
[(∫ S

R
|Z(t, r)|2dr

)
+

(∫ S

R

∫
E
|U(t, r, e)|2π(de, dr)

)
+ ([M(t, ·)]R,S)

]
≤ CE|Y (t)|2.

Thus together with the first step, we have defined (Z,U,M) for (t, s) ∈ [S, T ]× [R, T ] and

E
[∫ T

S

(∫ T

R
|Z(t, r)|2dr

)
dt+

∫ T

S

(∫ T

R

∫
E
|U(t, r, e)|2π(de, dr)

)
dt

+

∫ T

S
([M(t, ·)]R,T ) dt

]
≤ CE

[∫ T

S
|Φ(t)|2dt+

∫ T

S

(∫ T

t
|f0(t, r)|dr

)2

dt

]
. (23)

Step 3. From the two previous steps, for (t, s) ∈ [R,S] × [S, T ], the values of Y (s) and
(Z(s, t), U(s, t)) are already defined. Thus let us consider

fS(t, s, z, u) = f(t, s, Y (s), z, Z(s, t), u, U(s, t)), (t, s, z, u) ∈ [R,S]× [S, T ]× Rk × L2
µ,

and the SFIE

ψS(t) = Φ(t) +

∫ T

S
fS(t, s, Z(t, s), U(t, s))ds−

∫ T

S
Z(t, s)dWs

−
∫ T

S

∫
E
U(t, s, e)π̃(de, ds)−

∫ T

S
dM(t, s).
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From Lemma 1, this equation has a unique solution (ψS , Z, U,M) such that for t ∈ [R,S]

E
[
|ψS(t)|2 +

(∫ T

S
|Z(t, r)|2dr

)
+ ([M(t, ·)]S,T ) +

(∫ T

S

∫
E
|U(t, r, e)|2π(de, dr)

)]
≤ CE

[
|Φ(t)|2 +

(∫ T

S
|fS(t, r, 0, 0)|dr

)2
]

= CE

[
|Φ(t)|2 +

(∫ T

S
|f(t, r, Y (r), 0, Z(r, t), 0, U(r, t))|dr

)2
]

≤ CE

[
|Φ(t)|2 +

(∫ T

S
|f0(t, r)|dr

)2

+

∫ T

S
|Y (r)|2dr

+

(∫ T

S
|Z(r, t)|2dr

)
+

(∫ T

S
‖U(r, t)‖2L2

µ
dr

)]
.

Hence using (7), (22) and (23), we obtain:

E
[∫ S

R
|ψS(t)|2dt+

∫ S

R

(∫ T

S
|Z(t, r)|2dr

)
dt+

∫ S

R
([M(t, ·)]S,T ) dt

+

∫ S

R

(∫ T

S
‖U(t, r)‖2L2

µ
dr

)
dt

]
≤ CE

[∫ S

R
|Φ(t)|2dt+

∫ S

R

(∫ T

S
|f0(t, r)|dr

)2

dt+

∫ T

S
|Y (r)|2dr

]

+CE
[∫ S

R

(∫ T

S
|Z(r, t)|2dr

)
dt+

∫ S

R

(∫ T

S
‖U(r, t)‖2L2

µ
dr

)
dt

]
≤ CE

[∫ T

R
|Φ(t)|pdt+

∫ T

R

(∫ T

t
|f0(t, r)|dr

)2

dt

]
. (24)

Hence we have defined (Z,U,M) for (t, s) ∈ [R,S]× [S, T ], and by the definition of fS , for
t ∈ [R,S]

ψS(t) = Φ(t) +

∫ T

S
f(t, s, Y (s), Z(t, s), Z(s, t), U(t, s), U(s, t))ds−

∫ T

S
Z(t, s)dWs

−
∫ T

S

∫
E
U(t, s, e)π̃(de, ds)−

∫ T

S
dM(t, s). (25)

Step 4. Let us summarize what we have after these three steps. Y is uniquely defined on
[S, T ] (from Step 1) and (Z,U,M) are uniquely determined on [S, T ]× [R, T ] (from Steps 1
and 2) and on [R,S]× [S, T ] (from Steps 1 and 3). Let us now solve (1) on [R,S]2. Consider

Y (t) = ψS(t) +

∫ S

t
f(t, s, Y (s), Z(t, s), Z(s, t), U(t, s), U(s, t))ds−

∫ S

t
Z(t, s)dWs

−
∫ S

t

∫
E
U(t, s, e)π̃(de, ds)−

∫ S

t
dM(t, s).
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It is a BSVIE with terminal condition ψS ∈ L2
FS (R,S) and generator f . As in the first step,

this BSVIE has a unique solution in H2(R,S) provided that S − R > 0 is small enough.
Now for t ∈ [R,S] from the expression (25) of ψS , we obtain that

Y (t) = Φ(t) +

∫ T

t
f(t, s, Y (s), Z(t, s), Z(s, t), U(t, s), U(s, t))ds−

∫ T

t
Z(t, s)dWs

−
∫ T

t

∫
E
U(t, s, e)π̃(de, ds)−

∫ T

t
dM(t, s).

Moreover again by the arguments as in the first step

E
[∫ S

R
|Y (t)|2dt+

∫ S

R

(∫ S

R
|Z(t, r)|2dr

)
dt+

∫ S

R
([M(t, ·)]R,S) dt

+

∫ S

R

(∫ S

R
‖U(t, r)‖2L2

µ
dr

)
dt

]
≤ CE

[∫ S

R
|Φ(t)|2dt+

∫ S

R

(∫ S

t
|f0(t, r)|dr

)2

dt

]

≤ CE

[∫ T

R
|Φ(t)|2dt+

∫ T

R

(∫ T

t
|f0(t, r)|dr

)2

dt

]
.

From this inequality together with (19) on [S,T], (23) and (24), we proved that the BSVIE
(1) has a unique adapted M-solution (Y,Z, U,M) in Hp(R, T ) on [R, T ] with the estimate
(19) on [R, T ].
Step 5. The conclusion of the proof is done by induction since the time intervals [S, T ]

(Step 1) and [R,S] (Step 4) are determined by absolute constants depending only on the
Lipschitz constant K of f in Condition (H1) and on the time horizon T .

�
Note that from (7), concerning U , Estimate (19) is completely equivalent to: for any

S ∈ [0, T ]

E
[∫ T

S

(∫ T

S
‖U(t, r)‖2L2

µ
dr

)
dt

]
≤ CE

[∫ T

S
|Φ(t)|2dt+

∫ T

S

(∫ T

t
|f0(t, r)|dr

)2

dt

]
.

2.3 The case p 6= 2

Here we consider the special case (4):

Y (t) = Φ(t) +

∫ T

t
f(t, s, Y (s), Z(t, s), U(t, s))ds−

∫ T

t
Z(t, s)dWs

−
∫ T

t

∫
E
U(t, s, e)π̃(de, ds)−

∫ T

t
dM(t, s).

In the Brownian-Poisson L2-setting, it was already studied in [35]. And if f does not depend
on Y , Lemma 2 gives existence and uniqueness of an adapted M-solution in Hp(0, T ).
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Theorem 2 For p > 1, assume that Φ ∈ LpFT (0, T ), that (H1) holds and

E
∫ T

0

(∫ T

t
|f0(t, s)|ds

)p
dt < +∞. (26)

Then the BSVIE (4) has a unique adapted M-solution (Y, Z, U,M) in Hp(0, T ) on [0, T ].
Moreover for any S ∈ [0, T ]

‖(Y,Z, U,M)‖pHp(S,T ) = E

[∫ T

S
|Y (t)|pdt+

∫ T

S

(∫ T

S
|Z(t, r)|2dr

)p/2
dt

+

∫ T

S

(
‖U(t, ·)‖2L2

π(S,T )

)p/2
dt+

∫ T

S
([M(t, ·)]S,T )p/2 dt

]
≤ CE

[∫ T

S
|Φ(t)|pdt+

∫ T

S

(∫ T

t
|f0(t, r)|dr

)p
dt

]
. (27)

Recall that

‖U(t, ·)‖2L2
π(S,T ) =

∫ T

S

∫
E
|U(t, r, e)|2π(de, dr).

Proof. Here we adapt the proof of Theorem 1. Let us stress that p ≥ 2 allows us to use
Inequality (7), that is the “equivalence” between L2

µ and L2
π.

Step 1. Now the set Ĥp(S, T ) is the space of all (y, z, u,m) in Hp(S, T ) such that for a.e.
t ∈ [S, T ] a.s.

y(t) = E [y(t)|FS ] +

∫ t

S
z(t, s)dWs +

∫ t

S

∫
E
u(t, s, e)π̃(de, ds) +

∫ t

S
dm(t, s).

We take on Ĥp(S, T ) the following norm:

‖(y, z, u,m)‖p
Ĥp(S,T )

= E

[∫ T

S
|y(t)|pdt+

∫ T

S

(∫ T

t
|z(t, r)|2dr

)p/2
dt

+

∫ T

S

(
‖u(t, r)‖2L2

π(t,T )

)p/2
dt+

∫ T

S
([m(t, ·)]t,T )p/2 dt

]
.

or using (7), if p ≥ 2:

‖(y, z, u,m)‖p
Ĥp(S,T )

= E

[∫ T

S
|y(t)|pdt+

∫ T

S

(∫ T

t
|z(t, r)|2dr

)p/2
dt

+

∫ T

S

(∫ T

t
‖u(t, r)‖2L2

µ
dr

)p/2
dt+

∫ T

S
([m(t, ·)]t,T )p/2 dt

]
.

The norm equivalence (20) becomes:

‖(y, z, u,m)‖pMp(S,T ) ≤ E

[∫ T

S
|y(t)|pdt+

∫ T

S

(∫ T

S
|z(t, r)|2dr

)p/2
dt

+

∫ T

S

(
‖u(t, ·)‖2L2

π(S,T )

)p/2
dt+

∫ T

S
([m(t, ·)]S,T )p/2 dt

]
≤ (Cp + 1)‖(y, z, u,m)‖pMp(S,T ). (28)
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And again for p ≥ 2, ‖u(t, ·)‖2L2
π(S,T ) can be replaced by

∫ T
S ‖u(t, r)‖2L2

µ
dr in the previous

estimates (with the suitable modifications of the constant Cp).
If Φ ∈ LpFT (S, T ) and (y, ζ, ν,m) ∈ Ĥp(S, T ), we consider the BSVIE on [S, T ], equivalent

to (21):

Y (t) = Φ(t) +

∫ T

t
f(t, s, y(s), Z(t, s), U(t, s))ds−

∫ T

t
Z(t, s)dWs

−
∫ T

t

∫
E
U(t, s, e)π̃(de, ds)−

∫ T

t
dM(t, s), (29)

From Lemma 2 this BSVIE has a unique adapted M-solution (Y,Z, U,M) ∈ Hp(S, T ) and
for any t ∈ [S, T ]

E

[
|Y (t)|p +

(∫ T

t
|Z(t, r)|2dr

)p/2
+ ([M(t, ·)]t,T )p/2 +

(∫ T

t

∫
E
|U(t, r, e)|2π(de, dr)

)p/2]

≤ CE

[
|Φ(t)|p +

(∫ T

t
|f0(t, r)|dr

)p
+

∫ T

t
|y(r)|pdr

]
. (30)

Therefore (Y, Z, U,M) ∈ Ĥp(S, T ). In other words we have a map Θ from Ĥp(S, T ) to
Ĥp(S, T ) and we show that for T − S sufficiently small, this map is a contraction and thus
it admits a unique fixed point (Y, Z, U,M) ∈ Ĥp(S, T ) which is the unique adapted M-
solution of (4) on [S, T ]. Moreover Estimate (27) holds. This step determines the values
(Y (t), Z(t, s), U(t, s),M(t, s)) for (t, s) ∈ [S, T ]× [S, T ].

Before going on in the proof, let us explain why we cannot deal directly with the general
BSVIE (1). Indeed we should add in (30) the terms

E

[∫ T

S

(∫ T

t
|ζ(r, t)|2dr

)p/2
dt+

∫ T

S

(∫ T

t
‖ν(r, t)‖2L1

µ+L2
µ
dr

)p/2
dt

]
.

However our assumptions do not imply that these integrals are finite.
Step 2. This part is the same as for p = 2. There exists a unique triple (Z,U,M) in
Lp(S, T ;Hp(R,S))× Lp(S, T ;Lpπ(R,S))× Lp(S, T ;Mp,⊥(R,S)) such that for t ∈ [S, T ]:

E[Y (t)|FS ] = E [Y (t)|FR] +

∫ S

R
Z(t, s)dWs +

∫ S

R

∫
E
U(t, s, e)π̃(de, ds) +

∫ S

R
dM(t, s),

and

E

[(∫ S

R
|Z(t, r)|2dr

)p/2
+

(∫ S

R

∫
E
|U(t, r, e)|2π(de, dr)

)p/2
+ ([M(t, ·)]R,S)p/2

]
≤ CE|Y (t)|p.
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Thus together with the first step, we have defined (Z,U,M) for (t, s) ∈ [S, T ]× [R, T ] and

E

[∫ T

S

(∫ T

R
|Z(t, r)|2dr

)p/2
dt+

∫ T

S

(∫ T

R

∫
E
|U(t, r, e)|2π(de, dr)

)p/2
dt

+

∫ T

S
([M(t, ·)]R,T )p/2 dt

]
≤ CE

[∫ T

S
|Φ(t)|pdt+

∫ T

S

(∫ T

t
|f0(t, r)|dr

)p
dt

]
. (31)

Step 3. We define

fS(t, s, z, u) = f(t, s, Y (s), z, u), (t, s, z, u) ∈ [R,S]× [S, T ]× Rk × (L1
µ + L2

µ),

and from Lemma 1, the SFIE

ψS(t) = Φ(t) +

∫ T

S
fS(t, s, Z(t, s), U(t, s))ds−

∫ T

S
Z(t, s)dWs

−
∫ T

S

∫
E
U(t, s, e)π̃(de, ds)−

∫ T

S
dM(t, s).

has a unique solution (ψS , Z, U,M) such that for t ∈ [R,S]

E

[
|ψS(t)|p +

(∫ T

S
|Z(t, r)|2dr

)p/2

+ ([M(t, ·)]S,T )p/2 +

(∫ T

S

∫
E
|U(t, r, e)|2π(de, dr)

)p/2]

≤ CE

[
|Φ(t)|p +

(∫ T

S
|fS(t, r, 0, 0)|dr

)p]

= CE

[
|Φ(t)|p +

(∫ T

S
|f(t, r, Y (r), 0, 0)|dr

)p]

≤ CE

[
|Φ(t)|p +

(∫ T

S
|f0(t, r)|dr

)p
+

∫ T

S
|Y (r)|pdr

]
.

Hence using (30) we obtain:

E

[∫ S

R
|ψS(t)|pdt+

∫ S

R

(∫ T

S
|Z(t, r)|2dr

)p/2
dt+

∫ S

R
([M(t, ·)]S,T )p/2 dt

+

∫ S

R

(∫ T

S
‖U(t, r)‖2L1

µ+L2
µ
dr

)p/2
dt

]

≤ CE

[∫ S

R
|Φ(t)|pdt+

∫ S

R

(∫ T

S
|f0(t, r)|dr

)p
dt+

∫ T

S
|Y (r)|pdr

]

≤ CE

[∫ T

R
|Φ(t)|pdt+

∫ T

R

(∫ T

t
|f0(t, r)|dr

)p
dt

]
. (32)
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Hence we have defined (Z,U,M) for (t, s) ∈ [R,S]× [S, T ], and (25) holds:

ψS(t) = Φ(t) +

∫ T

S
f(t, s, Y (s), Z(t, s), U(t, s))ds−

∫ T

S
Z(t, s)dWs

−
∫ T

S

∫
E
U(t, s, e)π̃(de, ds)−

∫ T

S
dM(t, s). (33)

As in the first step and for the same reason, the general driver of the BSVIE (1) can not be
handled here.
Step 4. We can copy the fourth step of the case p = 2, but now the estimate becomes:

E

[∫ S

R
|Y (t)|pdt+

∫ S

R

(∫ S

R
|Z(t, r)|2dr

)p/2
dt+

∫ S

R
([M(t, ·)]R,S)p/2 dt

+

∫ S

R

(
‖U(t, ·)‖2L2

π(R,S)

)p/2
dt

]
≤ CE

[∫ S

R
|Φ(t)|pdt+

∫ S

R

(∫ S

t
|f0(t, r)|dr

)p
dt

]

≤ CE

[∫ T

R
|Φ(t)|pdt+

∫ T

R

(∫ T

t
|f0(t, r)|dr

)p
dt

]
.

From this inequality together with (27) on [S,T], (31) and (32), we proved that the BSVIE
(1) has a unique adapted M-solution (Y,Z, U,M) in Hp(R, T ) on [R, T ] with the estimate
(27) on [R, T ].
Step 5. Rigorously the same. �

2.4 Stability result and some extensions

The stability result holds in our setting. Let Φ̄ ∈ L2
FT (0, T ) and f̄ : Ω× [0, T ]×Rd+2(d×k)×

(L2
µ)2 → Rd satisfy (H1) and (18)

E
∫ T

0

(∫ T

t
|f̄0(t, s)|ds

)2

dt < +∞.

Let (Ȳ , Z̄, Ū , M̄) in H2(0, T ) be the unique adapted M-solution of the BSVIE (1) with data
Φ̄ and f̄ (Theorem 1). Then for any S ∈ [0, T ]

E
[∫ T

S
|Y (t)− Ȳ (t)|2dt+

∫ T

S

(∫ T

S
|Z(t, r)− Z̄(t, s)|2dr

)
dt

+

∫ T

S

(
[M(t, ·)− M̄(t, ·)]S,T

)
dt+

∫ T

S

(
‖U(t, ·)− Ū(t, ·)‖2L2

π(S,T )dr
)
dt

]
≤ CE

[∫ T

S
|Φ(t)− Φ̄(t)|2dt

+

∫ T

S

(∫ T

t
|f(t, r, Y (r), Z(t, r), Z(r, t), U(t, r), U(r, t))

− f̄(t, r, Y (r), Z(t, r), Z(r, t), U(t, r), U(r, t))|dr
)2

dt

]
. (34)

22



In the case of Theorem 2, we also have a similar estimate:

E

[∫ T

S
|Y (t)− Ȳ (t)|pdt+

∫ T

S

(∫ T

S
|Z(t, r)− Z̄(t, s)|2dr

) p
2

dt

+

∫ T

S

(
[M(t, ·)− M̄(t, ·)]S,T

) p
2 dt+

∫ T

S

(∫ T

S
‖U(t, r)− Ū(t, r)‖2L2

µ
dr

) p
2

dt

]

≤ CE
[∫ T

S
|Φ(t)− Φ̄(t)|pdt

+

∫ T

S

(∫ T

t
|f(t, r, Y (r), Z(t, r), Z(r, t), U(t, r), U(r, t))

− f̄(t, r, Y (r), Z(t, r), Z(r, t), U(t, r), U(r, t))|dr
)p
dt

]
. (35)

In both cases, the proof is based on the same arguments given in [37] (see Equation (3.71)
in particular) and we skip it here.

The next results are already proved in [37, Corollary 3.8 and Proposition 3.9]. We extend
them to our setting (the proof is the same, thus is omitted here). Under the conditions of
Theorems 1 or 2, if (Y,Z, U,M) is the unique M-solution of the BSVIE (1), then for all
S ∈ [0, T )

ΦS(t) = Φ(t) +

∫ T

S
f(t, s, Y (s), Z(t, s), Z(s, t), U(t, s), U(s, t))ds−

∫ T

S
Z(t, s)dWs

−
∫ T

S

∫
E
U(t, s, e)π̃(de, ds)−

∫ T

S
dM(t, s).

is FS-measurable for almost all t ∈ [0, S]. Now for any t ∈ [0, T ], let (λl(·), zt(·), ut(·),mt(·))
be the adapted solution of the BSDE: for r ∈ [t, T ]

λt(r) = Φ(t) +

∫ T

r
f(t, s, Y (s), zt(s), Z(s, t), ut(s), U(s, t))ds−

∫ T

r
zt(s)dWs

−
∫ T

r

∫
E
ut(s, e)π̃(de, ds)−

∫ T

r
dmt(s).

Define Ȳ (t) = λt(t) for t ∈ [0, T ] and Z̄(t, s) = zt(s), Ū(t, s) = ut(s) and M̄(t, s) = mt(s)

for (t, s) ∈ ∆c[0, T ]. For (t, s) ∈ ∆[0, T ], (Z̄, Ū , M̄) is defined through

Ȳ (t) = E(Ȳ (t)) +

∫ t

0
Z̄(t, s)dWs +

∫ t

0

∫
E
U(t, s, e)π̃(de, ds) +

∫ t

0
dM(t, s).

Then Ȳ = Y and Z̄(t, s) = Z(t, s), Ū(t, s) = U(t, s) and M̄(t, s) = M(t, s) for (t, s) ∈
∆c[0, T ].

3 Time regularity

Up to now the component Y is only supposed to be in LpF(0, T ) and thereby we don’t know
any regularity property for the the paths t 7→ Y (t). If Y solves the BSDE (2), then it has
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the same regularity as the martingale part, thus a.s. it is a càdlàg process. For a BSVIE it
is more delicate. In [37, Theorem 4.2], the author shows that in the Brownian setting the
BSVIE

Y (t) = Φ(t) +

∫ T

t
f(t, s, Y (s), Z(t, s), Z(s, t))ds−

∫ T

t
Z(t, s)dWs

is continuous in L2(Ω), which does not mean that Y has a.s. continuous paths. Of course
since t appears in the generator f and in the free term Φ, we have to add some property on
t 7→ Φ(t) and t 7→ f(t, · · · ).

Let us describe several sets for the process Y .

D([0, T ];LpF(Ω)) =

{
φ ∈ L∞(0, T ;LpF(Ω)), φ(t) is F− adapted,

φ(·) is càdlàg from [0, T ] to LpF(Ω).
}
,

D]([0, T ];LpF(Ω)) =

{
φ ∈ D([0, T ];LpF(Ω)), φ(·) is càdlàg paths a.s.

}
,

DpF(0, T ) = Dp(0, T ) =

{
φ ∈ D]([0, T ];LpF(Ω)), E

[
sup
t∈[0,T

|φ(t)|p
]
< +∞

}
.

When only measurability is required, we replace the subscript F by FS . If we want to deal
with continuity, then we replace D (resp. D) by C (resp. C) (see [37, Section 2.1]). Coming
back to a generic martingale M(t, ·), we also define

Lp(Ω;D([S, T ];Mp(S, T ))

as the set of all M ∈ L∞(S, T ;Mp(S, T )) such that t 7→ M(t, ·) is càdlàg from [S, T ] to
Mp(0, T ) and

E

(
sup
t∈[S,T ]

[M(t, ·)]S,T

) p
2

< +∞.

Again if M(t, ·) is a Brownian martingale, then M ∈ Lp(Ω;D([S, T ];Mp(S, T )) if and
only if Z ∈ Lp(Ω;D([S, T ];Hp(S, T )) and if N(t, ·) is a Poisson martingale, then N ∈
Lp(Ω;D([S, T ];Mp(S, T )) is equivalent to ψ ∈ Lp(Ω;D([S, T ];L2

π(S, T )).

In [37], to obtain the time regularity for the BSVIE (3), the author uses the Malliavin
derivative to control the term Z(s, t) in the generator (see [37, Theorems 4.1 and 4.2]).
Hence to apply the same arguments, we should use the Malliavin calculus in the presence
of jumps (see e.g. [5, 9]). This point is left as future research and to avoid this machinery,
let us study the BSVIE (4)

Y (t) = Φ(t) +

∫ T

t
f(t, s, Y (s), Z(t, s), U(t, s))ds−

∫ T

t
Z(t, s)dWs

−
∫ T

t

∫
E
U(t, s, e)π̃(de, ds)−

∫ T

t
dM(t, s).

Our condition (H1) becomes:
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(H2) Let f : Ω × ∆c × Rd × Rd×k × (L1
µ + L2

µ) → Rd be a measurable function such that
s 7→ f(t, s, y, z, ψ) is F-adapted for all (t, y, z, ψ), (y, z, ψ) 7→ f(t, s, y, z, ψ) is Lipschitz
continuous, uniformly in (ω, t, s) (see (H1)).

The integrability condition (26) is replaced by the stronger one:

sup
t∈[0,T ]

E

[(∫ T

t
|f0(t, s)|ds

)p]
< +∞. (36)

Finally instead of Φ ∈ LpFT (0, T ), we assume also that

sup
t∈[0,T ]

E [|Φ(t)|p] < +∞. (37)

If (Y,Z, U,M) solves the BSVIE (4), then taking h(t, s, z, ψ) = f(t, s, Y (s), z, ψ) and
using the estimate (16) of Lemma 2, we have:

E

[
|Y (t)|p +

(∫ T

S
|Z(t, r)|2dr

)p/2
+ ([M(t, ·)]S,T )p/2

+

(∫ T

S

∫
E
|U(t, r, e)|2π(de, dr)

)p/2]
≤ CE

[
|Φ(t)|p +

(∫ T

S
|h(t, r, 0, 0)|dr

)p]
.

Since f is Lipschitz continuous, taking S = t, the Gronwall inequality leads to

E

[
|Y (t)|p +

(∫ T

t
|Z(t, r)|2dr

)p/2
+ ([M(t, ·)]t,T )p/2

+

(∫ T

t

∫
E
|U(t, r, e)|2π(de, dr)

)p/2]

≤ CE

[
|Φ(t)|p +

(∫ T

t
|Φ(r)|dr

)p
+

(∫ T

t
|f0(t, r)|dr

)p]
.

Under our stronger integrability conditions on Φ and f0, we obtain an stronger estimate on
(Z,U,M):

sup
t∈[0,T ]

E

[(∫ T

t
|Z(t, r)|2dr

)p/2
+ ([M(t, ·)]t,T )p/2 +

(
‖U(t, ·)‖2L2

π(t,T )

)p/2]
< +∞.

This property is important to get the càdlàg in mean property of Y .

Lemma 3 Assume that (H2) holds. Then the solution of the BSVIE (4) satisfies: for any
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(t, t′) ∈ [S, T ] and if t? = t ∧ t′ and t? = t ∨ t′:

E
[
|Y (t)− Y (t′)|p

]
+E

[(∫ t?

S
|Z(t, r)− Z(t′, r)|2dr

)p/2
+

(∫ T

t?
|Z(t, r)− Z(t′, r)|2dr

)p/2]

+E
[([

M(t, ·)−M(t′, ·)
]
S,t?

)p/2
+
(
[M(t, ·)−M(t′, ·)]t?,T

)p/2]
+E

[(
‖U(t, ·)− U(t′, ·)‖2L2

π(S,t?)

)p/2
+
(
‖U(t, ·)− U(t′, ·)‖2L2

π(t?,T )

)p/2]
≤ CE

[
|Φ(t)− Φ(t′)|p

]
+ CE

[(∫ t?

t?

|h(t, r, Z(t, r), ψ(t, r))| dr

)p]

+CE

(∫ t?

t?

|Z(t, r)|2 dr

)p/2+ CE
[(
‖U(t, ·)‖2L2

π(t?,t?)

)p/2]

+CE
[(

[M(t, ·)]t?,t?
)p/2]

+CE

[(∫ T

t?
|h(t, r, Z(t, r), ψ(t, r))− h(t′, r, Z(t, r), ψ(t, r))|dr

)p]
.

Proof. We first consider the BSVIE (15)

Y (t) = Φ(t) +

∫ T

t
h(t, s, Z(t, s), U(t, s))ds−

∫ T

t
Z(t, s)dWs

−
∫ T

t

∫
E
U(t, s, e)π̃(de, ds)−

∫ T

t
dM(t, s).

We take t, t′ in [S, T ] and w.l.o.g. let S ≤ t ≤ t′ ≤ T . Applying (12) to the solution of the
BSDE with parameter t, we obtain:

E

[
sup

r∈[t′,T ]
|λ(t, r)− λ(t′, r)|p +

(∫ T

t′
|z(t, r)− z(t′, r)|2dr

)p/2

+
(
[m(t, ·)−m(t′, ·)]t′,T

)p/2
+

(∫ T

t′

∫
E
|u(t, r, e)− u(t′, r, e)|2π(de, dr)

)p/2]

≤ CE

[
|Φ(t)− Φ(t′)|p +

(∫ T

t′
|h(t, r, z(t, r), u(t, r))− h(t′, r, z(t, r), u(t, r))|dr

)p]

= CE

[
|Φ(t)− Φ(t′)|p +

(∫ T

t′
|h(t, r, Z(t, r), ψ(t, r))− h(t′, r, Z(t, r), ψ(t, r))|dr

)p]
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Remark that

E
[
|Y (t)− Y (t′)|p

]
= E

[
|λ(t, t)− λ(t′, t′)|p

]
≤ CE

[
|λ(t, t)− λ(t, t′)|p

]
+ CE

[
sup

r∈[t′,T ]
|λ(t, r)− λ(t′, r)|p

]

≤ CE

[(∫ t′

t
|h(t, r, Z(t, r), ψ(t, r))| dr

)p]
+ CE

(∫ t′

t
|Z(t, r)|2 dr

)p/2
+CE

(∫ t′

t
|ψ(t, r)|2L2

π
dr

)p/2+ CE
[(

[M(t, ·)]t,t′
)p/2]

+CE

[
sup

r∈[t′,T ]
|λ(t, r)− λ(t′, r)|p

]
.

Moreover the notion of M-solution (Equation (5)) implies that

Y (t)− Y (t′)− E
[
Y (t)− Y (t′)|FS

]
=

∫ t

S
(Z(t, r)− Z(t′, r))dWr

+

∫ t

S

∫
E
(U(t, r, e)− U(t′, r, e))π̃(de, dr) +

∫ t

S
d(M(t, r)−M(t′, r))

+

∫ t′

t
Z(t′, r)dWr +

∫ t′

t

∫
E
U(t′, r, e)π̃(de, dr) +

∫ t′

t
dM(t′, r).

Using BDG’s inequality, we get that

E

[(∫ t

S
|Z(t, r)− Z(t′, r)|2dr

)p/2]
+ E

[([
M(t, ·)−M(t′, ·)

]
S,t

)p/2]

+E

[(∫ t

S

∫
E
|U(t, r, e)− U(t′, r, e)|2π(de, dr)

)p/2]

+E

(∫ t′

t
|Z(t′, r)|2dr

)p/2+ E
[([

M(t′, ·)
]
t,t′

)p/2]

+E

(∫ t′

t

∫
E
|U(t′, r, e)|2π(de, dr)

)p/2
≤ CE

[∣∣Y (t)− Y (t′)− E
[
Y (t)− Y (t′)|FS

]∣∣p] ≤ CE [∣∣Y (t)− Y (t′)
∣∣p] .

Combining the previous inequalities, we obtain the desired result for the BSVIE (15).
For the BSVIE (4), we apply the preceding arguments using the generator h(t, s, z, ψ) =

f(t, s, Y (s), z, ψ). �
From this lemma, it is possible to deduce that Y belongs to D([0, T ];LpF(Ω)), provided

that we have regularity assumption on t 7→ Φ(t) and t 7→ f(t, s, y, z, ψ), as in [37, Theorem
4.2] in the continuous setting. Note that the estimate on (Z,U,M) is crucial here. Let us
emphasize again that it does not mean that Y is in D]([0, T ];LpF(Ω)); in other words we do
not deduce that a.s. the paths are càdlàg.
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In [35, Theorem 2.4], a.s. continuity of Y is proved in the Brownian setting and if the
generator of the previous BSVIE does not depend on Z(s, t), namely for the BSVIE:

Y (t) = Φ(t) +

∫ T

t
f(t, s, Y (s), Z(t, s))ds−

∫ T

t
Z(t, s)dWs.

Our aim now is to extend this property for the BSVIE (4), assuming that Φ and f are Hölder
continuous w.r.t. t. Before we state the next result, which is the same as [35, Lemma 3.1]:

Lemma 4 Let us assume that for Φ ∈ LpFT (0, T ), for f = {f(t, s), 0 ≤ t ≤ s ≤ T} such
that

E
∫ T

0

∫ T

0
|f(t, s)|p1s≥tds < +∞,

and for some (Z,U,M) is in Mp(0, T ), we have for almost all t ∈ [0, T ]

Y (t) = Φ(t) +

∫ T

t
f(t, s)ds+

∫ T

t
Z(t, s)dWs +

∫ T

t

∫
E
U(t, s, e)π̃(de, ds) +

∫ T

t
dM(t, s)

= Φ(t) +

∫ T

t
f(t, s)ds+

(
M](t, T )−M](t, t)

)
.

Then

eβt|Y (t)|p ≤ eβTEFt |Φ(t)|p +

(
(p− 1)

β

)p−1

EFt
∫ T

t
eβs|f(t, s)|pds.

And for p = 2 we also control (Z,U,M), namely

EFt
∫ T

t
eβs|Z(t, s)|2ds+ EFt

∫ T

t
eβsd[M(t, ·)]0,s + EFt

∫ T

t
eβs
∫
E
|U(t, s, e)|2π(de, ds)

≤ eβTEFt |Φ(t)|2 +
1

β
EFt

∫ T

t
eβs|f(t, s)|2ds.

Proof. Fix one t ∈ [0, T ] such that the equation is satisfied and define on [t, T ]

Xt(u) = Y (t)−
∫ u

t
f(t, s)ds− (M](t, u)−M](t, t))

= E
[
Y (t) +

∫ T

t
f(t, s)ds

∣∣∣∣Fu]+

∫ T

u
f(t, s)ds.

The process Xt = {Xt(u), u ∈ [t, T ]} is a càdlàg semimartingale. And by Doob’s martingale
inequality, we have

E

[
sup
u∈[t,T ]

|Xt(u)|p
]
≤ CE

[
|Xt(T )|p +

(∫ T

t
|f(t, s)|ds

)p]

≤ CE

[
|Y (t)|p +

(∫ T

t
|f(t, s)|ds

)p]
.
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First assume that p = 2 (at least p ≥ 2). Using Itô’s formula for u 7→ |Xt(u)|2eβ(u−t),
on [t, T ] we obtain that:

|Y (t)|2 +

∫ T

t
eβ(s−t)|Z(t, s)|2ds

+

∫ T

t
eβ(s−t)

∫
E
|U(t, s, e)|2 π(de, ds) +

∫ T

t
eβ(s−t)d[M(t, ·)]0,s

≤ |Xt(T )|2eβ(T−t) + 2

∫ T

t
eβ(s−t)Xt(s)f(t, s)ds− β

∫ T

t
|Xt(s)|2eβ(s−t)ds

+2

∫ T

t
eβ(s−t)Xt(s)dM](t, s).

From our hypotheses and the control of u 7→ Xt(u), the martingale terms are true martin-
gales. Thus taking the conditional expectation w.r.t. Ft and using Young’s inequality give
the desired control for p = 2.

Now suppose only that p > 1. We apply again Itô’s formula (cf. [26, Corollary 2.30] or
[16, Corollary 1]), to eβ(s−t)|Xt(s)|p on [t, T ] and we obtain that for all u ∈ [t, T ]:

|Xt(u)|peβ(u−t) ≥ |Y (t)|p + β

∫ u

t
|Xt(s)|peβ(s−t)ds

−p
∫ u

t
eβ(s−t)|Xt(s)|p−1X̌t(s)1Xt(s) 6=0f(t, s)ds

−p
∫ u

t
eβ(s−t)|Xt(s)|p−1X̌t(s)1Xt(s) 6=0dM](t, s)

+

∫ u

t
eβ(s−t)

∫
E

[
|Xt(s−) + Ut(s, e)|p − |Xt(s−)|p − p|Xt(s−)|p−1X̌t(s−)ψt(s, e)

]
π(de, ds)

+
∑
t<s≤u

eβ(s−t) [|Xt(s
−) + ∆M(t, s)|p − |Xt(s

−)|p − p|Xt(s
−)|p−1X̌t(s

−)∆M(t, s)
]

+c(p)

∫ u

t
eβ(s−t)|Xt(s)|p−21Xt(s)6=0|Z(t, s)|2ds

+c(p)

∫ u

t
eβ(s−t)|Xt(s)|p−21Xt(s)6=0d[M(t, ·)]c0,s.

with c(p) = (p/2)((p− 1) ∧ 1) and x̌ = |x|−1x1x 6=0. Thus for u = T , taking the conditional
expectation w.r.t. Ft and using Young’s inequality lead to the control on Y . Note that
it seems to be much more difficult to get something similar for (Z,U,M) if p 6= 2. This
achieves the proof of the Lemma. �

Now we have the next regularity result, which is the extension of [35, Theorem 2.4].

Theorem 3 Suppose that the generator satisfies: for some α ∈ (0, 1/2] and K ≥ 0, for all
(y, z, ψ) and all 0 ≤ t, t′ ≤ s ≤ T

|f(t, s, y, z, ψ)− f(t′, s, y, z, ψ)| ≤ K|t− t′|α, E
[∣∣Φ(t)− Φ(t′)

∣∣%] ≤ K|t− t′|α%.
Moreover for some 1/α < %,

E

[
sup
t∈[0,T ]

∣∣∣∣∫ T

t
|f0(t, s)|2ds

∣∣∣∣%/2
]
< +∞.
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Then the solution Y of the BSVIE (4) has a càdlàg version, still denoted by Y .

Proof. We follow the scheme of the proof of [35, Theorem 2.4].
Step 1. We consider for a fixed t in [0, T ]:

Xt(u) = E
[
Φ(t) +

∫ T

t
f(t, s)ds

∣∣∣∣Fu] , u ∈ [0, T ].

From our assumption, u 7→ Xt(u) is a càdlàg Lp-martingale. For 0 ≤ t ≤ t′ ≤ T , Doob’s
martingale inequality implies for any 1 < % ≤ 2

E

[
sup

u∈[0,T ]
|Xt(u)−Xt′(u)|%

]
≤ CE [|Xt(T )−Xt′(T )|%]

≤ CE
[∣∣Φ(t)− Φ(t′)

∣∣%]
+ CE

[∣∣∣∣∣
∫ t′

t
f(t, s)ds

∣∣∣∣∣
%

+

∣∣∣∣∫ T

t′
|f(t, s)− f(t′, s)|ds

∣∣∣∣%
]
.

Hölder’s inequality leads to:

E

[∣∣∣∣∣
∫ t′

t
f(t, s)ds

∣∣∣∣∣
%]
≤ |t′ − t|%/2E

[∣∣∣∣∫ T

t
|f(t, s)|2ds

∣∣∣∣%/2
]
.

Hence from our setting we have:

E

[
sup

u∈[0,T ]
|Xt(u)−Xt′(u)|%

]
≤ C|t− t′|α%.

Since α% > 1, if we consider X = (Xt, t ∈ [0, T ]) as a process with values in the Skorohod
space D([0, T ];Rd) equipped with the uniform norm, which is a complete metric space, then
we can apply the Kolmogorov continuity criterion (see [29, IV.Corollary 1] or [31, Theorem
I.2.1]): there is a continuity version of t ∈ [0, T ] 7→ Xt ∈ D([0, T ];Rd). In particular a.s.
t 7→ Y (t) := Xt(t) is càdlàg:

|Y (t)− Y (t′)| ≤ |Xt(t)−Xt(t
′)|+ |Xt(t

′)−Xt′(t
′)|

≤ |Xt(t)−Xt(t
′)|+ sup

s∈[0,T ]
|Xt(s)−Xt′(s)|.

Note that

Xt(u) = Xt(0) +

∫ u

0
Z(t, s)dWs +

∫ u

0

∫
E
U(t, s, e)π̃(de, ds) +M(t, u)

= Xt(0) + M](t, u).

Using the BDG inequality, we have

E

[([
M](t, ·)−M](t′, ·)

]
0,T

)%/2]
≤ CE

[∣∣∣M](t, T )−M](t′, T )
∣∣∣%]

≤ C (E [|Xt(0)−Xt′(0)|%] + E [|Xt(T )−Xt′(T )|%])
≤ C|t− t′|α%.
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And

E

[([
M](0, ·)

]
0,T

)%/2]
≤ CE

[∣∣∣M](0, T )
∣∣∣%] ≤ CE [|X0(T )−X0(0)|%]

≤ CE

(
|Φ(0)|% +

(∫ T

0
|f(0, s)|ds

)%)
≤ C.

Let us recall that the space M2(0, T ) is a Banach space (see [7], Section VII.3 (98.1)-(98.2)
or [29], Section V.2). If we consider t 7→ M](t, ·), this map defined on [0, T ] takes values
in the space M2(0, T ). We can apply the Kolmogorov continuity criterion (see again [31,
Theorem I.2.1]) in order to have:

E

( sup
t∈[0,T ]

[
M](t, ·)

]
0,T

)%/2 ≤ C. (38)

Step 2. Assume that f depends only on z and ψ. Let us define Z0(t, s) ≡ 0, U0(t, s) ≡ 0

and recursively for n ≥ 1:

Yn(t) = Φ(t) +

∫ T

t
f(t, s, Zn−1(t, s), Un−1(t, s))ds−

∫ T

t
Zn(t, s)dWs

−
∫ T

t

∫
E
Un(t, s, e)π̃(de, ds)−

∫ T

t
dMn(t, s).

We can argue exactly as in [35] in order to prove that for any n ≥ 1:

E

[([
M]
n(t, ·)−M]

n(t′, ·)
]

0,T

)%/2]
≤ Cn|t− t′|α%,

E

( sup
t∈[0,T ]

[
M]
n(t, ·)

]
0,T

)%/2 ≤ Cn,
t 7→ Yn(t) is càdlàg.

Let us now prove the convergence of Yn. Using Lemma 4 with p = 2, we obtain

eβt|Yn+1(t)− Yn(t)|2 + EFt
∫ T

t
eβs|Zn+1(t, s)− Zn(t, s)|2ds

+EFt
∫ T

t
eβs‖Un+1(t, s, ·)− Un(t, s, ·)‖2L2

µ
ds

+EFt
∫ T

t
eβsd[Mn+1(t, ·)−Mn(t, ·)]0,s

≤ 1

β
EFt

∫ T

t
eβs|f(t, s, Zn(t, s), Un(t, s))− f(t, s, Zn−1(t, s), Un−1(t, s))|2ds

≤ 2K2

β
EFt

∫ T

t
eβs
(
|Zn(t, s)− Zn−1(t, s)|2 + ‖Un(t, s, ·)− Un−1(t, s, ·)‖2L2

µ

)
ds.
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Taking β equal to 4K2 and iterating the previous inequality, we have

eβt|Yn+1(t)− Yn(t)|2 + EFt
∫ T

t
eβs|Zn+1(t, s)− Zn(t, s)|2ds

+EFt
∫ T

t
eβs‖Un+1(t, s, ·)− Un(t, s, ·)‖2L2

µ
ds

+EFt
∫ T

t
eβsd[Mn+1(t, ·)−Mn(t, ·)]0,s

≤ 1

2n
EFt

∫ T

t
eβs
(
|Z1(t, s)− Z0(t, s)|2 + ‖U1(t, s, ·)− U0(t, s, ·)‖2L2

µ

)
ds.

First taking the expectation and integrating w.r.t t ∈ [0, T ], we deduce the convergence of
(Zn, Un,Mn) in M2(0, T ). Then

E

[
sup
t∈[0,T ]

|Yn+1(t)− Yn(t)|%
]

≤ 1

2n%/2
E

[
sup
t∈[0,T ]

(
EFt

∫ T

t
eβs
(
|Z1(t, s)|2 + ‖U1(t, s, ·)‖2L2

µ
ds
))%/2]

≤ 1

2n%/2
E

[
sup
t∈[0,T ]

(
EFtξ

)%/2]
where

ξ = sup
t∈[0,T ]

∫ T

t
eβs
(
|Z1(t, s)|2 + ‖U1(t, s, ·)‖2L2

µ

)
ds.

From (38), E(ξ%/2) < +∞ and t 7→ EFt(ξ) is a martingale. By Doob’s maximal inequality

E

[
sup
t∈[0,T ]

|Yn+1(t)− Yn(t)|%
]
≤ 1

2n%/2
E

[
sup
t∈[0,T ]

(
EFtξ

)%/2]

≤ C
eβ%T

2n%/2
E
[
(ξ)%/2

]
≤ C

2n%/2

where the constant C does not depend on n. Thus there exists a càdlàg adapted process Y
such that

lim
n→+∞

E

[
sup
t∈[0,T ]

|Yn+1(t)− Y (t)|%
]

= 0.

And we deduce immediately that the limit is the unique solution of the BSVIE

Y (t) = Φ(t) +

∫ T

t
f(t, s, Z(t, s), U(t, s))ds−

∫ T

t
Z(t, s)dWs

−
∫ T

t

∫
E
U(t, s, e)π̃(de, ds)−

∫ T

t
dM(t, s).

Step 3. Assume that f depends now also on y. Let us define Y0(t) ≡ 0 and for n ≥ 1:

Yn(t) = Φ(t) +

∫ T

t
f(t, s, Yn−1(s), Zn(t, s), Un(t, s))ds−

∫ T

t
Zn(t, s)dWs

−
∫ T

t

∫
E
Un(t, s, e)π̃(de, ds)−

∫ T

t
dMn(t, s).
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We know that t 7→ Yn(t) is càdlàg. Using again Lemma 4 with p = 2, we obtain:

eβt|Yn(t)|2 + EFt
∫ T

t
eβs|Zn(t, s)|2ds+ EFt

∫ T

t
eβs‖Un(t, s, ·)‖2L2

µ
ds

+EFt
∫ T

t
eβsd[Mn(t, ·)]0,s ≤ eβTEFt |Φ(t)|2

+
4K2

β
EFt

∫ T

t
eβs
(
|f0(t, s)|2 + |Yn−1(s)|2 + |Zn(t, s)|2 + ‖Un(t, s, ·)‖2L2

µ

)
ds.

Thus for β = 8K2, we have:

eβt|Yn(t)|2 +
1

2
EFt

∫ T

t
eβs
(
|Zn(t, s)|2 + ‖Un(t, s, ·)‖2L2

µ

)
ds

+
1

2
EFt

∫ T

t
eβsd[Mn(t, ·)]0,s

≤ eβTEFt |Φ(t)|2 +
1

2
EFt

∫ T

t
eβs
(
|f0(t, s)|2 + |Yn−1(s)|2

)
ds.

Set

hn(t) = sup
1≤k≤n

E

[
sup
s∈[t,T ]

|Yk(s)|%
]
.

Then

hn(t) ≤ sup
1≤k≤n

E

( sup
s∈[t,T ]

eβs |Yk(s)|2
)%/2

≤ CE

( sup
s∈[t,T ]

EFs |Φ(s)|2
)%/2+ CE

( sup
s∈[t,T ]

EFs
∫ T

s
eβu|f0(s, u)|2du

)%/2
+ C sup

1≤k≤n
E

( sup
s∈[t,T ]

EFs
∫ T

s
eβu|Yk−1(u)|2du

)%/2
≤ CE

( sup
s∈[t,T ]

EFs sup
r∈[0,T ]

|Φ(r)|2
)%/2

+ CE

( sup
s∈[t,T ]

EFs sup
r∈[t,T ]

∫ T

r
eβu|f0(r, u)|2du

)%/2
+ C sup

1≤k≤n
E

( sup
s∈[t,T ]

EFs
∫ T

t
eβu|Yk−1(u)|2du

)%/2 .
By Doob’s maximal inequality

hn(t) ≤ CE

(
sup
s∈[t,T ]

|Φ(s)|%
)

+ CE

( sup
s∈[t,T ]

∫ T

s
|f0(s, u)|2du

)%/2
+ C sup

1≤k≤n
E

[(∫ T

t
|Yk−1(u)|2du

)%/2]
.

33



Since % > 2, by Jensen’s inequality,

hn(t) ≤ C + C

∫ T

t
|hn(u)|du.

Gronwall’s inequality leads to

sup
1≤k≤n

E

[
sup
s∈[0,T ]

|Yk(s)|%
]
≤ C

for any n, that is

sup
n∈N

E

[
sup
s∈[0,T ]

|Yk(s)|%
]
≤ C.

By Lemma 4, we also have for almost all t ∈ [0, T ]

eβt|Yn(t)− Ym(t)|2 ≤ CEFt
∫ T

t
eβs|Yn−1(s)− Ym−1(s)|2ds.

Define

h(t) = lim sup
m,n→+∞

E

[
sup
s∈[t,T ]

|Yn(s)− Ym(s)|2
]
.

Arguing as above, with Fatou’s lemma and the preceding uniform (in n and s) estimate, we
have

h(t) ≤ C
∫ T

t
h(s)ds =⇒ h(t) = 0.

Hence there is a càdlàg adapted process Y such that

lim
n→+∞

E

[
sup
s∈[0,T ]

|Yn(s)− Y (s)|2
]

= 0.

And from the above estimate, we have

E

[
sup
s∈[0,T ]

|Y (s)|%
]
≤ ∞.

This achieves the proof of this theorem. �
Let us emphasize that our conditions imply that a.s. t 7→ Φ(t) is continuous. Straight-

forward adaptations of the steps 1 and 3 (and the second part of Lemma 4) show that it is
possible to extend this point to the Lp-setting if the generator f depends only on (t, s, y),
but not on z nor u. We only need to suppose that α ∈ (0, 1/q] where q is the Hölder
conjugate of p.

4 Duality and comparison principles for BSVIE and linear
BSVIE.

In this section we study several properties of the solution of a BSVIE.
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4.1 A duality result

The duality principle of linear stochastic integral equations ([36, Section 4]) plays an im-
portant role for comparison principle or optimal control problem (see [37, Section 5]). This
result is based on the notion of FSVIE (see among many others [3, 4, 13, 14, 25, 28]). In
[36, 37], the next FSVIE is considered: for t ∈ [0, T ]

X(t) = Ψ(t) +

∫ t

0
A0(t, s)X(s)ds+

∫ t

0

k∑
i=1

Ai(t, s)X(s)dWi(s),

where Ai(·, ·) ∈ L∞([0, T ];L∞F (0, T ;Rd×d)) for i = 0, 1, . . . , k. It means that Ai : Ω ×
[0, T ]2 → Rd×d is bounded, FT⊗B([0, T ]2)-measurable and for almost all t ∈ [0, T ], Ai(t, ·) is
F-adapted. Then for any Ψ ∈ L2

F (0, T ;Rd), there exists a unique solutionX in L2
F (0, T ;Rd).

Here we consider the extension: for t ∈ [0, T ]

X(t) = Ψ(t) +

∫ t

0
A0(t, s)X(s)ds+

∫ t

0

k∑
i=1

Ai(t, s)X(s−)dWi(s)

+

∫ t

0

∫
E
B(t, s, e)X(s−)π̃(de, ds). (39)

We keep the same conditions on the Ai. We assume that B : Ω×[0, T ]2×E → Rd is bounded
and such that for almost all t ∈ [0, T ], B(t, ·, ·) is in Gloc(µ). Since we are interesting by
càdlàg processes X, we use the setting of [28, Condition 4.1]. Hence we also suppose that
Ai and B are differentiable w.r.t. t with a bounded derivative (uniformly in (ω, t, s)). Thus
we can apply [28, Theorem 4.3]: if Ψ is a càdlàg process, then there exists a unique càdlàg
solution X of the preceding FSVIE. The key point is that X is a càdlàg process, hence for
a.e. t ∈ [0, T ], X(t) = X(t−).

Lemma 5 Let Ψ(·) ∈ L2
F(0, T ;Rd) ∩ D2(0, T ) and Φ(·) ∈ L2((0, T ) × Ω;Rd). Let X ∈

L2(0, T ;Rd) be the càdlàg solution of the linear FSVIE (39). We also consider the BSVIE:

Y (t) = Φ(t)−
∫ T

t
Z(t, s)dWs −

∫ T

t

∫
E
U(t, s, e)π̃(de, ds)−

∫ T

t
dM(t, s)

+

∫ T

t

[
A0(s, t)>Y (s) +

k∑
i=1

Ai(s, t)
>Zi(s, t) +

∫
E
B(s, t, e)>U(s, t, e)µ(de)

]
ds.

Then

E
∫ T

0
〈Ψ(t), Y (t)〉 dt = E

∫ T

0
〈X(t),Φ(t)〉 dt.
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Proof. The arguments are the same as [23, 37].

E
∫ T

0
〈Ψ(t), Y (t)〉 dt

= E
∫ T

0
〈X(t), Y (t)〉 dt− E

∫ T

0

∫ t

0
〈A0(t, s)X(s), Y (t)〉 dsdt

−E
∫ T

0

∫ t

0

k∑
i=1

〈Ai(t, s)X(s−), Y (t)〉 dWi(s)dt

−E
∫ T

0

∫ t

0

∫
E
〈B(t, s, e)X(s−), Y (t)〉 π̃(de, ds)dt.

Now by Fubini’s theorem

E
∫ T

0

∫ t

0
〈A0(t, s)X(s), Y (t)〉 dsdt = E

∫ T

0

〈
X(t),

∫ T

t
A0(s, t)>Y (s)ds

〉
dt.

Since (Y, Z, U,M) is a M-solution,

Y (t) = E(Y (t)) +

∫ t

0
Z(t, s)dWs +

∫ t

0

∫
E
U(t, s, e)π̃(de, ds) +

∫ t

0
dM(t, s).

Let us plug this into the Brownian integral and use the orthogonality of W , π̃ and M :

E
∫ T

0

∫ t

0

k∑
i=1

〈Ai(t, s)X(s−), Y (t)〉 dWi(s)dt

= E
∫ T

0

∫ t

0

k∑
i=1

〈Ai(t, s)X(s−), Zi(t, s)〉 dsdt

= E
∫ T

0

〈
X(t−),

∫ T

t

k∑
i=1

Ai(s, t)
>Zi(s, t)ds

〉
dt.

For the Poisson integral we obtain:

E
∫ T

0

∫ t

0

∫
E
〈B(t, s, e)X(s−), Y (t)〉 π̃(de, ds)dt

= E
∫ T

0

〈
X(t−),

∫ T

t

∫
E
B(s, t, e)>U(s, t, e)µ(de)ds

〉
dt.

Recall that X(t) = X(t−) for almost every t ∈ [0, T ]. Then we have

E
∫ T

0
〈Ψ(t), Y (t)〉 dt = E

∫ T

0

〈
X(t),

[
Φ(t)−

∫ T

t
dM](t, s)

]〉
dt

= E
∫ T

0
〈X(t),Φ(t)〉 dt

and the desired result is proved. �
Let us emphasize that the role of the càdlàg property of X is important here. Thus

it should be possible to relax the regularity assumption on the coeffcients Ai or B of the
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FSVIE. But as for a BSVIE, the regularity of the paths of X is not a direct property nor
an easy stuff.

Let us finish this part with some formula for linear BSVIE in dimension one. Contrary
to the linear BSDE, we do not have in general an explicit form for the first component of
the solution. Let us consider a particular case where the generator is of the form:

f(t, s, y, z, ψ) = g(t, s, y) + h(s)z +

∫
E
ψ(e)κ(s, e)µ(de), (40)

Thus we consider the BSVIE:

Y (t) = Φ(t) +

∫ T

t

[
g(t, s, Y (s)) + h(s)Z(t, s) +

∫
E
κ(s, e)U(t, s)µ(de)

]
ds

−
∫ T

t
Z(t, s)dWs −

∫ T

t

∫
E
U(t, s, e)π̃(de, ds)−

∫ T

t
dM(t, s). (41)

Lemma 6 Assume that h is a bounded process and that there exists a constant C0 such
that P ⊗ Leb ⊗ µ-a.e., −1 < C0 ≤ κ(t, e) and |κ(t, e)| ≤ ϑ(e) where ϑ belongs to the space
L∞µ ∩L2

µ. We also suppose that f satisfies (H1) and that the required integrability conditions
on Φ and g(·, ·, 0) hold. Then there exists a probability Q equivalent to P such that a.s. for
any t ∈ [0, T ]

Y (t) = EQ
[
Φ(t) +

∫ T

t
g(t, s, Y (s))ds

∣∣∣∣Ft] .
Proof. We know that the solution Y can be represented with the formula Y (t) = λ(t, t)

where λ is the first part of the solution of the parametrized BSDE (10): for a fixed t ∈ [0, T ]

and t ≤ r ≤ T

λ(t, r) = Φ(t) +

∫ T

r
[g(t, s, Y (s)) + h(s, 0, z(t, s), u(t, s))] ds

−
∫ T

r
z(t, s)dWs −

∫ T

r

∫
E
u(t, s, e)π̃(de, ds)−

∫ T

r
dm(t, s)

= Φ(t) +

∫ T

r
g(t, s, Y (s))ds+

∫ T

r
β(t, s)z(t, s)ds

+

∫ T

r
h(s, 0, 0, u(t, s))ds

−
∫ T

r
z(t, s)dWs −

∫ T

r

∫
E
u(t, s, e)π̃(de, ds)−

∫ T

r
dm(t, s).

Let us write this BSDE in a different way:

λ(t, r) = Φ(t) +

∫ T

r
[g(t, s, Y (s))] ds

+

∫ T

r
h(s)z(t, s)ds−

∫ T

r
z(t, s)dWs

+

∫ T

r

∫
E
κs(e)u(t, s)µ(de)ds−

∫ T

r

∫
E
u(t, s, e)π̃(de, ds)−

∫ T

r
dm(t, s).
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If we consider the martingale

N(r) =

∫ r

0
h(s)dWs +

∫ r

0

∫
E
κ(s, e)π̃(de, ds)

and if we denote by E the solution of the linear SDE:

dEr = Er−

[
h(r)dWr +

∫
E
κ(r, e)π̃(de, dr)

]
= Er−dN(r),

then E is the Doléans-Dade exponential of N . From our assumption, if we define Q = ETP,
Q is a probability measure equivalent to P. Moreover the Girsanov theorem implies that∫ T

r
h(s)z(t, s)ds−

∫ T

r
z(t, s)dWs

+

∫ T

r

∫
E
κ(s, e)u(t, s)µ(de)ds−

∫ T

r

∫
E
u(t, s, e)π̃(de, ds)−

∫ T

r
dm(t, s)

is a Q-martingale. Taking conditional expectation w.r.t. Fr under probability measure Q
leads to: for any r ∈ [t, T ]

λ(t, r) = EQ
[
Φ(t) +

∫ T

r
g(t, s, Y (s))ds

∣∣∣∣Fr] .
In particular for r = t, we get the desired result. �

Let us emphasize that the probability measure Q depends only on h and κ. If we consider
a more general linear BSVIE, then Q may depend on t ∈ [0, T ] and thus we cannot obtain
a similar result with these arguments.

4.2 Comparison principle

In this section, the dimension d is equal to one. Let us remark that the result of [34,
Proposition 3.3] still holds in our setting since it is based on the comparison principle for
BSDEs and this property has been proved in [16, 18]. In other words if we consider the
BSVIE (15) where the generator f does not depend on y, ζ and θ:

Y (t) = Φ(t) +

∫ T

t
f(t, s, Z(t, s), U(t, s))ds−

∫ T

t
Z(t, s)dWs

−
∫ T

t

∫
E
U(t, s, e)π̃(de, ds)−

∫ T

t
dM(t, s).

the comparison principle holds.

Proposition 2 For i = 0, 1, let f i : Ω×∆c×Rk× (L1
µ +L2

µ)→ R satisfy (H1). Moreover

f0(t, s, z, ψ) ≤ f1(t, s, z, ψ), ∀(t, z, ψ) ∈ [0, s]× Rk × (L1
µ + L2

µ), a.s., a.e. s ∈ [0, T ].

Then for any Φi ∈ LpFT (0, T ) with Φ0(t) ≤ Φ1(t) a.s., t ∈ [0, T ], the solutions (Y i, Zi, ψi,M i) ∈
Hp[0, T ] of (15) verify

Y 0(t) ≤ Y 1(t), a.s., t ∈ [0, T ].
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Proof. Let us consider λi(t, ·) solution of the parametrized BSDE (10) with data (Φi, f i).
From our setting and the standard comparison principle for BSDEs (see [8, Theorem 3.2.1],
[26, Proposition 5.32] or [16, 18]), we obtain that a.s. for any s ∈ [t, T ], λ0(t, s) ≤ λ1(t, s).
Sending s to t, since Y i(t) = λi(t, t), we obtain the desired result. �

Nevertheless to extend this result for generators depending also on y, some extra mono-
tonicity conditions are required. For example in [34, Theorem 3.4], f is supposed to be
bounded (from above or from below) by a non decreasing w.r.t. y generator. The argu-
ments used in [34] can be extended easily to our jump setting for p = 2. However for p < 2,
we have a priori the same difficulty In the proof and the extension of Theorem 3. Moreover
in the in progress framework of singular BSDEs, this monotone condition w.r.t. y is not
verified. Thereby we do not develop this point here.

If this “monotone” assumption does not hold, as in [34, Theorem 3.9], the generator f
is given by (40), namely is linear w.r.t. z and ψ:

f(t, s, y, z, ψ) = g(t, s, y) + h(s)z +

∫
E
ψ(e)κ(s, e)µ(de),

where h is a bounded process and κ : Ω × [0, T ] × E → R is progressively measurable and
such that P ⊗ Leb ⊗ µ-a.e., −1 ≤ κ(t, e) and |κ(t, e)| ≤ ϑ(e) where ϑ belongs to the space
L∞µ ∩ L2

µ. Our comparison result is a extension to the jump case of [34, Theorems 3.8 and
3.9] for BSVIE (4) where f is given by (40), that is f is linear w.r.t. (z, ψ).

Proposition 3 Consider two drivers gi : Ω × ∆ × R → R satisfying (H1). We suppose
that a.s. for a.e. s ∈ [0, T ] and for any 0 ≤ t ≤ τ ≤ s and any y ∈ R:

g1(t, s, y)− g0(t, s, y) ≥ g1(τ, s, y)− g0(τ, s, y) ≥ 0. (42)

Moreover for either i = 0 or i = 1

(gi(t, s, y)− gi(t, s, y′))(y − y′) ≥ (gi(τ, s, y)− gi(τ, s, y′))(y − y′) (43)

again a.s. for a.e. s ∈ [0, T ] and for any 0 ≤ t ≤ τ ≤ s and any y, y′ in R. Furthermore
there exists a continuous nondecreasing function ρ : [0, T ] → [0,+∞) with ρ(0) = 0 such
that a.s. for a.e. s ∈ [0, T ] and for any 0 ≤ t, t′ ≤ s

|gi(t, s, y)− gi(t, s, y′)− gi(t′, s, y) + gi(t′, s, y′)| ≤ ρ(|t− t′|)× |y − y′|. (44)

If a.s. for 0 ≤ t ≤ τ ≤ T ,

Φ1(t)− Φ0(t) ≥ Φ1(τ)− Φ0(τ) ≥ 0, (45)

then the corresponding solutions of the BSVIEs (4) with generator f i given by (40) with gi

instead of g, verify for any t ∈ [0, T ]:

Y 1(t) ≥ Ȳ 0(t), a.s.
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Proof. Let us first copy the arguments of the proof of [34, Theorem 3.9]. Suppose that g0

is differentiable and (43) holds for i = 0. Then we have

Y 1(t)− Y 0(t) = Φ1(t)− Φ0(t) +

∫ T

t

[
g1(t, s, Y 1(s))− g0(t, s, Y 1(s))

]
ds

+

∫ T

t
A(t, s)(Y 1(s)− Y 0(s))ds+

∫ T

t
h(s)(Z1(t, s)− Z0(t, s))ds

+

∫ T

t

∫
E
κ(s, e)(ψ1(t, s, e)− ψ0(t, s, e))µ(de)

−
∫ T

t
(Z1(t, s)− Z0(t, s))dWs −

∫ T

t

∫
E
(ψ1(t, s, e)− ψ0(t, s, e))π̃(de, ds)

−
∫ T

t
d(M1(t, s)−M0(t, s)) (46)

where

A(t, s) =
g0(t, s, Y 1(s))− g0(t, s, Y 0(s))

Y 1(s)− Y 0(s)
1Y 1(s)6=Y 0(s), 0 ≤ t ≤ s ≤ T.

From (H1), A is a bounded process. In other words we want to prove that the solution of
the BSVIE

∆Y (t) = ∆Φ(t) +

∫ T

t
A(t, s)∆Y (s)ds−

∫ T

t
d∆M(t, s)

+

∫ T

t
h(s)∆Z(t, s)ds−

∫ T

t
∆Z(t, s)dWs

+

∫ T

t

∫
E
κ(s, e)∆ψ(t, s, e)µ(de)−

∫ T

t

∫
E

∆ψ(t, s, e)π̃(de, ds)

satisfies: for any t ∈ [0, T ], a.s. ∆Y (t) ≥ 0. Here

∆Φ(t) = Φ1(t)− Φ0(t) +

∫ T

t

[
g1(t, s, Y 1(s))− g0(t, s, Y 1(s))

]
ds.

From our assumptions, for 0 ≤ t ≤ τ ≤ T , ∆Φ(t) ≥ ∆Φ(τ) ≥ 0, A(t, s)−A(τ, s) ≥ 0 and

|A(t, s)−A(t′, s)| ≤ ρ(|t− t′|).

Now we can follow the proof of [34, Theorem 3.8]. We consider a partition Π = {tk, 0 ≤
k ≤ N} of [0, T ] and assume first that

AΠ(t, s) =

N∑
k=1

A(tk−1, s)1(tk−1,tk∧s](t), ΦΠ(t) =

N∑
k=1

φk1(tk−1,tk](t)

where AΠ still satisfies AΠ(t, s)−AΠ(τ, s) ≥ 0 and φk are FT -measurable r.v. such that

φ1 ≥ φ2 ≥ . . . ≥ φN−1 ≥ φN ≥ 0.

Let (Y Π(·), ZΠ(·, ·), UΠ(·, ·),MΠ(·, ·)) be the solution of the BSVIE:

Y Π(t) = ΦΠ(t) +

∫ T

t
AΠ(t, s)Y Π(s)ds+

∫ T

t
h(s)ZΠ(t, s)ds+

∫ T

t

∫
E
κ(s, e)ψΠ(t, s, e)µ(de)

−
∫ T

t
ZΠ(t, s)dWs −

∫ T

t

∫
E
ψΠ(t, s, e)π̃(de, ds)−

∫ T

t
dMΠ(t, s). (47)
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If we consider the BSDE

YN (t) = φN +

∫ T

t

[
A(tN−1, s)YN (s) + h(s)ZN (s) +

∫
E
κ(s, e)UN (s, e)µ(de)

]
ds

−
∫ T

t
ZN (s)dWs −

∫ T

t

∫
E
UN (s, e)π̃(de, ds)−

∫ T

t
dMN (s)

then for tN−1 < t ≤ s ≤ T ,

(YN (s), ZN (s), UN (s, e),MN (s)) = (Y Π(s), ZΠ(t, s), UΠ(t, s, e),MΠ(t, s))

solves the BSVIE (47) on the interval (tN−1, tN ]. By the comparison principle for BSDE,
we have a.s. for any s ∈ (tN−1, tN ], Y Π(s) = YN (s) ≥ 0. Since all martingales are càdlàg
processes,

Y Π(t+N−1) = φN +

∫ T

tN−1

[
A(tN−1, s)Y

Π(s) + h(s)ZN (s) +

∫
E
κ(s, e)UN (s, e)µ(de)

]
ds

−
∫ T

tN−1

ZN (s)dWs −
∫ T

tN−1

∫
E
UN (s, e)π̃(de, ds)−

∫ T

tN−1

dMN (s) ≥ 0.

Now the BSVIE on (tN−2, tN−1] can be written as follows:

Y Π(t) = φN−1 +

∫ T

t
A(tN−2, s)Y

Π(s)ds+

∫ T

t
h(s)ZΠ(t, s)ds−

∫ T

t
ZΠ(t, s)dWs

+

∫ T

t

∫
E
κ(s, e)ψΠ(t, s, e)µ(de)−

∫ T

t

∫
E
ψΠ(t, s, e)π̃(de, ds)−

∫ T

t
dMΠ(t, s)

= φN−1 − φN + Y Π(t+N−1) +

∫ T

tN−1

[A(tN−2, s)−A(tN−1, s)]Y
Π(s)ds

+

∫ T

tN−1

h(s)
[
ZΠ(t, s)− ZN (s)

]
ds−

∫ T

tN−1

(ZΠ(t, s)− ZN (s))dWs

+

∫ T

tN−1

∫
E
κ(s, e)

[
ψΠ(t, s, e)− UN (s, e)

]
µ(de)

−
∫ T

tN−1

∫
E

[
ψΠ(t, s, e)− UN (s, e)

]
π̃(de, ds)−

∫ T

tN−1

d(MΠ(t, s)−MN (s))

+

∫ tN−1

t
A(tN−2, s)Y

Π(s)ds+

∫ tN−1

t
h(s)ZΠ(t, s)ds−

∫ tN−1

t
ZΠ(t, s)dWs

+

∫ tN−1

t

∫
E
κs(e)ψ

Π(t, s, e)µ(de)−
∫ tN−1

t

∫
E
ψΠ(t, s, e)π̃(de, ds)−

∫ tN−1

t
dMΠ(t, s).

We consider the terminal condition

ξN = φN−1 − φN + Y Π(t+N−1) +

∫ T

tN−1

[A(tN−2, s)−A(tN−1, s)]Y
Π(s)ds

and the solution (ỸN , Z̃N , ŨN , M̃N ) of the linear BSDE on [tN−1, T ]:

ỸN (t) = ξN +

∫ T

t
h(s)Z̃N (s)ds−

∫ T

t
Z̃N (s)dWs

+

∫ T

t

∫
E
κ(s, e)ŨN (s, e)µ(de)−

∫ T

t

∫
E
ŨN (s, e)π̃(de, ds)−

∫ T

t
dM̃N (s).
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By our conditions, ξN is non-negative and thus a.s. ỸN (t) ≥ 0 on [tN−1, T ]. By uniqueness
of adapted solutions to the BSVIE, we have

ZΠ(t, s) = ZN (s) + Z̃N (s), UΠ(t, s) = UN (s) + ŨN (s), MΠ(t, s) = MN (s) + M̃N (s)

for (t, s) ∈ (tN−2, tN−1]× (tN−1, tN ] and our previous BSVIE becomes

Y Π(t) = ỸN (tN−1) +

∫ tN−1

t
A(tN−2, s)Y

Π(s)ds

+

∫ tN−1

t
h(s)ZΠ(t, s)ds−

∫ tN−1

t
ZΠ(t, s)dWs

+

∫ tN−1

t

∫
E
κ(s, e)ψΠ(t, s, e)µ(de)−

∫ tN−1

t

∫
E
ψΠ(t, s, e)π̃(de, ds)−

∫ tN−1

t
dMΠ(t, s).

Again we solve the BSDE:

YN−1(t) = ỸN (tN−1) +

∫ T

t

[
A(tN−2, s)YN−1(s) + h(s)ZN−1(s) +

∫
E
κ(s, e)UN−1(s, e)µ(de)

]
ds

−
∫ T

t
ZN−1(s)dWs −

∫ T

t

∫
E
UN−1(s, e)π̃(de, ds)−

∫ T

t
dMN−1(s)

on [tN−2, tN−1] and by uniqueness and the comparison principle for BSDE, we have

Y Π(t) = YN−1(t) ≥ 0, t ∈ [tN−2, tN−1].

By induction we obtain that Y Π(t) ≥ 0, t ∈ [0, T ]. The stability estimate for BSVIE
and the time regularity condition on A imply that

lim
‖Π‖→0

sup
t∈[0,T ]

E
∣∣Y Π(t)− Y (t)

∣∣p = 0.

The non-negativity of Y follows directly. �
In [34, Section 3.2], the authors also study the comparison principle for M-solution of a

BSVIE of the form:

Y (t) = Φ(t) +

∫ T

t
(g(t, s, Y (s)) + C(s)Z(s, t))ds−

∫ T

t
dM](t, s).

Up to some technical conditions, the proof of their results is based on the duality principle
(see Section 4.1). The extension to the jump case can be proved following their scheme ([34,
Theorems 3.12 and 3.13]).
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