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Abstract

This paper presents the manufacturing and optimization of a convolutional-recurrent neural network, in order
to jointly learn the detection of numerous Sign Language linguistic features in ordinary RGB videos.

The proposed architecture can learn generic temporal-gestural features from a compact representation of
people producing continuous Sign Language. These generic features make it possible to detect both lexical signs
and higher-level linguistic patterns simultaneously. New pattern types can be added to the model and accurately
detected without retraining the gestural features, that is with few training instances.

The network is trained and tested on a continuous dialog corpus of French Sign Language. It gets localized
F1l-scores up to 80%, depending on the optimization of the network architecture.

1 Introduction

As a natural language for the Deaf, Sign Languages (SL) are still to be thoroughly described and understood in
terms of linguistics [2]. They make use of lexicon as well as more complex linguistic structures, such as pointing
signs or classifiers [25]. To the authors’ knowledge, these high-level structures are usually ignored in the automatic
Sign Language Recognition (SLR) literature, even though they play a crucial role in SL production. As more and
more SL material is available on public platforms, social networks etc., the ability to automatically detect high-level
linguistic features as well as specific lexicon would be of great assistance to the linguistic community, as there is a
strong demand from language experts.
In this paper, we present two major contributions to the field of continuous SLR:

1. The manufacturing of a convolutional-recurrent feedforward neural network that uses a simple and generic
modeling of a signer, and that can output many different types of SL linguistic predictions.

2. A general temporal-gestural representation that can be used to learn the detection of rare linguistic events.

This paper is organized as follows: in Section 2, state-of-the-art in continuous SLR is presented and limitations
are discussed. A generalizable modeling of a signer is introduced in Section 3. Then, the gesture representation
network that we propose is presented and detailed in Section 4. Subsequently, experiments are conducted and their
results are summarized in Section 5. Finally, we end with conclusions and future work in Section 6.

2 Related work and limitations

In this section, we start with a brief description of SL linguistics and associated hypotheses. We then reflect on
usual SL automatic analysis architectures and their potential drawbacks.



’ Frame Comment ‘

1 Lexical sign ”Paris”
2,3 Lexical sign ” Eiffel Tower”
4 The right hand produces the lexical sign/verb ”Can”. Although it is usually

produced as a two-handed sign, the left hand is already being used as a
fragment buoy — here a fragment of the tower —, which is a non-lexical SL
function helping the interlocutor understand that what is being said still relates
to the same scene.

5, 6 The right hand has a typical hand shape for a person — known as a proform —
and the straight motion from the bottom to the middle of the tower indicates the
action of using the elevator. The left hand is still used as a fragment buoy.

7 Pointing sign to a precise location, at the middle of the tower. It indicates the
location of what is going to be introduced.

8,9 The two hands are used to depict an outer shape. Its base is a square, and it is
rather slim — which is stressed by the crinkled eyes.

10 Lexical sign ”Restaurant”. The location and shape that have just been described
thus apply to it.

11 Lexical sign ”Good quality”. Even though this sign can be found in dictionaries,

its subjective nature is such that a great variability in terms of implication of
the signer is observed, related to the continuous appreciation from plain good
to outstanding.

12 Lexical sign ” Also/In addition”. It is almost always produced with two hands,
but here a slight deformation is observed on the left hand: is it actually back
to the fragment buoy referring to the Eiffel Tower.

13, 14 The hands configuration is the same as in frame 6, but now climbing to the top
of the tower, then the right hand produces the lexical sign ”To look/To observe”
while the left hand keeps its fragment buoy function. What is interesting is the
body and head posture: the shoulders and head are slightly lifted, the chin up,
and she is clearly staring into the distance. She is actually executing a role play,
or role shift, showing the interlocutor that someone at the top of the Eiffel Tower
will then have a good perspective.

Figure 1: French Sign Language sequence example (duration: 4 seconds). The general topic is about traveling.
Possible translation: In Paris, if you climb the Eiffel Tower, you will find a great restaurant at the middle floor.
Also, you can see very far from the top.



2.1 Linguistics of Sign Languages
2.1.1 Fundamental hypotheses and SL complexity

A lot of past and current work has focused on recognizing lexical signs' that are realized in an isolated way, usually
called citation-form lexical SLR [18, 32, 33, 38, 8]. Since signs are not achieved similarly in continuous discourse
compared to when isolated, continuous SLR is actually a much more challenging task, with a lot of variability and
continuous transitions between successive signs. It has only been addressed from a lexical perspective and with the
— usually unstated — hypothesis that SL production can be reduced to a sequence of lexical signs [22, 5, 9].

However, SL actually have — at least — three strong characteristics that make them fundamentally different from
unidimensional sequential languages:

1. They are multi-channel: information is conveyed through hand motion, shape and orientation, body posture
and motion, facial expression and gaze;

2. They are strongly spatially organized: events, objects, people and other entities are placed in the signing
space and related to each other in a visual way. The grammar of SL is structured by the use of space;

3. They allow signers to generate new signs — that would not appear in a dictionary — on the go, in an iconic
way, or even modify lexical signs. More generally, SL do not only consist of lexical signs but they also
make use of more complex iconic structures.

In the authors’ opinion, the above-mentioned papers actually deal with continuous lexical sign recognition, while
continuous sign language recognition is still to be addressed. We highlight the fact that lexical signs only account
for a portion of SL production. This can be seen on the random example of Fig. 1. This example shows that SL
production should by all means not be seen and analyzed as a succession of citation-form lexical signs. Many other
gestural units are used in SL, and this research intends to show that some of them can be dealt with.

2.2 Generalizability and model architecture
2.2.1 Input data

A lot of SL recording and subsequent analysis has been done in controlled environments, with specific conditions,
like RGB-D setup [31, 33, 38, 43] or very high recording frame rate [13, 12, 42]. In a less controlled environment
with more general conditions (RGB images and 25 frames per second), a lot of research has been conducted on
the RWTH-PHOENIX-Weather 2014 dataset [19]. The usual approach on this corpus has been to start with a
Convolutional Neural Network in order to derive features on the images [10, 23, 43, 4, 20]. The features derived
from a CNN might be prone to a lack of generalizability, for instance if applied to videos where scale or appearance
are changed. The signer modeling presented in Section 3 is a direct result of this discussion.

2.2.2 Model architecture

As just stated, most recent architectures dealing with continuous SL recognition use CNNs as a preprocessing
layer. Recurrent Neural Networks are usually used [10, 43, 9, 22|, with a Hidden Markov Model (HMM) embedding
[10, 23, 21, 40]. This common architecture makes learning rather time-consuming and requires a lot of data — the
CNN features must be trained with SL data. Furthermore, it is not possible to add new features to the model
without retraining it altogether. In Section 4, we present a RNN network that directly outputs linguistic features
probabilities, and learns gestural features.

Section 3 details a modeling of a signer that is both generalizable and compact.

3 Generalizable signer modeling

Modeling a signer in a SL video in a generalizable way is a challenging task. In this section, we briefly present the
choices that were made and the final modeling that is used in this paper. It was decided to make use of several
open-source programs. The pre-computed input vector that results from the modeling presented thereafter is of
size N = 420.

1From [17], we use this commonly accepted definition: fully-lezical signs are highly conventionalised signs in both form and meaning
in the sense that both are relatively stable or consistent across contexts. Fully-lexical signs can easily be listed in a dictionary. Lexical
signs can be used as verbs, nouns, adjectives, etc.



3.1 Body pose

Convolutional Neural Networks (CNN) have emerged as a very effective tool to get relevant features from images.
OpenPose [6, 34, 39] is a powerful open source library, with real-time capability for estimating 2D body pose. A 2D
to 3D model was then trained on motion capture data from the French Sign Language (LSF) corpus MOCAP1 [26],
only on upper body pose, following [44]. It is to be noted that instead of using raw 3D upper body pose estimation,
we compute handcrafted features: every joint angle, orientation and their dynamics (speed and acceleration); every
joint position relative to the parent joint — for instance left elbow relative to left shoulder), and their dynamics;
relative position, speed, acceleration and distance of one hand to the other.

3.2 Facial landmarks

A 3D face estimate is directly obtained from video frames thanks to a CNN model trained on 230,000 images [3].
As for body pose, we compute handcrafted features instead of raw data: each rotation angle, speed and acceleration
for axes X, Y and Z of the centroid of the head; horizontal and vertical mouth openness; relative motion of the
eyebrows to the eyes.

3.3 Hand modeling

While 3D hand pose estimation [41, 15, 35] on real-life RGB videos has not appeared to be reliable enough to
this day, a SL-specific model was developed in [20]. This CNN model classifies cropped hand images into 61
predefined hand shapes classes. Whereas this model focuses on hand shape — which only accounts for a portion of
the information conveyed through the hands —, we decided to use it as our hand modeling system. Thus, for each
frame and each hand, we scale hand data down to a vector of 61 probabilities.

Our goal is to be able to detect any type of lexical or non-lexical feature in natural continuous SL like the
Dicta-Sign corpus. For that purpose, we present further below a recurrent architecture that was built, and the
results it achieved.

4 Manufacturing and training a generalizable gesture representation
network

In this section, we focus on manufacturing a recurrent neural network that uses the signer modeling presented in
Section 3. This network must be able to learn a generalizable gesture representation, in order to jointly learn the
detection of different SL features.

4.1 Network architecture and parameters

With time ¢ = 1...T, the input and output sequences are defined as follows: z; as a flattened input vector, its
size N3" corresponding to the total number of pre-computed motion features (computed from body pose and facial
landmarks) and hand features (see Section 3); y: as the output of the model — it consists of N}mt predictions,

one for each output type of the model. The model then learns the conditional probabilities f ((z:),_; ,) =

P (v @0)er 1)
The full architecture of the model is presented on Fig. 2:

e A 1D-convolutional layer is first applied on the input x;, which is a common operation on temporal data
and action recognition, see for instance [24]. Its parameters are the kernel size Nf, the stride length of the
convolution Ng and the number of filters N¥.

Ni = 3 on Fig. 2.

e A first attention layer is applied on the convolved input. Attention enables the network to focus on relevant
parts of input sequences [27]. The attention can be feature-independent when only one weight per time step
is used, or feature-dependent if one weight per feature of each time step is calculated.

e Recurrent layers are then added to the network. Since this work does not target real-time applications, the
recurrent layers have been set as bidirectional. Long Short-Term Memory (LSTM) are preferred, as they
tackle vanishing gradient issues [14], which in the case of high frequency data like video frames is critical. The
total number of LSTM layers is NILSTM, and the number of hidden units of each LSTM layer is foSTMi.
NlLSTM = 2 on Fig. 2.
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Figure 2: Simplified unfolded scheme of a RNN network for SL linguistic features learning. From left to right,
the followings layers are stacked: input, 1D-convolution, attention, bidirectional LSTM (2x), attention, multi-layer
perceptron before each output feature;



e A second attention layer is used, either feature-independent or feature-dependent.

e Last, before each predicted output 3 is calculated, a multilayer perceptron (MLP) is connected to the output
of the second attention layer. The parameters are the number of layers NlM LP and the number of hidden
neurons N,ﬁVILP.

N¢“* =3 on Fig. 2.

Dropout is used to prevent overfitting in the RNN and MLP layers [36]. Attention and output layers use softmax
activation, while all other layers use Rectified Linear Unit activation [30]. RMSProp optimizer is used [37], and
the whole model was built with Keras [7] on top of Tensorflow [1]. The architecture optimization is discussed in
Section 5.4.

4.2 Specifics of this model

As stated previously, this model is aimed at jointly learning different SL features. As a matter of fact, all these
features share the same layers, apart from the last softmax classifier and possibly the MLP layers of each feature.
That is, the output of the last LSTM layer — I on Fig. 2 — can be read as a general gestural-temporal representation.

If the network is already trained for the detection of NJ?"t features, it is thus possible to add a (N }’“t + 1)t
feature to the network and only train one classifier, from the pre-trained gestural-temporal representation. This is
examined in Section 5.5.

5 Experiments

In this section, we present the experiments that we conducted on the Dicta-Sign corpus, in order to evaluate the
relevance of the learning architecture. The features we tested are detailed, and the performance measure is discussed.

5.1 Dicta-Sign: a relevant SL dataset

A number of criteria were taken into account in order to pick an appropriate dataset to train and test our model:

e French Sign Language (LSF) was preferred. Indeed, most research has focused on American [12, 43, 42, 29],
German [10, 5, 23], Greek [8] and Chinese [33, 38] SL. Our goal is to draw inspiration from these works, while
producing a general enough model that could be applied to other Sign Languages than LSF;

e A continuous SL recording, with the lowest possible restriction in terms of language, in order to get realistic
data;

e The video resolution and frequency was to be relatively low so that our model could be applied in most use
cases;

e We wanted a corpus that was not annotated only on the lexical level.

The SL corpus of Dicta-Sign contains dialogs in four different Sign Languages, including French Sign Language
(LSF) [28]. Fig. 3 shows the setup of dialog recorded for the corpus. For this work, only the French part was
retained, containing about five hours of annotated dialogs from 16 native signers with the following annotations
according to [16]:

o Fully Lexical Signs (FLS): see footnote 1 on page 3.

e Partially Lexical Signs (PLS): they are also referred to as classifier signs or classifier predicates (see [25]).
Their definition is close to what is called iconic signs in [11]. They include Depicting Signs (DS), Pointing
signs (PT) and Fragment buoys.

e Non Lexical Signs (NLS): Here NLS comprise finger-spelling (FS) and numbering (N).

The image resolution of this corpus is 480p, while the frame rate is 25 fps. Furthermore, the environment is loosely
controlled, consequently different narrative and signing styles were observed.
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Figure 3: Dicta-Sign corpus [28]: setup for the recording of two signers who are facing each other. Two front views
are recorded along with a side view.

| Convol. Attention LSTM MLPs [ FLS PT PT1 PT2 N | Neoens |

X X 1 X 0.48 0.55 0.71 0.30 0.75 250
v X 1 X 0.53 0.57 0.70 0.31 0.78 300
X 4 1 X 0.53 0.60 0.78 0.31 0.80| 2000
X X 2 X 0.50 0.60 0.75 0.33 0.78 350
X X 1 v 0.50 0.56 0.72 0.31 0.76 800
v v 2 v 0.57 0.61 0.80 0.35 0.81| 2500

Table 1: Localized F1-score for 5 different linguistic outputs, with different network options. The number of epochs
until convergence is indicated in the last column.

5.2 Set of tested features

In these experiments, we built a network to jointly detect 5 lexical signs (FLS) — ”Also/Same”, ”Wire/Cable”,
"Yes”, "No”, ”Center/Middle” —, Pointing signs (PT), Pointing signs to the 1°¢ person (PT1) and the 2"¢ person
(PT2), and Numbering (N) — for instance dates.

The detection of these features could help build a global model aimed at understanding a SL discourse —
conversely to existing models that focus on lexicon only.

5.3 Performance measure

Although the models we trained output frame-wise predictions, most frame labels are ”blank”, so that frame-wise
accuracy is close to 100%. For sake of clarity, it was then decided to present, for each output feature 37, localized
precision P7, recall R/ and F'17-score, defined as F'17 = 2P/ R7 /(P7 + RY).

Localized precision and recall are computed from the evaluation of true positives, true negatives and false
positives within a time window of 1 second. We thought this value was large enough so that the indefinite nature
of the beginning and end of a sign is not an issue, and small enough so that localization is acceptable.

Last, we highlight the fact that the training, validation and test sets are signer-independent, which is known to
make learning more difficult, as stated in [22]2.



’ Trained layers \ Localized F1-score ‘

Whole network 0.78
Only last classifier 0.26
Last classifier and a LSTM layer 0.74

Table 2: Localized F1-score for the ”Numbering” output. The whole network is either trained on several features
including ”"Numbering”, or it is trained on the other features, then frozen, then used to generate gestural features
that subsequently only train a classifier/a classifier preceded by a LSTM layer.

5.4 Architecture optimization

Network optimization is conducted and the results are presented in Table 1. Convolution®, Attention*, depth of
LSTM layers® and the influence of adding MLP layers® before each output is examined.

Performance is increased with the presence of convolution, attention, additional LSTM layers and additional
MLPs. However, one can note that training is much longer with attention, while the gain of performance is limited.
Conversely, convolution does not lengthen training but still increases performance.

5.5 Addition of new features after training

In Section 4.2, we indicated that this network should learn general temporal-gestural features, since different types
of linguistic features are connected to the output of the last LSTM layer.

In order to test this ability, we trained the network without the "Numbering” feature output, then we froze
all the weights of the network and connected a ”Numbering” output (softmax classifier) on top of the LSTM. We
then trained this classifier only — keeping all the other weights frozen. The results of this experiment are given in
Table 2. The configuration that was used for this experiment was: Convolution, no Attention, one LSTM layer,
no MLP before the feature outputs. We also tested the same configuration with a LSTM layer added along with
the softmax classifier. As can be seen in Table 2, the configuration including a LSTM and a classifier enables to
accurately detect ”Numbering” signs. However, more exploration is still needed to optimize this learning transfer.

6 Conclusions and perspectives

In this paper, we have experimented the joint learning and detection of several Sign Language linguistic features on
a continuous French Sign Language corpus. With a generalizable signer modeling as input, a gesture representation
network was built and optimized. This network is convolutional and recurrent, and directly outputs linguistic
features probabilities. These features can be lexical or non-lexical, and we have demonstrated that new features
can be added to the model, even after the gestural representation has been learned.

Future works include a better signer modeling — especially focusing on the hands — and a thorough analysis of
false positives and false negatives, in order to further optimize the model. Transferring learning is also a way to
explore further, since it allows the detection of rare linguistic events. Last, we intend to test this model on another
corpus, in order to verify its generalizability.
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