
HAL Id: hal-02146375
https://hal.science/hal-02146375v1

Submitted on 3 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Complex Product Line Variability Modelling:
Mining Relationships from Non-Boolean Descriptions

Jessie Carbonnel, Marianne Huchard, Clémentine Nebut

To cite this version:
Jessie Carbonnel, Marianne Huchard, Clémentine Nebut. Towards Complex Product Line Variability
Modelling: Mining Relationships from Non-Boolean Descriptions. Journal of Systems and Software,
2019, 156, pp.341-360. �10.1016/j.jss.2019.06.002�. �hal-02146375�

https://hal.science/hal-02146375v1
https://hal.archives-ouvertes.fr

Towards Complex Product Line Variability Modelling:
Mining Relationships from Non-Boolean Descriptions

Jessie Carbonnela, Marianne Hucharda, Clémentine Nebuta

aLIRMM, University of Montpellier and CNRS
161 rue Ada, 34095 Montpellier, France

Abstract

Software product line engineering relies on systematic reuse and mass customisation to reduce the development
time and cost of a software system family. The extractive adoption of a product line requires to extract variability
information from the description of a collection of existing software systems to model their variability. With the
increasing complexity of software systems, software product line engineering faces new challenges including vari-
ability extraction and modelling. Extensions of existing boolean variability models, such as multi-valued attributes
or UML-like cardinalities, were proposed to enhance their expressiveness and support variability modelling in com-
plex product lines. In this paper, we propose an approach to extract complex variability information, i.e., involving
features as well as multi-valued attributes and cardinalities, in the form of logical relationships. This approach is
based on Formal Concept Analysis and Pattern Structures, two mathematical frameworks for knowledge discovery
that bring theoretical foundations to complex variability extraction algorithms. We present an application on product
comparison matrices representing complex descriptions of software system families. We show that our method does
not suffer from scalability issues and extracts all pertinent relationships, but that it also extracts numerous accidental
relationships that need to be filtered.

Keywords: Complex Software Product Line, Reverse Engineering, Variability Modelling, Extended Feature Models,
Formal Concept Analysis, Pattern Structures

1. Introduction

Software Product Line Engineering (SPLE) [55] is an approach based on systematic reuse and mass customisation
that aims at reducing the development time and cost of a set of similar software systems. The core of this approach
is based on the development of a generic software architecture, on which variable and reusable software artefacts can
be plugged depending on given requirements. In this way, several different yet similar software systems, also called
software variants or a software family, can be automatically derived. The generic architecture, the reusable artefacts
and the set of software systems that can be derived form the Software Product Line (SPL). In this process, variability
modelling is a central task that documents common and variable artefacts, along with the way they can be combined to
constitute a valid software system. Representing artefacts by features, a feature being a distinguishable characteristic
of one or several software systems, is the most commonly used variability modelling approach, where feature models
(FMs) [34] are the de facto standard models. FMs organise a set of features in a hierarchy representing several levels
of details, and express constraints between these features to depict their possible compatibility in a software system.
Basic FMs, also called boolean FMs, only represent boolean features, i.e., characteristics that can be present or not
in a software system. However, the growing importance of ultra large-scale systems and systems-of-systems affects
traditional software product line approaches, and gives new challenges in the domain of complex software product lines
[33]. Limitations regarding expressiveness of boolean FMs have been addressed, and extensions to overstep them have

Email addresses: jcarbonnel@lirmm.fr (Jessie Carbonnel), huchard@lirmm.fr (Marianne Huchard), nebut@lirmm.fr (Clémentine
Nebut)

Preprint submitted to Elsevier May 28, 2019

been proposed, e.g., feature cardinalities [19], group cardinalities [18, 57], or multi-valued attributes [19, 7, 9]. Aside
from these extended FMs, other types of variability models try to tackle the problem of representing complex SPLs,
such as orthogonal variability models [55] or the common variability language [32], with separation of concerns and
by using references to connect several variability models.

The survey made by Berger et al. in 2013 [11] shows that a significant part of companies opts for an extractive (or
bottom up) adoption of SPL. This means that they perform a migration from individually developed software variants,
possibly without reuse effort, to an SPL approach [38]. Migrating from an existing collection of software variants to an
SPL is an arduous task that implies to design a variability model based on descriptions of the existing software family
[37]. Numerous papers addressing automated or semi-automated synthesis of FMs from software variant descriptions
can be found in the literature [1, 58, 21, 2, 30, 31, 22, 44, 42, 48]. However, these papers only focus on boolean
FM synthesis. In this paper, we address the problem of extracting complex variability information from software
variant descriptions, as a part of the process of reverse engineering extended FMs. We focus on two kinds of complex
variability information that were introduced through two FM extensions: UML-like cardinalities and multi-valued
attributes. To the best of our knowledge, only Becan et al. [8] work on extracting complex variability models (in the
form of FMs extended with attributes) from software system descriptions, by taking into account boolean features as
well as multi-valued attributes. Here, we propose a method to extract logical relationships that can then be used to
build an FM including complex variability; however, the synthesis of extended FMs is not studied in this paper.

The proposed extraction approach is based on Formal Concept Analysis (FCA) [26], a mathematical framework for
data analysis, information management and knowledge representation, which is widely used for knowledge discovery
in data [54]. From a set of objects described by binary attributes, FCA organises the objects depending on the attributes
they share in a structure called a concept lattice. Concept lattices naturally highlight constraints between the binary
attributes and therefore support the extraction of logical relationships that are true for the considered set of objects.
FCA has numerous applications in software engineering [62, 43, 52, 64, 63], including boolean FM extraction from
software system descriptions [58, 2, 17]. However, none of those existing FCA-based approaches deals with complex
variability. In previous work [17], we studied the parallel between boolean FMs and FCA structures, and proposed a
sound and complete FCA-based method to extract boolean variability information and support boolean FM synthesis.
In this paper, we investigate an FCA extension to broaden the previous extraction method and take into account
complex variability information. More specifically, we study Pattern Structures [25], an extension of traditional FCA
which allows to consider more complex data than binary attributes to describe the objects, as for instance multi-
valued attributes. We design a method that uses FCA and Pattern Structures to extract logical relationships involving
features, but also cardinalities and multi-valued attributes. The method proposed here is able to take into account
complex software system descriptions, i.e., descriptions that are not restricted to boolean characteristics. As complex
descriptions, we study Product Comparison Matrices (PCMs), a formalism displaying products of a same family
against both boolean and multi-valued characteristics in a tabular way. We used three existing datasets already studied
in the product line community: PCMs from Wikipedia [59], Robocode [46] and JHipster [29]. Our approach offers
a mathematical framework for complex variability information extraction based on a unique and canonical structure.
The types of logical relationships that can be extracted with our approach include the ones extracted by Becan et
al. [8] (i.e., feature groups and complex binary implications), as well as complex co-occurrences and mutex: these
relationships correspond to the logical semantics of extended FMs, as we will show in this paper. This work is a
step towards the global objective of facilitating the transition of complex software variants that have been individually
developed, to software reuse and mass-customisation approaches. This paper extends previous work presented in [16]
by defining and evaluating the complex variability extraction approach.

The remainder of this paper is organised as follows. Logical relationships present in boolean FMs and their exten-
sions for complex variability modelling are presented in Section 2, where we identify the kinds of logical relationships
they represent. In Section 3, we present the theoretical bases of Formal Concept Analysis and Pattern Structures. We
expose and illustrate our extraction approach in Section 4, and evaluate its applicability and usefulness in Section 5.
Related work is discussed in Section 6, and Section 7 concludes the paper.

2. Identifying Logical Relationships in Feature Models and two of their Extensions

In this section, we study the logical semantics in boolean feature models and in two of their prevalent extensions
which have been proposed to document and manage more complex variability information.

2

2.1. Logical Relationships in Boolean Feature Models
Boolean Feature Models (FMs) [34] are a family of graphical languages enabling to define the scope of a product

line in terms of features (i.e., distinguishable characteristics or behaviours) and constraints between these features.
Figure 1 presents a boolean FM about web browsers providing accessibility features.

WebBrowser

Navigation TextToSpeech VoiceControl

Tabbing Spatial Classic Advanced

Xor Or

Requires Exclude

Optional Mandatory

CustomisedTabbing

Figure 1: Boolean FM about web browsers

A boolean FM represents a finite set of features in a hierarchy (called a feature tree) expressing child-parent
(refinement) relationships. Boolean FMs express constraints to guide the user into selecting a subset of the presented
features. Constraints can be represented graphically by decorating the edges of the feature tree: these constraints show
how the selection of a feature may affect the selection of its child features. A black disc forces the selection of the
child feature when the parent feature is selected (mandatory relationship), whereas a white circle indicates that the
child feature can be optionally selected (optional relationship). Several child features can be grouped, a group being
depicted by an arc indicating the number of features which can be selected: a black-filled arc states that at least one
child feature of the group has to be selected (or-group), and a non-filled arc shows that exactly one child feature of the
group has to be selected (xor-group). Finally, additional constraints that cannot be expressed on the feature tree edges
can be added. They are typically requires and exclude constraints, and are called cross-tree constraints. The boolean
FM of Figure 1 states that: all web browsers support at least one navigation strategy amongst tabbing navigation
(navigating between focusable elements using the tabular key) and spatial navigation (navigating between focusable
elements using the arrow keys). If the web browser allows tabbing navigation, then the user has to customise it (i.e.,
indicate which elements should have the focus). A text to speech feature may be optionally proposed, which can be
either classic or advanced. A web browser may also provide a voice control feature. The advanced text to speech
requires voice control, but voice control is incompatible with spatial navigation. A subset of features satisfying all
the FM constraints is called a valid configuration of the FM. The set of all valid configurations of an FM is called the
scope of the product line (i.e., the description of all derivable products) or its configuration semantics.

FMs also give knowledge about the modelled domain and the interactions of some of its concepts: this knowl-
edge is called the ontological semantics of the FM [61]. From a strictly logical point of view, moving the feature
CustomisedTabbing of Figure 1 under the root feature WebBrowser as an optional child feature, and adding two “re-
quires” cross-tree constraints between the two features CustomisedTabbing and Tabbing leads to an equivalent FM
(i.e., representing the same set of valid configurations). But the resulting refinement relationship (CustomisedTab-
bing refines WebBrowser rather than Tabbing) is different: a part of the ontological semantics of the original FM is
thus lost by this transformation.

Extracting FM relationships that convey correct ontological knowledge from a set of variant descriptions without
using external ontologies or relying on an expert intervention is quite infeasible. Besides, the parallel between boolean
FMs and propositional logic has been widely studied [45, 21, 10]; writing boolean FMs in the form of propositional
formulas allows to represent the logical semantics of the FM constraints and to depict feature compatibility through
logical relationships. Extracting logical relationships from a set of variant descriptions is easier and less error-prone
than extracting ontological FM relationships. In fact, several different FM ontological semantics may correspond to
a single FM logical semantics, and it is difficult to automatically detect the most meaningful one. For these reasons,
we focus in this paper on the extraction of variability information in the form of logical relationships. Assessing the

3

ontological knowledge that may correspond to the extracted logical semantics by relying on experts and ontological
resources is left as future work.

Table 1: Logical semantics of boolean FM constraints; p represents a parent feature, c, ci a child feature of p, and fi any feature
FM constraints Logical semantics
child-parent c⇒ p
optional none
mandatory p⇒ c
or-group p⇒ {c1 ∨ ... ∨ cn}

xor-group p⇒ {c1 ⊕ ... ⊕ cn}

requires f1 ⇒ f2
exclude f1 ⇒ ¬ f2

Table 1 shows the logical semantics of boolean FMs as presented in [10, 21, 53]. Therefore, we can identify in
boolean FMs the following logical relationships between features: binary implications f1 ⇒ f2 (from child-parent,
mandatory and requires relationships), mutex f1 ⇒ ¬ f2 (from exclude constraints), the particular case of double
implications that we call co-occurrences f1 ⇔ f2 (from double requires relationships), or-groups and xor-groups.

2.2. Logical Relationships in Extended Feature Models
In what follows, we consider the extended FM of Figure 2. The FM represents web browsers such as the FM

in Figure 1, but with some additional information. The feature VoiceControl now possesses an attribute Version

of type integer that defines the version number of the used voice control software. The cardinality of the feature
CustomisedTabbing states that a web browser may define several tabbing navigation strategies. The two group car-
dinalities constrain the number of features that can be selected in the corresponding group. The constraint Advanced
⇒ VoiceControl::Version ≥ 2 is a requires constraint involving a feature and an attribute value.

WebBrowser

Navigation TextToSpeech

Version (int)

VoiceControl

Tabbing Spatial Classic Advanced

CustomisedTabbing

[1..n]

<1-1><1-2>

Advanced⇒ VoiceControl::Version ≥ 2

Figure 2: Extended feature model with a feature attribute, a feature cardinality and two group cardinalities

2.2.1. Attributes
An extension of boolean FMs proposes to add multi-valued attributes. An attribute possesses a type (e.g., integer,

string, enumeration) and is associated with one feature of the FM. This extension enables to model more detailed
information without complexifying the FM [19]. In fact, in an “all-feature view” of the FM, each attribute value
would be represented as one feature. In the cases where the possible values are too numerous (e.g., numerical values),
the number of features would be too important and the FM unintelligible. For instance, introducing an attribute
Version of type integer in the feature VoiceControl reduces the number of features necessary to represent this
information, as shown in Figure 3.

4

VoiceControl

Version
VoiceControl

Version (int)

Figure 3: Representing numerous values with features (left-hand side) versus with an attribute (right-hand side)

Introducing attributes and their values in FMs allows to express more complex variability information, i.e., requires
and exclude constraints between features and/or attribute values. In our example of Figure 2, the constraint Advanced
⇒ VoiceControl::Version ≥ 2 involves a feature and an attribute value. As stated by their name, feature-groups
and feature tree are only defined over the set of features, so they do not involve attributes.

To sum up, the variability information induced by attributes thus corresponds to the following logical relationships:
binary implications, co-occurrences and mutex between a feature and an attribute value, or between two attribute
values. We call these additional logical relationships augmented variability information.

2.2.2. Cardinalities
Another extension of FMs introduces UML-like cardinalities on features and on feature-groups [20].

Feature-group cardinalities depict the minimum and the maximum number of sub-features that can be selected in
groups (denoted 〈min−max〉). Therefore, boolean FM group notations for xor-groups and or-groups do not stand any
more: xor-groups are defined by a cardinality 〈1 − 1〉, while or-groups by a cardinality 〈1 − n〉. This can be written in
propositional logic by representing each combination of sub-features of the group that is allowed by the cardinality.
Let p be a feature, and { f1, f2, f3} be a feature-group with p as a parent and associated with the cardinality 〈2 − 3〉.
The logical relationship representing this group is:

p→ ((f1 ∧ f2 ∧ ¬ f3) ∨ (f1 ∧ f3 ∧ ¬ f2)∨ (f2 ∧ f3 ∧ ¬ f1) ∨ (f1 ∧ f2 ∧ f3))

Feature cardinalities define the minimum and the maximum number of occurrences of a given feature in a valid
configuration (denoted [min..max]). Except for the graphical notation that can be different, feature cardinalities can
be seen as multi-valued attributes: in the example of Figure 2, the cardinality of CustomisedTabbing could be
represented by an attribute Occurrence of type integer. Hence, feature cardinalities could also be represented by
features, as we have seen before with attribute values. Note that even though the representation is different, the
information remains the same. Figure 4 depicts the different (yet equivalent) ways to represent a feature cardinality,
which subsumes Figure 3.

CustomisedTabbing CustomisedTabbing

CustomisedTabbing

Occurrence (int)

Occurrence

Figure 4: Different ways to represent a feature cardinality

Group-cardinalities allow to consider that all feature-groups are the same kind of variability information: not as
xor-/or-groups, but as feature-groups associated with a cardinality. Thus, concerning feature groups, this FM extension

5

does not add any new kind of variability information compared to the one found in boolean FMs, but generalises two
existing ones. Moreover, as feature cardinalities can be seen as feature attributes of type integer, the kinds of variability
information induced by feature cardinalities are the same as the ones induced by attributes, i.e., augmented variability
information.

3. Formal Concept Analysis, Pattern Structures, and Variability

In this section, we present the basics of Formal Concept Analysis theory (Section 3.1), its connections with
variability extraction (Section 3.2), and Pattern Structures (Section 3.3), one of the FCA extensions which allows to
extract logical relationships between more complex data types than binary attributes (e.g., multi-valued attributes,
numerical values).

3.1. Formal Concept Analysis

Formal Concept Analysis (FCA) [26] is a mathematical framework for data analysis, information management
and knowledge representation. From a set of objects that are described by a set of binary attributes, the application of
FCA provides a classification of the set of objects depending on the attributes they share. An overview of the FCA
process is illustrated in Figure 5 and is detailed in what follows.

INPUT
Concept_ex_8

A B

Concept_ex_7

D

v2

Concept_ex_6

E

v3

Concept_ex_9

C

OUTPUT

6s

C1=(E1,I1)
C2=(E2,I2)

...

formal concepts
CK (CK,)

partial order
6s

identification
of maximal

groups

concept latticeformal context
K=(O,A,J)

Figure 5: FCA process

As input, FCA takes a formal context K = (O, A, J), where O is the set of objects, A is the set of binary attributes
and J ⊆ O × A is a binary relationship stating “which objects possess which binary attributes”. A formal context can
be represented by a table O× A, where a cross in the cell (o, a) states that the object o possesses the binary attribute a.
Table 2 presents an excerpt of a formal context where the objects (lines) represent variants of web browsers, and the
binary attributes (columns) represent 9 accessibility features characterising these web browsers. Note that this formal
context displays the configuration semantics of the boolean FM from Figure 1.

The application of FCA on a formal context extracts a set of formal concepts, where a formal concept represents a
maximal set of objects sharing a maximal set of binary attributes. More formally, a formal concept is a pair C = (E, I)
where E = {o ∈ O | ∀a ∈ I, (o, a) ∈ J} is called the concept’s extent and I = {a ∈ A | ∀o ∈ E, (o, a) ∈ J} is called
the concept’s intent. There is no other object than the ones in E that share all the attributes of I, and there is no
other attribute than the ones in I that are shared by all the objects of E. For example, in Table 2, we highlighted the
formal concept representing the maximal group of objects (v2, v3, v4 and v5) and the maximal group of attributes
(WebBrowser, Navigation and Spatial) they share. Provided a permutation of the rows and columns, a formal
concept can be seen as a maximal rectangle of crosses in the table.

The set CK of formal concepts of a formal context K can be partially ordered by the set-inclusion order (denoted
≤s) on the concepts’ extents (or equivalently the set-containment on the concepts’ intents). It is formally written as
follows: given two concepts C1 = (E1, I1) and C2 = (E2, I2), C1 ≤s C2 if and only if E1 ⊆ E2 (or equivalently I1 ⊇ I2).
For example, let C1= ({v4, v5}, {WebBrowser, Navigation, Spatial, TextToSpeech, Classic}) and C2 = ({v2,
v3, v4, v5}, {WebBrowser, Nagivation, Spatial}), we have: C1 ≤s C2. This order may be seen as a specialisation
relation between the concepts: C1 is called a sub-concept of C2, and C2 a super-concept of C1. The set of all concepts
CK of a formal context, provided with the order ≤s forms a lattice structure (CK ,≤s) called a concept lattice. Figure 6
(left-hand side) presents the concept lattice obtained from Table 2. Concept lattices are canonical, i.e., there exists a
unique concept lattice that can be extracted from a given formal context.

6

Table 2: Formal context with 9 objects representing web browsers and described by 9 binary attributes representing accessibility features. In light
gray, we highlight the presence of a concept, composed of (1) an extent, which is a maximal group of objects (v2, v3, v4 and v5), and of (2) an
intent, which is the maximal group of attributes (WebBrowser, Navigation and Spatial) these objects share.

W
eb

B
ro

w
se

r

N
av

ig
at

io
n

Ta
bb

in
g

C
us

to
m

is
ed

Ta
bb

in
g

Sp
at

ia
l

Te
xt

To
Sp

ee
ch

C
la

ss
ic

A
dv

an
ce

d

Vo
ic

eC
on

tr
ol

v1 × × × ×

v2 × × ×

v3 × × × × ×

v4 × × × × ×

v5 × × × × × × ×

v6 × × × × × ×

v7 × × × × × × ×

v8 × × × × × × ×

v9 × × × × ×

A naive algorithm [28] to build the concept lattice of a context considers all the subsets of O, and, for any subset
E ∈ 2O computes I the set of attributes shared by all objects from E, keeps the largest such (E, I) subsets, and then
organises these (E, I) pairs by set-inclusion. The number of concepts may reach 2min(|O|,|A|) in the worst case, when
the concept lattice is isomorphic to the O subset lattice or to the A subset lattice. But fortunately, in real applications,
it rarely happens and the efficient algorithms [41, 4, 36] do not follow the naive schema. There is a large literature
on efficient lattice construction: a survey and a comparison of the performances of the main algorithms have been
proposed by Kuznetsov and Obiedkov in [40]. In addition, one can find on the website of Uta Priss1 a list of links
towards existing tools and libraries implementing these algorithms.

In Figure 6, a concept is represented by a three-part box: the top part shows the concept’s name, which is unique
in the structure, the middle part displays the concept’s intent, and the bottom part the concept’s extent. An arrow
between two boxes represents the specialisation relation (i.e., partial order) from a concept (arrow’s source) to one
of its super-concepts (arrow’s target). Right-hand side of Figure 6 represents the same concept lattice as in the left-
hand side, except this time the concepts are presented in an optimised way by displaying each object and each binary
attribute only once in the structure. An object (resp. a binary attribute) is introduced in the lowest (resp. greatest)
concept of the concept lattice possessing it. Therefore, a concept inherits all the objects of its sub-concepts, and all
the binary attributes of its super-concepts.

An attribute-concept is a concept introducing at least an attribute, which means that one of its attributes does
not belong to any of its super-concepts; this is the case in Figure 6, for Concept 10 introducing Classic, and for
Concept 13 introducing Tabbing and CustomisedTabbing. Dually, an object-concept is a concept introducing at
least an object, which means that one of its objects does not belong to any of its sub-concepts; in Figure 6, Concept 8,
which introduces v6 and Concept 6, which introduces v3 are both object-concepts. Some concepts are both object-
concept and attribute-concept, such as Concept 11, which introduces Spatial and v2. Plain-concepts introduce
neither attributes nor objects, as for instance Concept 4.

In some applications, taking into account plain-concepts is unnecessary; this is often the case when FCA is used
to organise the elements of the initial dataset in a hierarchy [27], and not for clustering. To lighten the produced
conceptual structure, one can choose to only construct the concept lattice’s sub-hierarchies restricted to attribute-
and/or object-concepts. For instance, an interesting sub-hierarchy when dealing with attribute relationships is the
one that is restricted to attribute-concepts, called an attribute-concept partially ordered set, or AC-poset for short.
This structure keeps specialisation order between attributes, along with the extents of the formal concepts introducing

1http://www.upriss.org.uk/fca/fcasoftware.html

7

http://www.upriss.org.uk/fca/fcasoftware.html

Concept_14
Navigation
WebBrowser
v1; v2; v3; v4

 v5; v6; v7; v8; v9

Concept_13
Tabbing

Navigation
WebBrowser

CustomisedTabbing
v1; v3; v5; v6

 v7; v8; v9

Concept_6
Tabbing

Navigation
WebBrowser

Spatial
CustomisedTabbing

v3; v5

Concept_11
Navigation

WebBrowser
Spatial

v2; v3; v4; v5

Concept_3
Tabbing

Navigation
WebBrowser

Spatial
Classic

CustomisedTabbing
TextToSpeech

v5

Concept_5
Navigation

WebBrowser
Spatial
Classic

TextToSpeech
v4; v5

Concept_8
Tabbing

Navigation
WebBrowser

Classic
CustomisedTabbing

TextToSpeech
v5; v6; v7

Concept_9
Tabbing

Navigation
WebBrowser

CustomisedTabbing
TextToSpeech
v5; v6; v7; v8

Concept_12
Navigation

WebBrowser
TextToSpeech

v4; v5; v6; v7; v8

Concept_10
Navigation

WebBrowser
Classic

TextToSpeech
v4; v5; v6; v7

Concept_0
Tabbing

Advanced
Navigation

WebBrowser
Spatial
Classic

CustomisedTabbing
TextToSpeech
VoiceControl

Concept_1
Tabbing
Advanced
Navigation

WebBrowser
CustomisedTabbing

TextToSpeech
VoiceControl

v8

Concept_2
Tabbing

Navigation
WebBrowser

Classic
CustomisedTabbing

TextToSpeech
VoiceControl

v7

Concept_4
Tabbing

Navigation
WebBrowser

CustomisedTabbing
TextToSpeech
VoiceControl

v7; v8

Concept_7
Tabbing

Navigation
WebBrowser

CustomisedTabbing
VoiceControl

v7; v8; v9

Concept_14

WebBrowser
Navigation

Concept_13

Tabbing
CustomisedTabbing

v1

Concept_6

v3

Concept_11

Spatial

v2

Concept_3

v5

Concept_5

v4

Concept_8

v6

Concept_9

Concept_12

TextToSpeech

Concept_10

Classic

Concept_0

Concept_1

Advanced

v8

Concept_2

v7

Concept_4

Concept_7

VoiceControl

v9

Figure 6: Concept lattice associated with the formal context of Table 2. Left-hand side: full description of concepts’ extents and intents. The
introduced objects and attributes are presented in bold face. Right-hand side: simplified description of concepts’ extents and intents, showing only
the introduced objects and attributes.

them. The AC-poset associated with the formal context of Table 2 is presented in Figure 7, where only the 7 attribute-
concepts of Figure 6 (Concept 1, 7, 10, 11, 12, 13 and 14) have been retained.

The AC-poset can be constructed from the concept lattice (by removing all concepts that do not introduce any
attribute), but this is not an efficient option, the number of concepts being bounded by |A|. A naive algorithm (given
in [15]) to build the AC-poset first builds the attribute-concepts and then organises these concepts by set-inclusion.
To build all the attribute-concepts, for each attribute a, one has to compute the objects that possess a (which gives
the extent of the concept introducing a) and then the attributes which are shared by all these objects (which gives
the intent of the concept introducing a). This procedure may produce concept duplicates that have to be removed.
Efficient algorithms can be derived from those that build the AOC-posets, which contain both attribute-concepts and
object-concepts and are surveyed in [12]. Galicia2, RCAExplore3 and AOC-poset Builder4 are three available
tools implementing those algorithms.

2http://www-labs.iro.umontreal.ca/~galicia/
3http://dataqual.engees.unistra.fr/logiciels/rcaExplore
4http://www.lirmm.fr/AOC-poset-Builder/

8

http://www-labs.iro.umontreal.ca/~galicia/
http://dataqual.engees.unistra.fr/logiciels/rcaExplore
http://www.lirmm.fr/AOC-poset-Builder/

Concept_1
Tabbing

Advanced
Navigation

WebBrowser
TextToSpeech

CustomisedTabbing
VoiceControl

v8

Concept_12
Navigation

WebBrowser
TextToSpeech

v4; v5; v6
v7; v8

Concept_7
Tabbing

Navigation
WebBrowser

CustomisedTabbing
VoiceControl

v7; v8; v9

Concept_11
Navigation

WebBrowser
Spatial

v2; v3; v4
v5

Concept_14
Navigation

WebBrowser
v1; v2; v3

v4; v5; v6; v7
v8; v9

Concept_10
Navigation

WebBrowser
Classic

TextToSpeech
v4; v5; v6

v7

Concept_13
Tabbing

Navigation
WebBrowser

CustomisedTabbing
v1; v3; v5
v6; v7; v8

v9

Concept_1

Advanced

v8

Concept_12

TextToSpeech

Concept_7

VoiceControl

v7; v9

Concept_11

Spatial

v2; v3; v4
v5

Concept_14

WebBrowser
Navigation

Concept_10

Classic

v4; v5; v6
v7

Concept_13

Tabbing
CustomisedTabbing

v1; v3; v5
v6

Figure 7: AC-poset associated with the formal context of Table 2. Left-hand side: full description of concepts’ extents and intents. The introduced
attributes are presented in bold face. Right-hand side: simplified description of concepts’ extents and intents, showing only the introduced attributes.

3.2. Formal Concept Analysis and Variability

The way the objects (i.e., similar software systems) and the binary attributes (i.e., software characteristics) are
organised in the concept lattice highlights information regarding their variability. More specifically, one can extract by
the means of FCA all logical relationships involving the binary attributes, such as binary implications, co-occurrences,
mutual exclusions (mutex) and groups (in the sense of the feature groups one can find in boolean FMs). The extraction
algorithms rely on the hierarchy of concepts introducing binary attributes; thus, AC-posets may be used instead of
concept lattices for this application.

Binary implications can be deduced from the transitive reduction of the partial order between concepts in the AC-
poset: if an attribute a1 is introduced in a sub-concept of another concept introducing the attribute a2, then a1 ⇒ a2
holds [2]. For instance, in Figure 7, one can see that Classic ⇒ TextToSpeech because Concept 10 is a sub-
concept of Concept 12. The tools java-lattices5 and ConExp6 are two popular tools permitting to extract binary
implications by the means of FCA. Co-occurrences can be recognized as double binary implications, or when two
features are introduced in a same attribute-concept. For instance, Tabbing and CustomisedTabbing are two co-
occurring features because they are introduced in the same Concept 13. This type of variability information can be
extracted with a graph-search in the AC-poset, or can be deduced from symmetric binary implications extracted with
the aforementioned tools. For computing the feature groups, we consider all the sets of pairwise non comparable
attribute-concepts (called “Antichains” in the graph theory terminology) by growing size. For each such antichain S ,
we compute P the lowest attribute-concepts that are greater than all elements of S . Then for each element p of P
(such element is candidate to be a parent of the group), we check if the configurations that have an element s of S
cover exactly the configurations that have p. If the configuration sets associated with each s form a partition, the set
of attribute-concepts S is a xor-group with parent p, otherwise, when they do not form a partition, and S does not

5http://thegalactic.github.io/java-lattices/
6http://conexp.sourceforge.net/

9

http://thegalactic.github.io/java-lattices/
http://conexp.sourceforge.net/

include a smaller group, S is an or-group with parent p. We provide a detailed algorithm to extract these groups in
[15]. In [15] we also provide an algorithm to compute sets of features that cannot appear together (nat for “not all
together”) by reconsidering all the antichains. The nat with cardinal 2 are mutex. An antichain is a nat if the features
have no configuration in common, it does not contain a xor-group, is not included in a xor-group and, either its size
is 2, or it does not contain any smaller nat. Ryssel et al. [58], AL-Msie’deen et al. [2] and Shatnawi et al. [60] also
provide algorithms to extract mutex from FCA structures. To the best of our knowledge, there is no available tool
permitting to extract mutex and feature groups by means of FCA; we implemented these algorithms in our tool CLEF
presented in Section 5 and available on GitHub.

The presented extraction method is sound and complete according to the general FCA theorems [26]: it allows
to extract all the logical relationships (among the four types presented before) that are true for the considered set of
objects. Figure 8 presents the grammar of the variability information that can be extracted (except that we do not
consider the nat, but only the mutex, which correspond to more usual FM cross-tree constraints). We simplify the
logical relationships representing feature-groups by introducing the notation (p, { f1, ..., fn}, 〈min − max〉) to be used
instead of the one aforementioned in Section 2.2.2.

variability info. := relationship*
relationship := implication | co-occurrence |

mutex | group
implication := feature ‘⇒’ feature
co-occurrence := feature ‘⇔’ feature
mutex := feature ‘⇒’ ‘¬’ feature
group := ‘(’ feature ‘,’ ‘{’ feature set ‘}’

‘,’ cardinality ‘)’
feature set := feature | feature set ‘,’ feature
feature := feature name
cardinality := ‘〈’ nb min ‘-’ nb max ‘〉’

Figure 8: Grammar of variability information that can be extracted with traditional FCA

3.3. Pattern Structures

Pattern structures [25] have been proposed as a generalisation of FCA to describe a set of objects O with data
types that are more complex than binary attributes. The FCA process generalised for pattern structures is presented in
Figure 9.

Figure 9: Pattern structure process

In this approach, each object is characterised by a pattern (also called a description) taken from a set of patterns
(denoted D) having the same type. A set of patterns can be of any type of data on which one can establish similarities.
The similarity of two patterns d1, d2 ∈ D is given by a similarity operator (denoted u) that returns the most specific
pattern of D representing the similarity of d1 and d2, or in other words the most specific generalisation of d1 and d2. For

10

instance, in the software engineering domain, a set of patterns Dlanguages could depict programming languages, and one
can define the similarity of the two patterns Java and C++ by a third pattern Java u C++ = Object Oriented Language.
Another example may be to define the similarity of two integer intervals by the smallest interval containing them:
[1986, 1986] u [1998, 1998] = [1986-1998]. In the following, we will denote intervals containing a single integer
with this integer: e.g. [1986, 1986] will be denoted as 1986. A similarity operator is associated to a subsumption
relation v which allows to partially order the set of patterns D by specialisation in a hierarchy, as in a taxonomy:

a v b ⇐⇒ a u b = a, ∀a, b ∈ D

Please note that, contrary to standard notation, a v b is read “a is subsumed by b” in this context, and therefore a is
more general than b. In our examples, Object Oriented Language v C++, and [1986-1998] v 1998. The taxonomy
of patterns (D,u) is a meet semi-lattice, i.e., a hierarchical structure in which each pair of elements possesses an
upper-bound. A special element, denoted “*”, represents a dissimilarity value to be able to specify that some patterns
have no similarity. Figure 10 presents the taxonomy of patterns taken from the column FirstRelease of Table 4 and
organised according to the interval similarity operator defined before. An arrow of the meet semi-lattice states that the
source subsumes the target. The set of objects O, the taxonomy of patterns (D,u) and the mapping δ : O → D that
associates each object o ∈ O with a pattern d ∈ D form a pattern structure. For instance, the set of products of Table 4,
the taxonomy of patterns given at Figure 10, and the column FirstRelease of Table 4 associating each product to a
value in Figure 10, form a pattern structure.

Figure 10: Automatically built taxonomy for the values of attribute FirstRelease

Given a pattern structure PS = (O, (D,u), δ), a set of pattern concepts can be extracted, where a pattern concept
represents a maximal set of objects O′ ⊆ O described by the most specific pattern d ∈ D characterising all the objects
of O′. The set of all pattern concepts extracted from a pattern structure can be partially ordered by the specialisation
relation ≤ps as follows: given two pattern concepts C1 = (O1, d1) and C2 = (O2, d2), C1 ≤ps C2 if and only if
O1 ⊆ O2 and d2 v d1. For instance, in Table 4 ({CVS, CVSNT}, [1986-1998]) is a pattern concept because there is no
other more specific pattern than [1986-1998] in Figure 10 that corresponds to both CVS and CVSNT, and there are no
other products than these two that are first released between 1986 and 1998. The set of all pattern concepts of PS
provided with the partial order ≤ps forms a pattern concept lattice. In a pattern concept lattice, the set of objects is
structured depending on patterns of potentially complex type, and their similarities. Traditional FCA algorithms to
extract variability information may be applied on pattern concept lattices in the same way as concept lattices. To the
best of our knowledge, Latviz [3] is the only publicly available tool allowing to compute pattern structures which is
for now restricted to intervals.

Patterns can be of atomic types (e.g., dates, numerical values, literals), but it is possible to combine several pattern
types (from different pattern sets) in a vector of patterns [35]. A vector of patterns is of the form 〈d1, d2, . . . , dn〉,
where di, i ∈ {1, 2, . . . , n} is a pattern of the compound taxonomy (Di,ui). The similarity between two vectors of
patterns (denoted as upv, where pv means pattern vector) can be obtained by computing the similarity/generalisation
of patterns with the same rank in the vectors:

11

〈dk1, dk2, ..., dkn〉 upv 〈d j1, d j2, ..., d jn〉

= 〈dk1 u1 d j1, dk2 u2 d j2, ..., dkn un d jn〉.

Therefore, in this framework, a set of vectors of patterns can be handled in the same way as a set of patterns of atomic
type. Detailed examples of pattern vectors and pattern concept lattices are given in the next section.

We estimate that pattern structures can broaden the scope of variability information that can be extracted from soft-
ware variant descriptions. In fact, vectors of patterns and similarity operators are good candidates to depict complex
software variant descriptions, composed of more than boolean features, as multi-valued attributes and cardinalities.
As pattern structures rely on traditional FCA, all the variability information extracted with FCA can also be extracted
with pattern structure generalisation, i.e., implications, mutex and co-occurrences between features. If the pattern
structure represents multi-valued attributes in addition to boolean features, it may also extract augmented variability
information. The grammar of the variability information that can be extracted using pattern structures is presented in
Figure 11. As for traditional FCA, the extraction approach is sound and complete.

variability info. := relationship*
relationship := implication | co-occurrence |

mutex | group
implication := augmented element ‘⇒’

augmented element
co-occurrence := augmented element ‘⇔’

augmented element
mutex := augmented element ‘⇒’

‘¬’ augmented element
group := ‘(’ feature ‘,’ ‘{’ feature set ‘}’

‘,’ cardinality ‘)’
augmented
element := feature | attribute
feature set := feature | feature set ‘,’ feature
attribute := attribute name ‘=’ value
feature := feature name
cardinality := ‘〈’ nb min ‘-’ nb max ‘〉’

Figure 11: Grammar of the augmented variability information that can be extracted with pattern structures

In what follows, we propose a method to 1) compose vectors of patterns from multi-valued matrices represent-
ing complex software variant descriptions, and 2) extract complex variability information from them using pattern
structures and FCA extraction algorithms.

4. Extracting Complex Variability

In this section, we present and illustrate our method for extracting complex variability information from multi-
valued descriptions based on FCA and Pattern Structures. Section 4.1 presents the illustrative example. An overview
of the method is given in Section 4.2. The Sections 4.3, 4.4 and 4.5 detail the three steps of the proposed method.
Finally, Section 4.6 proposes a way to reduce the redundancy in the extracted information.

4.1. Illustrative example

We use Product Comparison Matrices (PCMs) [59] as software variant descriptions. PCMs are multi-valued
matrices which depict a set of products depending on a set of characteristics, and allow a user to easily compare similar
products from a same family. PCMs may gather in their cells heterogeneous data, including boolean attributes (usually
“yes” and “no” values that can be considered as features) and multi-valued attributes. Thus, they are interesting
candidates for the extraction of augmented variability information. PCMs may come from various sources, e.g.,
websites (as for instance Wikipedia), automatic generation, manually built by designers or developers. The main

12

drawback of using PCMs lies in the fact that they are not formalised: in most cases they need to be cleaned to be
in a given format and to be automatically processed easily [59, 51]. For instance, Table 3 presents an excerpt of a
Wikipedia PCM depicting 5 version control software systems depending on 6 characteristics.7 We can see that the
four first columns (from ClientServer to Lock) represent boolean attributes in different ways: the column Client-

Server depicts only “yes” values, the column Distributed depicts “yes” and “no” values, and the two next columns
display crosses. The column FirstRelease gives information understandable for a human, but difficult to process
by a machine. Also, the value of this column for the element ClearCase does not give the good information. Finally,
the last column ProgrammingLanguage can display several values in one cell, but the separators (e.g., “,”, “/”) and
the way to write a same value (e.g., “only C”, “c”, “C”) may differ. In order to ease the automated processing of
this kind of PCM, we clean them by 1) harmonising the cells values (e.g., same value separator in each cell, same
way to write a value to represent an information) and 2) replacing each missing/ambiguous value by the element
“∗”. For instance, we choose here to represent boolean characteristic values by crosses. The multi-valued attribute
FirstRelease should represent only the year of the first public release of the software system. We choose to separate
values by semicolons to avoid issues with .CSV format. Table 4 presents the cleaned version of Table 3.

Table 3: Excerpt of a Wikipedia PCM about version control software systems
Software ClientServer Distributed Merge Lock FirstRelease ProgrammingLanguage
Git yes × Started in April 2005 C / shell scripts / Perl
CVS yes no × First publicly released July 3, 1986 only C
ClearCase yes no × × most recent version is 9.0 c, java and perl
GnuArch yes × Initial release March 26, 2005 C and shell scripts
CVSNT yes no × × First publicly released 1998 C++

Table 4: Cleaned version of the PCM from Table 3 following a chosen format. Values of FirstRelease are intervals of integer (representing
years). We recall that intervals containing a single integer (e.g. [1986, 1986]) are denoted as this single integer (e.g. 1986)

Software ClientServer Distributed Merge Lock FirstRelease ProgrammingLanguage
Git × × 2005 C;shell scripts;perl
CVS × × 1986 C
ClearCase × × × * C;java;perl
GnuArch × × 2005 C;shell scripts
CVSNT × × × 1998 C++

Note that in this section, the term “attribute” has a different meaning than in FCA; to stay consistent with variability
modelling and FM terminology, the term “attribute” here refers to the term used to name “multi-valued characteristics”
(as the ones extending boolean FMs), and the term “features” indicates “boolean characteristics” (as the ones used in
boolean FMs).

4.2. Method overview
We have defined a 3-step process to extract augmented variability information from multi-valued matrices as

depicted in Figure 12. As input, it takes a PCM (variant descriptions), and as output, it gives a file documenting the
extracted variability information in the form of logical relationships.

The first step of this process consists in defining the composition of the vectors of patterns, that will represent
each software variant displayed in the PCM. This means that one has first to identify and define the sets of patterns
D1,D2, ...,Dn that will compose the pattern vectors. If the PCM is correctly cleaned so as to follow a given structured
format, this step may be fully automated. Then, one has to define a similarity taxonomy for each identified composite
pattern set of the vectors. Some taxonomies may be defined automatically depending on the type of patterns and the
chosen similarity operator: this will be addressed next. Therefore, this step may be fully automated in some cases,
and otherwise semi-automated. The second step is to build the pattern concept lattice based on the pattern vectors

7Original PCM: https://en.wikipedia.org/wiki/Comparison_of_version_control_software, last accessed in April 2018

13

https://en.wikipedia.org/wiki/Comparison_of_version_control_software

Figure 12: Process to extract augmented variability information from PCMs

and the defined taxonomies. It can be fully automated. The third and last step consists in extracting the variability
information from the pattern concept lattice. In the following sections, we describe and illustrate each step based on
the PCM example of Table 4.

4.3. Identifying patterns and defining their taxonomies

In this section, we assume that input PCMs are complete (no empty cells) and consistent (the same information is
represented by the same attribute value). If it is not the case, the PCMs have to be manually cleaned to respect these
requirements.

In what follows, we propose a way to build a pattern vector taxonomy denoted (Dpv,upv), structuring a PCM
information by similarity and on which FCA can be applied. This step first consists in representing each product of
the PCM by a vector of patterns corresponding to the product description. A PCM tabularly represents a collection of
values of different characteristics for each product it documents. Thus, one can intuitively make the connection with
vectors combining the characteristic values. However, in a pattern structure, the set of values of each characteristic
needs to be organised in a taxonomy representing similarities between these values. Therefore, before being able to
build the pattern vector taxonomy based on product descriptions, we have to define a taxonomy for the values of each
characteristic of the input PCM. Values represented by a PCM may come from two types of data: features (PCM
boolean characteristics) and multi-valued attributes (PCM multi-valued characteristics). We study these two types and
define how to build taxonomies from them.

Note that boolean features may be seen and manipulated as multi-valued attributes with a {true, f alse} value do-
main. We do not process features as attributes for two reasons. Firstly, features have a different significance compared
to attributes in product line variability modelling, and thus it is important to maintain the distinction. Secondly, the
boolean nature of features allows a more efficient and centralised process than multi-valued attributes, as we will show
hereafter.

4.3.1. Processing boolean characteristics representing features
Defining a taxonomy for each boolean characteristic not only offers no new information, but also complexifies both

the pattern vectors and the final lattice structure by adding useless taxonomies. Traditional FCA provides a solution
to avoid redundancy and complexification of the processed data by building a canonical concept lattice in which the
attributes are organised by specialisation, as in a taxonomy. Therefore, for each product of the PCM we consider the
set of features that it owns (instead of each feature individually) in order to 1) simplify the pattern vectors and the
final conceptual structure by considering feature sets as patterns, and 2) automatically create a (unique) taxonomy by
means of FCA. Figure 13 (left-hand side) represents the concept lattice associated with the formal context formed by
the first 4 columns of Table 4. Figure 13 (right-hand side) represents the taxonomy extracted from this lattice.

As a consequence, the set of features of a PCM will be represented by a pattern set denoted D f . The similarity
operator defined by the set-intersection ∩ allows to automatically define the taxonomy (D f ,∩).

4.3.2. Processing multi-valued characteristics representing attributes
To use the values a1, a2, . . . , an of an attribute a in a pattern vector, they have to be organised in a taxonomy, i.e.,

each value of a has to represent a pattern in Da, and there must exist at least one similarity operator ua over Da. It is
unlikely that all values of the PCM attribute a represent all the necessary values to build the taxonomy (Da,ua). For
instance, if values a1 and a2 are present in the PCM, Da contains both a1 and a2, but also a3 = a1 ua a2. However, a3
may not be a value found in the PCM. In this case, it is thus necessary to complete Da with the missing values.

14

Concept_4

Merge

Concept_3

ClientServer

CVS

Concept_0

Concept_2

Distributed

git
GnuArch

Concept_1

Lock

ClearCase
CVSNT

{Merge}

{ClientServer, Merge}

{Lock, ClientServer, Merge}

{Distributed, Merge}

Figure 13: (left-hand side) concept lattice associated with the feature sets of Table 4; (right-hand side) induced taxonomy

Depending on the value type, and the chosen similarity operator, this completion may be automated. In fact,
if a formula can be defined to compute the similarity of two values of (Da,ua), the taxonomy construction may be
automated from the values of a found in the PCM. This is the case for instance with intervals of integers; let us define
the similarity of two intervals uinter by:

[a1, b1] uinter [a2, b2] = [min(a1, a2),max(b1, b2)]

Figure 10 presents a taxonomy built automatically for the values of the attribute FirstRelease of Table 4 with
the similarity operator uinter. Note that if the taxonomy does not need to be built integrally, it may be done on demand.

When the attribute has literal values, it is more difficult to automatically complete the taxonomy. Several cases are
possible for this kind of attributes. A multi-valued attribute of a PCM may give several values for a single product;
this is the case for ProgrammingLanguage. If some of its values are shared by several products (e.g., the value C or
shell scripts in our example), one can once again use FCA to automatically build a taxonomy based on the set-
intersection of the set of values. To build this taxonomy, we consider that each literal value of the attribute is an FCA
binary attribute, and we build the corresponding formal context. For the attribute ProgrammingLanguage, we obtain
the context of Table 5. The corresponding concept lattice and the extracted taxonomy are presented in Figure 14.

C C
+

+

sh
el

ls
cr

ip
ts

pe
rl

ja
va

Git × × ×

CVS ×

ClearCase × × ×

GnuArch × ×

CVSNT ×

Table 5: Formal context corresponding to the values of the attribute ProgrammingLanguage

In the case where the attribute values are unique for each product of the PCM, the automatically built taxonomy
states that all elements are incomparable. Even if this solution allows the attribute to be processed by the framework,
we loose the benefits of using pattern structures.

15

Concept_ctx_7

Concept_ctx_6

C

CVS

Concept_ctx_0

Concept_ctx_1

C++

CVSNT

Concept_ctx_3

Git

Concept_ctx_2

java

ClearCase

Concept_ctx_4

shell scripts

GnuArch

Concept_ctx_5

perl

{*}

{C++} {C}

{C, shell scripts} {C, perl}

{C, shell scripts, perl} {C, perl, java}

Figure 14: (left-hand side) Concept lattice associated with Table 5 and (right-hand side) induced taxonomy

In all cases, if an external taxonomy does not exist, an expert may build it manually. There are many ontologies
that are available on the web, as the Protege Ontology Library,8 that may be used as taxonomies.

4.3.3. Composing pattern vectors
In the following, we explain how the previously obtained taxonomies of feature set and multi-valued attributes are

combined to form pattern vectors, and the pattern vector taxonomy.

Definition 4.1 (PCMs’ pattern vectors).
Let A = {a1, a2, . . . , an} be the set of multi-valued attributes of a PCM, and (D1,u1), (D2,u2) , . . . , (Dn,un) their
associated taxonomies. Let (D f ,∩) be the taxonomy associated with the feature sets of the PCM. Then, each product
of the PCM can be described by a pattern vector of the form:

〈d1, d2, . . . , dn, d f 〉,
with di ∈ (Di,ui),∀i ∈ {1, 2, . . . , n}, and d f ∈ (D f ,∩)

The PCM of Table 4 possesses 2 attributes and 4 features. Thus, the pattern vectors for the PCM of Table 4 are
composed of 3 elements: the first element represents the value of the attribute FirstRelease, the second represents
the value of the attribute ProgrammingLanguage and the third represents a subset of the 4 features. We selected
similarity operators that can automatically build the taxonomies: uinter for FirstRelease and its values of type
integer, and ∩ for ProgrammingLanguage and its literal values. The first two products are thus described by the
following pattern vectors:

Git = 〈2015, {C, perl, shell scripts}, {Distributed,Merge}〉
CVS = 〈1986, {C}, {ClientS erver,Merge}〉

We can now automatically define the similarity (or generalisation) of two pattern vectors, denoted as upv:

8http://protegewiki.stanford.edu/

16

http://protegewiki.stanford.edu/

Git upv CVS =

〈2015 uinter 1986, {C, perl, shell script} ∩ {C}, {Distributed,Merge} ∩ {ClientS erver,Merge}〉 =

〈[1986, 2015], {C}, {Merge}〉

4.4. Building the pattern concept lattice

To the best of our knowledge, there is no publicly available tools allowing to build pattern concept lattices based
on pattern structures representing taxonomies of pattern vectors (pattern vector structures for short). However, it is
possible to use the tools defined for traditional FCA in our case thanks to a method called binary scaling. It generally
consists in the transformation of a multi-valued context (e.g., a PCM) in a formal context in order to be processed
by means of FCA. For this, characteristic values produce a binary attribute in the output formal context. In our case,
we do not seek to apply binary scaling on a multi-valued matrix, but on a pattern vector structure. We define binary
scaling on taxonomies of pattern vectors:

Definition 4.2 (Binary scaling).
Let Ps = (O, (Dpv,upv), δ)be a vector pattern structure, where vectors of (Dpv,upv) are composed of values of n
taxonomies {(D1,u1), (D2,u2), . . . , (Dn,un)}.

The binary scaling of Ps produces a formal context K = (Os, As, Js) such that:

• Os = O

• As =
n⋃

i=1
Di

• Js = {(o, d1)|∃d2 ∈ δ(o), d1, d2 ∈ Di, i ∈ {1, 2, . . . , n}, d1 vi d2}

In other words, each value of each pattern taxonomy will correspond to a binary attribute of the produced formal
context. The traditional FCA algorithms presented in Section 3 to build concept lattices and AC-poset are thus
applicable as they are for pattern structures.

Figure 15 presents the pattern AC-poset associated with the formal context obtained after the binary scaling of the
pattern vector structure built in the previous subsection.

4.5. Extracting complex variability information

As for traditional FCA, the pattern AC-poset, as well as the pattern concept lattice, allows to extract several
types of variability information in the form of logical relationships. Among them, we find the 4 types of logical
relationships necessary to represent augmented variability information. Here again, the traditional FCA algorithms to
extract variability information are applicable thanks to the binary scaling.

In what follows, we outline how to read these types of relationships in pattern concept lattices and pattern AC-
posets.

Binary implications: As each concept inherits all patterns of its super-concepts, implications can be extracted
between patterns (i.e., features and/or attribute values) from the partial order given by the structure. Following the
arrows of Figure 15, we can see that attribute value FirstRelease:[1986-1998] (Concept 5) implies the feature
ClientServer (Concept 8). This can be interpreted by “all software variants first released between 1986 and 1998
support a client-server repository model”. We still observe “boolean” implications: for instance, Concept 4 and
Concept 8 bear the implication Lock⇒ ClientServer.

Co-occurrences: When several patterns are introduced in the same concept, that means that they always occur
together in all the variants. Thus, co-occurring patterns can be extracted. For instance, Concept 6 highlights the
following relationship: Distributed⇔ ProgrammingLanguage:shell scripts. This can be interpreted by “all
software variants supporting a distributed repository model use shell scripts and conversely”.

Mutex: When the extents of two concepts introducing patterns have an empty intersection, it means that these
two patterns are never present together in any software variant. In other words, they are mutually exclusive in the
considered set. In Figure 15, Concept 2 and Concept 6, respectively introducing ProgrammingLanguage:java and

17

Concept_3
FirstRelease:1986

ProgrammingLanguage:C
Merge

ClientServer
FirstRelease:[1986-1998]
FirstRelease:[1986-2005]

CVS

Concept_5
Merge

ClientServer
FirstRelease:[1986-1998]
FirstRelease:[1986-2005]

CVS
CVSNT

Concept_11
ProgrammingLanguage:C

Merge
git

CVS
ClearCase
GnuArch

Concept_1
FirstRelease:1998

Merge
ClientServer

FirstRelease:[1986-1998]
ProgrammingLanguage:C++

FirstRelease:[1986-2005]
Lock

FirstRelease:[1998-2005]
CVSNT

Concept_4
Merge

ClientServer
Lock

ClearCase
CVSNT

Concept_9
Merge

FirstRelease:[1986-2005]
FirstRelease:[1998-2005]

git
GnuArch
CVSNT

Concept_2
ProgrammingLanguage:C

Merge
ClientServer

ProgrammingLanguage:java
ProgrammingLanguage:perl

FirstRelease:*
Lock

ClearCase

Concept_7
ProgrammingLanguage:C

Merge
ProgrammingLanguage:perl

git
ClearCase

Concept_6
ProgrammingLanguage:C

Merge
Distributed

FirstRelease:2005
ProgrammingLanguage:shell scripts

FirstRelease:[1986-2005]
FirstRelease:[1998-2005]

git
GnuArch

Concept_8
Merge

ClientServer
CVS

ClearCase
CVSNT

Concept_10
Merge

FirstRelease:[1986-2005]
git

CVS
GnuArch
CVSNT

Concept_12
Merge

git
CVS

ClearCase
GnuArch
CVSNT

Concept_0
ProgrammingLanguage:C

ProgrammingLanguage:java
FirstRelease:*

FirstRelease:[1986-1998]
Lock

FirstRelease:[1998-2005]
FirstRelease:1998
FirstRelease:1986

Merge
Distributed

ProgrammingLanguage:*
ClientServer

ProgrammingLanguage:perl
FirstRelease:2005

ProgrammingLanguage:shell scripts
ProgrammingLanguage:C++

FirstRelease:[1986-2005]

Concept_3

FirstRelease:1986

CVS

Concept_5

FirstRelease:[1986-1998]

Concept_11

ProgrammingLanguage:C

Concept_1

FirstRelease:1998
ProgrammingLanguage:C++

CVSNT

Concept_4

Lock

Concept_9

FirstRelease:[1998-2005]

Concept_2

FirstRelease:*
ProgrammingLanguage:java

ClearCase

Concept_7

ProgrammingLanguage:perl

git

Concept_6

Distributed
FirstRelease:2005

ProgrammingLanguage:shell scripts

git
GnuArch

Concept_8

ClientServer

Concept_10

FirstRelease:[1986-2005]

Concept_12

Merge

Concept_0

ProgrammingLanguage:*

Figure 15: Pattern AC-poset structuring the software variants from the PCM of Table 4

ProgrammingLanguage:shell scripts, do not have any variant in common in their extent. Thus, Programming-
Language:java⇒ ¬ ProgrammingLanguage:shell scripts. This can be interpreted by “none of the software
variants developed in Java uses shell scripts, and conversely”.

Feature-groups: A group has a parent-feature, and it expresses the fact that if the parent-feature is present in
a software variant, then at least one of the features from the group is also present in this software variant. This
information can be extracted from traditional conceptual structures without using pattern structures, as it concerns
only features [58, 15]. The precise group cardinality may be extracted by analysing the descriptions of the software
variants present in the extension of the concept introducing the parent feature of the group.

It is noteworthy that other types of relationships that may also represent variability information can also be found,
i.e., non-binary implications [58] and groups of exclusive features (not all together) [15]. But they do not correspond
to the ones found in extended feature models, so they are not studied in this paper. However, they may be useful for
instance in recommendation systems, or other types of variability models.

4.6. Redundancy elimination

Pattern structures and pattern taxonomies allows to eliminate some redundancy in the extracted relationships. We
propose heuristics to reduce the number of extracted relationships without loosing information.

Binary implications between two values of the same attribute are not taken into account, as they provide the
same information as the attribute taxonomy. For instance, the binary implication FirstRelease:1986⇒ FirstRe-

lease:[1986-1998] (Concept 3 and Concept 5 in Figure 15) is removed. Also if the same element in premise
implies different values of the same attribute, only the implications with the most specific conclusions are kept. In
fact, the implications involving more general values may be inferred from them using the taxonomies. For instance,
we have the two implications ProgrammingLanguage:C++ ⇒ FirstRelease:1998 (Concept 1) and Program-

mingLanguage:C++ ⇒ FirstRelease:[1986-1998] (Concept 1 and Concept 5). We only keep the first one,

18

i.e., the most specific one, as the second implication may be inferred from the first. Even though the specific im-
plication may also be inferred from the more general one, we may also infer incorrect implications, as for instance
ProgrammingLanguage:C++⇒ FirstRelease:1986. This is due to the fact that the premise may imply a pattern
but not all its more specific patterns in the taxonomy.

Mutex may also present redundancies. Mutual exclusions between two values of the same attribute do not provide
any additional information because they may be found in the attribute taxonomy. Similarly to implications, if the
same element is mutually exclusive with different values of the same attribute, we may remove some of them that
may be inferred from the ones we kept. This time, it is the most general values that are kept. This is due to the fact
that if an element is mutually exclusive with a pattern, it is also mutually exclusive with all its sub-patterns of the
taxonomy. For instance, the feature Distributed is mutually exclusive with attribute values FirstRelease:1998,
FirstRelease:1986 and FirstRelease: [1986-1998], so we only keep Distributed⇒ ¬ FirstRelease:-
[1986- 1998].

We can avoid redundancy in co-occurrences by removing the ones that can be inferred from at least two other co-
occurrences. For instance, we can keep from Concept 6 Distributed⇔ FirstRelease:2005, ProgrammingLan-
guage:shell script⇔ Distributed and remove ProgrammingLanguage:shell script⇔ FirstRelease:2005

Finally, for all types of relationships, we never extract relationships with a frequency equals to 0, i.e., true for the con-
sidered set of variants but which never actually occur in any variant.

5. Evaluation

In what follows, we evaluate our method through three research questions assessing both its usability and useful-
ness:

RQ1 (applicability). Is this approach technically applicable on existing available datasets? FCA and Pattern Struc-
tures are well known to exponentially grow with the size of the input data. To answer this question, we evaluate
the size of the pattern conceptual structures (AC-poset and concept lattice) obtained when applying the method ex-
posed in Section 4 on a selection of existing datasets representing descriptions of software variants. We define the
size of pattern conceptual structures by their numbers of pattern concepts and edges representing the partial order. If
these structures are too large to be easily computed, stored and managed, then our method will face some difficulties
regarding applicability.

RQ2 (order of magnitude). What is the order of magnitude of the number of extracted relationships with our method?
Is the redundancy elimination efficient? FCA-based relationship extraction is sound and complete; the relationships
that are true for the considered input dataset may be quite numerous, and even more when considering attribute value
taxonomies. Thus, we seek to obtain an order of magnitude of the number of relationships extracted from selected
available datasets, and evaluate how this number is reduced with the proposed redundancy elimination. We analyse
the characteristics of the dataset that may influence these orders of magnitude.

RQ3 (pertinence). Is the resulting variability information consistent? All information that is consistent for a domain
expert will be present in the result of this method, modulo the correctness of the product descriptions. Yet, a certain
amount of extracted variability information may be “accidental” and not pertinent, i.e., true for the considered dataset
but not for the domain. This is generally due to the fact that datasets are not representative of all the software variants,
as they only show a subset of possible software descriptions. Thus, to answer this question, we evaluate which
percentage of extracted variability information is pertinent, and which percentage represents “accidental” ones.

5.1. Data

To answer the previous questions, we selected three existing available datasets representing descriptions of families
of software variants, which have already been studied in the software product line literature: PCMs of Wikipedia [59],
Robocode [46] and JHipster [29]. The goal of our selection was to work on disparate datasets to broaden the scope
of our evaluation. The selected datasets are of variable sizes (from 8 to 2000 products) and possess a heterogeneous
distribution of multi-valued attribute types. Each software family of these datasets is presented in the form of a PCM

19

in a .CSV file. Some of these PCMs are complete and correct, others suffer from missing and/or possible incorrect
values. The cleaned versions9 used in this evaluation are detailed in what follows.

Product Comparison Matrices of Wikipedia [59]. We first worked on 30 PCMs about software systems, taken from
the software comparison category of Wikipedia.10 These PCMs have been extracted and processed using the Java
API of OpenCompare,11 a dedicated tool to extract, edit, exploit and export PCMs from several websites (including
Wikipedia). Before performing any automated processing, we manually cleaned each PCM as explained in Sec-
tion 4.1.

Table 6 gathers information about these PCMs that can be considered system families of small sizes (23 products
on average), and with potentially incomplete and/or incorrect values, as they do not follow any format and can be
manually edited by any user.

Table 6: Information about the 30 PCMs from Wikipedia used for the evaluation
minimum maximum mean

#products 8 75 23
#boolean characteristics 0 17 5
#literal characteristics 0 4 2
#numerical characteristics 0 4 1
#cells 36 1650 212

Robocode [46]. Robocode12 is a programming game where developers have to implement the behaviour of their own
bots in order to fight bots implemented by other developers. Each developer develops their bot variants on top of
an API which provides a basic behaviour. Commonalities can be found in each variant, e.g., in the implementation
choices or the adopted fighting strategies. The Robocode game is thus a variability-rich family of software systems
which is considered a pertinent dataset to study variability extraction. Tabular descriptions of existing bot variants have
been gathered online.13 In total, 306 bot variants are described depending on 4 multi-valued attributes (documenting
the bot movement and targeting strategies, the fighting type they are designed for, and the license of the source code),
and a boolean feature stating if the source code is available. It is a PCM of medium size with incomplete values.
Incorrect values may be present but should be rarer than in PCMs of Wikipedia, as the information is extracted from
a wiki completed by the developers themselves.

JHipster [29]. JHipster14 is a web application generator, that questions a developer concerning its technology
preferences (e.g., database type, testing framework) to build a functional variant corresponding to its choices. In [29],
the authors analyse the JHipster questionnaire to deduce the descriptions of all variants that may be generated; these
descriptions are available on a Github repository.15 More than 26000 variants have been documented against 7 boolean
features and 17 multi-valued attributes; it is thus considered a large size software family. Also, as the descriptions
where generated automatically from existing variants, they are complete and correct. To test if our method scales on
large datasets, we split these descriptions in 3 PCMs of 500, 1000 and 2000 variant descriptions.

5.2. Methodology

We have developed a tool in Java called CLEF16 (for Complex variabiLity Extraction with Fca) to perform all the
steps that may be automated to answer these research questions. It is composed of 3 packages:

9https://github.com/jcarbonnel/CLEF/tree/master/CLEF/data
10https://en.wikipedia.org/wiki/Category:Software_comparisons, last accessed in April 2018
11https://github.com/OpenCompare
12https://robocode.sourceforge.io/
13https://github.com/but4reuse/RobocodeSPL_teaching
14https://www.jhipster.tech/
15https://github.com/xdevroey/jhipster-dataset/tree/master/v3.6.1
16https://github.com/jcarbonnel/CLEF

20

https://github.com/jcarbonnel/CLEF/tree/master/CLEF/data
https://en.wikipedia.org/wiki/Category:Software_comparisons
https://github.com/OpenCompare
https://robocode.sourceforge.io/
https://github.com/but4reuse/RobocodeSPL_teaching
https://www.jhipster.tech/
https://github.com/xdevroey/jhipster-dataset/tree/master/v3.6.1
https://github.com/jcarbonnel/CLEF

• multivaluedcontext, which contains classes to handle multi-valued product descriptions. The class Mul-
tivaluedContext contains a list of objects (i.e., the products) and a list of Characteristics. A concrete
characteristic can be a BinaryAttribute (feature) or a MultivaluedAttribute. A multi-valued context
imports descriptions from a .CSV file and identifies automatically boolean features and multi-valued attributes,
along with their types (literal, integer or double).

• similarities, which contains classes to build taxonomies from multi-valued attributes. We implemented the
processes for building taxonomies presented in Section 4.3, which extend AbstractSimilarities. If one
wants to use another process to build a taxonomy, it is easy to add new classes to implement it.

• relationshipextraction, which contains classes implementing the methodology presented in Section 4.5
to extract binary implications, co-occurrences and mutex from the AC-poset. The implemented algorithms are
the ones previously mentioned in Section 3 that can be found in [15] and [2].

As there is no publicly available tools to compute pattern concept lattices and pattern AC-posets yet, we applied
binary scaling on the datasets and used RCAExplore, an FCA tool that computes conceptual structures from formal
contexts (binary matrices). We implemented the binary scaling presented in Def. 4.2 in CLEF to obtain a formal
context in .RCFT format, that can be processed by RCAExplore. For this, each attribute of the matrix is associated
with a taxonomy corresponding to its type and that is built automatically. In our evaluation, attributes having numerical
values are associated with the uinter similarity operator that produces intervals of values, and attributes having literal
values are associated with the ∩ similarity operator. It is important to note that the FCA structures associated with the
obtained scaled formal contexts allow to extract the same information as in a pattern conceptual structure, and contain
the same number of formal concepts and edges.

RQ1. Using CLEF, we applied the two first steps of Section 4 on the selected datasets to obtain an order of magnitude
of the size of their associated pattern conceptual structures. Once a MultivaluedContext is initialised from a .CSV
file, the method computeLattice() applies the binary scaling, saves the obtained formal context in an .RCFT file,
and calls RCAExplore to compute the associated AC-poset. The files representing the resulting conceptual structures
are stored in data/dataset name/FCA/, and can be analysed to obtain their size.

RQ2. We applied the third step of Section 4 by using our tool to automatically extract the logical relationships
representing augmented variability information from the previously obtained AC-posets. As feature groups involve
exclusively features, and their extraction by means of FCA has been already assessed [58, 15], we do not study them
in this evaluation, in order to focus on augmented variability extraction. Implemented extraction algorithms have been
optimised to extract the relationships without the redundancy identified in Section 4.6.

Table 7 presents an excerpt of extracted logical relationships from the Robocode PCM.

Table 7: Examples of extracted relationships from the Robocode PCM
Examples of binary implications:
* targeting: {reduced linear targeting} ⇒ fighting: {melee}
* movement: {provocative movement} ⇒

targeting: {circular targeting, segmented mean}
* movement: {musashi trick} ⇒ fighting: {one on one}

Example of co-occurrence:
* movement: {stationary} ⇔ targeting: {fire at enemys bullet}

Examples of mutex:
* fighting: {melee} ⇒ ¬ movement: {aggressive movement}
* fighting: {one on one} ⇒ ¬ targeting: {corner targeting}
* targeting: {dynamic clustering} ⇒
¬ movement: {danger prediction}

21

RQ3. To evaluate the percentage of extracted accidental relationships, we seek to detect the ones involving elements
that have no influence on each other and thus representing relationships that are true for the considered set of products
but meaningless regarding the domain. To do so, we selected 3 PCMs and we defined a “graph of influence” between
their characteristics, where an edge between two characteristics states that we considered that they influence each
other. We selected PCMs having characteristics that we are sure to fully understand to ensure the validity of the graph.
For instance, we considered that an attribute representing the latest stable release and another attribute representing
the programming language have no influence on each other. A contrario, we considered that an attribute representing
the database backend and another representing the server operating system may influence each other. However, other
experts may obtain slightly different graphs, or choose to ignore the influence between certain characteristics they are
not interested in. The different point of views between experts may change the results of this study. So, to limit this
threat to validity, the graphs used in this evaluation have been validated by three domain experts.

We selected two Wikipedia PCMs, one about accounting softwares (Comparison of accounting software 2)
and the other one about CRM systems (Comparison of CRM systems 0). These two graphs are presented in Fig-
ure 16. We also selected the Robocode PCM; its graph of influence is represented in Figure 17

Programming
languages

First public
release date

1

Stable
release date

Development
status2

Database

2

1

2

1

Latest stable
release

2

1

2

License

Implementation
language(s)

2

Server
operating
system

2

Database
Backend

2

Last
release date

2

First
release date

12 2

1

Figure 16: Graph of influence of the two selected PCMs of Wikipedia

2
22

2 Movement

Targeting

Fighting Code
available

License

Figure 17: Graph of influence of the Robocode PCM

Then, we automatically separate the set of relationships in two groups depending on the graphs: the pertinent
relationships and the accidental ones. We consider the set of reduced relationships obtained with the aforementioned
heuristics on redundancy elimination. When the groups have been established, we can finally compute the percentage
of accidental relationships obtained with our method.

5.3. Result analysis

RQ1. The sizes of pattern concept lattices and pattern AC-posets associated with the 30 PCMs of Wikipedia are
presented in Figure 18. It shows the dispersion indicators (minimum (min), maximum (max), first, second and third
quartile (q1, q2 and q3) and the mean) of both the number of concepts (# Concepts) and the number of edges (#
Edges).

22

0 300 600 900 1200 1500

Number of concepts

AC-poset

Lattice

0 1000 2000 3000 4000 5000

Number of edges

AC-poset

Lattice

min q1 q2 mean q3 max
Concepts

Lattices 7 13 125 243 300 1556
AC-posets 5 11 35 54 91 196

Edges
Lattices 9 19 307 707 785 5049
AC-posets 4 11 67 109 176 457

Figure 18: Size of pattern concept lattices and AC-posets for the 30 studied PCMs of Wikipedia

Despite that the binary scaling of each element of the taxonomies may produce large formal contexts, the pattern
conceptual structures of each Wikipedia’s PCM are easily computable, storable and manageable. The computation
of conceptual structures using RCAExplore on a computer Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz, 16GiB
RAM was instantaneous. Output .DOT files [23] storing the conceptual structures are manually browsable (i.e., they
are not too convoluted), and their size did not limit their processing during the following experiments. It is noteworthy
that the Wikipedia PCMs we have selected to conduct this experiment can be considered as large sized PCMs. In
fact, based on the results of Sannier et al. in [59] who have performed quantitative analysis over 165 PCMs from
Wikipedia, on average, a PCM possesses 178,5 cells. Table 6 shows that most of our selected PCMs are larger than
the average ones in terms of number of cells, with an average of 212. Our method is thus technically applicable on
Wikipedia’s PCMs.

Table 8 shows the size of the conceptual structures associated with the PCM of Robocode and PCMs representing
excerpts of 500, 1000 and 2000 products of the JHipster dataset.

Table 8: Size of the conceptual structures for Robocode and excerpts of JHipster

#Concepts: Lattice AC-poset
Robocode 827 183
JHipster 500 65K 295
JHipster 1000 141K 548
JHipster 2000 269K 1048
#Edges: Lattice AC-poset
Robocode 2397 403
JHipster 500 352K 2535
JHipster 1000 827K 4984
JHipster 2000 1.6M 9949

23

We clearly see in these larger datasets the gain of the use of AC-posets in terms of size of the structures to manage.
Even though the number of products in Robocode is 4 time larger than the largest Wikipedia’s PCM, the size of
their associated conceptual structures is quite similar. This is due to the fact that Robocode has a few number of
attributes/features (5 in total). In comparison, conceptual structures associated with the excerpts of JHipster have
a very large size: 269727 concepts for the largest concept lattice. This is due to the large number of characteristics
documenting the products. However, the AC-posets remain easily computable, and are built by RCAExplore in a few
seconds. Their processing by CLEF to extract variability information is also reasonable, as it takes 4 seconds in the
worst case to analyse the AC-poset and to compute all variability relationships (without redundant ones). It appeared
during the experimentations that the implemented process to build the taxonomies was the most time consuming.
Computing integer taxonomy when there are a lot of different initial values results in a colossal number of computed
interval values. Using a threshold to limit the number of handled intervals seems to be a good compromise to avoid
slowing down the overall process; this is left as future work. To sum up, even with product descriptions of consequent
sizes, using AC-posets to support complex variability extraction is applicable.

RQ2. The dispersion indicators of the numbers of logical relationships extracted from each PCM of Wikipedia are
listed in Table 9 depending on the type of relationships, and if they are reduced (i.e., after eliminating the redundancy)
or not. Binary implications are analysed regarding both their transitive closure (TC) and their transitive reduction
(TR). Figure 19 presents the comparison of the average number of mutex and implications before and after redundancy
elimination.

Table 9: Dispersion indicators for the number of extracted relationships of PCMs of Wikipedia

min q1 q2 mean q3 max
Mutex 0 24 300 1126 2121 5967
Red. Mutex 0 5 50 227 250 1615
Impl. (TC) 6 22 365 1054 1503 6050
Red. Impl. (TC) 5 13 69 122 167 734
Impl. (TR) 4 13 105 149 213 563
Red. Impl. (TR) 4 10 39 76 95 388
Co-occurrences 0 0 1 9 9 98

0 200 400 600 800 1000 1200

Mutex

Imp. (TC)

Imp. (TR)

With Redundancy Without Redundancy

Figure 19: Comparison of the means of reduced and not reduced extracted implications and mutex

Table 10 presents the extracted complex logical relationships for Robocode and the 3 excerpts of JHipster

(denoted JH. 500, JH. 1000 and JH. 2000).
For PCMs of Wikipedia, the redundancy elimination allows to drastically reduce the number of extracted rela-

tionships: on average, 20% of the mutex, 12% of the binary implication transitive closure and 51% of the binary
implication transitive reduction are retained. This is due to the fact that a product in PCMs of Wikipedia is often de-
scribed by numerical attributes and/or several values for a same literal attribute. Therefore, the redundancy elimination
using taxonomies built on attribute values is efficient in this case.

Concerning the Robocode PCM, the redundancy elimination is useful: about 19% of the mutex, 31% of the binary
implication transitive closure and 57% of the binary implication transitive reduction are retained. Robocode does not
possess any numerical attribute, but the presence of several values for a given literal attribute and a given product

24

Table 10: Size of the conceptual structures for Robocode and the 3 excerpts of JHipster

R
ob

oc
od

e

JH
.5

00

JH
.1

00
0

JH
.2

00
0

Mutex 17663 40965 144532 538668
Red. Mutex 3457 9802 19738 39124
Impl. (TC) 887 5399 10303 20214
Red. Impl. (TC) 277 5389 10303 20214
Impl. (TR) 487 2794 5383 10663
Red. Impl. (TR) 276 2789 5383 10663
Co-occurrences 11 26 23 23

allows to extract relationships between groups of values and thus to reduce their number without losing information.
For instance, the two following binary implications can be extracted from the Robocode PCM:

movement : perpendicular ⇒ targeting : head on targeting
movement : perpendicular ⇒ targeting : linear targeting

Thanks to the built taxonomy on the attribute targeting, the binary implication

movement : perpendicular ⇒ targeting : {head on targeting, linear targeting}

is also extracted and can replace the two previous ones.
Redundancy elimination for mutex relationships in the 3 JHpister PCMs allows to retain 24%, 14% and 7%

of the relationships. We notice that, in this case, the redundancy elimination does not reduce the extracted binary
implications. This is due to the fact that these datasets do not possess any numerical attribute, and that each product
has exactly one value per literal attribute. In this particular case, literal attribute values cannot be grouped to form
relationships between more general values that can replace others. Moreover, as each product is associated to exactly
one value per attribute, there is no binary implication between values of the same attribute. For these two reasons,
redundancy elimination based on taxonomies does not work for binary implications in these datasets. However, it is
useful for mutex relationships as, here again, values of the same literal attribute never appear together in any product
of the JHipster PCMs and thus produce a large number of mutex. As we do not keep mutex between values of the
same attribute, redundancy elimination highly reduces their number.

RQ3. The percentages of pertinent extracted relationships from the 3 selected PCMs are presented in Figure 20. We
only considered the transitive closure of the implication set, as the pertinence of the implications is assessed on each
implication separately, and not by considering the whole set.

An example of accidental extracted relationship from the Wikipedia PCM about accounting softwares is: latest
stable release:4.07.10 ⇒ programming language:php. In fact, we considered in the graph of influence
of Figure 16 that the attribute representing the latest stable release and the attribute representing the programming
language had no influence on each other.

An overall observation shows that relationships annotated as “not pertinent” represent a significant part of ex-
tracted relationships. About 65% of extracted relationships from the PCM about accounting softwares, and 33% in
the PCM about CRM systems are annotated as not pertinent. The large part of accidental relationships is due to
the fact that there are not enough variant descriptions in a dataset to document all possible interactions between the
dataset characteristics. This is not only the case for PCMs of Wikipedia: about 39% of relationships extracted from
the Robocode PCM are considered not pertinent. This denotes the necessity to complete the proposed approach with
tools and methods to detect pertinent relationships among the extracted ones.

25

0% 20% 40% 60% 80% 100%

Cooccurrences

Binary Implcations

Mutex

Not pertinent Pertinent

Accounting softwares

0% 20% 40% 60% 80% 100%

Cooccurrences

Binary Implcations

Mutex

CRM systems

0% 20% 40% 60% 80% 100%

Cooccurrences

Binary Implcations

Mutex

Robocode

Figure 20: Percentages of pertinent extracted relationships from the 3 selected PCMs according to the graphs of influence of Figure 16 and Figure 17

5.4. Threats to validity

An external threat to validity is that our quantitative and qualitative evaluations are based on only 3 selected
datasets, that may be not representative enough of product descriptions in general. The fact that each PCM has to be
manually cleaned before applying our method and performing the experimentations has limited the number of studied
PCMs. However, recent research has been conducted on automated extraction and analysis of PCMs [51, 50]. This
kind of work could ease the process to obtain cleaned PCMs and allow to make our evaluation on a more significant
number of PCMs. Also, PCMs from Wikipedia could be not representative enough of the ones one can find elsewhere,
and thus PCMs from other websites need to be evaluated. This is left as future work.

Moreover, a construct threat lies on the heuristic we used to detect “accidental” relationships among the extracted
ones. It is possible that some of the relationships considered consistent may be not useful to model the domain
variability, or that some of them may be more valuable than others. This clearly denotes the necessity to deepen the
analysis of extracted variability relationships to complement our approach and, in the end, to develop efficient tools to
assist practitioners in variability modelling from product descriptions.

A last construct threat is the validity of the developed algorithms used to implement our evaluations. To limit
this threat, we manually reviewed the results of each step, first on small examples, and then on some of the selected
PCMs.

6. Related Work

Lots of works can be found in the literature about extraction of variability information from product descriptions
(not necessarily software systems), mostly to synthesise basic feature models as introduced in the FODA report [34].
Basic feature models (also called boolean feature models) graphically represent variability of a product family by
organising features in a hierarchy, and adding information as feature groups, mutex, or feature implications. Building
a feature model from product descriptions is a way to represent variability information characterising the initial set of
product variants.

26

Boolean feature model synthesis and feature constraint discovery. Haslinger et al. propose in [30] a dedicated al-
gorithm to build a feature model from a collection of feature sets (i.e., representing valid configurations), the latter
being presented in a similar form to formal contexts. They extend their method in [31] to be able to add cross-tree
constraints to their synthesised feature tree. In [1], Acher et al. propose their own dedicated algorithm to extract
feature models. Their approach and ours have in common the fact that they start from PCMs. The BUT4Reuse tool
[48], which has been proposed to foster bottom up SPL adoption, hosts two approaches that focus on feature constraint
discovery and manipulation: (1) From the graph decomposition of several model variants (including cardinalities) and
the way an identified feature spans in this graph decomposition, the MoVa2PL approach [47] extracts model element
dependencies as well as Requires and Mutual exclusion constraints between features; (2) A visualisation in concentric
zones of the way a feature is connected to the other features in terms of hard (requires, excludes) or soft (encourages,
discourages) constraints is proposed and evaluated in the FRoGs approach [49]. Davril et al. [22] address the problem
of feature model synthesis when the set of product variants is not formally documented. They first mine relevant
features from informal documents and produce a product-by-feature matrix close to PCMs. They extract all valid
implications and use text-mining techniques and co-occurrences between features to help identify meaningful impli-
cations to build a relevant model. Text-based techniques could be integrated in a future approach to detect relevant
variability relationships to complement our method.

Search-based techniques are used to extract feature models from product descriptions, such as in [42] where
genetic programming is used to synthesise a population of feature models representing the initial collection of feature
sets, or in [44] where two objective functions evaluate an evolutionary algorithm, hill climbing and a random search
to synthesise feature models. These search-based approaches produce FMs representing feature sets close to the
input ones, but do not assess meaningfulness of the represented variability information. In comparison, extracting
meaningful variability information from descriptions by relying on knowledge discovery techniques is the main goal
of our work.

FCA and its associated conceptual structures have also been used in this domain. Ryssel et al. [58] propose an
approach to extract variability information from formal contexts, which strongly inspired our algorithms of variability
extraction from concept lattices and AOC-posets. Loesch and Ploedereder [43] use FCA to extract variability infor-
mation from the set of valid configurations of a feature model to help its restructuring. Finally, Al-Msie’Deen et al.
[2] propose algorithms to extract different kinds of feature groups from AOC-posets constructed from software variant
configurations. The authors seek to extract logical relationships rather than focusing on their ontological semantics.
In previous work [17] we deepened the part played by FCA in boolean variability representation. For this, we studied
how boolean variability information is represented in FCA structures and boolean FMs, and we established a match-
ing between the logical relationships expressed by these two formalisms. We regrouped existing approaches of the
literature which focus on extracting the logical semantics of boolean FMs from FCA structures, and we formulated
a sound and complete extraction method. We showed how to use this method along with FCA structures to extract
a diagrammatic representation of equivalence classes of boolean FMs to help designers in boolean FM synthesis. In
this paper, we use the results of our previous work as a basis to extend the extraction method to complex variability
information by using an FCA extension called Pattern Structures. Here, we show how FCA extensions enable to take
into account structured datasets (ontology/taxonomy) to deal with complex variability information, and how it can be
used to reduce the number of extracted relationships.

All these works have in common the fact that they extract variability in the form of boolean feature models or
feature constraints, and from product descriptions that only document binary features. In comparison, our approach
also takes into account multi-valued attributes and allows to extract more complex variability information e.g., impli-
cations, co-occurrences and mutex between a feature and an attribute value or between two attribute values. However,
we do not propose a method to construct feature models from the extracted variability information. But the extracted
variability information, in the form of logical relationships, is independent from the final graphical representation, and
can assist the synthesis of feature models, as well as models in other formalisms (e.g., OVMs, CVL models).

Another approach to extract variability uses natural language processing. For example, by analysing product
descriptions in the form of commercial texts, [24] identifies candidate features and classifies them into two categories:
commonalities and variabilities. The features are then entered into a graphical tool and a feature model can be
manually built. In our approach, the found relationships between features are more precise than just commonalities
and variabilities, but on the other hand we do not focus on feature identification and the input of our approach is not

27

text but structured product descriptions.

Complex variability extraction. To our knowledge, the work of Becan et al. [8] is the closest to ours, and the only
one assessing extraction of variability information involving both features and attributes. They propose dedicated
algorithms to extract attributed feature models which are an extension of boolean feature models where features
can possess valued attributes. They start from configuration matrices, just as ours. For this, they first compute
feature groups, implications between features and mutually exclusive features. Then, they extract all possible complex
implications involving at least an attribute value. In our approach, we propose, in addition, to compute mutex between
features and/or attribute values, and to document co-occurrences between features and/or attributes. Besides, whereas
we extract logical relationships from a canonical conceptual structure, they rely on several different structures (binary
implication graph, mutex-graph). We do not address yet the problem of synthesising a complex variability model
as attributed feature models; we prefer to focus on extracting logical relationships independently from any graphical
representation, to later be able to build different kinds of variability models. The novelty of our approach is two-fold.
First, using FCA and Pattern Structures gives a unique mathematical framework to formalise extraction algorithms of
the different logical relationships depicting variability. Then, our approach is generic, as Pattern Structures allow
to take into account any kind of data on which a similarity operator can be defined. It would be interesting to
experimentally compare the obtained relationships of the same nature with the two approaches (from Becan et al.,
and ours), as well as the corresponding computation time; this is left as future work.

Pattern Structures. Pattern Structures have been used for knowledge discovery on complex types of datasets. Ganter
and Kuznetsov first use Pattern Structures to organise graphs representing molecules [26]. In [56], Reynaud et al. use
FCA and Pattern Structures for RDF triples classification in DBpedia datasets. The authors show how to process the
obtained structures to discover relevant information. In the same domain, Barbant et al. [13] use Pattern Structures
to represent ontologies and discover knowledge in the web of data. Kaytoue et al. [35] use pattern structures to mine
gene expression data. They use vectors of patterns composed of intervals. In comparison, we used pattern vectors
that may be composed of different types of patterns and not only intervals. In [14], Buzmakov et al. mine meaningful
sequential patterns from sequential data using FCA and Pattern Structures. Baixeries et al. [6] use Pattern Structures
to compute functional dependencies from databases, and show how Pattern Structures can characterise other types of
dependencies as degenerated multivalued dependencies. In another work [5], the authors propose a way to compute
similarity dependencies between the data values. These works can help to filter meaningful relationships, or to define
new relationships to extract that can be useful for practitioners in the field of variability analysis and representation.
To the best of our knowledge, Latviz [3] is the only publicly available tool allowing to define pattern structures and
it is limited to intervals.

7. Conclusion

In this paper, we studied two feature model extensions (multi-valued attributes and cardinalities) to cope with
complex product line variability modelling. We presented Formal Concept Analysis as a mathematical framework
that brings theoretical foundations to the extraction of variability information from product descriptions. We also
presented pattern structures, an FCA extension that allows to take into account more complex data, and allows us to
consider not only the software variants’ features, but also multi-valued attributes. We linked variability information
that can be extracted by these two frameworks with the one found in the two considered FM extensions. We proposed
an approach to extract complex variability information using these frameworks, as a part of extended FM synthesis
from product descriptions (that is not studied in this paper). We used Product Comparison Matrices, a formalism that
depicts a set of similar products and their characteristics in a tabular form, as descriptions of software families. We
detailed the three steps of our extraction approach with an application on Wikipedia PCMs, and we illustrated each
step with a toy example. We performed quantitative and qualitative evaluations of our method on 3 selected datasets
to assess its applicability and usefulness. Our experiments showed that our approach does not suffer from scalability
issues when applied on significant existing datasets, but that it needs to be completed by methods to efficiently separate
meaningful relationships from accidental ones. This work is a first step toward a more generic approach to assist
designers and practitioners into developing complex variability models from families of existing software systems.

28

In future work, we plan to study existing techniques to lower the number of considered extracted relationships by
deepening the separation of the meaningful ones from the accidental ones. Some tracks of reflection are text-based
techniques, and Formal Concept Analysis and Pattern Structures metrics [39]. These techniques could also be used
for evaluating the relevance of each relationship and provide a ranking to assist a practitioner to select the ones they
need. Another future work will be to consider the extraction of other kinds of variability information that could be
useful to synthesise complex variability models from software descriptions. Particularly, relationships between several
independent but connected software families are to be studied, allowing applications in the field of multiple software
product lines. We deem that Relational Concept Analysis, another extension of Formal Concept Analysis allowing to
extract relationships between several datasets, is a good candidate for this task. Finally, we only consider the first step
of variability model synthesis from product descriptions, i.e., variability information extraction. In the future, we will
address the second step which consists into building a complex variability model based on the obtained relationships.

References

[1] Acher, M., Cleve, A., Perrouin, G., Heymans, P., Vanbeneden, C., Collet, P., Lahire, P.: On extracting feature models from product descrip-
tions. In: Proceedings of the 6th International Workshop on Variability Modelling of Software-Intensive Systems (VaMoS’12). pp. 45–54.
ACM (2012)

[2] Al-Msie’deen, R., Huchard, M., Seriai, A., Urtado, C., Vauttier, S.: Reverse Engineering Feature Models from Software Configurations using
Formal Concept Analysis. In: Proceedings of the 11th International Conference on Concept Lattices and Their Applications (CLA’14). pp.
95–106 (2014)

[3] Alam, M., Le, T.N.N., Napoli, A.: LatViz: A New Practical Tool for Performing Interactive Exploration over Concept Lattices. In: Proceed-
ings of the 13th International Conference on Concept Lattices and Their Applications (CLA’16). pp. 9–20 (2016)

[4] Andrews, S.: In-close, a fast algorithm for computing formal concepts. In: Supplementary Proceedings of 17th International Conference on
Conceptual Structures (ICCS’09). pp. 1–14 (2009)

[5] Baixeries, J., Kaytoue, M., Napoli, A.: Computing similarity dependencies with pattern structures. In: Proceedings of the 10th International
Conference on Concept Lattices and Their Applications (CLA’13). pp. 33–44. CEUR-WS.org (2013)

[6] Baixeries, J., Kaytoue, M., Napoli, A.: Characterizing functional dependencies in formal concept analysis with pattern structures. Annals of
Mathematics and Artificial Intelligence 72(1-2), 129–149 (2014)

[7] Batory, D.S.: Feature models, grammars, and propositional formulas. In: Proceedings of the 9th International Conference on Software Product
Lines (SPLC’05). pp. 7–20. Springer (2005)

[8] Bécan, G., Behjati, R., Gotlieb, A., Acher, M.: Synthesis of attributed feature models from product descriptions. In: Proceedings of the 19th
International Conference on Software Product Line (SPLC’15). pp. 1–10. ACM (2015)

[9] Benavides, D., Martı́n-Arroyo, P.T., Cortés, A.R.: Automated reasoning on feature models. In: Proceedings of the 17th International Confer-
ence on Advanced Information Systems Engineering (CAiSE’05). pp. 491–503. Lecture Notes in Computer Science, Springer (2005)

[10] Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models 20 years later: A literature review. Information Systems
35(6), 615–636 (2010)

[11] Berger, T., Rublack, R., Nair, D., Atlee, J.M., Becker, M., Czarnecki, K., Wasowski, A.: A survey of variability modeling in industrial practice.
In: Proceedings of the 7th International Workshop on Variability Modelling of Software-intensive Systems (VaMoS’13). pp. 7:1–7:8. ACM
(2013)

[12] Berry, A., Gutierrez, A., Huchard, M., Napoli, A., Sigayret, A.: Hermes: a simple and efficient algorithm for building the AOC-poset of a
binary relation. Annals of Mathematics and Artificial Intelligence 72(1-2), 45–71 (2014)

[13] Brabant, Q., Couceiro, M., Napoli, A., Reynaud, J.: From Meaningful Orderings in the Web of Data to Multi-level Pattern Structures. In:
Proceedings of 23rd International Symposium on Foundations for Intelligent Systems (ISMIS’17). pp. 622–631. Lecture Notes in Computer
Science, Springer (2017)

[14] Buzmakov, A., Egho, E., Jay, N., Kuznetsov, S.O., Napoli, A., Raı̈ssi, C.: On mining complex sequential data by means of FCA and pattern
structures. International Journal of General Systems 45(2), 135–159 (2016)

[15] Carbonnel, J., Huchard, M., Nebut, C.: Analyzing Variability in Product Families through Canonical Feature Diagrams. In: Proceedings of
the 29th International Conference on Software Engineering & Knowledge Engineering (SEKE’17). pp. 185–190 (2017)

[16] Carbonnel, J., Huchard, M., Nebut, C.: Towards the extraction of variability information to assist variability modelling of complex product
lines. In: Proceedings of the 12th International Workshop on Variability Modelling of Software-Intensive Systems (VaMoS’18). pp. 113–120.
ACM (2018)

[17] Carbonnel, J., Huchard, M., Nebut, C.: Modelling equivalence classes of feature models with concept lattices to assist their extraction from
product descriptions. Journal of Systems and Software 152, 1 – 23 (2019)

[18] Czarnecki, K.: Generative programming - principles and techniques of software engineering based on automated configuration and fragment-
based component models. Ph.D. thesis, Technische Universitat Illmenau, Germany (1999)

[19] Czarnecki, K., Bednasch, T., Unger, P., Eisenecker, U.W.: Generative Programming for Embedded Software: An Industrial Experience Re-
port. In: Proceedings of the 1st ACM SIGPLAN/SIGSOFT Conference on Generative Programming and Component Engineering (GPCE’02).
pp. 156–172. Lecture Notes in Computer Science, Springer (2002)

[20] Czarnecki, K., Helsen, S., Eisenecker, U.W.: Staged Configuration Using Feature Models. In: Proceedings of the 3rd International Conference
on Software Product Lines (SPLC’04). pp. 266–283. Lecture Notes in Computer Science, Springer (2004)

[21] Czarnecki, K., Wasowski, A.: Feature Diagrams and Logics: There and Back Again. In: Proceedings of the 11th International Conference on
Software Product Lines (SPLC’07). pp. 23–34. IEEE Computer Society (2007)

29

[22] Davril, J., Delfosse, E., Hariri, N., Acher, M., Cleland-Huang, J., Heymans, P.: Feature model extraction from large collections of informal
product descriptions. In: Proceedings of the 9th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE’13). pp. 290–300. ACM (2013)

[23] Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz - open source graph drawing tools. In: International Symposium
on Graph Drawing. pp. 483–484. Lecture Notes in Computer Science, Springer (2001)

[24] Ferrari, A., Spagnolo, G.O., Gnesi, S., Dell’Orletta, F.: Cmt and fde: Tools to bridge the gap between natural language documents and feature
diagrams. In: Proceedings of the 19th International Conference on Software Product Line (SPLC ’15). pp. 402–410. ACM (2015)

[25] Ganter, B., Kuznetsov, S.O.: Pattern Structures and Their Projections. In: Proceedings of the 9th International Conference on Conceptual
Structures (ICCS’01). pp. 129–142. Lecture Notes in Computer Science, Springer (2001)

[26] Ganter, B., Wille, R.: Formal concept analysis - mathematical foundations. Springer (1999)
[27] Godin, R., Mili, H.: Building and Maintaining Analysis-Level Class Hierarchies Using Galois Lattices. In: Proceedings of the 8th Annual

Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’93). pp. 394–410. ACM (1993)
[28] Guénoche, A.: Construction du treillis de Galois d’une relation binaire. Mathématiques et Sciences Humaines 109, 41–53 (1990)
[29] Halin, A., Nuttinck, A., Acher, M., Devroey, X., Perrouin, G., Heymans, P.: Yo variability! JHipster: a playground for web-apps analyses.

In: Proceedings of the 11th International Workshop on Variability Modelling of Software-intensive Systems (VaMoS’17). pp. 44–51. ACM
(2017)

[30] Haslinger, E.N., Lopez-Herrejon, R.E., Egyed, A.: Reverse Engineering Feature Models from Programs’ Feature Sets. In: Proceedings of the
18th Working Conference on Reverse Engineering (WCRE’11). pp. 308–312. IEEE Computer Society (2011)

[31] Haslinger, E.N., Lopez-Herrejon, R.E., Egyed, A.: On Extracting Feature Models from Sets of Valid Feature Combinations. In: Proceedings
of the 16th International Conference on Fundamental Approaches to Software Engineering (FASE’13), Held as Part of the European Joint
Conferences on Theory and Practice of Software (ETAPS’13). pp. 53–67. Lecture Notes in Computer Science, Springer (2013)

[32] Haugen, O., Wasowski, A., Czarnecki, K.: CVL: Common Variability Language. In: Proceedings of the 17th International Software Product
Line Conference (SPLC ’13). pp. 277–277. ACM (2013)

[33] Holl, G., Grünbacher, P., Rabiser, R.: A systematic review and an expert survey on capabilities supporting multi product lines. Information &
Software Technology 54(8), 828–852 (2012)

[34] Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech. Rep. CMU/SEI-
90-TR-021 (1990)

[35] Kaytoue, M., Kuznetsov, S.O., Napoli, A., Duplessis, S.: Mining gene expression data with pattern structures in formal concept analysis.
Information Sciences 181(10), 1989–2001 (2011)

[36] Krajca, P., Outrata, J., Vychodil, V.: Advances in algorithms based on cbo. In: Proceedings of the 7th International Conference on Concept
Lattices and Their Applications (CLA’10). pp. 325–337 (2010)

[37] Krueger, C.W.: Easing the transition to software mass customization. In: Proceedings of the 4th International Workshop on Software Product-
Family Engineering (PFE’01). pp. 282–293. Lecture Notes in Computer Science, Springer (2001)

[38] Krueger, C.W.: Practical strategies and techniques for adopting software product lines. In: Proceedings of the 7th International Conference
on Software Reuse: Methods, Techniques, and Tools (ICSR’02). pp. 349–350. Lecture Notes in Computer Science, Springer (2002)

[39] Kuznetsov, S.O., Makhalova, T.P.: On interestingness measures of formal concepts. Information Sciences 442-443, 202–219 (2018)
[40] Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for generating concept lattices. Journal of Experimental and Theo-

retical Artificial Intelligence 14(2-3), 189–216 (2002)
[41] Lindig, C.: Fast concept analysis. Working with Conceptual Structures-Contributions to the 8th International Conference on Conceptual

Structures 2000, 152–161 (2000)
[42] Linsbauer, L., Lopez-Herrejon, R.E., Egyed, A.: Feature Model Synthesis with Genetic Programming. In: Proceedings of the 6th International

Symposium on Search-Based Software Engineering (SSBSE’14). pp. 153–167. Lecture Notes in Computer Science, Springer (2014)
[43] Loesch, F., Ploedereder, E.: Restructuring Variability in Software Product Lines using Concept Analysis of Product Configurations. In: Pro-

ceedings of the 11th European Conference on Software Maintenance and Reengineering, Software Evolution in Complex Software Intensive
Systems (CSMR’07). pp. 159–170. IEEE Computer Society (2007)

[44] Lopez-Herrejon, R.E., Linsbauer, L., Galindo, J.A., Parejo, J.A., Benavides, D., Segura, S., Egyed, A.: An assessment of search-based
techniques for reverse engineering feature models. Journal of Systems and Software 103, 353–369 (2015)

[45] Mannion, M.: Using First-Order Logic for Product Line Model Validation. In: Proceedings of the 2nd International Conference on Software
Product Lines (SPLC’02). pp. 176–187. Lecture Notes in Computer Science, Springer (2002)

[46] Martinez, J., Tërnava, X., Ziadi, T.: Software product line extraction from variability-rich systems: the robocode case study. In: Proceeedings
of the 22nd International Conference on Systems and Software Product Line (SPLC’18). pp. 132–142. ACM (2018)

[47] Martinez, J., Ziadi, T., Bissyandé, T.F., Klein, J., Traon, Y.L.: Automating the extraction of model-based software product lines from model
variants (T). In: Proceedings of the 30th IEEE/ACM International Conference on Automated Software Engineering (ASE’15). pp. 396–406.
IEEE Computer Society (2015)

[48] Martinez, J., Ziadi, T., Bissyandé, T.F., Klein, J., Traon, Y.L.: Bottom-up technologies for reuse: automated extractive adoption of software
product lines. In: Proceedings of the 39th International Conference on Software Engineering, (ICSE’17), Companion Volume. pp. 67–70.
IEEE Computer Society (2017)

[49] Martinez, J., Ziadi, T., Mazo, R., Bissyandé, T.F., Klein, J., Traon, Y.L.: Feature relations graphs: A visualisation paradigm for feature
constraints in software product lines. In: Proceedings of the Second IEEE Working Conference on Software Visualization (VISSOFT’14).
pp. 50–59. IEEE Computer Society (2014)

[50] Nasr, S.B., Bécan, G., Acher, M., Filho, J.B.F., Baudry, B., Sannier, N., Davril, J.: MatrixMiner: a red pill to architect informal product
descriptions in the matrix. In: Proceedings of the 10th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE’15). pp. 982–985. ACM (2015)

[51] Nasr, S.B., Bécan, G., Acher, M., Filho, J.B.F., Sannier, N., Baudry, B., Davril, J.: Automated extraction of product comparison matrices
from informal product descriptions. Journal of Systems and Software 124, 82–103 (2017)

30

[52] Niu, N., Easterbrook, S.M.: Concept analysis for product line requirements. In: Proceedings of the 8th International Conference on Aspect-
Oriented Software Development (AOSD’09). pp. 137–148. ACM (2009)

[53] Pan, J.Z., Staab, S., Aßmann, U., Ebert, J., Zhao, Y.: Ontology-driven software development. Springer Science & Business Media (2012)
[54] Poelmans, J., Elzinga, P., Viaene, S., Dedene, G.: Formal concept analysis in knowledge discovery: a survey. In: Proceedings of the 8th

International Conference on Conceptual Structures (ICCS’10). pp. 139–153. Lecture Notes in Computer Science, Springer (2010)
[55] Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations, Principles, and Techniques. Springer Science &

Business Media (2005)
[56] Reynaud, J., Alam, M., Toussaint, Y., Napoli, A.: A Proposal for Classifying the Content of the Web of Data Based on FCA and Pattern

Structures. In: Proceedings of 23rd International Symposium on Foundations for Intelligent Systems (ISMIS’17). pp. 684–694. Lecture Notes
in Computer Science, Springer (2017)

[57] Riebisch, M., Böllert, K., Streitferdt, D., Philippow, I.: Extending feature diagrams with uml multiplicities. In: Proceedings of the 6th World
Conference on Integrated Design & Process Technology (IDPT’02) (2002)

[58] Ryssel, U., Ploennigs, J., Kabitzsch, K.: Extraction of feature models from formal contexts. In: Workshop Proceedings (Volume 2) of the
15th International Conference on Software Product Lines (SPLC’11). pp. 4:1–4:8. IEEE Computer Society (2011)

[59] Sannier, N., Acher, M., Baudry, B.: From comparison matrix to Variability Model: The Wikipedia case study. In: Proceedings of the 28th
International Conference on Automated Software Engineering (ASE’13). pp. 580–585. IEEE (2013)

[60] Shatnawi, A., Seriai, A., Sahraoui, H.A.: Recovering software product line architecture of a family of object-oriented product variants. Journal
of Systems and Software 131, 325–346 (2017)

[61] She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Reverse engineering feature models. In: Proceedings of the 33rd International
Conference on Software Engineering, (ICSE’11). pp. 461–470. ACM (2011)

[62] Snelting, G.: Software reengineering based on concept lattices. In: Proceedings of the 4th European Conference on Software Maintenance
and Reengineering (CSMR’00). pp. 3–10. IEEE Computer Society (2000)

[63] Tilley, T., Cole, R., Becker, P., Eklund, P.W.: A Survey of Formal Concept Analysis Support for Software Engineering Activities. In: Formal
Concept Analysis, Foundations and Applications. Lecture Notes in Computer Science, vol. 3626, pp. 250–271. Springer (2005)

[64] Xue, Y., Xing, Z., Jarzabek, S.: Feature Location in a Collection of Product Variants. In: Proceedings of the 19th Working Conference on
Reverse Engineering (WCRE’12). pp. 145–154. IEEE Computer Society (2012)

31

	Introduction
	Identifying Logical Relationships in Feature Models and two of their Extensions
	Logical Relationships in Boolean Feature Models
	Logical Relationships in Extended Feature Models
	Attributes
	Cardinalities

	Formal Concept Analysis, Pattern Structures, and Variability
	Formal Concept Analysis
	Formal Concept Analysis and Variability
	Pattern Structures

	Extracting Complex Variability
	Illustrative example
	Method overview
	Identifying patterns and defining their taxonomies
	Processing boolean characteristics representing features
	Processing multi-valued characteristics representing attributes
	Composing pattern vectors

	Building the pattern concept lattice
	Extracting complex variability information
	Redundancy elimination

	Evaluation
	Data
	Methodology
	Result analysis
	Threats to validity

	Related Work
	Conclusion

