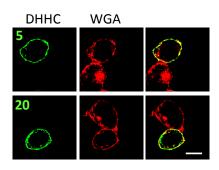
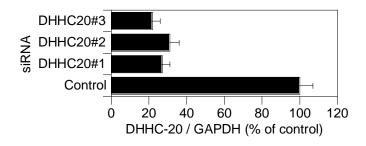
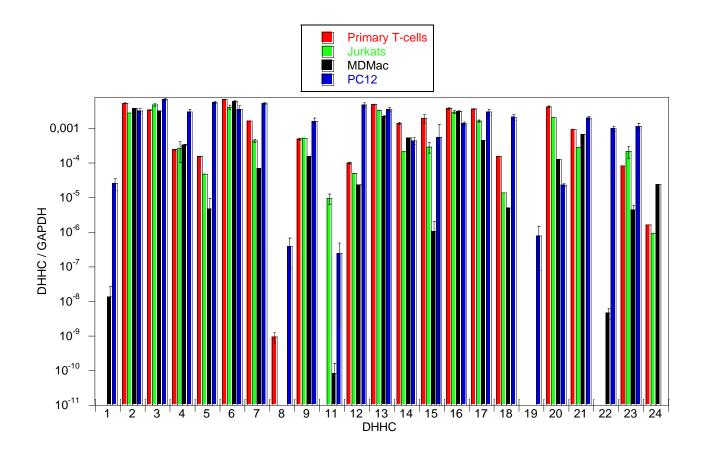

The C31S mutation does not affect Tat capacity to enter cells or its transcriptional activity. PC12 cells were cotransfected with a Tat vector (Intracellular), a vector expressing a Firefly gene under the control of an LTR promoter, a plasmid with a Renilla gene under a CMV promoter and a human cyclin T1 vector. When indicated (Extracellular), cells were not transfected with Tat but were treated with recombinant Tat, WT or C31S for 24 h. Luciferase activities were then assayed and transactivation is expressed as the Firefly/ Renilla ratio (%) compared to the corresponding control (Vendeville et al, 2004). Mean ± SEM, n=4.

Interaction of Tat-C31S with PI(4,5)P2 liposomes. Raw ITC data. Liposomes (PC/PG/PI(4,5)P2 75/20/5; 200 μ M) were injected into 1 μ M Tat WT or C31S (1 μ M) in 150 mM NaCl, 50 mM Citrate, pH 7.3, and heat production was monitored. The heat resulting from buffer injection was subtracted from the binding curves. The Tat-PI(4,5)P₂ liposome interaction in NaCl buffer is exothermic (DH<0), while in KCl buffer it is endothermic (DH>0)¹. Mean ± SEM (n=3).

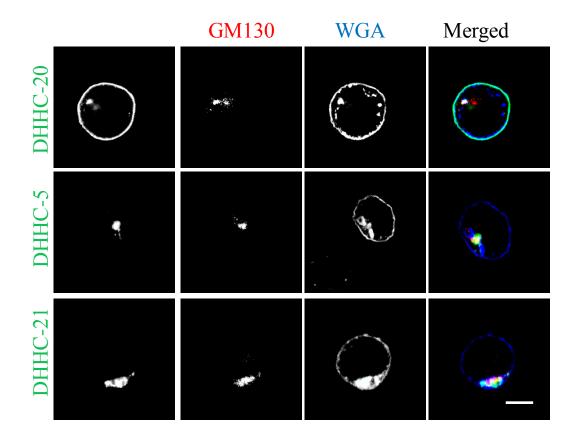

Tat palmitoylation is required for membrane association in primary neurons. Hippocampal neurons were transfected with a Tat vector. After 20h, when indicated, 50 μ M 2-BP, palmitate or solvent was added for 4 h. Neurons were then fixed for Tat and MAP2 (to confirm neuronal identity) immunostaining then imaged using a confocal microscope. Representative median optical sections are shown. Bar, 10 μ m. n=10.

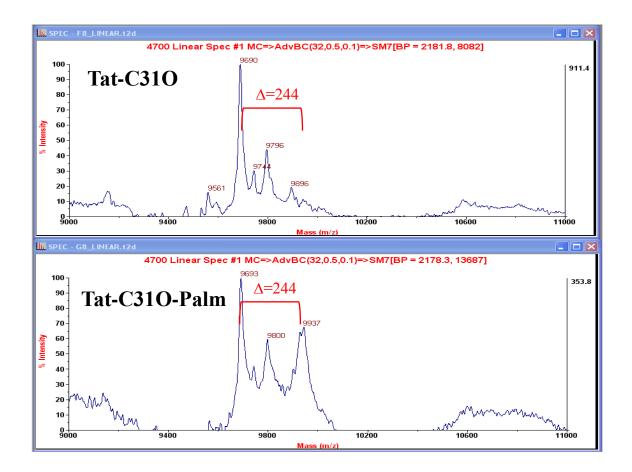


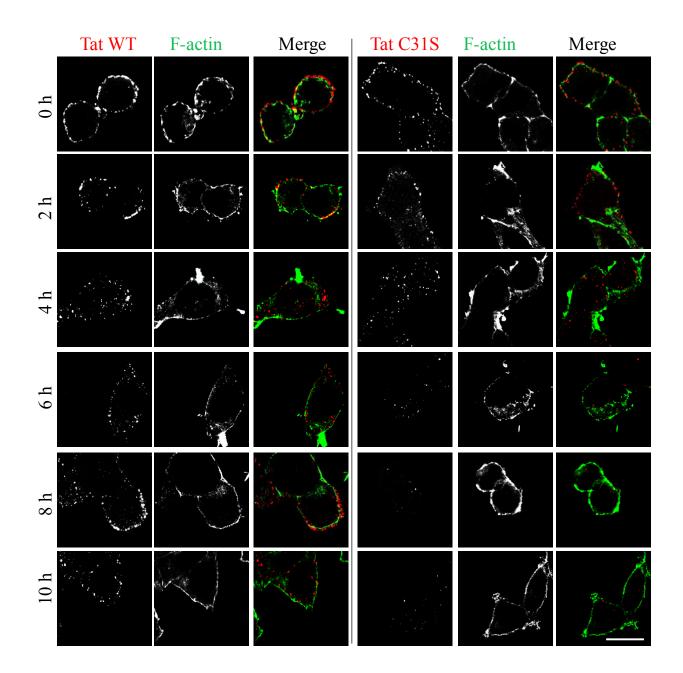
Exogenous Tat-C31S and Tat-W11Y are not palmitoylated. Jurkat cells were treated overnight with 100 μ M 17-ODYA and 50 nM Tat-His₆, WT, C31S or W11Y as indicated. After cell lysis, Tat-His₆ was isolated on Ni-NTA-agarose beads before click chemistry to attach biotin to 17-ODYA, Western blot and detection of biotin then Tat.

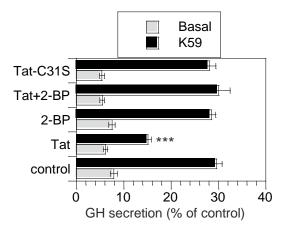

DHHC	DAPI	GM130	Merge	DHHC	DAPI	GM130	Merge
1	\$		P	13	(g ^{**}	1 1 1	1000
2				14		*	
3		a series and a series of the s		15			
4	6		6 6	16		and a state	2 20
6 ()		4 4 8		17 ¢	3	Р. Ф	2
7 (e.	÷.		<mark></mark>	18	/ ^ /	and services	
9	<u></u>	a.	1	19	* * *		ی ک ک
10	*\$ 9₹	and the second		21 🦻			
11 .**	8		<u> </u>	22 **	6	19 19 19 19 19 19 19 19 19 19 19 19 19 1	-
12 2				23		a fair ann	

Localization of DHHC enzymes in PC12 cells. Cells were transfected with the indicated GFP-tagged mouse DHHC vectors. They were then fixed and permeabilized for GM130 immunolabelling and nuclei staining using DAPI, or plasma membrane and Golgi labelling using fluorescent wheat germ agglutinnin (WGA). Cells were then examined by confocal microscopy. Representative median optical sections are shown. Bar, 10 µm.

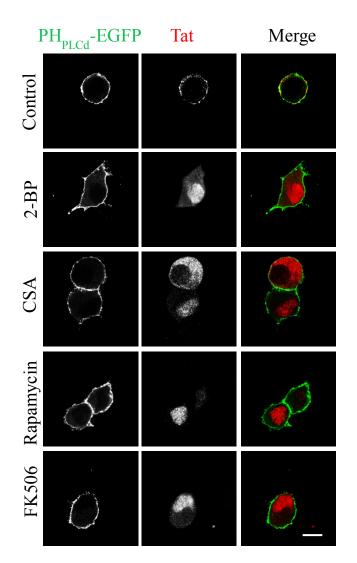



Extinction of DHHC-20 expression using siRNAs. PC12 cells were transfected with the indicated siRNA before RNA extraction and qRT-PCR to quantify DHHC-20 and GAPDH mRNAs. Results are expressed as percentages of the DHHC-20 / GAPDH control ratio. DHHC-20 siRNA #3 was used for palmitoylation experiments (Fig.3c). Means ± SEM, n=3.

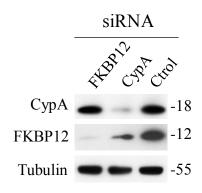

DHHC expression levels in macrophages, neuron precursors and T-cells. The RNA from monocytederived primary macrophages (MDMAc), PC12, Jurkat or human primary CD4⁺ T-cells was extracted before quantification of DHHCs and GAPDH mRNAs using qRT-PCR. Results are expressed as DHHC / GAPDH ratio. There are 23 DHHCs in mammals; DHHC-10 does not exist². An absent bar indicates that the corresponding DHHC was not detectable in this cell type. Means \pm SEM, n=3.


Localization of DHHC-GFP in human primary T-cells. Cells were transfected with the indicated GFP-tagged mouse DHHC enzyme then fixed and permeabilized for GM130 immunolabelling to localize the Golgi apparatus, and plasma membrane and Golgi labelling using fluorescent wheat germ agglutinin. They were then examined by confocal microscopy. Representative median optical sections are shown. Bar, 5 µm.

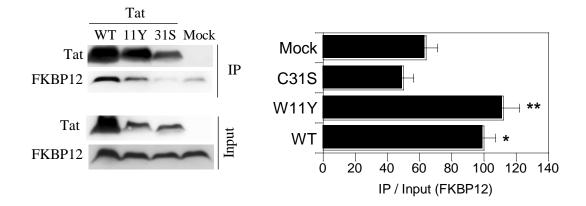
Purity and palmitoylation efficiency of Tat-C31O. The theoretical MW of protonated Tat-C31O (MEPVDPRLEPWKHPGSQPKTASTNSYSKKSCFHSQVSFITKALGISYGRKKRRQRRRPPQGSQTHQ VSLSKQPTSQSRGDPTGPKE) is 9689. Upon palmitate addition, an H2O is lost and a theoretical mass increase of 238 should be observed. Analysis performed using a 4800 Plus MALDI-TOF/TOF Proteomics Analyser showed that a Δ mass of 244 (± 3 Da, the precision of the instrument) is observed, confirming that Tat-C31O was palmitoylated. The peak-area ratio indicates that palmitoylation took place with an efficacy of 47 ± 8%.



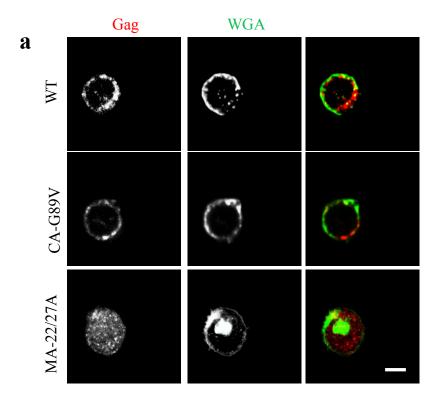
Palmitoylation is required for the recruitement at the plasma membrane of incoming Tat. PC12 cells were labeled with 100 nM Tat (WT or C31S) for 30 min at 4°C. After washing, cells were incubated at 37°C and fixed after the indicated times for Tat staining by immunofluorescence and F-actin labeling using fluorescent phalloidin. Representative median optical sections obtained with a confocal microscope are shown. Bar, 10 μ m. Images from 50 < n < 100 cells were used to quantify Tat / F-actin colocalization using Manders' coefficient (Figure 4B).


Palmitoylation is required for Tat to inhibit neurosecretion by chromaffin cells. Cells were transfected with human growth hormone (GH), then treated with 20 nM Tat (WT or C31S) and/or 100 μ M 2-BP for 5 h as indicated. They were then incubated for 10 min in calcium-free Locke's solution (basal release) or stimulated for 10 min with a depolarizing concentration of K⁺ (K59; Locke's solution containing 59 mm KCl). GH secretion was then assayed by ELISA. Mean \pm SEM (n=3). Data were analyzed using a two-way ANOVA (***, p<0.001).

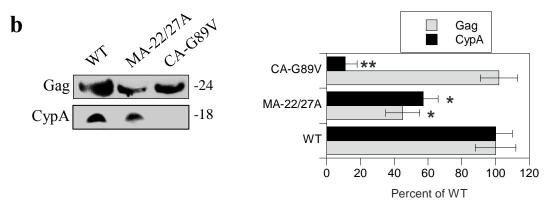
a

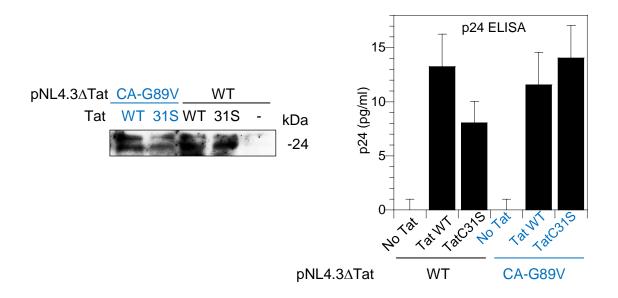

Immunophilin inhibitors displace Tat to the cytosol. PC12 cells were cotransfected with Tat and an EGFP chimera of the PLC₀-PH. After 24 h they were treated for 5 h with the indicated drugs (100 μM 2-BP; 2 μM CSA; 1 μM rapamycin; 1 μM FK506), then washed and fixed for Tat staining by immunofluorescence. Representative median optical sections obtained with confocal a microscope. Bar, 10 µm.

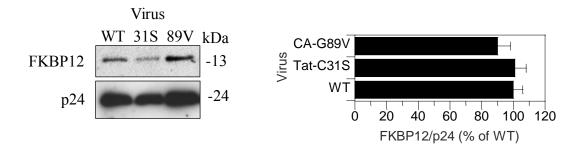
b

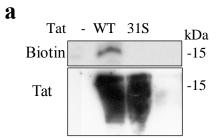


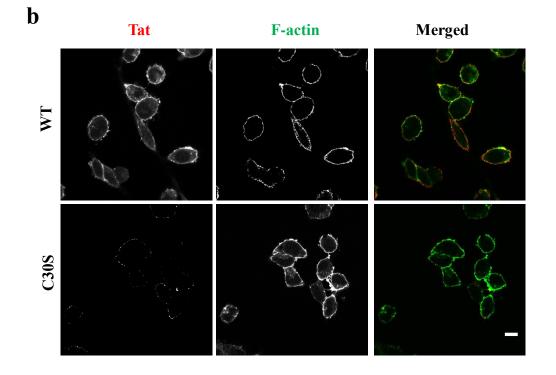
Silencing FKBP12 and CypA in Jurkat cells .Cells were transfected with the indicated siRNA. After 24 h they were lysed for Western blotting.


Silencing CypA also affected FKBP12 expression.

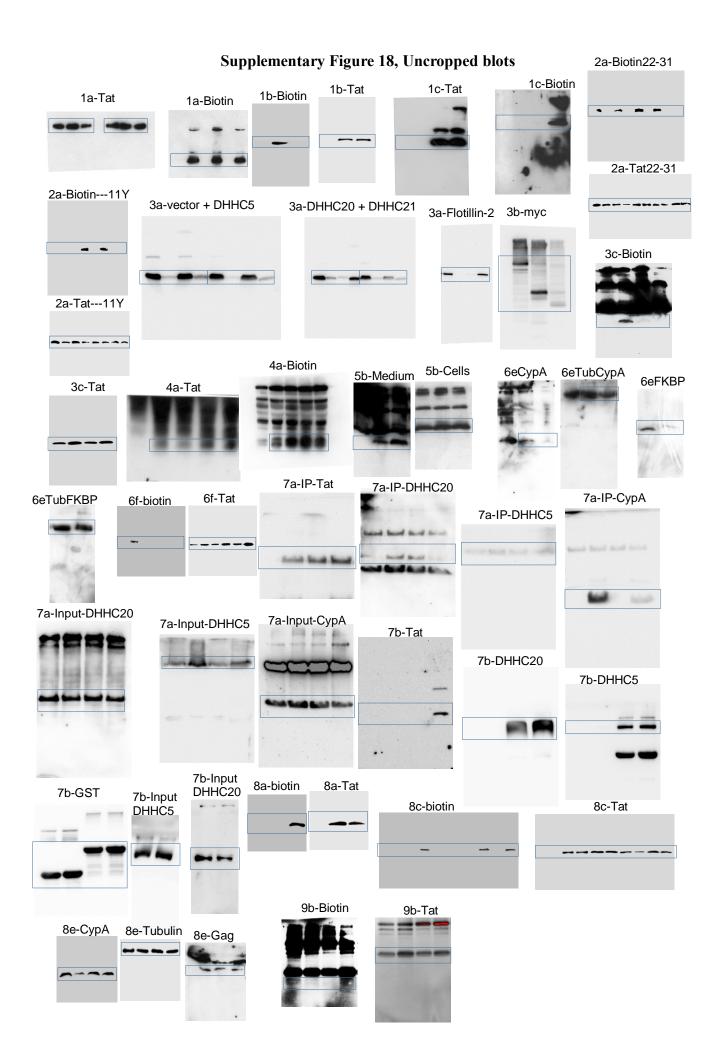

HIV-1 Tat interacts with FKBP12. HEK 293T cells were transfected with an empty vector (mock) or pBi-Tat-FLAG (WT, 11Y or C31S). Cells were lysed 24 h after transfection and Tat-FLAG was immunoprecipitated before anti-FKBP12 Western blotting. The graph shows the quantification from triplicate blots. Data (mean ±SEM, n=3) were analysed using one-way ANOVA (**, p<0.01; *, p<0.05).


Localisation of Gag mutants in human primary T-cells. CD4+ primary T-cells were transfected with the indicated Gag mutant then fixed and permeabilized for p24 immunolabelling, and plasma membrane and Golgi labelling using fluorescent wheat germ agglutinin (WGA). They were then examined by confocal microscopy. Representative median optical sections are shown. Bar, 5 µm.


VLP production from mutant Gag proteins. Jurkat T-cells were transfected with the indicated Gag mutant; 48 h later, the medium was filtered and VLP were isolated by ultracentrifugation and analysed by western blotting. Quantification corresponds to 3 different experiments. Mean \pm s.e.m. Data were analyzed using a one way ANOVA (**, p<0.01; *, p < 0.05).

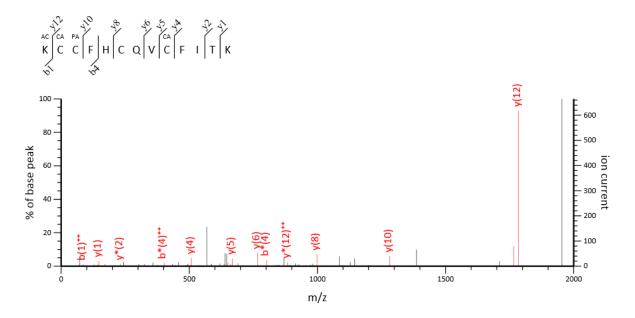


Complementation of pNL4.3 Δ **Tat by pBi-Tat-FLAG enables virus production.** HEK 293 T cells were cotransfected with pNL4.3 Δ Tat, WT or CA-G89V and pBi-Tat-FLAG (WT or C31S) using a ratio 4 pNL4.3 / 1 Tat. Viruses were purified from the cell medium 48 h after transfection and were analysed by SDS/PAGE and anti HIV-1 p24 Western blotting or p24 ELISA (mean ± SEM, n=3).



Levels of FKBP12 in WT, Tat-C31S and CA-G89V viruses. Jurkat CD4 T-cells were infected with HIV-1 (NL4.3) either WT, Tat-C31S or CA-G89V. Viruses were purified from the cell medium 48 h after infection before anti-FKBP12 and anti HIV-1 p24 Western blots. Representative experiment from n=3 experiments. The graph presents the FKBP12 levels normalized using p24 amounts (mean ± SEM).

Exogenous Tat-C30S is not palmitoylated because it is not transported to the cytosol. a PC12 cells were treated overnight with 100 μ M 17-ODYA and 50 nM Tat-His₆ WT, C30S, or C31S as indicated. After cell lysis, Tat-His₆ was isolated on Ni-NTA-agarose beads before click chemistry to attach biotin to 17-ODYA, Western blot and detection of biotin then Tat. WT Tat only was palmitoylated and Tat-C30S was not detectable even on overexposed blots. **b** Tat (100 nM; WT or C30S) was pre-bound to cells on ice before washes, fixation, Tat staining by immunoflorescence and imaging. Bar, 10 μ m. Quantification of 50<n<60 cells showed that the amount of cell-associated Tat-C30S was decreased by 57± 3% compared to WT Tat.



В	B Ions	B+2H	B-NH3	B-H2O	AA	Y Ions	Y+2H	Y-NH3	Y-H2O	Y
1	171.1	86.1	154.1		K+42	1,954.0	977.5	1,937.0	1,936.0	13
2	331.1	166.1	314.1		C+57	1,783.9	892.4	1,766.9	1,765.9	12
3	672.4	336.7	655.4		C+238	1,623.8	812.4	1,606.8	1,605.8	11
4	819.5	410.2	802.4		F	1,282.6	641.8	1,265.6	1,264.6	10
5	956.5	478.8	939.5		Н	1,135.5	568.3	1,118.5	1,117.5	9
6	1,059.5	530.3	1,042.5		C	998.5	499.7	981.5	980.5	8
7	1,187.6	594.3	1,170.6		Q	895.5	448.2	878.4	877.5	7
8	1,286.6	643.8	1,269.6		٧	767.4	384.2	750.4	749.4	6
9	1,446.7	723.8	1,429.6		C+57	668.3	334.7	651.3	650.3	5
10	1,593.7	797.4	1,576.7		F	508.3	254.7	491.3	490.3	4
11	1,706.8	853.9	1,689.8		I	361.2	181.1	344.2	343.2	3
12	1,807.9	904.4	1,790.9	1,789.9	Т	248.2	124.6	231.1	230.1	2
13	1,954.0	977.5	1,937.0	1,936.0	K	147.1	74.1	130.1		1

Supplementary Table 1.

Fragmentation table of HIV-1 Tat peptide 29-41 (KCCFHCQVCFITK). PC12 cells were transfected with Tat-FLAG before immunoprecipitation using anti-FLAG antibodies, SDS/ PAGE, excision of the gel band and analysis by nano LC-MS/MS. The C+238 B and Y ions indicate that Tat is palmitoylated on Cys 31, while the others Cys are modified by carbamidomethylation (C+ 57 Da).

Sequence coverage (50%) includes all Cys residues and no modification of the other Cys was observed.

Fragmentation spectrum of HIV-1 Tat peptide 29-41 (KCCFHCQVCFITK)

Supplementary Table 2

DHHC primers used for real-time PCR

	For human DHHCs	For rat and mouse DHHCs			
DHHC1 sense	GCGCAGCTGTTTTCAAGTCA	TTGCATGGGTGCCATCTTTG			
DHHC1 antisense	CCACACACTCTTCTCAGGGG	TAGCTCTTGTCCCGCACATT			
DHHC2 sense	TGGAGACAGAGCCAAGAGGAG				
DHHC2 antisense	TTATAAGTTGGCATCTGTCACAGTATC				
DHHC3 sense	ACCCACCACAGTGATTCTCC	TGTCACCTGGTTTCTGGTCC			
DHHC3 antisense	GTGGCCAAAAACGGCTTTCA	GTCTCGGGATGGAATCAGCA			
DHHC4 sense	TGTGGAACCAATCCTGGCAT	TAACCCCACAGTGCTTCCAG			
DHHC4 antisense	ACAGTGATGGTCGAAACGGT	TTCCGCGTAAACTAGCCCTT			
DHHC5 sense	GAAGACTGAAGAAA	GATAAGAGACATTC			
DHHC5 antisense	GACACTTCAAAAGTTTACTGTGGATG				
DHHC6 sense	AGCACCACTGGGTTGTATCC	GCAACCCGAGGGTTACGATA			
DHHC6 antisense	ACTGTGTTCCACCCAAAGGA	TCCATCACAGGGGGCACTTTT			
DHHC7 sense	CAGTTCATCTCCTGTGTCCGA	CGTGGGTGAACAACTGTGTG			
DHHC7 antisense	GGCTTCTCACTTTTCAATCGCT	AAGGCACAGGAAGACCAACA			
DHHC8 sense	ACTCCCCACTCACCATCCTA	ATGCTCTTGTGGGAGGTGATG			
DHHC8 antisense	TGCAGGTGCCAATCCGC	ACTCGGTATGCTTTGGGGTG			
DHHC9 sense	GTGCTGGATCGAAGGGGTAT	GAAACTCCCGGGCAGGAATA			
DHHC9 antisense	TGTCCTCCGGCATCTCATTT	ACAGCCAGATAGCGACACTC			
DHHC11 sense	GTCGTTACCCCTGCACTACT	CCTCCACTCCTTTCAGGCAA			
DHHC11 antisense	GGTGGAACGAGAAGATCCCC	AACATGAACACCCCACCCAT			
DHHC12 sense	GTGCTCTTCCTGCACGATAC	GCATGGTCTGGTCTCCAGTT			
DHHC12 antisense	ACATTCACGTAGCCAGGGTC	GGCGATTCGGTGTGAGGATA			
DHHC13 sense	TGAAACAGACGTTGTCCCTCA	TCACTGGGCTGCCATTAACA			
DHHC13 antisense	TGTCCAATCTACCACACAGGG	CAAATGCCCTTGTCGGATGG			
DHHC14 sense	CATCGTTGGCCTCTCAGGAT	GAGGCTATATCCAGCCCGAC			
DHHC14 antisense	GTCGATCAGGCTTGGTGAGA	CGCTCTGAAGTAGGGGAGTG			
DHHC15 sense	TATGAATGAGTCACAGAACCCACTGCTAG				
DHHC15 antisense	TAATCTTGGTTGTCA	ICCTCGTTGTCTTCC			
DHHC16 sense	TGGGTGCCCTAACTGTATGG	CTAAGCCAGCACGAACACAC			
DHHC16 antisense	AATACTCTGCCCTTGGCCTG	ATTGTTTAGCCAGGGGCAGT			
DHHC17 sense	GGTGAACCTCTTGGACGGAA	TTACGACAACCCGTCCTTCC			
DHHC17 antisense	TTTTCTTTGTCCGGTTGCCG	AGCCCAAACACCACCATACA			
DHHC18 sense	CAGTGTCTGCGACAACTGTG	GGGTTCCACACTTACCTCGT			
DHHC18 antisense	GAAGGCCGTCAGGAATGAGA	ATGGCTGTAGGGGTTGACAG			
DHHC19 sense	AGTGGCCTCTTCTTCGCATT	CAAAGTGCCTCTTCCATCGC			
DHHC19 antisense	CTCAGCGGAGCCTTGATGTA	GACCGATGCAGTTGTTGACC			
DHHC20 sense	TCAAACCACTTAG				

DHHC20 antisense	GCCTTCTTCAGCTCCATTCTCC				
DHHC21 sense	TCTGGGAATTATGTAACAAGTGTAATTG	GGACCTCTTTGTTGTTCGGC			
DHHC21 antisense	AGAGCCAATGATTATCTTCACCAAC	GGAACTCTCAGTGGTTGCCT			
DHHC22 sense	ATGCTCTACCTCTGGTTCGC	GGCACGACCATDACTGTTTC			
DHHC22 antisense	AGCCACCTCTTTCCGAAGAC	GAGATATAGGCCACTCCGGC			
DHHC23 sense	TGGCTTAGGGGAGCCAAAAA	ATAAACAGCTGCGTCGGAGA			
DHHC23 antisense	AGTAGTACCACAGTGCCAGC	ACGCAGGTGAAGGATAGAGC			
DHHC24 sense	CTGGCTCATGTTGCTCACAG	The DHHC24 gene is absent in mouse			
DHHC24 antisense	GGACCCAGGTCATAGGAGTG	cells.			
GAPDH sense	ACCACGAGAAATATGACAACTCC				
GAPDH antisense	CCAAAGTTGTCATGGATGACC				

Supplementary References

- 1. Rayne F, *et al.* Phosphatidylinositol-(4,5)-bisphosphate enables efficient secretion of HIV-1 Tat by infected T-cells. *EMBO J* **29**, 1348-1362 (2010).
- 2. Greaves J, Chamberlain LH. DHHC palmitoyl transferases: substrate interactions and (patho)physiology. *Trends Biochem Sci* **36**, 245-253 (2011).