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Abstract

We propose a probabilistic methodology for data-driven updating of non-
Gaussian high-dimensional symmetric positive-definite matrices involved in
computational models. We cast the data-driven updating as a Bayesian
identification of the symmetric positive-definite matrices. The posterior thus
obtained exhibits several hyperparameters that control the dispersion of the
prior and the weight of the weighted distance that represents the model-
data misfit in the likelihood function. Using an identification criterion that
quantifies the agreement between the predictions and the data, we identify
these hyperparameters so as to obtain not only improved predictions but
also a probabilistic representation of model uncertainties. The numerical
implementation of the Bayesian inversion by using a Markov chain Monte
Carlo (MCMC) method is computationally challenging because the support
of the posterior is restricted to a set of symmetric positive-definite matrices
and the dimensionality of the problem grows with the square of the matrix
dimension and hence can be high. We thus use a transformation of measure
to set up the Markov chain in terms of real-valued state variables whose
distribution is Gaussian under the prior but non-Gaussian under the poste-
rior. This transformation of measure allows us to sample the posterior using
an Itô-SDE-based MCMC method that inherits computational efficiency in
high dimension from leveraging the gradient of the posterior. We apply
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this methodology to a problem of a data-driven updating of a reduced-order
model in computational structural dynamics.

Keywords: data-driven modeling, Bayesian inversion, symmetric
positive-definite matrix, identification criterion, nonparametric probabilistic
model, Markov Chain Monte Carlo

1. Introduction

We propose a probabilistic methodology for data-driven updating of non-
Gaussian high-dimensional symmetric positive-definite matrices involved in
computational models. For instance, the computational model could be a
reduced-order model parameterized by symmetric positive-definite reduced
matrices, or it could involve constitutive models with material tensors rep-
resented by symmetric positive-definite matrices, among other possibilities.
In this methodology, we cast the updating as a Bayesian identification of the
symmetric positive-definite matrices. Our aim is not only to improve the
accuracy of the predictions but also to learn from the data about the impact
of parametric uncertainties and modeling errors on the predictions.

Whereas an inverse problem formulated within a deterministic framework
typically takes the form of an optimization problem, the Bayesian approach
to inverse problems takes the form of an application of the Bayes formula to
update a prior probability distribution by means of a likelihood function to
obtain a posterior probability distribution [1, 2, 3]. The numerical implemen-
tation of an inverse problem within this Bayesian approach typically involves
a Markov chain Monte Carlo (MCMC) method to sample from the posterior,
and descriptors of the posterior are then estimated from the samples thus
obtained by means of methods from mathematical statistics [4].

Casting the data-driven updating as a Bayesian identification of the sym-
metric positive-definite matrices raises challenges, both from the point of
view of the formulation of the Bayesian inversion as from the point of view
of the numerical implementation of the Bayesian inversion. First, the prior
must be a matrix-variate probability distribution whose support is limited to
a set of symmetric positive-definite matrices. The sets of symmetric positive-
definite matrices are not linear spaces (vector spaces) and this probability
distribution cannot be Gaussian. Second, the prior and the likelihood func-
tion must be defined—and their hyperparameters identified—in a manner
that is consistent with our aim of obtaining not only improved predictions

2



but also a probabilistic representation of the model uncertainties. Third,
an MCMC method is required that is able to explore efficiently the set of
symmetric positive-definite matrices in accordance with the posterior. The
MCMC method must ensure the symmetry and the positive definiteness of
the matrix samples. And the dimensionality of the problem grows with the
square of the matrix dimension and hence can be high, so that conventional
MCMC methods can be inefficient. For example, Metropolis–Hastings vari-
ants of MCMC methods require a kernel to accept and reject proposals from,
and choosing an adequate kernel can be difficult in high dimension.

We address these challenges as follows. First, we select the prior from the
family of probability distributions for symmetric positive-definite random
matrices introduced with a constructive approach based on the maximum-
entropy principle in [5, 6]. This family of maximum-entropy probability dis-
tributions lends itself well to representing uncertainty in symmetric positive-
definite matrices of computational models [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Sec-
ond, we define the likelihood function as an exponential of minus a weighted
distance that represents the model-data misfit. The posterior thus obtained
exhibits several hyperparameters that control the dispersion of the prior and
the weight of the weighted distance that represents the model-data misfit
involved in the likelihood function. Using an identification criterion that
quantifies the agreement between the predictions and the data, we identify
these hyperparameters so as to obtain not only improved predictions but also
a probabilistic representation of the model uncertainties. Third, we introduce
a transformation of measure from the set of symmetric positive-definite ma-
trices to a linear space. This transformation of measure allows us to set up an
MCMC method that ensures the symmetry and the positive definiteness of
the matrix samples while being defined in terms of state variables with values
in a linear space. We use the Itô-SDE-based MCMC method introduced in
[15], which does not require a kernel to be chosen and inherits computational
efficiency in high dimension from leveraging the gradient of the target to
know “where to go” in the high-dimensional space [15, 16].

We apply the proposed methodology to a problem of a data-driven updat-
ing of a reduced-order model in computational structural dynamics. In this
domain of application, the data-driven updating with a maximum-entropy
probability distribution used as the prior can also be seen as a data-driven
updating of a nonparametric probabilistic model constructed as introduced
in [5]. However, the end result is not an identification of hyperparameters of a
nonparametric probabilistic model as in [7, 8, 9, 17, 18]; indeed, the posterior
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is in general no longer a member of the family of maximum-entropy probabil-
ity distributions. Rather, we obtain an updated probabilistic reduced-order
model with a posterior for the reduced matrices that is specifically tailored
to provide improved predictions of the dynamical behavior of the structure
as well as a probabilistic representation of the model uncertainties.

The proposed methodology relates to the broader context of MCMC
methods [4, 19] as follows. MCMC methods for sampling from probabil-
ity distributions whose support is not a linear space may be obtained by
using a rejection mechanism to discard samples that lie outside the support,
by using barrier functions to repel the Markov chain from the boundary
of the support, by using reparameterizations, as well as in other ways. In
the proposed methodology, the use of the transformation of measure may
be viewed as the use of a reparameterization. MCMC methods for sampling
from complex probability distributions may be accelerated by exploiting local
or global structure of the target probability distribution. Such local or global
structure may be deduced from analyses of previous samples, from gradients
and Hessians of the posterior, as well as from other sources of information;
and it may be exploited by adaptivity mechanisms; by multiscale methods;
by surrogate modeling, for instance, in low dimension, the method in [20]; by
transformations such as transport maps, for instance, in low dimension, the
method in [21]; by deducing transition kernels from stochastic dynamics in a
manner that exploits derivative information. In the proposed methodology,
the use of the Itô-SDE-based MCMC method may be viewed as a method
that may be classified in the latter class of methods.

This paper is organized as follows. In Sec. 2, we describe in a general
setting a formulation and a numerical implementation of a Bayesian identifi-
cation of symmetric positive-definite matrices. In Sec. 3, we provide details
relevant to the use of a maximum-entropy probability distribution as the
prior. In Sec. 4, we cast a problem of a data-driven updating of a reduced-
order model in structural dynamics as a Bayesian identification of symmetric
positive-definite matrices. In Sec. 5, we provide numerical results.

2. Bayesian identification of symmetric positive-definite matrices

We now describe in a general setting a formulation and a numerical im-
plementation of a Bayesian identification of a symmetric positive-definite
matrix. Specifically, we consider a Bayesian inversion of a model

y = g([X]), g : M+
n (R)→ Rm, (1)
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that solves a forward problem, that is, that associates to a value [X] of the
symmetric positive-definite matrix, which we assume to be of dimension n,
a corresponding value y of observables, which we assume to be collected in
a vector of dimension m; here and in the remainder of this paper, M+

n (R)
denotes the set of n-dimensional symmetric positive-definite matrices with
real entries. We denote by yobs the actually observed value of the observables.

2.1. Formulation within the Bayesian approach to inverse problems

The Bayesian approach to inverse problems leads to the Bayes formula
that updates a prior with a likelihood to obtain a posterior as follows [1, 2, 3]:

ρ[X]

(
[X]
∣∣yobs

)︸ ︷︷ ︸
posterior

∝ f
(
yobs

∣∣[X]
)︸ ︷︷ ︸

likelihood

× ρ0

(
[X]
)︸ ︷︷ ︸

prior

. (2)

In this Bayesian approach to inverse problems, the prior probability density
function (PDF) ρ0 is construed to represent any information available about
the symmetric positive-definite matrix other than that contained in the data;
the likelihood function f is construed to represent the information extracted
about the symmetric positive-definite matrix from the data; and the posterior
PDF ρ[X] is construed to represent the plausibility of values of the symmetric
positive-definite matrix as this plausibility is implied by all the available
information. In (2) and in the remainder of this paper, the notation ∝
expresses that the PDF in the left-hand side is proportional to the right-hand
side, whereby the proportionality constant is implied by the requirement that
the PDF be normalized: it must integrate to 1 over its domain of definition.

The determination of a suitable prior is where the symmetry and the pos-
itive definiteness of the matrix pose a first difficulty. Indeed, the prior must
assign positive weight only to symmetric positive-definite matrices, that is,
it must satisfy π0(M+

n (R)) = 1, where π0 is the probability distribution that
admits ρ0 as a PDF, written as π0(dX) = ρ0([X])dX; for details about the
definition of the volume element, dX, on M+

n (R), we refer to [5]. Through
the Bayes formula, the posterior then inherits the symmetry and positive-
definiteness properties encoded in the prior, so that samples from the pos-
terior are symmetric positive-definite matrices. We address this difficulty by
using a prior from the family of PDFs for symmetric positive-definite random
matrices constructed by means of the maximum-entropy principle in [5, 6].
However, as the proposed methodology is applicable even for other types
of prior, we proceed with presenting it in a general setting with the prior
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denoted generically by ρ0; in Sec. 3, we describe the use of the proposed
methodology with a maximum-entropy PDF used as the prior.

We use for the likelihood function an expression as an exponential of
minus a weighted least-squares model-data misfit represented by a distance:

f
(
yobs

∣∣[X]
)
∝ exp

(
−1

2

∥∥yobs − g([X])
∥∥2

[Γ]

)
; (3)

here, ‖ε‖2
[Γ] = εT[Γ]ε with ε = yobs − g([X]). If the data are perturbed by

noise, this expression can be interpreted as a representation of the impact of
the noise as a centered multivariate Gaussian random variable added to the
observables predicted by the forward problem; thus, [Γ]−1 is the covariance
matrix of the Gaussian random variable. If the data are free of noise, this
expression can be interpreted as a Gaussian regularization of a Dirac impulse
concentrated at the data.

2.2. Transformation of measure

The posterior does not in general possess a special structure that can be
exploited to set up a direct simulation method to sample from it. Thus, to
sample from the posterior, an MCMC method must be used.

The construction of such an MCMC method is where the symmetry and
the positive definiteness of the matrix pose a second difficulty: the samples
produced by the MCMC method must satisfy the symmetry and positive-
definiteness constraint. We address this difficulty by using a transformation
of measure. We assume that even if the posterior does not possess a special
structure, the prior (is chosen such that it) does possess a special structure
that can be exploited to represent the prior on the set of symmetric positive-
definite matrices in a relatively simple way as a deterministic transformation
of another PDF on a linear space. Specifically, we assume that there ex-
ists a relatively simple deterministic transformation X from the linear space
Rn(n+1)/2 to the set of of symmetric positive-definite matrices M+

n (R),

X : Rn(n+1)/2 → M+
n (R) : ξ 7→ [X] = [X (ξ)], (4)

where the dimension n(n+ 1)/2 reflects the matrix symmetry, such that the
image of the standard Gaussian on Rn(n+1)/2 under X is the prior on M+

n (R):

π0 = πN ◦X−1, π0(dX) = ρ0([X])dX, πN (dξ) ∝ exp

(
−1

2
‖ξ‖2

)
dξ. (5)
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For the maximum-entropy PDF, such a transformation can be deduced im-
mediately from the direct simulation method available to obtain samples
from it, as we show in Sec. 3. Given such a transformation, we define the
PDF ρΞ on Rn(n+1)/2 whose image under X is the posterior on M+

n (R):

ρΞ
(
ξ
∣∣yobs

)
∝ exp

(
−1

2

∥∥yobs − g
(
[X (ξ)]

)∥∥2

[Γ]

)
× exp

(
−1

2
‖ξ‖2

)
. (6)

Thus, owing to this transformation of measure, an MCMC method can be
set up to sample from ρΞ on Rn(n+1)/2 where it does not face the symmetry
and positive-definiteness constraint.

2.3. Change of variables

The first factor in the expression of ρΞ represents the information ex-
tracted from the data and the second factor represents the prior information.
The transformation of measure is such that the second factor is standard
Gaussian with a covariance matrix equal to the identity matrix. However, as
a consequence of the typical ill-posedness of inverse problems, the data can
be expected to provide significant information only on certain components
of the symmetric positive-definite matrix and leave other components rather
uninformed. Correspondingly, the first factor in the expression of ρΞ can
be expected to concentrate its weight on narrower ranges of values only in
certain directions in Rn(n+1)/2 and distribute its weight over wider ranges of
values in other directions.

To ensure that an MCMC method works well in such a situation, we in-
troduce an additional change of variables defined as a linear transformation
involving a Cholesky factor of an approximation to the covariance matrix.
This change of variables is a standard approach related to principal compo-
nent analysis. Specifically, we describe in Sec. 2.5 how an approximation [Ĉ]
to the covariance matrix of ρΞ can be obtained via a linearization of the
inverse problem. Given such an approximation [Ĉ] to the covariance matrix
of ρΞ, we use its Cholesky factorization into the product of a lower-triangular
matrix and its transpose,

[Ĉ] = [LĈ ][LĈ ]T, (7)

to define a transformation from Rn(n+1)/2 to Rn(n+1)/2 given by

q = [LĈ ]−1ξ. (8)
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Given this transformation, we define the PDF ρQ on Rn(n+1)/2 whose image
under this transformation is ρΞ on Rn(n+1)/2:

ρQ
(
q
∣∣yobs

)
∝ exp

(
−1

2

∥∥yobs − g
([
X ([L

Ĉ
]q)
])∥∥2

[Γ]

)
× exp

(
−1

2

∥∥[L
Ĉ

]q
∥∥2
)
. (9)

Provided that [Ĉ] is a good approximation to the covariance matrix of ρΞ,
the covariance matrix of ρQ is approximately equal to the identity matrix.

2.4. Itô-SDE-based MCMC method

The dimension of Rn(n+1)/2 grows with the square of the matrix dimen-
sion and hence can be high, so that conventional MCMC methods can be
inefficient. We address this difficulty by using the Itô-SDE-based MCMC
method introduced in [15]. This MCMC method is based on the Itô SDE dQ = P dt,

dP = −∇qψ(Q)dt− 1

2
ζ0P dt+

√
ζ0dW ,

(10)

where ζ0 > 0 is a free parameter and {W (t), t ≥ 0} is a normalized Wiener
stochastic process. Under certain regularity conditions, this Itô SDE is such
that when completed with an initial condition, its solution {(Q(t),P (t)), t ≥
0} is ergodic for the so-called Gibbs PDF

ρ(Q,P )(q,p) ∝ exp

(
−ψ(q)− ‖p‖

2

2

)
, (11)

where the ergodicity property means that time averages over trajectories of
the solution can be used to approximate probabilistic averages with respect
to the Gibbs PDF. With reference to this ergodicity property, the Itô-SDE-
based MCMC method is obtained by setting the so-called potential ψ in the
Itô SDE in (10) equal to the negative logarithm of the target PDF, that is, the
PDF that must be sampled from, and then discretizing this Itô SDE in time.
Thus, in the Itô-SDE-based MCMC method, it is the time discretization of
an Itô SDE that provides the transition kernel of the Markov chain. Through
the gradient of the potential involved in the Itô SDE, the transition kernel
is able to leverage the gradient of the target PDF to guide the Markov chain
to regions to which the target PDF attaches larger weight.

We thus set ψ equal to the negative logarithm of PDF ρQ defined in (9):

ψ(q) =
1

2

∥∥yobs − g
([
X ([LĈ ]q)

])∥∥2

[Γ]
+

1

2

∥∥[LĈ ]q
∥∥2
, (12)
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where we can use an equality sign because the multiplicative normalization
constant in (9) need not be known, because the logarithm transforms it into
an additive constant that the gradient in (10) then absorbs.

Before discretizing the Itô SDE in time, we introduce in it the transfor-
mation in (8) as well as the transformation

p = [LĈ ]Tη (13)

to obtain  dΞ = [Ĉ]Hdt,

dH = −∇ξφ(Ξ)dt− 1

2
ζ0Hdt+

√
ζ0[LĈ ]−TdW ,

(14)

with φ equal to the negative logarithm of PDF ρΞ defined in (6):

φ(ξ) =
1

2

∥∥yobs − g
(
[X (ξ)]

)∥∥2

[Γ]
+

1

2
‖ξ‖2. (15)

The purpose of (13) is to arrive in (14) at a system of equations that is

a Hamiltonian equation for the Hamiltonian h(ξ,η) = φ(ξ) + 1
2
ηT[Ĉ]η, in

which there is still the additional friction term and the additional stochastic
forcing term. Owing to the transformations in (8) and (13), the Itô-SDE-
based MCMC method will sample directly from ρΞ, while still benefitting
from the change of variables, which still manifests itself in (16) by the pres-

ence of the matrices [Ĉ] and [LĈ ]−T. The effect of the presence of these
matrices is that of a normalization of the dynamics of the Itô SDE. One way
of seeing this is as follows: injecting the second equation into the first equa-
tion in (14) reveals that the square roots of the eigenvalues of [Ĉ]Dξ∇ξφ
are indicative of the time scales involved in the dynamics of the Itô SDE;
considering that the inverse of the Hessian of the negative logarithm of a
PDF provides an approximation to the covariance matrix of this PDF—an
approximation that is exact for a Gaussian PDF—the effect of the presence
of the matrices [Ĉ] and [LĈ ]−T is that of a clustering of the eigenvalues of

[Ĉ]Dξ∇ξφ close to 1 and thus that of a normalization of the time scales
involved in the dynamics of the Itô SDE.

To discretize in time, we use a Störmer–Verlet method [22] that had
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already been used for the Itô-SDE-based MCMC method in [23], leading to

Ξ(`+ 1
2

) = Ξ(`) +
4t
2

[Ĉ]H(`),

H(`+1) =
1− b
1 + b

H(`) − 4t
1 + b

∇ξφ(Ξ(`+ 1
2

)) +

√
ζ0

1 + b
[LĈ ]−T4W (`+1),

Ξ(`+1) = Ξ(`+ 1
2

) +
4t
2

[Ĉ]H(`+1),

(16)

where
b = 4t ζ0/4, (17)

in which 4t denotes the time step and 4W (1), 4W (2), . . . are mutually in-
dependent centered multivariate Gaussian random variables with covariance
matrix 4t[I], in which [I] is here the n(n+1)/2-dimensional identity matrix.
The change of variables and its effect of a normalization of the dynamics of
the Itô SDE facilitate the choice of the time step and the control of the error
entailed by the time discretization. The end result of the change of vari-
ables is that it allows the Markov chain to make faster progress in directions
that are less informed by the data, without being constrained by a stability-
related or error-related requirement of slower progress in directions that are
more informed by the data.

When completed with an initial condition, the time-discrete equations
in (16) define a Markov chain {(Ξ(`),H(`)), ` ∈ N}. The transformation of
measure associates the chain of random matrices {[X(`)], ` ∈ N} with the
component chain of random variables {Ξ(`), ` ∈ N}:

[X(`)] = [X (Ξ(`))], (18)

Owing to the transformation of measure, owing to the ergodicity property of
the solution to the Itô SDE, and owing to the choice of the potential, but up
to an error entailed by the time discretization, trajectories of this chain of
random matrices can be construed as samples drawn from the posterior.

The gradient of the potential in the transition kernel is the sum of two
terms, with the first term stemming from the weighted distance that repre-
sents the model-data misfit and the second term stemming from the prior:

∇ξφ(ξ) = [J(ξ)]T[Γ]
(
g
(
[X (ξ)]

)
− yobs

)
+ ξ; (19)
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here, [J(ξ)] denotes the gradient of the composition of X and g, which, with
the chain rule, can be written, in terms of entries, as follows:

Jij(ξ) =
∂gi
∂ξj

(
[X (ξ)]

)
=

n∑
`=1

n∑
`′=1

∂gi
∂X``′

(
[X (ξ)]

)∂X``′

∂ξj
(ξ). (20)

Thus, for the proposed methodology to work well, the forward problem must
afford an efficient computation of not only the observables but also their
gradient with respect to the matrix. For the maximum-entropy PDF, the
expression of the gradient of the transformation can be readily obtained, as
we show in Sec. 3. In the problem of a data-driven updating of a reduced-
order model in computational structural dynamics, we use an adjoint-based
computation of the gradient, as we discuss in Sec. 4.

2.5. Obtaining [Ĉ] from a linearization of the inverse problem

We will conclude the section with discussing how a linearization of the
inverse problem allows an approximation [Ĉ] to the covariance matrix of ρΞ
to be obtained. Let the composition of the transformation X and the forward
problem g be linearized about a reference value ξ0:

g
(
[X (ξ)]

)
≈ g

(
[X (ξ0)]

)
+ [J(ξ0)](ξ − ξ0); (21)

here, among other choices, ξ0 can be chosen equal to a mode of the prior or
a mode of the posterior, such as a value that maximizes ρΞ, which can be
computed with an optimization method such as a quasi-Newton method:(

[J(ξ(`))]T[Γ][J(ξ(`))] + [I]
)
ξ(`+1)

= −[J(ξ(`))]T[Γ]
(
g
(
[X (ξ(`))]

)
− [J(ξ(`))]ξ(`) − yobs

)
. (22)

It can be seen by injecting (21) into (6) that the approximation of the com-
position of the transformation X and the forward problem g by its linearized
expression leads to the approximation of the weighted distance that repre-
sents the model-data misfit by a quadratic expression and ultimately the
approximation of ρΞ by a Gaussian PDF as follows:

ρΞ(ξ|yobs) ≈ ρ̂Ξ(ξ|yobs) ∝ exp

(
−1

2
‖ξ − ξ‖2

[Ĉ]−1

)
, (23)

with mean value given by

ξ =
(
[J(ξ0)]T[Γ][J(ξ0)] + [I]

)−1
[J(ξ0)]T[Γ]

(
yobs − g

(
[X (ξ0)]

)
+ [J(ξ0)]ξ0

)
(24)
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and covariance matrix given by

[Ĉ] =
(
[J(ξ0)]T[Γ][J(ξ0)] + [I]

)−1
. (25)

It is this matrix that can be used in the change of variables as the approxi-
mation to the covariance matrix of ρΞ.

With reference to the change of variables, it is interesting to note that as
in [2], insight into the information provided by the data can be gained from
an eigendecomposition. Indeed, with [Λr] the diagonal matrix with the r
dominant eigenvalues and [Vr] collecting in its columns the corresponding
eigenvectors of [J(ξ0)]T[Γ][J(ξ0)],

[J(ξ0)]T[Γ][J(ξ0)] ≈ [Vr][Λr][Vr]
T, [Vr][Vr]

T = [I], (26)

the Sherman–Morrison–Woodbury formula provides the approximation

[Ĉ] =
(
[J(ξ0)]T[Γ][J(ξ0)] + [I]

)−1 ≈ [I]− [Vr][Dr][Vr]
T, (27)

with
[Dr] =

(
[Λr] + [I]

)−1
[Λr], (28)

thus suggesting that the eigenvectors corresponding to the dominant eigen-
values of [J(ξ0)]T[Γ][J(ξ0)] are indicative of the directions in Rn(n+1)/2 that
the data provide significant information on. As a consequence of the typical
ill-posedness of inverse problems, the spectrum of [J(ξ0)]T[Γ][J(ξ0)] can be
expected to decay rapidly. Later in this paper, we will also find this result
helpful for the identification of hyperparameters of the posterior.

3. Using a maximum-entropy PDF as the prior

We now describe the use of the proposed methodology with a prior taken
from the family of PDFs for symmetric positive-definite random matrices
constructed by means of the maximum-entropy principle in [5, 6].

3.1. Concise review of the family of maximum-entropy PDFs

The family of PDFs for symmetric positive-definite random matrices con-
structed by means of the maximum-entropy principle in [5, 6] has two hy-
perparameters: the mean value and a dispersion parameter. A symmetric
positive-definite random matrix, say, [X], has such a maximum-entropy PDF
with mean value [X], which must be a symmetric positive definite matrix,
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and dispersion parameter δ if given the Cholesky factorization of [X] into
the product of a lower-triangular matrix and its transpose,

[X] = [LX ][LX ]T, (29)

the normalized symmetric positive-definite random matrix [G] in

[X] = [LX ][G][LX ]T (30)

has a PDF ρ[G] that is obtained by maximizing entropy,

max
ρ[G]

−
∫

M+
n (R)

log ρ[G]([G])ρ[G]([G])dG, (31)

under the following constraints:∫
M+
n (R)

ρ[G]([G])dG = 1, (32)∫
M+
n (R)

[G]ρ[G]([G])dG = [I], (33)∫
M+
n (R)

log(det[G])ρ[G]([G])dG < +∞. (34)

The solution of the constrained optimization problem (31) with (32)–(34) by
means of the method of Lagrange multipliers leads to

ρ[G]([G]) ∝ 1M+
n (R)([G])(det[G])

n+1

2δ2
+ 1−n

2 exp

(
−n+ 1

2δ2
tr[G]

)
, (35)

where 1M+
n (R)([G]) = 1 if [G] is an n-dimensional symmetric positive-definite

matrix with real entries and 1M+
n (R)([G]) = 0 otherwise, det[G] is the determi-

nant of [G], and tr[G] is the trace of [G]. The Lagrange multiplier associated
with the constraint in (34) results in the presence of the hyperparameter
in (35), namely, the dispersion parameter, δ, defined such that

δ2 =

∫
M+
n (R)
‖[G]− [I]‖2

F ρ[G]([G])dG

‖[I]‖2
F

, (36)

in which ‖ · ‖F denotes the Frobenius norm; thus, δ ascertains the dispersion
of [G] and therefore also of [X]. The constraint in (32) imposes that ρ[G]
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integrate to 1 over M+
n (R) so that samples of [G] and therefore also sam-

ples of [X] are symmetric and positive definite. The constraint in (33) im-
poses that the mean value of [G] be [I] and therefore the mean value of [X]
be [X]. The constraint in (34) serves to ensure the existence of the second-
order moment of the inverse of [G] and therefore of [X], as required when
such symmetric positive-definite random matrices are used to represent un-
certain symmetric positive-definite matrices of computational models, see,
for instance, [5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

The PDF ρ[G] possesses a special structure that can be exploited to set up
a direct simulation method based on the representation of [G] as the product
of a lower-triangular random matrix and its transpose,

[G] = [L][L]T, (37)

with the entries {L``′ , n ≥ ` ≥ `′ ≥ 1} of [L] mutually statistically indepen-
dent random variables distributed as follows:

for ` = `′:

L`` =
√

2
δ√
n+ 1

√
Y``, with Y`` ∼ Γ(α`, 1), α` =

n+ 1

2δ2
+

1− `
2

; (38)

for ` > `′:

L``′ ∼ N (0, σ2), σ =
δ√
n+ 1

; (39)

here, we denote by Y`` ∼ Γ(α`, 1) that Y`` is a gamma random variable with
shape parameter α` and scale parameter 1, and we denote by L``′ ∼ N (0, σ2)
that L``′ is a Gaussian random variable with mean 0 and variance σ2.

3.2. Using a maximum-entropy PDF as the prior in the proposed methodology

The use of a maximum-entropy PDF with mean value [X] and dispersion
parameter δ as the prior in the proposed methodology amounts to setting

ρ0([X]) ∝ ρ[G]([LX ]−1[X][LX ]−T). (40)

The transformation of measure requires a representation of the prior on
the set of symmetric positive-definite matrices M+

n (R) as the image under a
transformation X of a standard Gaussian PDF on the linear space Rn(n+1)/2.
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Such a transformation X immediately follows from the representation used
in the direct simulation method in (37) with (38)–(39) by setting

[X (ξ)] = [LX ][L(ξ)][L(ξ)]T[LX ]T, (41)

where L is the transformation from the linear space Rn(n+1)/2 to the set of
lower-triangular matrices with positive diagonal entries LL,

L : Rn(n+1)/2 → LL : ξ 7→ [L] = [L(ξ)], (42)

such that, with the so-called half-vectorization

ξ = (ξ11, . . . , ξn1, ξ22, . . . , ξn2, . . . , ξ(n−1)(n−1), ξn(n−1), ξnn), (43)

the entries {L``′(ξ), n ≥ ` ≥ `′ ≥ 1} of [L(ξ)] are as follows:

for ` = `′:

L``(ξ) =
√

2
δ√
n+ 1

√
y``, y`` = c−1

Γ

(
cN (ξ``; 0, 1);α`, 1

)
; (44)

for ` > `′:

L``′(ξ) =
δ√
n+ 1

ξ``′ ; (45)

here, cΓ(·;α`, 1) is the cumulative distribution function of a gamma random
variable with shape parameter α` and scale parameter 1, and cN (·; 0, 1) is the
cumulative distribution function of a Gaussian random variable with mean 0
and variance 1. It is owing to the isoprobability transform that the gamma
PDF with with shape parameter α` and scale parameter 1 is the image under
the transformation c−1

Γ

(
cN (·; 0, 1);α`, 1

)
of a standard Gaussian PDF.

The approximation of the covariance matrix in the change of variables
and the computation of the gradient in the Itô-SDE-based MCMC method
require the gradient of the transformation X . From (41) with (44)–(45), it
immediately follows that the components of the gradient of the transforma-
tion X are given by

∂ξ``′ [X (ξ)] = [LX ]
(
∂ξ``′ [L(ξ)][L(ξ)]T + [L(ξ)]∂ξ``′ [L(ξ)]T

)
[LX ]T, (46)

where
∂ξ``′ [L(ξ)] = ∂ξ``′L``′(ξ) e` ⊗ e`′ , (47)
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with

for ` = `′:

∂ξ``L``(ξ) =
√

2
δ√
n+ 1

1

2

1
√
y``

ρN (ξ``; 0, 1)

ρΓ(y``;α`, 1)
; (48)

for ` > `′:

∂ξ``′L``′(ξ) =
δ√
n+ 1

; (49)

here, ρΓ(·;α`, 1) is the PDF of a gamma random variable with shape param-
eter α` and scale parameter 1, and ρN (·; 0, 1) is the standard Gaussian PDF.

4. Data-driven update of a reduced-order model

We now describe in the domain of computational structural dynamics a
problem of a data-driven updating of a reduced-order model.

4.1. Reduced-order model

We consider a deterministic finite element model for the linear dynamical
behavior of a dissipative structure about a static equilibrium in the frequency
domain. Let this model be projected onto a reduced-order basis to obtain a
reduced-order model of the following form:{

(−ω2[M ] + iω[D] + [K])z(ω) = [Φ]Tf(ω),

u(ω) = [Φ]z(ω);
(50)

here, ω denotes the (circular) frequency; [Φ] the matrix whose columns collect
the reduced-order basis; [M ], [D], and [K] the reduced mass, damping, and
stiffness matrices; f(ω) the vector of external forces; z(ω) the vector of n
reduced degrees of freedom; and u(ω) the vector of displacement degrees of
freedom. Although extensions of the proposed methodology to other types
of dissipation and boundary conditions can be readily obtained, we assume
that the dissipation and the boundary conditions are such that [D] and [K]
are symmetric and positive definite.
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4.2. Data-driven update of the reduced-order model

In computational structural dynamics, data-driven updating most often
involves adjusting values of mechanical properties, such as stiffness, dissipa-
tion, and inertial properties, so that predictions better fit data relevant to the
dynamical behavior of the structure. However, it is not such an adjustment
of values of mechanical properties that we pursue. Rather, we seek to adjust
directly the reduced matrices of the reduced-order model, and we seek to do
so with a probabilistic approach that allows us to obtain not only improved
predictions but also a probabilistic representation of the model uncertainties.

Thus, we embed the reduced-order model in (50) in a class of reduced-
order models indexed by the values assigned to the reduced matrices, now
treated as (generalized) parameters of the reduced-order model:{

(−ω2[M ] + iω[D] + [K])z(ω; [M ], [D], [K]) = [Φ]Tf(ω),

u(ω; [M ], [D], [K]) = [Φ]z(ω; [M ], [D], [K]),
(51)

and we cast the data-driven update as a Bayesian identification of the (gener-
alized) parameters of the reduced-order model, that is, the reduced matrices.
The specification of the posterior on the set of possible values of the reduced
matrices then provides the updated probabilistic reduced-order model.

4.3. Using a maximum-entropy PDF as the prior

We use the product of maximum-entropy PDFs with mean values [M ],
[D], and [K] and dispersion parameters δM , δD, and δK as the prior:

ρ0([M ], [D], [K]) ∝
∏

A=M,D,K

ρ[GA]([LA ]−1[A][LA ]−T); (52)

here, [M ], [D], and [K] are the reduced mass, damping, and stiffness matrices
of the reduced-order model in (50), and the PDFs ρ[GM ], ρ[GD], and ρ[GK ] are
PDFs as in (35) with dispersion parameters δM , δD, and δK , respectively.

4.4. Interpretation of the prior as a nonparametric probabilistic model

The probabilistic reduced-order model obtained by specifying the prior
on the set of possible values of the reduced matrices can be viewed as a
nonparametric probabilistic model constructed as in [5]. Indeed, within the
present problem setting, the nonparametric probabilistic approach of [5] in-
volves representing the reduced matrices in the reduced-order model in (50)
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with random matrices [M ], [D], and [K] that are statistically independent
and have maximum-entropy PDFs with mean values [M ], [D], and [K] and
dispersion parameters δM , δD, and δK , respectively, thus leading to a proba-
bilistic reduced-order model of the following form:{

(−ω2[M ] + iω[D] + [K])Z(ω) = [Φ]Tf(ω),

U(ω) = [Φ]Z(ω).
(53)

Here, and with reference to Sec. 3, by [M ], [D], and [K] having maximum-
entropy PDFs with mean values [M ], [D], and [K] and dispersion parame-
ters δM , δD, and δK , we mean that given Cholesky factorizations of [M ], [D],
and [K] into products of lower-triangular matrices and their transposes,

[A] = [LA ][LA ]T, A = M,D,K, (54)

the normalized symmetric positive-definite matrices [GM ], [GD], and [GK ] in

[A] = [LA ][GA][LA ]T, A = M,D,K, (55)

have PDFs ρ[GM ], ρ[GD], and ρ[GK ] that are obtained by maximizing entropy
as in (31) with (32)–(34) and thus have a form as in (35) with dispersion
parameters δM , δD, and δK , respectively. Thus, δM , δD, and δK ascertain the
dispersion of [GM ], [GD], and [GK ] and therefore also of [M ], [D], and [K]:

δ2
A =

∫
M+
n (R)
‖[GA]− [I]‖2

F ρ[GA]([GA])dGA

‖[I]‖2
F

, A = M,D,K. (56)

In the entropy maximization, the constraint in (34) serves to ensure the ex-
istence of the second-order moments of the inverses of [GM ], [GD], and [GK ]
and therefore of [M ], [D], and [K], thus ensuring that the probabilistic
reduced-order model has a second-order solution. In conclusion, the joint
PDF of the random matrices [M ], [D], and [K] is the PDF in (52), thus
confirming that the probabilistic reduced-order model obtained by specifying
the prior on the set of possible values of the reduced matrices is a nonpara-
metric probabilistic model.

In the context of the nonparametric probabilistic approach, several meth-
ods have been proposed for the identification of the dispersion parameters.
In [7, 8, 9], a method was proposed based on an identification criterion that
gauges the agreement between data and the predictions of the nonparametric
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probabilistic model. In this method, the data are plotted on the same axes
as high-probability confidence regions for the predictions, and a combina-
tion of ideally small values of the dispersion parameters is sought for which
the data are mostly contained within the high-probability confidence regions
for the predictions. In [17, 18], approaches were proposed which allow the
identification to be cast as an optimization problem.

4.5. Dynamic test data

Although extensions to other types of data can be readily obtained, we
present a data-driven updating of the reduced-order model based on using
frequency response functions (FRFs) sampled at frequencies in a frequency
band of interest. Specifically, we assume that the data consist of a finite
number, say, d, of FRFs sampled at a finite number, say, m, of frequencies ω1,
. . . , ωm in the frequency band of interest:

yobs =
(
hobs(ω1), . . . ,hobs(ωm)

)
, (57)

with
hobs(ωk) =

(
hobs

1 (ωk), . . . , h
obs
d (ωk)

)
. (58)

4.6. Forward problem

We thus define the forward problem as the mapping that represents the
use of the reduced-order model to associate to a value of the reduced matrices
a corresponding value of the observables:

y = g([M ], [D], [K]) =
(
h(ω1; [M ], [D], [K]), . . . ,h(ωm; [M ], [D], [K])

)
, (59)

where

h(ωk; [M ], [D], [K]) =
(
h1(ωk; [M ], [D], [K]), . . . , hd(ωk; [M ], [D], [K])

)
, (60)

with

hj(ωk; [M ], [D], [K]) = cT
j [Φ](−ω2

k[M ] + iωk[D] + [K])−1[Φ]Tbj, (61)

in which for the j-th FRF, the so-called input-shape vector bj and the so-
called output-shape vector cj link the finite element degrees of freedom to
the position and the orientation of the actuator and the sensor, respectively.
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4.7. Bayesian identification of the reduced matrices

Casting the data-driven update as a Bayesian identification of the reduced
matrices with the maximum-entropy PDF as the prior leads to the posterior

ρ([M ],[D],[K])

(
[M ], [D], [K]

∣∣yobs

)
∝ f

(
yobs

∣∣[M ], [D], [K]
)
× ρ0([M ], [D], [K]), (62)

in which f is the likelihood function. With reference to Sec. 2, we use for f
an expression of the form of an exponential of minus a weighted distance
that represents the model-data misfit. Although extensions to other types of
weighted distance can be readily obtained, we use a logarithmic least-squares
model-data misfit, which has the benefits of being as sensitive to resonances
as anti-resonances and being insensitive to phase errors:

f
(
yobs

∣∣[M ], [D], [K]
)

∝ exp

(
− λ1

2

d∑
j=1

m∑
k=1

µjk
∣∣ log |hobs

j (ωk)| − log |hj(ωk; [M ], [D], [K])|
∣∣2). (63)

A comparison with the expression in (3) indicates that the weights λ and µjk,
1 ≤ j ≤ d, 1 ≤ k ≤ m, can be interpreted as the use of a diagonal covariance
matrix (the matrix [Γ]−1 in (3)) whose diagonal elements are the inverses of
the products λµjk. Because f attaches greater weight to values of the reduced
matrices that correspond to predictions that fit the data better, the updated
probabilistic reduced-order model with the posterior ρ([M ],[D],[K]) specified
on the set of possible values of the reduced matrices can be expected to be
specifically tailored to provide improved predictions.

The posterior is parameterized by the dispersion parameters δM , δD,
and δK and the weights λ and µjk, 1 ≤ j ≤ d, 1 ≤ k ≤ m, and we comment
on the identification of these hyperparameters later in Sec. 4.9.

4.8. Numerical implementation of the Bayesian inversion

Because the prior is a product PDF, it suffices to construct separate repre-
sentations of the maximum-entropy PDFs with mean values [M ], [D], and [K]
and dispersion parameters δM , δD, and δK as images under transformations
of Gaussian PDFs. We construct these transformations as in (41) with (42)–
(45) and denote the transformations thus obtained by M, D, and K:

A : Rn(n+1)/2 → M+
n (R) : ξA 7→ [A] = [A(ξA)], A = M,D,K. (64)
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Given these transformations, we define the PDF ρΞ on Rn(n+1)/2×Rn(n+1)/2×
Rn(n+1)/2 whose image under the compound transformation is the posterior:

ρΞ
(
ξ
∣∣yobs

)
∝ exp

(
− λ1

2

d∑
j=1

m∑
k=1

µjk
∣∣ log |hobsj (ωk)| − log

∣∣hj(ωk; ξ)|
∣∣2)× exp

(
− 1

2

∥∥ξ∥∥2), (65)

in which
hj(ωk; ξ) = hj

(
ωk; [M(ξM )], [D(ξD)], [K(ξK)]

)
, (66)

with
ξ = (ξM , ξD, ξK). (67)

The linearization of the composition of the transformationsM, D, and K
and the forward problem g about a reference value ξ0 leads as in (21) and (24)

with (25) to an approximation [Ĉ] to the covariance matrix of ρΞ:

[Ĉ] =

(
λ

d∑
j=1

m∑
k=1

µjkjj(ωk; ξ0)⊗ jj(ωk; ξ0) + [I]

)−1

, (68)

in which
jj(ωk; ξ) = ∇ξ log |hj(ωk; ξ)|. (69)

We use for ξ0 a mode of the posterior, namely, a value that maximizes ρΞ,
which we compute with a quasi-Newton method:(
λ

d∑
j=1

m∑
k=1

µjkjj(ωk; ξ(`))⊗ jj(ωk; ξ(`)) + [I]

)
ξ(`+1)

= −λ
d∑
j=1

m∑
k=1

µjkjj(ωk; ξ(`))
(

log
∣∣hj(ωk; ξ(`))| − jj(ωk; ξ(`)) · ξ(`) − log |hobsj (ωk)|

)
. (70)

The Itô-SDE-based MCMC method then follows from setting the poten-
tial φ equal to the negative logarithm of the PDF ρΞ defined in (65), injecting
this potential φ into the Itô SDE in (14), and discretizing this Itô SDE in
time, thus leading to the time-discrete equations in (16) with

φ(ξ) = λ
1

2

d∑
j=1

m∑
k=1

µjk
∣∣ log |hobs

j (ωk)| − log
∣∣hj(ωk; ξ)|

∣∣2 +
1

2

∥∥ξ∥∥2
(71)
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and

∇ξφ(ξ) = λ

d∑
j=1

m∑
k=1

µjkjj(ωk; ξ)
(

log
∣∣hj(ωk; ξ)| − log |hobs

j (ωk)|
)2

+ ξ. (72)

When completed with an initial condition, these time-discrete equations de-
fine a Markov chain {(Ξ(`),H(`)), ` ∈ N}. The transformation of measure
associates the chain of random matrices {[M (`)], [D(`)], [K(`)], ` ∈ N} with
the component chain of random variables {Ξ(`), ` ∈ N}:

[M (`)] = [M(Ξ
(`)
M )], [D(`) ] = [D(Ξ

(`)
D )], [K(`)] = [K(Ξ

(`)
K )]. (73)

As for (18), trajectories of this chain of random matrices can be construed as
samples drawn from the posterior and hence used as samples from the ran-
dom matrices in the Monte Carlo simulation with the updated probabilistic
reduced-order model.

4.9. Identification of the hyperparameters

The posterior is parameterized by the dispersion parameters δM , δD,
and δK and the weights λ and µjk, 1 ≤ j ≤ d, 1 ≤ k ≤ m. These hyperpa-
rameters control the dispersion of the prior and the weights of the weighted
distance that represents the model-data misfit in the likelihood function. The
smaller the values of δM , δD, and δK , the more the posterior concentrates its
weight predominantly in the vicinity of the values of the reduced matrices
in the reduced-order model in (50). The larger the values of the weights λ
and µjk, 1 ≤ j ≤ d, 1 ≤ k ≤ m, the more the posterior concentrates its
weight predominantly in the vicinity of values of the reduced matrices that
minimize the weighted distance that represents the model-data misfit. Thus,
especially if there are no values of the reduced matrices that result in a
perfect representation of the dynamical behavior of the structure and some
amount of dispersion should persist to serve as a representation of the model
uncertainties, the dispersion parameters δM , δD, and δK cannot be too small
and the weights λ and µjk, 1 ≤ j ≤ d, 1 ≤ k ≤ m cannot be too large.

If the data are perturbed by noise, estimates of the significance of the
noise can play a role in the identification of the weights λ and µjk, 1 ≤ j ≤ d,
1 ≤ k ≤ m. For instance, smaller weights µjk can be given to FRF samples
that are perturbed more significantly by noise.
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In a manner that builds on the method that had already been proposed
for the identification of the dispersion parameters in the context of the non-
parametric probabilistic approach, we use for the identification of the hyper-
parameters of the posterior a method based on an identification criterion. In
this method, we plot the data on the same axes as high-probability confi-
dence regions for the predictions of the updated probabilistic reduced-order
model, and we seek a combination of ideally small values of the dispersion
parameters δM , δD, and δK and ideally large values of the weights λ and µjk,
1 ≤ j ≤ d, 1 ≤ k ≤ m for which the data are mostly contained within the
high-probability confidence regions for the predictions.

4.10. Adjoint-based computation of the requisite gradients

The approximation of the covariance matrix in (68) in the change of
variables requires the computation of gradients as in (69), which are also
required for the computation of the gradient of the potential in (72) in the
Itô-SDE-based MCMC method. We use for these computations of these
gradients an adjoint-based approach that requires for each frequency and
for each FRF one direct solve of the reduced-order model and three adjoint
solves associated with the reduced-order model. While the computations
of the partial derivatives with respect to components of ξM and ξD can be
carried out analogously, we provide below details about the computation of
the partial derivatives with respect to components ξK``′ of ξK .

One way of obtaining the adjoint-based computation starts from writing
the partial derivative of log |hj(ωk; [M ], [D], [K])| with respect to ξK``′ as

∂ξK
``′

log |hj(ωk; [M ], [D], [K])|

=
1

|hj(ωk; [M ], [D], [K])|
∂ξK

``′
|hj(ωk; [M ], [D], [K])|

=
1

|hj(ωk; [M ], [D], [K])|2
Re
(
∂ξK

``′
hj(ωk; [M ], [D], [K])hj(ωk; [M ], [D], [K])

)
, (74)

in which we denote by Re(a + bi) = a the real part and by a+ bi = a − bi
the complex conjugate of a complex number a+ bi. The partial derivative of
hj(ωk; [M ], [D], [K]) with respect to ξK``′ reads as

∂ξK
``′
hj(ωk; [M ], [D], [K])

= −cTj [Φ](−ω2
k[M ] + iωk[D] + [K])−1(∂ξK

``′
[K])(−ω2

k[M ] + iωk[D] + [K])−1[Φ]Tbj . (75)

Hence, with the chain rule and with (46) with (47)–(49), the partial deriva-
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tives of log |hj(ωk; ξ)| with respect to the components ξK``′ of ξK read as

∂ξK
``′

log |hj(ωk; ξ)|

=
−1

|hj(ωk;ξ)|2
Re
(
bj`(ωk;ξ)∂ξK

``′
L``′(ξK)fj`′(ωk;ξ)+cj`′(ωk;ξ)∂ξK

``′
L``′(ξK)ej`(ωk;ξ)

)
, (76)

in which

qj(ωk; ξ) =
(
− ω2

k[M(ξM )] + iωk[D(ξD)] + [K(ξK)]
)−1

[Φ]Tbj , (direct), (77)

bj(ωk; ξ) = [LK ]Tqj(ωk; ξ), (78)

cj(ωk; ξ) = [L(ξK)]Tbj(ωk; ξ), (79)

dj(ωk; ξ) =
(
−ω2

k[M(ξM )] + iωk[D(ξD)] + [K(ξK)]
)−1

[Φ]Tcjhj(ωk; ξ), (adjoint), (80)

ej(ωk; ξ) = [LK ]Tdj(ωk; ξ), (81)

f j(ωk; ξ) = [L(ξK)]Tej(ωk; ξ). (82)

5. Numerical illustration

We now present a numerical illustration of a data-driven updating of a
reduced-order model as described in Sec. 4.

5.1. Problem setting and data

We considered the dynamical behavior of a clamped-clamped beam with a
length of 10 m, a width of 1.2 m, and a height of 1.6 m. We assumed its consti-
tutive behavior to be isotropic, linear, and dissipative. We assumed a Young
modulus of 10 GPa, a Poisson ratio of 0.2, a mass density of 1600 kg m−3, and
a modal damping ratio of 0.01. The frequency band of analysis is [0, 1200] Hz.

We generated (synthetic) data with a three-dimensional finite element
model with a mesh of 100 × 12 × 16 three-dimensional 8-node elements of
equal size. For the purpose of the data-driven updating of the reduced-order
model, we used the three-dimensional finite element model to compute the 15
FRFs that link the force driven by an actuator oriented along the transverse
direction (along the height of the beam) and located at 4.75 m (from the
leftmost cross section) to the displacements gauged by sensors oriented along
the transverse direction and located at equally spaced locations from 0.588 m
to 4.116 m with a step of 0.588 m and from 5.294 m to 9.412 m with a step
of 0.588 m. This sensor grid corresponds to setting up 16 equally spaced
sensors and then leaving out the one closest to the actuator. In addition,
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for the purpose of enabling a cross-validation, that is, to evaluate the predic-
tive capabilities of the updated probabilistic reduced-order model, we used
the three-dimensional finite element model to compute the FRF that links
the force driven by an actuator oriented along the transverse direction and
located at 5.6 m to the displacement at a sensor oriented along the trans-
verse direction and located at 8.2 m. We sampled all these FRFs with a step
of 0.1 Hz from 0 to 200 Hz and with a step of 1 Hz from 201 Hz to 1200 Hz.

5.2. Reduced-order model

We set up a one-dimensional finite element model based on the Timo-
shenko beam theory with a mesh of 200 elements of equal size. We used
a shear correction factor of 5/6. We purposely set up such a simple deter-
ministic model in order for there to clearly be modeling errors. Figure 2
compares the data with the corresponding FRFs predicted by the determin-
istic model. We can observe that at lower frequencies, the FRFs predicted
by the deterministic model fit the data well; however, at higher frequencies,
there are significant differences, which can be explained as consequences of
modeling errors entailed by the use of the Timoshenko beam theory, whose
representation of the mechanical behavior involves simplifying hypotheses,
such as the rigidity of the cross section.

[Figure 1 about here.]

We projected the deterministic model onto a reduced-order basis consti-
tuted of the dynamical eigenmodes associated with the n = 50 lowest eigen-
frequencies of the deterministic model. The 50-th eigenpair corresponds to
an eigenfrequency of about 2355 Hz (Fig. 1).

5.3. Using a maximum-entropy PDF as the prior

[Figure 2 about here.]

[Figure 3 about here.]

We built a nonparametric probabilistic model by representing the reduced
stiffness matrix of the reduced-order model with a random matrix and leaving
the reduced mass and damping matrices deterministic. The nonparametric
probabilistic model thus obtained has one hyperparameter, namely, the dis-
persion parameter, δK , which must be identified. To do so, we applied the
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aforementioned method based on an identification criterion that quantifies
the agreement between the data and the predictions of the nonparametric
probabilistic model. We set the value of the dispersion parameter equal to
the smallest value that suffices for the data to be mostly contained within
high-probability confidence regions for the predictions of the nonparametric
probabilistic model. This approach led us to set the dispersion parameter
equal to δ̂K = 0.25. Figures 2 and 3 compare the data with the predictions
of the nonparametric probabilistic model for δK = 0.05 and δ̂K = 0.25, re-
spectively. All results obtained with the nonparametric probabilistic model
were obtained with 5000 Monte Carlo samples.

5.4. Dynamic test data

The predictions of the deterministic model and those of the nonparametric
probabilistic model fit the data more closely at low frequencies than at higher
frequencies (Fig. 3). On the one hand, the closer fit at lower frequencies sug-
gests the feasibility of adjusting the reduced-order model so as to improve
the predictions at lower frequencies. On the other hand, the looser fit at
higher frequencies suggests that the identification of the value of δ̂K = 0.25
followed mostly from the need to increase this value sufficiently for the data
at higher frequencies to be mostly contained within the high-probability con-
fidence regions for the predictions of the nonparametric probabilistic model,
with the data at lower frequencies playing only a lesser role. These consid-
erations motivated us to seek to update the reduced-order model based on
using as data the FRFs sampled at lower frequencies so as to improve the
predictions at lower frequencies. Specifically, we used as data the 15 FRFs in
the frequency range between 0 and 900 Hz, sampled with the aforementioned
steps of 0.1 Hz below 200 Hz and 1 Hz above 200 Hz.

Because the reduced stiffness matrix is defined via a projection onto dy-
namical eigenmodes, the data must be sufficiently rich to allow modal contri-
butions to be distinguished. We used the modal-analysis criterion (MAC) to
verify that the 15 sensor locations suffice to distinguish modes that contribute
significantly to predictions in the frequency range between 0 and 900 Hz.

5.5. Bayesian identification of the reduced stiffness matrix

Because the dimension of the reduced stiffness matrix is n = 50, casting
the data-driven updating as a Bayesian identification of the reduced stiffness
matrix is a Bayesian inverse problem of dimension n(n+ 1)/2 = 1275.
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In the formulation of the likelihood function, we set µjk = 2π × 0.1 for
1 ≤ k ≤ 2000 and µjk = 2π × 1 for 2001 ≤ k ≤ m = 3001 for 1 ≤ j ≤
µ = 15, thus assigning equal weight to all FRFs but compensating for the
finer sampling below 200 Hz than above 200 Hz. Hence, the posterior has one
hyperparameter left, namely, λ. To gain some insight into the range of values
of λ of relevance in this particular problem, we carried out a preliminary study
in which we linearized the inverse problem about the mode ξ = 0 of the
prior and then computed as in (68) for several values of λ approximations
to the covariance matrix of ρΞ. This preliminary study indicated that for
the model-data misfit to result in a meaningful reduction in the variance
of certain components, the relevant range of values of λ should be between
about 1 and 100. In the following, we first provide results for λ = 12.5 and
then address the identification of the hyperparameter λ.

5.6. Numerical implementation of the Bayesian inversion

[Figure 4 about here.]

For the change of variables, we used the quasi-Newton method as in (70)
to determine a mode of the posterior to serve as reference value ξ0 (Fig. 4(a)).
We linearized the inverse problem about ξ0 to obtain first the sensitivity
matrix

∑d
j=1

∑m
k=1 µjkjj(ωk; ξ0)⊗ jj(ωk; ξ0) and then as in (68) an approxi-

mation [Ĉ] to the covariance matrix of ρΞ. The rapid decay of the spectrum

of the sensitivity matrix (Fig. 4(b)), as well as certain diagonal entries of [Ĉ]
being significantly reduced as compared with their unit values under the prior
and other diagonal entries of [Ĉ] being rather unchanged (Fig. 4(c)), indi-
cate that the data provide information on certain components but little or
no information on others, thus highlighting the importance of the change of
variables. The components that undergo the strongest reduction in variance
are those with indices such as 1, 51, 100, 148, and so forth (Fig. 4(c)); the
transformation of measure links these components to diagonal entries of the
Cholesky factor of the reduced stiffness matrix that contribute significantly
to diagonal entries of the reduced stiffness matrix and hence have a significant
effect on the locations of resonances and anti-resonances of the FRFs. Com-
ponents with indices larger than about 750 undergo no change in variance
(Fig. 4(c)); these components are linked to entries of the Cholesky factor of
the reduced stiffness matrix that have an effect mostly on the behavior of
the FRFs at frequencies higher than 900 Hz and hence have only little or no
impact on the model-data misfit.
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[Figure 5 about here.]

For the Itô-SDE-based MCMC method, we obtained all results to follow
with ζ0 = 4, ∆t = 0.1, and 5000 steps in the Markov chain. Figure 5 shows
the trajectories of the 51-st component and the 1000-th component of the
component chain of random variables {Ξ(`)

K , 1 ≤ ` ≤ 5000}. We can observe
that the trajectory of the 51-st component, which Fig. 4(c) indicated the
data to provide information on, evolves about a central value that is larger
than that under the prior and with a level of variability that is reduced
as compared with that under the prior; by contrast, the trajectory of the
1000-th component, which Fig. 4(c) indicated the data to provide little or no
information on, evolves about a central value and with a level of variability
that are unchanged as compared with those under the prior.

[Figure 6 about here.]

We determined as in (73) the trajectory of the chain of random reduced
stiffness matrices {K(`), 1 ≤ ` ≤ 5000} corresponding to the component

chain of random variables {Ξ(`)
K , 1 ≤ ` ≤ 5000} and used it as samples from

the random reduced stiffness matrix in the Monte Carlo simulation with the
updated probabilistic reduced-order model. Figure 6 compares the predic-
tions of the updated probabilistic reduced-order model for δ̂K = 0.25 and
λ = 12.5 with the data. We can observe that as compared with the pre-
dictions of the nonparametric probabilistic model in Fig. 3, the predictions
of the updated probabilistic reduced-order model in Fig. 6 fit the data sig-
nificantly more closely at the frequencies in the frequency range between 0
and 900 Hz that we addressed in the updating.

5.7. Identification of the hyperparameter

[Figure 7 about here.]

To identify the hyperparameter λ, we applied the aforementioned method
based on an identification criterion that quantifies the agreement between the
data and the predictions of the updated probabilistic reduced-order model.
Whereas increasing δK can be expected to widen the high-probability confi-
dence regions for the predictions, increasing λ can be expected to narrow the
high-probability confidence regions for the predictions. We thus sought to
set λ equal to the largest value for which the data remain mostly contained
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within high-probability confidence regions for the predictions. This approach
led us to set λ̂ = 37.5. Figure 7 compares the data with the predictions of
the updated probabilistic reduced-order model for δ̂K = 0.25 and λ̂ = 37.5.

5.8. Cross-validation

[Figure 8 about here.]

As a cross-validation, we used the nonparametric probabilistic model and
the updated probabilistic reduced-order model to predict the FRF that links
the force driven by the actuator oriented along the transverse direction and
located at 5.6 m to the displacement gauged by the sensor oriented along the
transverse direction and located at 8.2 m, which we hadn’t used yet (Fig. 8).
We can observe that the predictions of both probabilistic models agree with
the data and that as compared with the predictions of the nonparametric
probabilistic model, the predictions of the updated probabilistic reduced-
order model fit the data significantly more closely at the frequencies in the
frequency range between 0 and 900 Hz that we addressed in the updating.

5.9. Random reduced mass and stiffness matrices

[Figure 9 about here.]

We repeated the previous study, representing, this time, however, not
only the reduced stiffness matrix but also the reduced mass matrix with a
random matrix. Figure 9 presents the cross-validation result of this study.
The comparison with Fig. 8 indicates that the representation of the reduced
mass matrix with a random matrix does not have a significant benefit in
terms of further improving the predictions in this particular problem.

6. Conclusion

We proposed a probabilistic methodology for data-driven updating of non-
Gaussian high-dimensional symmetric positive-definite matrices involved in
parameterized computational models. This methodology is based on the
application of the Bayes formula to update the prior probability model by
using data in order to obtain the posterior for the high-dimensional symmet-
ric positive-definite random matrices. The hyperparameters of the posterior
are identified by using an identification criterion that quantifies the agree-
ment between the predictions and the data. Samples from the posterior are
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generated with an Itô-SDE-based MCMC method that leverages the gradient
of the posterior for computational efficiency.

We applied the proposed methodology to a problem of a data-driven up-
dating of a reduced-order model in computational structural dynamics. The
proposed methodology allowed a direct identification of the reduced matrices
from data with an informative prior. The data-driven update resulted in an
updated probabilistic reduced-order model that provided improved predic-
tions as well as a probabilistic representation of model uncertainties. In this
application, the proposed methodology could also be seen as a data-driven
updating of a nonparametric probabilistic model. Taking into account the
difficulty of the problem that has been solved, the proposed method yields
very good results.

There are many interesting directions for future work. The proposed
methodology could be extended to other types of computational model, to
other types of informative prior, to other types of likelihood function by
changing the distance that represents the model-data misfit and/or by chang-
ing the Gaussian model of the noise on the observations, as well as to other
approaches for the identification of the hyperparameters. In particular, it
would be interesting to revisit the approaches that have already been pro-
posed for the identification of the dispersion parameters of the prior proba-
bility distributions in the nonparametric probabilistic approach. In addition,
whereas the proposed methodology has been applied in computational struc-
tural dynamics with synthetic data, it would be interesting to explore the
application to more complex computational models with experimental data.
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of the Université Paris-Est Marne-la-Vallée. Financial support of the Fund
for Scientific Research (FNRS) is gratefully acknowledged.

References

[1] A. Tarantola, Inverse Problem Theory, SIAM, Philadelphia, United
States, 2005.
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Figure 1: Reduced-order model: 50 lowest eigenfrequencies of the deterministic model.

36



0 400 800 1200
10

−13

10
−10

10
−7

Frequency [Hz]

R
ec

ep
ta

n
ce

 [
m

/N
/H

z]

(a) Sensor at 0.588 m.
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(b) Sensor at 1.177 m.

0 400 800 1200
10

−13

10
−10

10
−7

Frequency [Hz]

R
ec

ep
ta

n
ce

 [
m

/N
/H

z]

(c) Sensor at 1.765 m.
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(d) Sensor at 2.353 m.

0 400 800 1200
10

−13

10
−10

10
−7

Frequency [Hz]

R
ec

ep
ta

n
ce

 [
m

/N
/H

z]

(e) Sensor at 2.941 m.
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(f) Sensor at 3.529 m.
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(g) Sensor at 4.118 m.
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(h) Sensor at 5.294 m.
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(i) Sensor at 5.882 m.
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(j) Sensor at 6.471 m.
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(k) Sensor at 7.059 m.
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(l) Sensor at 7.647 m.
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(m) Sensor at 8.253 m.
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(n) Sensor at 8.824 m.
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(o) Sensor at 9.412 m.

Figure 2: Using a maximum-entropy PDF as the prior: data (green solid line), corre-
sponding FRFs predicted by the deterministic model (red solid line), and 98%-confidence
regions for the corresponding FRFs predicted by the nonparametric probabilistic model
for δK = 0.05 (light blue filled region). Please refer to the online version for color figures.
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(a) Sensor at 0.588 m.
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(b) Sensor at 1.177 m.
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(c) Sensor at 1.765 m.
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(d) Sensor at 2.353 m.
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(e) Sensor at 2.941 m.
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(f) Sensor at 3.529 m.
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(g) Sensor at 4.118 m.
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(h) Sensor at 5.294 m.
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(i) Sensor at 5.882 m.
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(j) Sensor at 6.471 m.
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(k) Sensor at 7.059 m.
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(l) Sensor at 7.647 m.
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(m) Sensor at 8.253 m.

0 400 800 1200
10

−13

10
−10

10
−7

Frequency [Hz]

R
ec

ep
ta

n
ce

 [
m

/N
/H

z]

(n) Sensor at 8.824 m.

0 400 800 1200
10

−13

10
−10

10
−7

Frequency [Hz]

R
ec

ep
ta

n
ce

 [
m

/N
/H

z]

(o) Sensor at 9.412 m.

Figure 3: Using a maximum-entropy PDF as the prior: data (green solid line), corre-
sponding FRFs predicted by the deterministic model (red solid line), and 98%-confidence
regions for the corresponding FRFs predicted by the nonparametric probabilistic model
for δ̂K = 0.25 (light blue filled region). Please refer to the online version for color figures.
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(b) Largest eigenvalues of sensitivity ma-
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(c) Diagonal entries of [Ĉ].

Figure 4: Numerical implementation of the Bayesian inversion: (a) reference value ξ0, (b)

spectrum of the sensitivity matrix given by
∑d
j=1

∑m
k=1 µjkjj(ωk; ξ0)⊗jj(ωk; ξ0), and (c)

diagonal entries of [Ĉ] =
(
λ
∑d
j=1

∑m
k=1 µjkjj(ωk; ξ0)⊗ jj(ωk; ξ0) + [I]

)−1
for δ̂K = 0.25

and λ = 12.5. 39
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(a) Trajectory of 51-st component.
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(b) Trajectory 1000-th component.

Figure 5: Numerical implementation of the Bayesian inversion: trajectories of (a) the 51-st
component and (b) the 1000-th component of the component chain of random variables

{Ξ(`)
K , 1 ≤ ` ≤ 5000} for δ̂K = 0.25 and λ = 12.5.
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(a) Sensor at 0.588 m.
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(b) Sensor at 1.177 m.
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(c) Sensor at 1.765 m.
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(d) Sensor at 2.353 m.
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(e) Sensor at 2.941 m.
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(f) Sensor at 3.529 m.
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(g) Sensor at 4.118 m.
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(h) Sensor at 5.294 m.

0 400 800 1200
10

−13

10
−10

10
−7

Frequency [Hz]

R
ec

ep
ta

n
ce

 [
m

/N
/H

z]

(i) Sensor at 5.882 m.
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(j) Sensor at 6.471 m.
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(k) Sensor at 7.059 m.
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(l) Sensor at 7.647 m.
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(m) Sensor at 8.253 m.
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(n) Sensor at 8.824 m.
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(o) Sensor at 9.412 m.

Figure 6: Numerical implementation of the Bayesian inversion: data (green solid line), cor-
responding FRFs predicted by the deterministic model (red solid line), and 98%-confidence
regions for the corresponding FRFs predicted by the updated probabilistic reduced-order
model for δ̂K = 0.25 and λ = 12.5 (blue filled region). Please refer to the online version
for color figures.
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(a) Sensor at 0.588 m.
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(b) Sensor at 1.177 m.
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(c) Sensor at 1.765 m.
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(d) Sensor at 2.353 m.
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(e) Sensor at 2.941 m.
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(f) Sensor at 3.529 m.

0 400 800 1200
10

−13

10
−10

10
−7

Frequency [Hz]

R
ec

ep
ta

n
ce

 [
m

/N
/H

z]

(g) Sensor at 4.118 m.
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(h) Sensor at 5.294 m.
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(i) Sensor at 5.882 m.
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(j) Sensor at 6.471 m.
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(k) Sensor at 7.059 m.
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(l) Sensor at 7.647 m.
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(m) Sensor at 8.253 m.
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(n) Sensor at 8.824 m.
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(o) Sensor at 9.412 m.

Figure 7: Identification of the hyperparameter: data (green solid line), corresponding
FRFs predicted by the deterministic model (red solid line), and 98%-confidence regions
for the corresponding FRFs predicted by the updated probabilistic reduced-order model
for δ̂K = 0.25 and λ̂ = 37.5 (blue filled region). Please refer to the online version for color
figures.
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Figure 8: Cross-validation: data (green solid line) and 98%-confidence region for the

corresponding FRF predicted by the nonparametric probabilistic model for δ̂K = 0.25
(light blue filled region) and the updated probabilistic reduced-order model with δ̂K = 0.25

and λ̂ = 37.5 (blue filled region). Please refer to the online version for color figures.
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Figure 9: Random reduced mass and stiffness matrices: data (green solid line) and 98%-
confidence region for the corresponding FRF predicted by the nonparametric probabilistic
model for δ̂K = 0.25 and δ̂M = 0.10 (light blue filled region) and the updated probabilistic

reduced-order model with δ̂K = 0.25 and δ̂M = 0.10 and λ̂ = 50 (blue filled region). Please
refer to the online version for color figures.
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