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Challenges in the decomposition of 2D NMR spectra
of mixtures of small molecules

Afef Cherni a, Elena Piersanti b, Sandrine Anthoine a, Caroline Chaux a, Laetitia Shintu b,
Mehdi Yemloul b, and, Bruno Torrésani a

Analytical methods for mixtures of small molecules requires specificity (is a certain molecule
present in the mix?) and speciation capabilities. NMR has been a tool of choice for both of
these issues since its early days, due to its quantitative (linear) response, sufficiently high re-
solving power and capabilities of inferring molecular structures from spectral features (even in
the absence of a reference database). However, the analytical performances of NMR are being
stretched by the increased complexity of the sample at hands, the dynamic range of the compo-
nents, and the need of a reasonable turnover time. One approach that has been actively pursued
for disentangling the composition complexity is the use of 2D NMR spectroscopy. While any of
the many experiments from this family will increase the spectral resolution, some are more apt
for mixtures, as they are capable to unveil signals belonging to whole molecules or fragments of
it. Among the most popular ones one can enumerate HSQC-TOCSY1, DOSY2 and Maximum-
Quantum (MaxQ) NMR3. For multicomponent samples, the development of robust mathematical
methods of signal decomposition would provide a clear edge towards identification. We have been
pursuing, along these lines, Blind Source Separation (BSS). Here, the un-mixing of the spectra
is achieved relying on correlations detected on a series of datasets. The series could be asso-
ciated to samples of different relative composition or in a classically acquired 2D experiment by
the mathematical laws underlying the construction of the indirect dimension, the one not recorded
by the spectrometer. Many algorithms have been proposed for BSS in NMR4 since the seminal
work of Nuzillard5. In this paper, we use rather standard algorithms in BSS in order to disentan-
gle NMR spectra. We show on simulated data (both 1D and 2D HSQC) that these approaches
enable to disentangle accurately multiple components, and provide good estimates for concentra-
tions of compounds. Furthermore, we show that after proper realignment of the signals, the same
algorithms are able to disentangle real 1D NMR spectra. We obtain similar results on 2D HSQC
spectra, where BSS algorithms are able to disentangle successfully components, and provide
even better estimates for concentrations.

1 Introduction
Nuclear magnetic resonance (NMR) is a powerful spectroscopy
that provides comprehensive information on molecular structure
and is well suited for the detection and identification of small
molecules. The simplest NMR experiment yields to a potentially
informative one-dimensional spectrum that typically results in
overlapping signals in complex mixtures and hinders the iden-
tification and the quantification of components. Several develop-
ments, occurring at different stages of the NMR analysis (from
pulse sequences implementation to data processing), have been
proposed to differentiate between multiple peaks in extensive
crowded spectra. One powerful approach to increase the informa-
tion content of NMR spectra is to acquire two-dimensional data.
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In that regard, HSQC6, TOCSY7, Maximum-Quantum (Max-
Q)3,8 or Diffusion Ordered SpectroscopY (DOSY)9 NMR exper-
iments are very interesting for mixture analysis since they allow
the direct identification of a whole molecule or fragments of it. In-
deed, DOSY experiments represent a commonly used pseudo-2D
NMR experiment that allows the differentiation of molecules in a
mixture according to their diffusion coefficients. This technique is
efficient when applied to relatively simple mixtures (less than ten
molecules) leading to the extraction of the NMR spectrum of each
compound. However, a limiting factor of its applicability is the re-
quirement of a mathematical treatment capable of distinguishing
molecules with similar spectra or diffusion constants. Similarly,
2D NMR experiments such as 1H-1H COSY, 1H-1H TOCSY and
1H-13C HSQC are also performed routinely since they are nec-
essary for the assignments of the mixture’s molecules10. How-
ever, their use for the analysis of a high number of samples, as



occurring in metabolomics, is difficult since the acquisition time
of a 2D NMR spectrum can be extremely time-consuming, and
in that case, 2D NMR experiments are only performed on repre-
sentative samples. In addition, molecule assignment relies on a
very exhausting and time-consuming process for which each sig-
nal of each 2D NMR spectrum must be thoroughly peak-picked
and gathered according to the molecule they characterize. In or-
der to overcome the issue of an extensive acquisition time, ultra-
fast and fast NMR methods such as single-scan11 or non-uniform
sampling (NUS)12 techniques have been developed, making pos-
sible the use of 2D NMR experiments for high-throughput study
of complex mixtures13. Regarding the signal assignments and in
the case of well-studied samples such as blood plasma or cere-
brospinal fluid, automated methods for the metabolite identifi-
cation from 2D experiments are available online14,15. However,
their efficiency depends on strict sample preparation protocols
that limit their use for a wider range of samples. Consequently,
the development of robust mathematical methods that would per-
form signal decomposition is of prime importance for the analyt-
ical study of complex mixtures. The mathematical “demixing” of
1D or 2D NMR spectra would thus provide a clear edge towards
identification, with a non-negligible gain of time. In a previous
study, our group presented a processing strategy for DOSY ex-
periments based on the synergy of two high-performance Blind
Source Separation (BSS) techniques: Non-negative Matrix Factor-
ization (NMF) using additional Sparse Conditioning (SC), and the
JADE (joint approximate diagonalization of eigenmatrices) dec-
lination of independent component analysis (ICA)4,16,17. Both
approaches enabled to improve the processing of DOSY experi-
ments, in cases of mildly overlapping species. For mixtures with
strong overlapping signals of moieties with similar diffusion co-
efficients, such as a mixture of sucrose and maltotriose, NMF-SC
provided a very good method for molecule separation, although
not perfect and needing improvement to make it suitable for the
processing of more complex mixtures18.

In this paper, we address the un-mixing problem in a more gen-
eral setting, with the aim of processing 1D as well as nD mixtures.
Sticking to the family of non-negative matrix factorization ap-
proaches to BSS, we consider several algorithms and apply them
to simulated and real mixture spectra. These are presented in a
unified framework, that includes classical NMF approaches such
as alternate least squares (ALS)19 and sparsity-penalized ver-
sions20, proximal approaches21, and wavelet-based22 variants.
Interestingly enough, the framework also includes algorithms for
un-mixing nD spectra. We then provide objective performance
evaluations for un-mixing algorithms, using quality indices that
allow assessing the quality of the estimation of source spectra and
concentrations in the mixtures.

Results are given for a dataset that has been prepared on pur-
pose, for which pure spectra and concentrations in solutions are
available, which allows computing the above indices. Results on
1D simulated data (i.e. mixtures mathematically generated from
pure spectra and concentrations) show that the algorithms under
consideration are indeed able to recover the ground truth. Results
on real 1D mixtures do not reach the same level of quality even af-
ter correcting alignment biases, which raises concerns regarding

the mathematical mixture model. In the case of 2D HSQC spectra,
the performances of the algorithms are again fairly good on sim-
ulated data. Results on real 2D mixtures are of weaker quality in
terms of the objective performance evaluation indices. However,
the increased sparsity of 2D spectra allow a good identification of
the components of mixtures. In addition, concentrations appear
to be better estimated than in the 1D case, which may also be
interpreted as a consequence of the sparsity of 2D spectra. It is
worth mentioning that the computational burden is significantly
increased in the 2D case, which may be a limitation. The 2D case
then represents an important challenge, this is presumably true
for higher dimensional spectra.

Besides objective evaluations, visual inspection of spectra show
that the mathematical un-mixing algorithms are able to identify
pure compounds in the solutions under study, in several situa-
tions. This is clearly the case in simulated situations, which show
that the algorithms are able to identify compounds when mixtures
have been generated under a well defined model. This is also the
case, to a smaller extent, in the case of 1H real data, provided
pre-processing steps have been carefully performed (in particu-
lar shift correction). Our results however raise a number of im-
portant questions, that include among others the validity of the
mathematical mixture model, the possibility of performing some
pre-processing steps simultaneously with un-mixing, but also the
relevance of quantitative assessment measures in the context of
NMR spectroscopy un-mixing.

2 Problem statement

2.1 Blind source separation, the Linear Instantaneous Mix-
ture model

Blind source separation (BSS), aims at the separation of a set
of pure signals called sources from a set of mixed signals, called
mixtures, with limited information on sources or the mixing pro-
cess. Sources are generically represented as an M × L matrix
S = {sm`} ∈RM×L, mixtures by an N×L matrix X = {xn`} ∈RN×L.
N is the number of mixtures, M is the number of sources, and L is
the number of observations. In the context of NMR spectroscopy
un-mixing, N is the number of observed spectra, M is the number
of compounds and L is the number of points of the spectra. As an
example, the number xn` is the `-th sample of mixture n, i.e. its
value at frequency l.

Among BSS problems, the simplest instance originates from the
Linear Instantaneous Mixture (LIM) model, where the observed
mixtures are linear combinations of the sources. The mixing pro-
cess is then expressed mathematically as

X = AS+B≈ AS , (1)

more explicitly

xn` =
M

∑
m=1

anmsm`+bn` , n = 1, . . .N , `= 1 . . .L , (2)

where B = {bn`} ∈ RN×L is some residual noise, and A = {anm} ∈
RN×M is called the mixing matrix. The BSS problem is to identify
jointly the mixing matrix A and the source matrix S from the sole



observation matrix X .

Different assumptions or models have led to different identifi-
cation algorithms, among which we may mention statistics based
approaches such as ICA and SOBI, or non-negative matrix factor-
izations (NMF), which will constitute our approach. Thorough
descriptions can be found in reference textbooks16,17, and we re-
fer to4 for a review of applications to NMR spectroscopy.

2.2 The LIM model for 2D spectra

In the case of 2D data such as the HSQC discussed below, ob-
servations X and pure signals S are not matrix-shaped any more,
but take the form of three-way arrays: X ∈ RN×L1×L2 and S ∈
RM×L1×L2 . The LIM model can still formally be written as in (1),
provided the matrix×tensor product is suitably defined, in the
sense

xn`1`2 =
M

∑
m=1

anmsm`1`2 , n= 1, . . .N, `1 = 1 . . .L1, `2 = 1 . . .L2 , (3)

where `1 and `2 label the two spectral dimensions.

By re-organizing the `1 and `2 spectral indices into a single one
(of length L1L2), i.e. transforming three-way arrays into matrices,
one can be back to model (1) (in significantly higher dimension).
We call this approach data matricization. However, matricization
is not always suitable, as this reshaping procedure breaks the 2D
structure, which is used by some algorithms.

2.3 Indeterminacies

Quite obviously, the solution of such a general problem is not
unique, as for any solution (A,S) and any invertible M×M matrix
Λ, one can also write X = AS = A′S′ where A′ = AΛ and S′ = Λ−1S,
which produces infinitely many other solutions. Therefore, addi-
tional assumptions are necessary to solve the problem. Among
these indeterminacies, the following two play a special role (and
correspond to two specific types of matrices Λ):

• Scale indeterminacy (Λ diagonal): sources can only be iden-
tified up to a constant factor (in other words, multiplying a
row of S by a constant and dividing the corresponding col-
umn of A by the same constant do not change X).

• Order indeterminacy (Λ a permutation matrix): estimated
sources are not ordered, therefore comparison of estimated
sources with reference sources has to be preceded by an or-
dering step.

Two solutions (A,S) and (A′,S′) that only differ by these two trans-
formations are generally considered equivalent.

To overcome indeterminacy problems, additional assumptions
have to be made, either on sources, mixing matrix or both. The
non-negativity assumptions made in NMF approaches described
below turn out to resolve a part of these problems, nevertheless
scale and order indeterminacies remain. These will have to be
accounted for in the NMR un-mixing algorithms, as we shall see
later.

2.4 Non-negative matrix factorization (NMF)
Non-negative matrix factorization techniques address situations
where both source coefficients sm` and mixing matrix coefficients
anm are non-negative. In NMR spectroscopy un-mixing problems,
such assumptions are relevant, since mixing matrix coefficients
represent concentrations, and source coefficients represent spec-
trum values.

Many approaches to NMF have been proposed since early
works of Paatero & Tapper19 and Lee & Seung23,24. Most of them
are based on so-called variational formulations, where numerical
algorithms are used to minimize some objective function, which
involves a data fidelity term (which forces the product AS to be
close to the data matrix X) and possibly additional terms that
may encode prior information on the mixing matrix and/or the
source matrix. The mathematical formulation takes the form

min
A,S

F(X |A,S) , under constraints A≥ 0, S≥ 0 . (4)

Here F is the objective function, that depends on the data ma-
trix X and the unknown matrices A and S. Moreover, the non-
negativity constraints are imposed entry-wise, i.e. all matrix ele-
ments have to be non-negative.

The most classical choices for the objective function are penal-
ized versions of the standard quadratic objective function

F(X |A,S) = 1
2
‖X−AS‖2

F + fA(A)+ fS(S) , (5)

where the first term, called squared Frobenius norm, is simply the
sum of squares of the matrix X−AS, and fA and fS are regulariza-
tions that can encode prior information on A and/or S. Standard
choices involve the so-called `p norms denoted by ‖ · ‖p (where
p≥ 0), for example

fS(S) = λ‖S‖p
p = λ ∑

m,`

|sm`|p . (6)

with λ ≥ 0 the regularization parameter. The case p = 2 is the
widely used Tikhonov regularization. We shall rather use p = 1,
which tends to enforce sparse solutions.

Alternative choices for data fidelity terms include the Kullback-
Leibler divergence FKL(X |A,S), used for example in23,24, which
is (as well as the squared Frobenius norm) a special case of the
family of so-called β -divergences25.

2.5 Evaluation criteria
Un-mixing results on real data have to be evaluated by experts.
However, performance evaluation for separation algorithms can
be assessed using numerical simulations, in which cases objective
assessment is possible. We briefly describe here some evaluation
metrics that are routinely used in BSS problems.

In numerical simulations, one starts with pre-defined source
matrix S and mixing matrix A, the mixture X = AS+B can then
be formed (where either B = 0, i.e. no noise, or B is a matrix con-
taining random Gaussian white noise with prescribed variance).
Separation algorithms yield estimates, denoted by Ŝ and Â, to be
compared with ground truth S and A.

To assess the quality of the mixing matrix estimate, a rele-



vant quantity is the matrix product G = A†Â, with A† the pseudo-
inverse of A. G equals the identity matrix when the estimation is
perfect, i.e. Â = A. The departure from that perfect situation may
be quantified by the Amari index

I =
1

2M(M−1)

M

∑
m=1

[
∑

M
m′=1 |gmm′ |

maxm′ |gmm′ |
+

∑
M
m′=1 |gm′m|

maxm′ |gm′m|
−2

]
, (7)

which ranges between 0 and 1, and is equal to 0 when Â = A and
1 in case Â and A are maximally different. It is worth noticing that
the Amari index I is insensitive to source ordering and normaliza-
tion, so that no action is required to compensate for the order and
normalization indeterminacies described in subsection 2.3.

To assess the quality of estimated sources, we rely on indices
implemented in the software toolbox BSSEVAL 26. In a nutshell,
the estimation error S− Ŝ is split as a sum of several terms, that
are used to evaluate various types of error. Of particular interest
to us here are the Signal to Distortion Ratio (SDR), which provides
a global measure of the distortion introduced by mixing and sepa-
ration, and the Signal to Interference Ratio (SIR), which provides a
quantitative evaluation of crossover terms after separation (in our
case, peaks from a given source that could be completely or par-
tially found in the estimate of another source). Both indices are
graded on a logarithmic scale, and expressed in dB, as the tradi-
tional SNR (Signal to Noise Ratio). Contrary to the Amari index,
these ratios are sensitive to order and normalization, therefore
suitable re-ordering and normalization steps are mandatory prior
to computing SDR and SIR.

2.6 Changing the representation domain, wavelets

In the above approaches, mixtures and sources are represented by
point values, respectively xn` and sm`. The objective functions that
are optimized in NMF algorithms are separable, in the sense that
for given mixing matrix A, columns of S are processed indepen-
dently of each other, so that possible correlations in the spectral
domain (represented by index `) are not exploited. It is however
possible to describe the spectral domain using a different repre-
sentation, based upon an expansion on a set of L-dimensional
vectors, that form a basis of the L-dimensional space, and to in-
troduce a regularization on the corresponding coefficients rather
than the source matrix itself. Denoting by {ψ(k),k = 1, . . .L} these
vectors, and concatenating them in a square matrix denoted by
Ψ (columns of Ψ are the vectors ψ(k)), it may be shown that the
coefficients of the source matrix S in this basis are given by the
matrix Γ = ΨT S (where T stands for matrix transposition).

The variational formulations described above can be adapted
to this new setting, by introducing adapted objective functions of
the generic form

F(X |A,S) = 1
2
‖X−AS‖2

F + fA(A)+ fΓ(ΨT S) , (8)

where fΓ is a suitable penalty function. As before, we will
choose an `1 penalization with a regularization parameter λ ≥ 0,
i.e. fΓ(Γ) = λ ∑m,` |γm,`|, which will have the effect of promot-
ing sparse coefficient matrices, i.e. matrices having a very large
number of coefficients equal or close to zero.

Among possible bases, we will use here bases of orthonormal
wavelets27. The use of wavelets for representing NMR spectra
has been advocated by several authors28,29, the main argument
being the ability of wavelet expansions to compress signals30.

3 Algorithms
3.1 Generic algorithm

We describe in this section a generic algorithmic approach to the
NMR un-mixing problem. All algorithms to be described here aim
at solving Problem (4), i.e. a joint minimization problem with
respect to source matrix S and mixing matrix A. This problem is
addressed through an alternate optimization algorithm, i.e. we
optimize alternately with respect to A and S. Various instances of
the algorithm are proposed, depending on the choice of objective
function, optimization strategy and source representation domain
(spectral domain or wavelet domain). In all cases the generic
structure is given in Algorithm 1, and differs only by the update
rules for A and S, which we will generically denote by

UpdA : (A,S)→ UpdA(A,S) ∈ RN×M ,

UpdS : (A,S)→ UpdS(A,S) ∈ RM×L .

Data: X (data matrix); iter_max; ε; Ainit; Sinit; Crit=+∞;
Result: Non-negative matrix factors A and S
Initialization: A(0) = Ainit, k = 0, S(0) = Sinit;
while k ≤ iter_max and Crit> ε do

Update of A: A(k+1) = UpdA(A(k),S(k));
Update of S: S(k+1) = UpdS(A(k+1),S(k));
Optional: normalization of A and/or S;
Evaluation of stopping criterion Crit(k+1);
Evaluation of the objective function F(X |A(k+1),S(k+1));
k = k+1;

end
Algorithm 1: Generic structure of alternate optimization al-
gorithm for non-negative matrix factorization (starting by up-
dating A is an arbitrary choice).

This generic algorithm requires additional ingredients/options,
some of which are listed below

1. Initialization: initial source and mixing matrices Sinit and
Ainit are necessary to start the iterations (some algorithms
require only one of these). Usual choices include random
initialization, or deterministic ones (based upon SVD, ICA or
other classical methods).

2. Stopping criterion: the algorithm stops when a prescribed
maximal number of iterations is reached, or preferably when
some precision criterion reaches a small enough value. Pos-
sible choices include the absolute value of the objective func-
tion’s gradient, or normalized norms of differences between
two consecutive iterates of A and S.

3. To account for normalization indeterminacy, it is possible to
normalize rows of S and columns of A at each iteration, so as
to enforce a certain normalization property, without chang-



ing the product AS. This makes sense only when the objec-
tive function is itself invariant under renormalization.

4. Some algorithms require non-negative data. In such cases it
is necessary to project the data matrix X accordingly, i.e. set
to zero all negative matrix elements xn`.

3.2 Projected alternate least squares (PALS)

The objective function is here the most classical one, i.e. the
sum of squares of matrix coefficients (termed simply the squared
Frobenius norm) of the discrepancy X −AS between data X and
the LIM model AS, and reads

F(X |A,S) = 1
2
‖X−AS‖2

F . (9)

The corresponding update rules are given by

UpdA(A,S) =Π+

[
(AS−X)ST

]
, UpdS(A,S) =Π+

[
AT (AS−X)

]
,

where Π+ denotes the operator that sets to zero all negative ma-
trix coefficients of its argument.

3.3 Soft thresholded projected alternate least squares
(STALS)

To enforce sparsity of the sources, a common practice is to add to
the above quadratic objective function an `1 penalization, namely
the sum of absolute values of source terms, denoted by ‖S‖1

F(X |A,S) = 1
2
‖X−AS‖2

F +λ‖S‖1 , (10)

where λ is a positive constant that tunes the strength of the
penalty. A commonly used approach for solving this problem is
to replace the projection Π+ (of S) onto non-negatives with the
non-negative soft thresholding operator S+

λ
, which sets to zero all

matrix coefficients smaller than the threshold λ (including nega-
tive values). The update rules become

UpdA(A,S) = Π+

[
(AS−X)ST

]
, UpdS(A,S) = S+

λ

[
AT (AS−X)

]
.

Notice that PALS coincides with STALS in the case λ = 0.

3.4 Proximal alternating linearized minimization (PALM)
and pre-conditioned version (BC-VMFB)

The objective here is to deal with the cost function defined pre-
viously in (10). The idea is to propose an algorithm which inter-
twines the minimization of the quadratic part and the regulariza-
tion part. This can be done by using either the PALM (Proximal
alternating linearized minimization) algorithm31 or its precondi-
tioned version named the BC-VMFB (Block-Coordinate Variable
Metric Forward-Backward) algorithm32. Both are based on a
projected gradient descent algorithm and an optional precondi-
tioning step that allows increasing the convergence speed. The

update rules in this case are defined by

UpdA(A,S) = Π+

[
A− γ(AS−X)ST

]
,

UpdS(A,S) = S+
λ/γ

[
S− γAT (AS−X)

]
.

where γ stands for the gradient descent stepsize.

3.5 Wavelet-based PALM and BC-VMFB

These algorithms address the case where sparsity is imposed on
the wavelet coefficients of the spectra rather than the spectra
themselves. The considered objective function is a special case
of (8), namely

F(X |A,S) = 1
2
‖X−AS‖2

F +λ‖ΨT S‖1 ,

‖Γ‖1 being the sum of absolute values of coefficients γm`. The
PALM and BC-VMFB algorithms can be adapted to this new set-
ting. The wavelet-based PALM and BC-VMFB algorithms thus re-
duce to PALM and BC-VMFB algorithms, except that the thresh-
olding operation is done on wavelet coefficients rather than spec-
trum coefficients. The update rules become

UpdA(A,S) = Π+

[
A− γ(AS−X)ST

]
,

UpdS(A,S) = Π+

[
Ψ

(
Sλ/γ

[
Ψ

T
(

S− γAT (AS−X)
)])]

where Sλ sets to zeros only the values whose absolute value is
smaller than λ .

3.6 Processing 2D spectra

In the case of 2D spectra, most algorithms described above can
still be used on matricized data (see section 2.2). However,
wavelet-based algorithms are not compatible with data matriciza-
tion, as the latter breaks the 2D structure that is exploited by 2D
wavelets. Nevertheless, the algorithms given in section 3.5 can
still be used, Ψ now being a two-dimensional wavelet transform,
similar to the transform used in the JPEG2000 image compres-
sion standard, which has been shown to be extremely good at
compressing 2D NMR spectra30. The same procedure would ap-
ply to higher dimensional spectra as well.

4 Experimental results

We present and discuss in this section numerical results obtained
using the algorithms described above, on real and simulated NMR
mixtures.

Throughout this section, we term real mixtures the spectra of
the solutions that have been acquired by NMR spectroscopy. By
simulated mixtures we mean spectra that have been computed us-
ing the mathematical LIM model (1), using the spectra of pure
compounds measured by NMR spectroscopy in S, and the concen-
trations that have been used to produce the solutions in A.

We describe the datasets before discussing results.



4.1 Data acquisition
4.1.1 Data description

Four commercially available solutions of terpenes were pur-
chased from Sigma-Aldrich (Merck), Saint Quentin Fallavier,
France: (R)−(+)− Limonene, Nerol, α-terpinolene, (−)−trans-
Caryophyllene. The Initially pure compounds were dissolved in
600 µL of CDCl3 at respective concentrations of 181 mM, 36.5 mM,
26.6 mM and 43.7 mM and then transferred to 5 mm NMR tubes
which were sealed to prevent loss of solvent at operating temper-
atures. Samples were then stored at −4◦C until the NMR charac-
terization. Five synthetic mixtures of the four terpenes were pre-
pared varying the concentrations of each compound as reported
in Table 1.

Limonene Nerol α−Terpinolene β -Caryophyllene

Solution 1 23.3 mM 26 mM 8.78 mM 10.87 mM

Solution 2 17.1 mM 11.93 mM 15.5 mM 15 mM

Solution 3 9.05 mM 14.23 mM 18.89 mM 4.67 mM

Solution 4 20.99 mM 6.86 mM 13.54 mM 11.96 mM

Solution 5 4.88 mM 9.01 mM 10.81 mM 13.15 mM

Table 1 Concentrations of each component of the proposed terpenes.

4.1.2 NMR Spectroscopy

All experiments were performed on a Bruker Avance III 600MHz
spectrometer equipped with a triple resonance high-resolution
probe, using a SampleJet with pre-cooling rack refrigerated at
4◦C. A standard 1D pulse sequence is applied to each sample: zg
1H 1D (90-Taq), with a spectral width of 6600 Hz, 96 scans, and
relaxation delay of 10s. The 90◦ pulse length was automatically
calibrated for each sample at around 9.5 µs. Subsequently, the
spectra were pre-processed: phased and baseline corrected au-
tomatically and referenced to the CDCl3 at δ 7,27 ppm using the
inbuilt software TOPSPIN 3.5 version (Bruker BioSpin, Germany).

2D 1H-13C HSQC spectra were recorded with phase sensitive
sequence “hsqcetgpsi” using Echo/Antiecho-TPPI gradient selec-
tion with an INEPT delay adjusted to one-bond 1H-13C coupling
constant of 145Hz. 256 t1 points were acquired for the indirect
dimension and 32 scans for each point with TD2 = 4096. The
acquisition time for the direct period was 142ms and the resolu-
tion of 7.045Hz. For the indirect period, the acquisition time was
4.2ms and the resolution of 235.80 Hz. No linear prediction was
used for these experiments. Both 1H and 13C axes were calibrated
using the chloroform peak at 7.27 and 77.2 ppm, respectively.

The spectra of the pure compounds are presented in the stack-
ing plot, Fig. 1. The studied mixtures are well adapted to eval-
uate source separation algorithms. Indeed, terpenes are natural
molecules present in plants and having highly crowded spectra
between 1.5 and 2.5 ppm.

4.2 Algorithm validation on 1D simulated mixtures
We first report on simulation results. The goal is to validate the
algorithms in a situation where a ground truth is available, in
the framework of the LIM model described in section 2.1. The
ground truth is provided by 1) the spectra of pure compounds,
that were obtained as described in section 4.1.2, and are collected

Fig. 1 1H NMR: stacked plot of the spectra of the pure compounds. Top
to bottom: Limonene, β -Caryophyllene, Nerol, α−Terpinolene.

in a source matrix S, and 2) the concentrations given in Table 1,
organized in a 5×4 mixing matrix A.

From these, simulated mixtures of the form

Xm = AS+B

were generated according to the LIM model (1), involving the
linear mixtures given by the matrix product AS, and a zero mean
Gaussian white noise B. The standard deviation σ of the latter
was set to the standard deviation of experimental noise, estimated
in a signal-free segment of the real mixtures X .

The six algorithms above (PALS, STALS, PALM, BC-VMFB and
PALM, BC-VMFB using wavelets) were run on the simulated
dataset. For the stopping criterion, we used the relative size of
the objective function update from one iteration to the next, i.e.

Crit(k) =

∣∣∣∣∣F(X |A(k+1),S(k+1))−F(X |A(k),S(k))
F(X |A(k),S(k))

∣∣∣∣∣ ,
where A(k) and S(k) are the estimates at iteration k. The algo-
rithms also require an initial estimate. Several choices are pos-
sible, we used here estimates obtained using the JADE ICA al-
gorithm33. More precisely, running JADE on the mixture matrix
yields an estimate for the un-mixing matrix, denoted by D, so that
DX provides an estimate of the sources. Also, the pseudo-inverse
D† yields an estimate for the mixing matrix. These estimates tak-
ing both positive and negative values, we use as initialization the
absolute values Sinit = |DX | and Ainit = |D†|.

JADE only requires the number of sources to be estimated. A
PCA on the observation matrix shows that only 4 of the 5 corre-
sponding latent variables are significant, which suggests to set to
4 the number of sources to estimate (which turns out to be the
actual number of terpenes present in the solutions).

STALS, PALM and BC-VMFB require choosing a thresholding
parameter λ , for which five choices were tested, namely 0.01σ ,
0.1σ , σ , 10σ and 100σ . Similar choices are made for the wavelet-
based versions of PALM and BC-VMFB.

The un-mixing results on simulated data are globally very good
for most (if not all) algorithms. The best results seem to be ob-
tained by the STALS and PALS approaches, with various values of
the thresholding parameter λ (we recall that PALS is the special
case of STALS with λ = 0). The best estimate for the concentra-



Limonene Nerol α−Terpinolene β -Caryophyllene

Solution 1 0.12 % −0.67 % 3.82 % 0.09 %

Solution 2 −0.29 % 0.72 % 0.07 % −0.07 %

Solution 3 1.29 % −0.74 % −1.93 % 0.52 %

Solution 4 −1.31 % 2.06 % −0.38 % −0.04 %

Solution 5 3.68 % 0.61 % 0.64 % −0.15 %

Table 2 1H NMR spectra (simulated case): relative errors in the estimated
concentrations (in %) using STALS with λ = 10σ . The corresponding
Amari index equals 0.008.

tions (mixing matrix A) was obtained by STALS with threshold
value set to 10σ (σ being the standard deviation of the noise).
This corresponds to the relative errors reported in Table 2. This
relative error has been computed as follows: let Â be the mixing
matrix estimate of A. Then the relative error (in %) is given by
(Â−A)/A∗100 where the quotient is computed element-wise.

We provide in Table 3 values of evaluation indices for all the
algorithms, λ being fixed to 10σ . For STALS, the SIR and SDR
values globally range between 30 dB and 55 dB, which is gener-
ally considered very good.

Algorithms

PALS STALS PALM BC-VMFB
PALM BC-VMFB
wav wav

Amari .019 .008 .022 .025 .036 .031

SIR (1) 26.7 52.4 22 24.4 20.7 22.2
SIR (2) 32.5 31.2 29.8 28.5 30.1 32.5
SIR (3) 19.5 45.7 41.6 25.2 24.3 23.5
SIR (4) 47.6 29.3 19.9 24 21.4 21.7
SIR (m) 31.6 39.6 28.3 25.5 24.1 25

SDR (1) 26.7 51.4 21.7 24.4 20.4 21.3
SDR (2) 32.5 31.2 29.6 28.5 29.7 29.5
SDR (3) 19.5 44.9 40.8 25.2 24 22.8
SDR (4) 47.4 28.6 19.6 23.9 21 20.6
SDR (m) 31.5 39 27.9 25.5 23.8 23.6

Table 3 1H NMR spectra (simulated case): numerical results, using all al-
gorithms, for λ = 10σ (numbers between parentheses indicate the source
number and m stands for the mean value).

The separation quality is exemplified in Fig. 2 where we can see
good correspondences for the limonene spectrum while underlin-
ing some extra peaks coming from another source. As could be
expected, the spurious peaks are significantly reduced for high
values of the thresholding parameter λ .

A closer look at the results shows that the best results are ob-
tained with STALS with λ = 10σ for two sources (1 and 3), and
PALS for the other two. This indicates that optimal thresholding
parameter may be source dependent. This is further confirmed
when looking at results obtained with STALS using different reg-
ularization parameters λ (see Table 4).

Note that the other algorithms also yielded good un-mixing re-
sults on simulated data.

4.3 Real 1D mixtures
The same algorithms as above were run on the real mixtures,
the results were at first glance very disappointing: the algorithms
failed to separate the pure compounds spectra from mixture spec-
tra. A closer analysis revealed that the main reason was the pres-

0.01 σ

1 σ

10 σ

2.2 2.0 1.8 1.6

Measured

1H chemical shift (in ppm)

Fig. 2 1H NMR spectra (simulated case): measured spectrum of
limonene and estimated spectra of the same compound with STALS for
λ = 0.01σ , σ or 10σ . The three arrows show the presence of 3 extra
peaks that are not present when λ = 10σ . These extra peaks are resid-
ual signals from nerol.

λ

0 σ/100 σ/10 σ 10σ 100σ

Amari 0.019 0.019 0.019 0.019 0.008 0.018

SIR (1) 26.7 26.7 26.7 26.8 52.4 42.5
SIR (2) 32.5 32.3 32.2 31.9 31.2 27.6
SIR (3) 19.5 19.5 19.5 19.6 45.7 39.3
SIR (4) 47.6 45.9 44.6 42.4 29.3 18.3

SDR (1) 26.7 26.7 26.7 26.8 51.4 39.7
SDR (2) 32.5 32.3 32.2 31.9 31.2 27.3
SDR (3) 19.5 19.5 19.5 19.6 44.9 35.4
SDR (4) 47.4 45.8 44.5 42.3 28.6 17.1

Table 4 1H NMR spectra (simulated case): numerical results for the
STALS algorithm, with various values of the thresholding parameter
λ (numbers between parentheses indicate the source number and m
stands for the mean value).



Sol. 1 Sol. 2 Sol. 3 Sol. 4 Sol. 5

SIR 16.12 12.96 18.89 19.95 17.15

SDR 10.86 8.84 12.90 9.76 9.72

Table 5 1H NMR spectra: SIR and SDR indices (in dB) comparing mea-
sured and simulated mixture spectra.

ence of spurious shifts between pure and mixed spectra, peaks
of these two families of spectra were not correctly aligned. The
algorithms under consideration being extremely sensitive to such
issues, obtaining reliable un-mixing results without proper align-
ment is hopeless. We display in Figure 3 the spectra of real mix-
tures (i.e. the five rows of the X matrix) and simulated mixtures
(the rows of Xm = AS). The first column displays the complete
spectra, while the second and third columns zoom in specific re-
gions. As can be seen there, there is a clear shift between peaks,
that may even be significantly location dependent (third column).
This could be the result of a slight variation of pH due to the
decomposition of CDCl3 or, of a difference of ionic strength be-
tween samples. Molecular interactions between the individual
compounds could also contribute to the observed chemical shift
variations.

To overcome this effect, all spectra were aligned using a stan-
dard tool. There exist several approaches of the peak alignment
problem34, based upon various approaches such as correlation
analysis, least squares, dynamic time warping, parametric time
warping and several others. Here the online tool NMRProcFlow
was used to provide re-aligned spectra, on which un-mixing algo-
rithms could be suitably tested. This alignment method is based
on a least squares algorithm for which a reference spectrum (here,
the average spectrum) was calculated. Each region is re-aligned
by shifting it to match the reference spectrum. For the sake of fur-
ther comparison, mixture spectra were aligned together with pure
spectra, which will not be possible in general situations where the
latter will not be available.

Re-aligned spectra are displayed in Figure 4, which again shows
complete spectra and zooms in the same regions as in Figure 3.
The procedure allowed to fix the alignment problems quite suc-
cessfully, as exemplified by columns 2 and 3. However, the latter
also exhibit slight amplitude modulations, which suggests that the
departure of real mixtures from the mathematical model includes
more than peak shifts. To get a quantitative assessment of the
adequacy of the model, we computed values of SIR and SDR in-
dices, that measure discrepancies between X and Xm. Results are
given in Table 5. SIR values are fairly acceptable, which tends to
indicate that peaks are located at the right place, SDR values are
significantly lower, which we interpret mainly as a consequence
of amplitude modulations. This suggests that a more adequate
model for describing real mixtures should involve both shift and
amplitude modulation, in combination with the linear instanta-
neous mixing model (1).

The un-mixing algorithms were run on aligned real mixture
spectra. The resulting un-mixed spectra for the BC-VMFB algo-
rithm with λ =σ are displayed in Figure 5, and the corresponding
evaluation indices are given in Table 6.

The β -caryophyllene was extracted with great accuracy while

Limonene Nerol α−Terpinolene β -Caryophyllene

SIR 13.1 15 20.2 14.8

SDR 9.7 9.9 4.8 6.8

Table 6 1H NMR spectra (real case): SIR and SDR indices (in dB) com-
paring true and estimated source spectra with the BC-VMFB algorithm
with λ = σ .

Limonene Nerol α−Terpinolene β -Caryophyllene

Solution 1 12.34 % 25.61 % −9.03 % −4.33 %

Solution 2 4.05 % −6.68 % 1.11 % 26.27 %

Solution 3 −47.70 % 1.91 % −0.53 % −32.53 %

Solution 4 16.36 % −69.78 % 1.54 % −11.15 %

Solution 5 −55.03 % −14.94 % 4.74 % −4.70 %

Table 7 1H NMR spectra (real case): relative errors in the estimated
concentrations (in %) using BC-VMFB with λ = σ . The corresponding
Amari index equals 0.081.

the limonene presented 4 extra peaks that belonged to the nerol.
Although the major signals from the nerol spectrum were well
recovered, an extra signal coming from β -carophyllene was also
observed at about 1ppm. The worst result was obtained for the
α-terpinolene spectrum where signals from this compound were
mixed with some signals from nerol and limonene. However, de-
spite the presence of these artifacts, the major signals of each
source spectrum were accurately found, allowing the identifica-
tion of the corresponding molecule without ambiguity.

We reported in Table 7 the relative errors on the mixing matrix
estimate.

4.4 Results on HSQC mixtures

The algorithms were also tested on HSQC data, we report here
on the results.

4.4.1 Numerically simulated HSQC mixtures

The first tests were on simulated mixtures, i.e. mixtures gener-
ated using the mathematical formulas described in section 2.2,
using the measured source matrix and a mixing matrix corre-
sponding to the true concentrations in solutions. We provide in
Table 8 a summary of the results obtained using the BSS algo-
rithms, with thresholding parameter set to λ = 100σ , σ being
the standard deviation of the noise, measured in a signal-free
part of the spectra. The results are globally very good, in par-
ticular SIR values (remember that SIR provides a measure of the
cross-talk between sources, in other words the presence in an es-
timated source of spurious components originating from the oth-
ers), which are quite high. SDR values are lower, which indicates
that distortions are present in the estimated sources. Even though
it is not easy to draw clear conclusions, the best results seem to
be obtained with the STALS algorithm. Notice that the wavelet-
based BC-VMFB algorithm yields quite good results as well. The
latter algorithm turns out to be the most effective on real mix-
tures. We do not display here graphical comparison of real and
estimated HSQC spectra, as we prefer to focus on real mixtures
(see below). However, let us mention that the results are visually
excellent, the fingerprint of each terpene is perfectly recovered.



Fig. 3 1H NMR spectra: correspondence of X (blue) and Xm (red) before alignment pre-processing (whole spectra (left), expanded regions (mid-
dle,right)).

Fig. 4 1H NMR spectra: correspondence of X (blue) and Xm (red) after alignment pre-processing (whole spectra (left), expanded regions (middle,right)).
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Fig. 5 1H NMR spectra (real case): spectra of the 4 sources estimated using BC-VMFB with λ = σ (blue) compared to the spectra of real sources
(red).

Algorithms

PALS STALS PALM BC-VMFB
PALM BC-VMFB
wav wav

Amari .135 .012 .015 .11 .081 .016

SIR (1) 21.6 50.1 39.6 39.8 20.9 42.8
SIR (2) 12.4 39.1 31.7 10.3 21.8 34.6
SIR (3) 22 29 28 9.7 31.5 31.4
SIR (4) 8.3 41.4 45.4 20.8 34.2 28.6
SIR (m) 16.1 39.9 36.2 20.2 27.1 34.4

SDR (1) 20.5 25.9 25.7 24.6 19.8 24.9
SDR (2) 11.6 16 17.2 9.3 16.4 16.4
SDR (3) 15.1 13.6 13.5 8.6 14.1 13.2
SDR (4) 7.1 9.9 10.1 10.5 10.4 9.8
SDR (m) 13.6 16.3 16.6 13.3 15.2 16.1

Table 8 2D 1H-13C HSQC spectra (simulated case): numerical results
for λ = 100σ (numbers between parentheses indicate the source number
and m stands for the mean value).

4.4.2 Real HSQC mixtures

The algorithms were also tested on real mixtures (the same solu-
tions as the ones reported in the section devoted to 1H NMR). The
results in this case too are quite good. We do not report on the
performances of all algorithms, and focus on the best perform-
ing one, that turns out to be the wavelet-based BC-VMFB (men-
tioned above), with a thresholding parameter set to λ = 10σ . The
corresponding SIR and SDR indices are provided in Table 9, the
Amari index equals 0.042, meaning that concentrations have been
correctly estimated (see Table 10 for the relative errors on the
estimated concentrations). As can be seen, SIR values are again
very good (around 32dB in average), which indicates that even in
crowded regions of the spectra, no significant cross-talk between
sources is observed. SDR values remained significantly weaker,
meaning that estimated spectra were significantly perturbed. As
in the 1D situation, this may be interpreted as a departure from
the 2D LIM model. Again as in the 1D case, the visual inspection
of the estimated sources versus the true one in Figure 6 shows
that the results are of sufficient quality to identify the four ter-
penes in these solutions.

Remark. As in the 1D case, the adequacy of the LIM model for
HSQC spectra can be assessed by looking at quality indices. SIR
and SDR indices computed from measured and simulated mixture
spectra are provided in Table 11. The conclusions that can be
drawn are essentially similar to the previous ones. SIR values
are acceptable, at least for solutions 1-3, and lower for solutions
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Fig. 6 2D 1H-13C HSQC spectra (real case): comparison of the pure HSQC spectra (left) and the HSQC spectra estimated from real mixtures, according
to the two-dimensional LIM model.



Limonene Nerol α−Terpinolene β -Caryophyllene

SIR 46.3 25.2 22.7 32.1

SDR 8.5 13.1 9.4 9.4

Table 9 2D 1H-13C HSQC spectra (real case): SIR and SDR indices (in
dB) comparing pure and estimated source spectra using wavelet-based
BC-VMFB with λ = 10σ .

Limonene Nerol α−Terpinolene β -Caryophyllene

Solution 1 −0.39 % 3.16 % −7.02 % 9.53 %

Solution 2 −8.56 % −3.43 % −2.66 % 10.90 %

Solution 3 5.84 % 8.42 % 2.94 % 6.68 %

Solution 4 5.74 % −14.40 % 3.47 % −12.84 %

Solution 5 −3.65 % −6.89 % 0.03 % −11.00 %

Table 10 2D 1H-13C HSQC spectra (real case): relative errors in the
estimated concentrations (in %) using wavelet-based BC-VMFB with
λ = 10σ . The corresponding Amari index equals 0.042.

4 and 5. SDR values are very low, which may be interpreted in
terms of departures from the LIM model.

5 Discussion and conclusions
We have presented in this paper a general approach for the
blind identification of compounds from solutions using NMR spec-
troscopy and blind source separation algorithms. It is worth re-
calling that these algorithms are blind in the sense that they at-
tempt to estimate jointly pure compounds spectra and concen-
trations in solutions. From the mathematical point of view, we
provided a general algorithmic approach, that includes as special
instances a number of different algorithms, which we could test
and compare. We also considered, for the sake of quantitative
performance evaluation, some quantities (Amari index, various
forms of signal to noise ratio), that had been introduced long ago
in the blind source separation literature. Numerical tests were
performed on data specifically generated for this work, including
1D as well as 2D HSQC spectra.

The results presented here show that blind source separation
algorithms have the potential to perform successfully. On the
studied dataset, results on simulated data range from good to
excellent, depending on the algorithm and parameter values. On
real data, good results could be obtained provided some impor-
tant pre-processing steps could be done carefully.

However, our results also raise a number of questions, some
of which we list below, that should be addressed before drawing
more complete conclusions.

• Results on 1D data show that pre-processing is a crucial step.
In the case considered here, alignment of spectra turned out
to be fundamental. However, even after careful alignment,
the Linear Instantaneous Mixture model turned out to be in-
completely satisfactory, aligned data showing significant de-

Sol. 1 Sol. 2 Sol. 3 Sol. 4 Sol. 5

SIR 15.83 14.04 19.01 13.93 11.29

SDR 8.42 9.33 8.02 8.36 7.11

Table 11 2D 1H-13C HSQC spectra: SIR and SDR indices (in dB) com-
paring measured and simulated mixture spectra.

partures from that model. Therefore, this may suggest that
the model is not 100% adequate, and that it would be worth
considering more complex models, that could include for in-
stance amplitude modulations as we observed on the ter-
pene data we studied. One may also imagine including spec-
tral shift into the model, provided the phenomenon could be
sufficiently well understood and therefore modelled.

• In the same spirit, this would also suggest to modify the un-
mixing algorithms, to estimate amplitude modulations (and
shifts) at the same time as concentrations and pure com-
pounds spectra. There are situations in signal and image
processing where one faces similar problems, it might be
possible to transpose corresponding approaches to the case
under consideration here.

• In the considered datasets, alignment was not problematic
for the HSQC spectra, for which un-mixing algorithms could
be run without pre-processing. The un-mixing results on
HSQC data turned out to be of very good quality, the al-
gorithms being able to identify clearly 2D fingerprints of the
four terpenes, as well as concentrations. This is confirmed
by satisfactory values for the interference index (SIR) and
Amari index. Besides, the distortion index (SDR) are signif-
icantly weaker, which may indicate (as in the 1D case) that
additional distortions should be taken into account in the
model. However, as such indices have not been used so far
(to the best of our knowledge) in NMR spectroscopy, such
conclusions must be taken cautiously. More experiments are
needed to validate the use of such tools in this context. It
is also worth pointing out that the computational burden is
significantly higher in the 2D case, and can be expected to
grow fast when the dimension of spectra increases. This will
be an important problem to address if one wants to proceed
to higher dimensional spectra, where sparsity is expected to
be higher and facilitate further the separation.

• Whatever the models, blind separation problems are al-
ways ill-posed problems, and in the framework of variational
formulations, result on non-convex minimization problems.
This means that the objective function to be optimized can
have (and as a matter of fact, has) several (and often, many)
local minima, and algorithms are extremely sensitive to ini-
tialization. We have stuck here to a simple choice, that was
advocated in18 for different algorithms. It is not clear that
this choice is the most relevant for the family of approaches
studied in this paper, this point clearly deserves an in-depth
study. Very much in the same spirit, the fact that different
algorithms that aim at optimizing the same objective func-
tion actually yield significantly different results and perfor-
mances raises questions, even though there is no guaran-
tee that they should give the same result, given the non-
convexity of the problem. Again, further investigations are
necessary at this point.
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