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Abstract

In this work, we present a numerical method for the resolution of transmission problems with non-conformal
meshes which preserves the optimal rates of convergence in space. The smooth extension method is a fictitious
domain approach based on a control formulation stated as a minimization problem, that we prove to be equivalent
to the initial transmission problem. Formulated as a minimization problem, the transmission problem can be solved
with standard finite element function spaces and usual optimization algorithms. The method is applied to different
transmission problems (Laplace, Stokes and a fluid-structure interaction problem) and compared to standard finite
element methods.

Keywords. Partial differential equation, Transmission problem, Fictitious domain method, Control and optimization,
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1 Introduction

The numerical simulation of transmission problems (also known as interface problems or problems with discontinuous
coefficients) is of major importance for the mathematical study of many physical and living systems. As examples, we
can mention the study of composite materials (see [OK06]), the flow of multiphasic fluids or the interaction of fluid and
structure problems (see [DMM18]). There exists a wide variety of numerical methods for this type of problems, including
conformal and non-conformal mesh techniques.

Conformal mesh methods are successful when dealing with stationary problems or problems with domains ongoing
moderate displacements. In the latter, the mesh is moved using a regular extension of the displacement of the interface,
which is only possible in practice if this displacement is small enough. For example, in the case of fluid-structure
interaction problems it can be done using an arbitrary Lagrangian-Eulerian (ALE) description of the fluid (see [dS07]).
The main advantage of fitted mesh techniques is their optimal convergence rate in space. However, when transmission
problems involve large deformations, a much more appropriate method is the use of non-conformal meshes approaches,
in which the interface deforms independently of a background fixed mesh.

Non-conformal mesh techniques use a mesh that does not fit the interface. Compared to conformal mesh methods,
these approaches have numerous advantages to fasten the numerical resolution of transmission problems. For example,
they allow to consider Cartesian meshes in order to use fast solvers or to accurately mesh small included materials without
necessarily considering a thin mesh on the whole domain. Among these methods we can reference some classical methods
such as fictitious domain methods with Lagrange multipliers (see [Baa01], [Yu05]) or penalization terms (see [JLM05]) and
the immersed boundary method (see [Pes02]) which are easy to implement but do not convergence with optimal orders
in space (see [GG95], [GGLV01], [Tom97], [Mau09]), because of the discrete treatment of transmission conditions. More
recent methods, such as the extended-finite element method (XFEM, see [MB02], [FL+14] and [FL17]) or the Nitsche-
XFEM method (see [AFFL16]) circumvent theses difficulties, but they require a specific evaluation of the interface
intersections, which can be difficult, especially in three space dimensions (see [BKFG19]). An other fictitious domain
approach designed to recover the optimal convergence at any order is the fat boundary method (FBM, see [BIM11]). It is
well suited for elliptic stationary problems or problems involving rigid domains, but it is not straightforward to adapt it to
deformable moving materials. An other class of non-conformal mesh techniques is the control based approach presented in
[ADG+91], initially developed to solve boundary value problems in complex geometries and which is based on an optimal
control formulation. In [ADG+91], the authors consider the Poisson problem for the Laplace operator with an included
obstacle on which Dirichlet and Neumann boundary conditions are applied. The idea of the method is to extend the
problem inside the obstacle and use the right-hand side of the equations as a control to impose the boundary conditions
on the frontier of the obstacle. This method has also been used to treat boundary conditions in a fictitious domain
approach for the Helmoltz equations in [ADG+91], [AJ93] and [Per98]. In [Fab12] and [FGM13], the authors present
the smooth extension method, an extension of the control based method to the resolution of fluid-structure interaction
problems involving rigid particles and a low-Reynolds number fluid. This method has the advantages to recover optimal
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convergence in space and to be rather simple to implement (it does not require any mesh adaptation or local enrichment
of the function spaces).

In this method-oriented article, we aim to extend this smooth extension method to general transmission problems;
in particular to problems where the behavior of the obstacle is also described by partial differential equations with
transmission conditions on the interface. This approach relies on an optimal control formulation of the transmission
problem based on a least-squares formulation of the transmission conditions, which has the advantage to be particularly
suitable for unfitted mesh techniques. Several transmission problems are considered: a Laplace transmission problem,
a Stokes transmission problem and a linear fluid-structure interaction problem between a low-Reynolds number fluid
and an elastic structure. For all of them, a constrained minimization problem is introduced, where the cost function is
a least-squares formulation of the transmission conditions. We prove that the resolution of this minimization problem,
which can be done with standard finite element solvers and usual gradient descent methods, enables to recover the
solution of the initial transmission problem. We highlight that this method is intrinsically designed to recover optimal
rates of convergence in space, which is not usually the case with fictitious domain techniques using unfitted mesh.

The remaining of the article is organized as follows. In Section 2, we state the smooth extension method for the
Laplace transmission problem. Then, Section 3 is devoted to the presentation of numerical experiments using the
methodology described in Section 2. Finally, in Section 4, we extend the method to other transmission problems: the
Stokes transmission problem and a fluid-structure interaction problem involving a linear elastic structure and a viscous
fluid.

2 Presentation of the method

The smooth extension method presented here is devoted to the numerical simulation of transmission problems. It is a
fictitious domain method which enables to recover the optimal order of convergence in space by smoothly extending a part
of the exact solution to the whole domain. In this section we focus on a toy model, the Laplace transmission problem, in
order to properly explain the main steps of the method. This section is divided in four parts. In Subsection 2.1, we state
the smooth extension formulation of the problem as a control problem and explain how to recover the exact solution
from it. Then, in Subsection 2.2 we rewrite this control problem as a minimization problem and prove the equivalence of
the two formulations. Finally, in Subsection2.3 we discuss the advantage of this method compared to the classical finite
element methods with both fitted and unfitted meshes.

2.1 The smooth extension formulation

Let n > 0 and Ω be a domain of Rn that satisfies the following set of hypotheses:

i) Domain Ω is a bounded connected Lipschitz domain of Rn.
ii) Domain Ω is divided in two subdomains, Ω1 and Ω2, which have Lipschitz

boundaries.
iii) The interface Γ = ∂Ω1 ∩ ∂Ω2 is not empty.
iv) The remaining boundaries Γ1 = ∂Ω1 \ Γ and Γ2 = ∂Ω2 \ Γ are not empty.

(H1)

The problem we are interested in, for now, is the coupled Laplace problem with homogeneous Dirichlet boundary
conditions, also called Laplace transmission problem or Laplace problem with discontinuous coefficients. It is the simplest
coupled system of partial differential equations that we can think of and, given two positive real constants µ1 and µ2

such that µ1 6= µ2 and two source terms f1 ∈ L2(Ω1) and f2 ∈ L2(Ω2), it writes:

find u1 : Ω1 → R and u2 : Ω2 → R such that

−µ1∆u1 = f1 in Ω1,

u1 = 0 on Γ1,

−µ2∆u2 = f2 in Ω2,

u2 = 0 on Γ2,

u1 = u2 on Γ,

µ1∇u1 · n1 = −µ2∇u2 · n2 on Γ.

(1a)

(1b)

(1c)

This problem is completely equivalent to the more classical formulation of the Laplace problem, written in the whole
domain Ω,  find u : Ω→ R such that

−div(µ∇u) = f in Ω,
u = 0 on ∂Ω,

where µ and f are defined by

µ =

{
µ1 in Ω1,
µ2 in Ω2,

f =

{
f1 in Ω1,
f2 in Ω2.

2



However, the formulation (1) has the advantage of making the coupling between the two subproblems (1a) and (1b)
clear. The so-called coupling conditions are detailed in equations (1c) and physically represent the continuity of the field
and the continuity of the normal constraint through the interface Γ. Moreover, n1 (resp. n2) is the unit exterior normal
vector of Ω1 (resp. Ω2). The solution of problem (1) lies in V1 × V2, where these two functional spaces are defined by

V1 = {v1 ∈ H1(Ω1); v1|Γ1
= 0}, V2 = {v2 ∈ H1(Ω2); v2|Γ2

= 0}.

In addition, the dual spaces of V1 and V2 will be denoted by V ′1 and V ′2 .
Let v be a distribution in D(Ω) and suppose that u1 and u2 are sufficiently regular. We can formally multiply the

first equation in (1a) by v|Ω1
and the first equation in (1b) by v|Ω2

and integrate respectively over Ω1 and Ω2. After an
integration by part, we obtain

µ1

∫
Ω1

∇u1 · ∇v|Ω1
−
∫

Γ

(µ1∇u1 · n1)v + µ2

∫
Ω2

∇u2 · ∇v|Ω2
−
∫

Γ

(µ2∇u2 · n2)v =

∫
Ω1

f1v|Ω1
+

∫
Ω2

f2v|Ω2
,∀v ∈ D(Ω).

Using the second transmission condition in (1c) i.e., that µ1∇u1 · n1 = −µ2∇u2 · n2 on Γ, it follows that

µ1

∫
Ω1

∇u1 · ∇v|Ω1
+ µ2

∫
Ω2

∇u2 · ∇v|Ω2
=

∫
Ω1

f1v|Ω1
+

∫
Ω2

f2v|Ω2
, ∀v ∈ D(Ω).

Then, introducing the space
V = {(v1, v2) ∈ V1 × V2; v1|Γ = v2|Γ},

we can define the weak formulation of problem (1): find (u1, u2) in V such that,

µ1

∫
Ω1

∇u1 · ∇v1 + µ2

∫
Ω2

∇u2 · ∇v2 =

∫
Ω1

f1v1 +

∫
Ω2

f2v2, ∀(v1, v2) ∈ V. (2)

Problem (2) is well-posed, since f1 ∈ L2(Ω1) and f2 ∈ L2(Ω2), according to the Lax-Milgram theorem. Furthermore, the
unique solution of problem (2) will be denoted by (u1, u2).

At this point, we can precise in what sense the solution of (2) is also solution of the initial problem (1). Taking test
functions v1 in D(Ω1) and v2 in D(Ω2) in (2) gives that

−µ1∆ū1 = f1 and − µ2∆ū2 = f2 in L2.

It also implies that ∇ū1 belongs to Hdiv(Ω1) and that ∇ū2 belongs to Hdiv(Ω2), where Hdiv(Ω1) and Hdiv(Ω2) are the
spaces defined by

Hdiv(X) =
{
σ ∈ (L2(X))n; div(v) ∈ L2(X)

}
,

and where X stands for either Ω1 or Ω2. In particular, we are able to give a weak sense to the normal derivatives of ū1

and ū2. Let X stand for either Ω1 or Ω2 and let η be the unit exterior normal vector of X. Let Λ = H
1/2
00 (Γ) be the

image of H1
∂X\Γ(X) by the trace operator on the interface Γ, i.e. the space of functions in H1/2(Γ) whose extension by

zero on ∂X \ Γ belongs to H1/2(∂X). Then, For all σ in Hdiv(X), we have the following Stokes formula:∫
X

σ · ∇v +

∫
X

div(σ)v = 〈γη(σ), v〉Λ′,Λ , ∀v ∈ H
1
∂X\Γ(X), (3)

where Λ′ = (H
1/2
00 (Γ))′ is the dual space of Λ and γη denotes the normal trace operator on Γ. Then, ū1 verifies the

equality −µ1∆ū1 = f1 a.e. in Ω1, ū2 verifies −µ2∆ū2 = f2 a.e. in Ω2, the first transmission condition, ū1 = ū2 on Γ, is
included in the functional space V and the second one is verified in a weak sense:

〈µ1γn1
(∇ū1), v〉Λ′,Λ = −〈µ2γn2

(∇ū2), v〉Λ′,Λ , ∀v ∈ Λ. (4)

Now, we present the smooth extension method applied to problem (1). This method consists in i) extending the
problem in Ω1 into a problem defined in the whole domain Ω, ii) relaxing the constraint in the functional space V and
iii) finding a control term in Ω2 to enforce the condition of equality on Γ. We denote by g this control term, which
should belong to V ′2 , and we define gΩ, the extension of g in the whole domain Ω such that〈

gΩ, v
〉
H−1(Ω),H1

0 (Ω)
=
〈
g, v|Ω2

〉
V ′2 ,V2

,∀v ∈ H1
0 (Ω).

In a similar way, as f1 belongs to L2(Ω1), f1
Ω

denotes the extension of f1 by 0 over the whole space Ω.
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Formally, we define the smooth extension problem associated to problem (1) as the problem of finding a suitable
control g in V ′2 , such that the solution of the following problem,

find u1 : Ω→ R and u2 : Ω2 → R such that

−µ1∆u1 = f1
Ω

+ gΩ in Ω,

u1 = 0 on ∂Ω,

−µ2∆u2 = f2 in Ω2,

u2 = 0 on Γ2,

µ2∇u2 · n2 = −µ1∇u1 · n1 on Γ,

(5a)

(5b)

verifies the transmission condition
u1 = u2 on Γ.

In fact, we will show that if the solution of (5a) and (5b) verifies the continuity condition on Γ, then the couple (u1|Ω1
, u2)

is solution of the initial transmission problem (1), i.e.

(u1|Ω1
, u2) = (u1, u2).

There are numerous reasons to consider this problem instead of the initial transmission problem for the numerical
resolution. Subproblems (5a) and (5b) are defined on two independent domains, thus two independent meshes can be
constructed to approximate their solutions. Moreover, if the domain Ω has a simple geometry, the use of a Cartesian mesh
and a fast solver can drastically fasten the numerical resolution of problem (5a). Since the constraint in the function
space V has been relaxed, problems (5a) and (5b) can be subsequently solved using standard finite element solvers.
Finally, both finite element problems will converge with optimal rates in space, using P1 finite elements, if the control g
is regular enough.

We now write problem (5) in variational formulation. let v be in D(Ω), suppose that u1 and u2 are sufficiently
regular and let us assume for the moment that g belongs to L2(Ω2) in order to do formal computations. We multiply
equation (5a) by v and equation (5b) by v|Ω2

and integrate respectively over Ω and Ω2. After an integration by part and
using the Neumann condition on Γ, we find

µ1

∫
Ω

∇u1 · ∇v =

∫
Ω1

f1v|Ω1
+

∫
Ω2

gv|Ω2
,

µ2

∫
Ω2

∇u2 · ∇v|Ω2
=

∫
Ω2

f2v|Ω2
−
∫

Γ

(µ1∇u1 · n1)v.

Furthermore, we remark that

−
∫

Γ

(µ1∇u1 · n1)v = µ1

∫
Ω2

∆u1|Ω2
v|Ω2

+ µ1

∫
Ω2

∇u1|Ω2
· ∇v|Ω2

,

= −
∫

Ω2

gv|Ω2
+ µ1

∫
Ω2

∇u1|Ω2
· ∇v|Ω2

.

Thus, we define the weak formulation of the smooth extension problem associated to problem (2), that makes sense for g
in V ′2 , as the problem of finding a suitable control g in V ′2 , such that the solution of the following problem,

find (u1, u2) in H1
0 (Ω)× V2 such that

µ1

∫
Ω

∇u1 · ∇v1 =

∫
Ω1

f1v1|Ω1
+
〈
g, v1|Ω2

〉
V ′2 ,V2

, ∀v1 ∈ H1
0 (Ω),

µ2

∫
Ω2

∇u2 · ∇v2 =

∫
Ω2

f2, v2 − 〈g, v2〉V ′2 ,V2
+ µ1

∫
Ω2

∇u1|Ω2
· ∇v2, ∀v2 ∈ V2.

(6)

verifies the transmission condition
u1 = u2, in Λ. (7)

By standard arguments and considering the regularity of f1 and f2, it is straightforward to prove that problem (6) is
well-posed for every g in V ′2 , using the Lax-Milgram theorem. Consequently, we denote by (ug1, u

g
2) its unique solution.

In what follows, we will prove the existence of at least one control g and detail the process of finding it. With these
notations we state the following theorem, showing the existence of a control g for which the couple (ug1, u

g
2), the unique

solution of (6), verifies condition (7).

Theorem 2.1. Let Ω be a domain that satisfies Assumption (H1). Consider f1 in L2(Ω1), f2 in L2(Ω2) and let (u1, u2)
be the unique solution of problem (2). Then, there exists a function g in V ′2 such that the solution (ug1, u

g
2) of problem (6)

verifies (7).
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Proof. We can construct an extension operator E that extend u1 into the whole space H1
0 (Ω). Indeed, consider the

operator defined by

Eu1 =

{
u1 in Ω1

u2 in Ω2
.

Since (u1, u2) belongs to V, Eu1 is an extension of u1 which belongs to H1
0 (Ω). Furthermore, ∆(Eū1) belongs to L2(Ω).

Then, we construct g in V ′2 such that

〈g, v〉V ′2 ,V2
= µ1

∫
Ω2

∇(Eu1)|Ω2
· ∇v + 〈µ1γn1(∇Eū1), v〉Λ′,Λ ,

= −µ1

∫
Ω2

∆(Eu1)|Ω2
v + 〈µ1γn2(∇Eū1), v〉Λ′,Λ + 〈µ1γn1(∇Eū1), v〉Λ′,Λ , ∀v ∈ V2.

(8)

Using the Stokes formula (3), it follows that the extension Eū1 in H1
0 (Ω) verifies

µ1

∫
Ω

∇(Eū1) · ∇v1 = µ1

∫
Ω1

∇ū1 · ∇v1|Ω1
+ µ1

∫
Ω2

∇(Eū1)|Ω2
· ∇v1|Ω2

,

= −µ1

∫
Ω1

∆ū1v1|Ω1
+
〈
µ1γn1

(∇Eū1), v1|Ω2

〉
Λ′,Λ

+ µ1

∫
Ω2

∇(Eū1)|Ω2
· ∇v1|Ω2

,

=

∫
Ω1

f1v1|Ω1
+
〈
g, v1|Ω2

〉
V ′2 ,V2

, ∀v1 ∈ H1
0 (Ω).

Similarly, the function ū2 in V2 verifies, using (3) and (4),

µ2

∫
Ω2

∇ū2 · ∇v2 = −µ2

∫
Ω2

∆ū2v2 + 〈µ2γn2(∇ū2), v2〉Λ′,Λ

=

∫
Ω2

f2v2 − 〈µ1γn1
(∇ū1), v2〉Λ′,Λ ,

=

∫
Ω2

f2v2 + µ1

∫
Ω2

∇(Eū1)|Ω2
· ∇v2 − 〈g, v2〉V ′2 ,V2

, ∀v2 ∈ V2.

Finally, we can conclude that the couple (Eu1, u2) is the solution of problem (6). Thus

(ug1, u
g
2) = (Eu1, u2)

and by construction of the operator E, the condition (7) is verified since (ug1|Ω1
, ug2) = (u1, u2).

Remark 1. The control g is not unique. In fact, the extension operator E constructed in the preceding proof can be
defined in different ways, leading to the construction of a different control g from an other extension of u1.

Remark 2. If u1 is of regularity H2(Ω1) and if Eu1 is an extension which preserves this regularity on the whole domain Ω,
then the following weak transmission condition holds:

〈µ1γn2
(∇Eū1), v〉Λ′,Λ = −〈µ1γn1

(∇Eū1), v〉Λ′,Λ .

Because ∆(Eu1)|Ω2
belongs to L2(Ω2), we see from the definition of g in (8) that g belongs to L2(Ω2) and can be

identified to −µ1∆(Eu1)|Ω2
. Thus, the numerical approximation of the solution of the smooth extension problem (6)

will converge in space with optimal rates of convergence, using P1 finite elements, whereas the numerical approximation
of the solution of the transmission problem (2) will not in the general case. In Subsection 2.3, we will show that such a
regular extension can constructed with rather weak assumptions on the regularity of the domains.

Remark 3. The hypothesis that Γ1 and Γ2 should not be empty could also be weakened. For example, the case where Ω2

is strictly included in Ω1 is particularly interesting to study, since a regular extension of ug1 is directly obtained with
Stein’s extension Theorem ([AF03, Theorem 5.24]). In this situation, the main difficulty is that ug2 is not unique in V2.
However, it can be searched such that it has a zero mean value and the solution of the initial transmission problem can
be recovered from the solution of the smooth extension problem.

2.2 Formulation as an optimization problem

We saw in the previous subsection that a suitable control g can be obtained by extending u1 in the whole domain. However,
the control g can not be constructed in such a direct manner, since the solution (u1, u2) of the initial problem (2) is
unknown. The main idea is to write the problem of finding a control g such that the solution (ug1, u

g
2) of the problem (6)

verifies the condition (7) as a constrained minimization problem. To that matter, we rewrite the transmission condition
(7) in a least-squares formulation and introduce the following cost function, defined on V ′2 as follows,

J(g) =
1

2

∫
Γ

|ug1 − u
g
2|2, (9)

where (ug1, u
g
2) is the unique solution of problem (6). Note that in the regular case (see Remark 2), J must be minimized

in L2(Ω2) in order to get both solutions ug1 and ug2 of regularity H2, since less regular optimal controls exist a priori
in V ′2 \L2(Ω2). A first link between the minimization of J and the research of a good control g is given by the following
theorem.
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Theorem 2.2. Let g be in V ′2 be such that the solution (ug1, u
g
2) of (6) satisfies condition (7). Then, g is a minimizer

of J .

Proof. Let g be such a control, which exists according to Theorem 2.1. We know that the couple (ug1|Ω1
, ug2) is the unique

solution of the weak initial problem (2). In particular, this couple satisfies the constraint of continuity through the
interface Γ, which writes ug1|Γ = ug2|Γ and implies that J(g) = 0, so that g is in fact a minimizer of J .

Remark 4. At the end of this section, we will prove the reciprocal statement of Theorem 2.2: for every minimizer g
of J , (ug1, u

g
2) verifies the condition (7). In other words, finding a minimizer of J enables to obtain the solution of the

transmission problem (1).

The problem we face now is the minimization of the quadratic cost function J . To do that, classical methods such
as gradient methods or quasi-Newton methods are well suited but they require the computation of the gradient of the
cost function with respect to the control g. For that purpose, we will use the adjoint approach (see [Cha10]), a suitable
method to compute the gradient of a cost function which depends on the solution of a system of differential equations.
The idea is the following: knowing that, for any g in V ′2 , J(g) is obtained by solving problem (6) and computing the
explicit formula 1

2

∫
Γ
|ug1 − u

g
2|2, we will prove that we can also compute the gradient ∇J(g) with an explicit formula,

which depends on the resolution of a system of linear partial differential equations, called the adjoint equations. The key
here is to remark that the minimization of J(g) can be seen as the minimization of the real-valued function

H1
0 (Ω)× V2 → R+

(v1, v2) 7→ 1

2

∫
Γ

|v1|Γ − v2|Γ |
2,

under the constraint that (v1, v2) is solution of (6). Thus, it is indicated to introduce the Lagrangian function associated
to this constrained optimization problem, defined from

V ′2 × (H1
0 (Ω)× V2)× (H1

0 (Ω)× V2)

to R by

L(g, (vs, v2), (λ1, λ2)) =
1

2
‖v1 − v2‖2L2(Γ) + µ1

∫
Ω

∇v1 · ∇λ1 − µ1

∫
Ω2

∇v1|Ω2
· ∇λ2 + µ2

∫
Ω2

∇v2 · ∇λ2

−
∫

Ω1

f1λ1|Ω1
−
∫

Ω2

f2λ2 −
〈
g, λ1|Ω2

〉
V ′2 ,V2

+ 〈g, λ2〉V ′2 ,V2
,

(10)

where the Lagrangian multipliers λ1 and λ2 are called the adjoint variables of v1 and v2, associated to the state equations
(5a) and (5b). We also introduce the so-called adjoint equations, defined for all g in V ′2 by〈

∂L
∂v1

(g, (ug1, u
g
2), (λ1, λ2)), δv1

〉
H−1(Ω),H1

0 (Ω)

= 0, ∀δv1 ∈ H1
0 (Ω),〈

∂L
∂v2

(g, (ug1, u
g
2), (λ1, λ2)), δv2

〉
V ′2 ,V2

= 0, ∀δv2 ∈ V2,
(11)

where (ug1, u
g
2) is the solution of problem (6). The computation of the differential forms ∂L

∂v1
and ∂L

∂v2
will be detailed later

on.

Remark 5. The Lagrangian L is differentiable with respect to v1 and v2 because all its terms are quadratic or linear with
respect to each of them. Thus, equations (11) are well defined.

With all these notations, we state the following theorem adapted from [Cha10], where the use of the Lagrangian
function L is made clear in providing a convenient way to compute the gradient of J .

Theorem 2.3. The mapping g ∈ V ′2 7→ J(g) ∈ R is differentiable and its gradient ∇J(g) ∈ V ′′2 is given, by

〈∇J(g), δg〉V ′′2 ,V ′2 =
〈
δg, λg2 − λ

g
1|Ω2

〉
V ′2 ,V2

, ∀δg ∈ V ′2 , (12)

where (λg1, λ
g
2) verifies the adjoint equations (11).

To prove this result, we first need to prove the following lemma.

Lemma 2.1. There exists a unique (λg1, λ
g
2) in H1

0 (Ω)× V2, solution of the adjoint equations (11).

Proof. We start by computing the partial derivatives of L with respect to v1 and v2. Let ε > 0. For all g ∈ V ′2 , and for
all (v1, v2), (δv1, δv2) and (λ1, λ2) in H1

0 (Ω)× V2,

L(g, (v1 + εδv1, v2), (λ1, λ2)) = L(g, (v1, v2), (λ1, λ2)) + εµ1

∫
Ω

∇(δv1) · ∇λ1 − εµ1

∫
Ω2

∇(δv1|Ω2
) · ∇λ2

+ε

∫
Γ

(v1 − v2)δv1 +
ε2

2
‖δv1‖2L2(Γ).

6



It leads to define ∂L
∂v1

(g, (v1, v2), (λ1, λ2)) ∈ H−1(Ω) as:〈
∂L
∂v1

(g, (v1, v2), (λ1, λ2)), δv1

〉
H−1(Ω),H1

0 (Ω)

= µ1

∫
Ω

∇(δv1) · ∇λ1 − µ1

∫
Ω2

∇(δv1|Ω2
) · ∇λ2

+

∫
Γ

(v1 − v2)δv1, ∀δv1 ∈ H1
0 (Ω).

Similarly, we define the derivative of the Lagrangian function L with respect to v2 evaluated at point δv2, denoted by

∂L
∂v2

(g, (v1, v2), (λ1, λ2))

and which belongs to V ′2 :〈
∂L
∂v2

(g, (v1, v2), (λ1, λ2)), δv2

〉
V ′2 ,V2

= µ2

∫
Ω2

∇(δv2) · ∇λ2 −
∫

Γ

(v1 − v2)δv2, ∀δv2 ∈ V2.

Then, we can deduce the adjoint problem:
find (λ1, λ2) in H1

0 (Ω)× V2 such that,

µ1

∫
Ω

∇λ1 · ∇v1 = µ1

∫
Ω2

∇λ2 · ∇v1|Ω2
−
∫

Γ

(ug1 − u
g
2)v1, ∀v1 ∈ H1

0 (Ω),

µ2

∫
Ω2

∇λ2 · ∇v2 =

∫
Γ

(ug1 − u
g
2)v2, ∀v2 ∈ V2.

(13)

Finally, we use the Lax-Milgram Theorem to show that problem (13) admits a unique solution (λg1, λ
g
2).

We now have all the tools we need to prove Theorem 2.3.

Proof of Theorem 2.3. The solution (ug1, u
g
2) of problem (6) is unique for every control g in V ′2 . Thus, we can define the

so called direct mapping
φ : V ′2 → H1

0 (Ω)× V2,
g 7→ (φ1(g), φ2(g)) = (ug1, u

g
2).

(14)

Because of the linearity of the equations in (6), the mapping φ is linear, thus differentiable in V ′2 . Similarly, the mapping
which for every (u1, u2) in H1

0 (Ω)×V2 associates the quadratic functional
∫

Γ
|u1 − u2|2 is differentiable. By composition,

it follows that the mapping g 7→ J(g) is differentiable in V ′2 .
Taking (v1, v2) = (ug1, u

g
2) the Lagrangian (10) reduces to

L(g, (ug1, u
g
2), (λ1, λ2)) = J(g), ∀g ∈ V ′2 , ∀(λ1, λ2) ∈ H1

0 (Ω)× V2.

Then, we differentiate this previous equality with respect to g for a fixed couple (λ1, λ2) and we obtain, using the chain
rule, the following equation:

〈∇J(g), δg〉V ′′2 ,V ′2 =

〈
∂L
∂g

(g, (ug1, u
g
2), (λ1, λ2)), δg

〉
V ′′2 ,V2

+

〈
∂L
∂v1

(g, (ug1, u
g
2), (λ1, λ2)),

∂φ1

∂g
(g) · δg

〉
H−1(Ω),H1

0 (Ω)

+

〈
∂L
∂v2

(g, (ug1, u
g
2), (λ1, λ2)),

∂φ2

∂g
(g) · δg

〉
V ′2 ,V2

,

for all δg ∈ V ′2 . Considering (λ1, λ2) = (λg1, λ
g
2), the solution of the adjoint equations (13) (see Lemma 2.1), this reduces

to

< ∇J(g), δg >V ′′2 ,V ′2 =

〈
∂L
∂g

(g, (ug1, u
g
2), (λg1, λ

g
2)), δg

〉
V ′′2 ,V

′
2

, ∀δg ∈ V ′2 .

It remains to compute the derivative of L with respect to g at point δg: let ε > 0, for all g and δg in V ′2 , and for
all (v1, v2) and (λ1, λ2) in H1

0 (Ω)× V2,

L(g + εδg, (v1, v2), (λ1, λ2)) = L(g, (v1, v2), (λ1, λ2))− ε
〈
δg, λ1|Ω2

〉
V ′2 ,V2

+ ε 〈δg, λ2〉V ′2 ,V2
,

which leads to the definition of ∂L
∂g (g, (v1, v2), (λ1, λ2)) ∈ V ′′2 as:〈

∂L
∂g

(g, (v1, v2), (λ1, λ2)), δg

〉
V ′′2 ,V

′
2

=
〈
δg, λ2 − λ1|Ω2

〉
V ′2 ,V2

, ∀δg ∈ V ′2 .

Finally, we obtain an explicit expression for the gradient of J , which writes

< ∇J(g), δg >V ′′2 ,V ′2 =
〈
δg, λg2 − λ

g
1|Ω2

,
〉
V ′2 ,V2

, ∀δg ∈ V ′2 .
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Now that we have an explicit expression for ∇J , we can prove the reciprocal statement of Theorem 2.2.

Theorem 2.4. Let g be a minimizer of J in V ′2 . Then, the solution (ug1, u
g
2) of (6) satisfies condition (7).

Proof. As a minimizer of J , g verifies the equality < ∇J(g), δg >V ′′2 ,V ′2 = 0, for all δg in V ′2 . According to Theorem 2.3,
it follows that the couple (λg1, λ

g
2) verifies〈

δg, λg2 − λ
g
1|Ω2

〉
V ′2 ,V2

= 0, ∀δg ∈ V ′2 .

It comes that λg1|Ω2
= λg2 in V2 and the couple (λg1|Ω1

, λg2) belongs to the space V. Yet, the couple (λg1, λ
g
2) is solution of

problem (13). In particular, for all (v1, v2) in the space Ṽ defined by

Ṽ = {(v1, v2) ∈ H1
0 (Ω)× V2; v1|Ω1

= v2},

the two equations in (13) write

µ1

∫
Ω

∇λg1 · ∇v1 = µ1

∫
Ω2

∇λg2 · ∇v1|Ω2
−
∫

Γ

(ug1 − u
g
2)v1,

µ2

∫
Ω2

∇λg2 · ∇v2 =

∫
Γ

(ug1 − u
g
2)v1.

(15)

Summing the two equations in (15) and using the fact that λg1|Ω2
= λg2, we find that

µ1

∫
Ω1

∇λg1|Ω1
· ∇v1|Ω1

+ µ2

∫
Ω2

∇λg2 · ∇v2 = 0, ∀(v1, v2) ∈ Ṽ.

Moreover, let (v1, v2) be in V. We can construct an extension of v1 in the whole space H1
0 (Ω) using v2, as in the proof

of Theorem 2.1 and we still denote Ev1 this extension. Then, the couple (Ev1, v2) belongs to Ṽ and it follows that the
couple (λg1|Ω1

, λg2) verifies the equation

µ1

∫
Ω1

∇λg1|Ω1
· ∇v1 + µ2

∫
Ω2

∇λg2 · ∇v2 = 0, ∀(v1, v2) ∈ V.

We conclude that the couple (λg1|Ω1
, λg2) is solution of a weak problem similar to (2) but with no external force and, thus,

is the zero of V. Especially, this implies that λg2 = 0 and, according to the second equation of (15), that∫
Γ

(ug1 − u
g
2)v2 = 0, ∀v2 ∈ V2.

Because ug1|Γ and ug2|Γ belong to the space Λ the previous equality implies that ug1|Γ = ug2|Γ in Λ, so that the cou-

ple (ug1|Ω1
, ug2) belongs to the space V. As the unique solution of problem (6), the pair (ug1, u

g
2) verifies, in particular, for

all (v1, v2) in Ṽ,

µ1

∫
Ω

∇ug1 · ∇v1 =

∫
Ω1

f1v1|Ω1
+ 〈g, v2〉V ′2 ,V2

,

µ2

∫
Ω2

∇ug2 · ∇v2 =

∫
Ω2

f2v2 − 〈g, v2〉V ′2 ,V2
+ µ1

∫
Ω2

∇ug1 · ∇v1|Ω2
.

(16)

Summing the two equations in (16) it follows that the pair (ug1|Ω1
, ug2), which belongs to V, verifies the equation

µ1

∫
Ω1

∇ug1|Ω1
· ∇v1|Ω1

+ µ2

∫
Ω2

∇ug2 · ∇v2 =

∫
Ω1

f1v1|Ω1
+

∫
Ω2

f2v2, ∀(v1, v2) ∈ Ṽ.

As before, for all (v1, v2) in V, the couple (Ev1, v2) belongs to Ṽ and, finally, the couple (ug1|Ω1
, ug2) verifies the equation

µ1

∫
Ω1

∇ug1|Ω1
· ∇v1 + µ2

∫
Ω2

∇ug2 · ∇v2 =

∫
Ω1

f1v1 +

∫
Ω2

f2v2, ∀(v1, v2) ∈ V.

Thus, (ug1|Ω1
, ug2) is the unique solution to the initial coupled problem (2) and verifies, a fortiori, condition (7).

The minimization of the function J in V ′2 is therefore equivalent to the resolution of the problem of finding a suitable
control g such that the solution (ug1, u

g
2) verifies (7) and thus, to the resolution of the initial coupled problem (2).

Remark 6. Theorem 2.4 also shows that all extrema of J correspond to global minimizers. Actually, in Theorem 2.4, it
is enough to assume that g verifies < ∇J(g), δg >V ′′2 ,V ′2 = 0, i.e. that J(g) is a local extremum of J , to conclude that the
solution (ug1, u

g
2) of (6) verifies the condition (7). According to Theorem 2.2, this implies that g is a global minimizer of

J .
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2.3 On convergence rates for the numerical method

The main difficulty with the numerical simulation of transmission problems on unfitted meshes, is to recover the optimal
rate of convergence when the solution is more regular in each subdomain. Actually, even if f1 belongs to L2(Ω1), f2

to L2(Ω2) and the boundaries of Ω1 and Ω2 are smooth, the solution of problem (2) is not of regularity H2 in the whole
domain Ω, because of the jump in its gradient across the interface Γ. As a consequence, the standard finite element
method with P1 elements does not enable to recover the optimal rates of convergence in L2 and H1-norms, unless we
use a conformal mesh that fully represents the interface Γ. Nevertheless, with such a regularity on the data and the
boundaries, one can show that the solution of problem (2) is partially of regularity H2, in the following sense: u1 belongs
to H2(Ω1)∩ V1 and u2 to H2(Ω2)∩ V2 (see [CDN10, Theorem 5.2.1]). Thus, if we can extend u1 in the whole domain Ω
with regularity H2, we know (see Remark 2) that there exists a suitable control g in L2(Ω2) such that the solution of
the smooth extension problem (6) is also of regularity H2: ug1 belongs to H2(Ω)∩H1

0 (Ω) and ug2 belongs to H2(Ω2)∩V2.
A first order finite element method will therefore converge with optimal rates.

In the following theorem, we state that such a regular extension exists under rather weak assumptions on the regularity
of the domains.

Theorem 2.5. Let Ω ∈ Rn, with n ∈ {2, 3}, be a bounded open set with Lipschitz boundary ∂Ω, and let Γ be an
interface that divides Ω into two bounded open connected subdomains Ω1 and Ω2 with Lipschitz boundaries. Consider a
function u1 in H2(Ω1) ∩ V1. Moreover, if n = 3, we assume that Γ ∩ ∂Ω is a curve of regularity C2. If Γ and ∂Ω have
at least C2-regularity in a neighborhood of each element of Γ∩ ∂Ω (a curve in three space dimensions and a point in two
space dimensions), then there exists a regular extension u ∈ H2(Ω) ∩H1

0 (Ω) such that u = u1 in Ω1.

Remark 7. The case where ∂Ω2 = Γ is particularly easy to study since the construction of a regular extension is directly
given by Stein’s theorem ([AF03, Theorem 5.24]).Thus we will only consider the case where ∂Ω1 ∩ ∂Ω and ∂Ω2 ∩ ∂Ω are
both non empty in the following proof.

Proof. Suppose that ∂Ω1 ∩ ∂Ω and ∂Ω2 ∩ ∂Ω are both non empty. For the sake of simplicity, we consider the two-
dimensional case, i.e. Ω ⊂ R2, but the extension to the three-dimensional case can be performed in a similar manner.
In two space dimension, the interface Γ intersects the boundary ∂Ω in two points that we denote by x1 and x2, i.e.
Γ ∩ ∂Ω = {x1, x2}.

For i ∈ {1, 2}, let us denote by Bi = B(xi, εi) the open ball of radius εi and center xi. Moreover, we consider two
open balls B+

i = B(xi, εi + εi/4) and B−i = B(xi, εi − εi/4), such that B−i ⊂ Bi ⊂ B+
i . Furthermore, we should ensure

that, for i ∈ {1, 2}, εi is small enough such that Γ∩B+
i and ∂Ω∩B+

i are included in the neighborhood of xi where both
frontiers Γ and ∂Ω have C2-regularity. A quite general example of such a configuration is illustrated in Figure 1.

Let ϕ ∈ C∞(R+) be a real-valued function satisfying

ϕ(x) =

{
1 if x < 3/4,
0 if x > 1.

We define, for i ∈ {1, 2}, the functions

ϕi : Ω1 → [0, 1], ξi : Ω1 → R

x 7→ ϕ

(
|x− xi|

ε

)
x 7→ u1(x)ϕi(x).

Thus, we can write the following decomposition for the function u1 on Ω1:

u1 = u1ϕ1 + u1ϕ2 + u1(1− ϕ1 − ϕ2) = ξ1 + ξ2 + ξ0,

where ξ0 = u1(1 − ϕ1 − ϕ2). The problem to construct a regular extension for u1 is equivalent to extend the three
functions ξ0, ξ1 and ξ2 to the whole domain Ω. Moreover, let us remark that we have

ξi(x) =

{
u1(x), ∀x ∈ B−i ∩ Ω1, ∀i ∈ {0, 1},

0, ∀x ∈ Ω1 \ (Bi ∩ Ω1), ∀i ∈ {0, 1},

and

ξ0(x) =

{
0, ∀x ∈ B−i ∩ Ω1, ∀i ∈ {0, 1},

u1(x), ∀x ∈ Ω1 \ (Bi ∩ Ω1), ∀i ∈ {0, 1}.

We begin with the function ξ0. For that matter, we make use of Stein’s theorem ([AF03, Theorem 5.24]), which
states that, for any bounded Lipschitz domain O ⊂ Rn, there exists a total extension operator, i.e. an extension operator
from Hm(O) into the whole space Hm(Rn), for all m ≥ 0. Then, Ω1 being a bounded Lipschitz domain, there exists an
extension operator from H2(Ω1) into the whole space H2(R2). We denote by Eξ0 the restriction to Ω of such a regular
extension of ξ0 to R2. This extension is regular enough but it is not zero on the boundary ∂Ω ∩ ∂Ω2. Therefore, we
introduce a compact set V such that (∂Ω ∩ ∂Ω2) ⊂ V and V ∩ Ω1 = ∅, and an open neighborhood of V, denoted by U,
such that (U ∩ Ω1) ⊂ (B−1 ∪ B

−
2 ). We also define a smooth cut-off function ψ : x ∈ Ω→ ψ(x) such that ψ(x) = 0 in V,

and ψ(x) = 1 in Ω \ U. Then, the function ξ̃0 = ψEξ0 is an extension of ξ0 to the whole domain Ω of regularity H2,
which satisfies ξ̃0 = 0 on ∂Ω. The construction of ξ̃0 is represented in Figure 1.
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Ω

Ω1
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B−1
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B+
1

B−2
B2
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·x1

·x2

0

u1

0u1

Figure 1: Construction of the function ξ0 and its regular extension, ξ̃0.

Let us now proceed with the construction of a smooth extension of ξi, for i ∈ {1, 2}. First, since ξi = 0 in Ω1\(Bi∩Ω1),
we can extend it by 0 in Ω2\(B+

i ∩Ω2). Then, it remains to construct the extension in B+
i ∩ Ω2. Due to the C2-regularity

of the interface Γ and the boundary ∂Ω inside the balls B+
1 and B+

2 (if ε1 and ε2 are chosen small enough), there exist
two C2-diffeomorphisms χ1 and χ2 that map B+

1 and B+
2 respectively into the open unit square Q, and such that

χi(xi) = 0, ∀i ∈ {1, 2},
χi(Γ ∩B+

i ) = {0} ×
]
0, 1

2

[
, ∀i ∈ {1, 2},

χi(∂Ω ∩B+
i ) =

]
− 1

2 ,
1
2

[
× {0}, ∀i ∈ {1, 2}.

For i ∈ {1, 2}, we define ξ̂i = ξi ◦ χ−1
i in

χi(B
+
i ∩ Ω1) =

]
−1

2
, 0

[
×
]
0,

1

2

[
,

which belongs to H2(χi(B
+
i ∩ Ω1)) (see [AF03, Theorem 3.41]) and, recalling that ξi = 0 in (B+

i \ Bi) ∩ Ω1, it follows

that ξ̂i = 0 in χi((B
+
i \Bi) ∩ Ω1). Then, a regular extension of ξ̂i to the whole square Q can be obtained using Babič’s

extension (see [Bab53] or [AF03, Theorem 5.19]), defined for i ∈ {1, 2} by

Eξ̂i(x, y) =

 ξ̂(x, y), if x ≤ 0,

−3ξ̂(−x, y) + 4ξ̂(−x2 , y), if x > 0,
∀(x, y) ∈

]
− 1

2 ,
1
2

[
×
]
0, 1

2

[
.

Clearly, for i ∈ {1, 2}, the extension Eξ̂i and its first derivative are continuous through the interface {0}×]0, 1
2 [, such

that Eξ̂i well defines an extension of ξ̂i in H2(χi(B
+
i ∩ Ω)). However, the extension Eξ̂i is not zero on the exterior

frontier 1
2×]0, 1

2 [, thus we multiply it by a smooth cut-off function that is zero for x > 1/2 − ε and equal to 1 for

x < 1/2 − 2ε, for some ε < 1/4. Let us denote by ξ̄i the product of Eξ̂i by this cut-off function, which belongs
to H2(χi(B

+
i ∩ Ω)) and is zero on χi(∂Ω ∩ B+

i ). Mapping this extension into B+
i we obtain ξ̄i ◦ χi, which then is an

extension of ξi in B+
i ∩ Ω of regularity H2. Now, we can construct the smooth extension of ξi to the whole domain Ω,

denoted ξ̃i and defined by

ξ̃i =


ξi in Ω1,
0 in Ω2 \ (B+

i ∩ Ω2),
ξ̄i ◦ χi in B+

i ∩ Ω.

Thus, for i ∈ {1, 2}, ξ̃i is an extension of ξi which belongs to H2(Ω) and is zero on ∂Ω.
Finally, we define

ũ = ξ̃0 + ξ̃1 + ξ̃2 in Ω

and it follows that ũ belongs to H2(Ω) ∩H1
0 (Ω) and ũ = u1 in Ω1.

Remark 8. The proof of Theorem 2.5 in three dimensions of space follows the same path. We start by considering three
tubular neighborhoods of the intersection Γ ∩ ∂Ω with circular cross sections and decompose the function u1 in two
regular functions ξ0 and ξ1. The function ξ0 is zero inside the smallest neighborhood and is equal to u1 far from the
intersection Γ ∩ ∂Ω, while the function ξ1 is equal to u1 inside the smallest neighborhood and is zero far from Γ ∩ ∂Ω.
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On one hand, the extension of the function ξ0 is done using Stein’s extension theorem. On the other hand, the extension
of the function ξ1 is conducted by transforming the largest tubular neighborhood into the unit torus with square cross
section with a C2-diffeomorphism. Then, Babič’s extension theorem is used in the unit torus and the resulting extension
is brought back to the initial domain. In both cases, the extensions are multiplied by cut-off functions to ensure that
they are zero on the exterior frontier ∂Ω.

In the next section, numerical results will serve as a validation of the method on some particular examples. Indeed,
they show that the method is effective in practice and has optimal convergence rates (i.e. convergence rates obtained
with conformal meshes techniques). However, the numerical analysis of the global numerical method (including the
minimization process) remains to be done.

3 Validation of the method

In Subsection 2.2 we have proved the equivalence between the initial coupled problem and the smooth extension for-
mulation stated as a minimization problem. Based on this result, we detail the numerical procedure used to solve the
smooth extension formulation of the Laplace transmission problem presented above. In particular, in Subsection 3.1, we
explain how to minimise the function J defined in (9) using its gradient. Thereafter, we present in Subsection 3.2 and
Subsection 3.3 some numerical experiments obtained through this process.

3.1 Numerical procedure for the smooth extension method

To solve the smooth extension formulation of problem (2), we consider an optimization problem whose solution allows
to directly recover the solution of the initial transmission problem. In the case of the Laplace transmission problem, it
gives the right control term g for which the solution ug1 of problem (6) is a smooth extension of u1 in the whole domain
Ω. Then, instead of directly finding u1 and u2 by solving a Laplace problem with discontinuous coefficients, one solves
a minimization problem on the control g. As already explained, this formulation is advantageous for the numerical
resolution because it allows the use of non-conformal meshes on Ω. Thus, the smooth extension method is a fictitious
domain method in the sense that the various problems appearing in the numerical resolution process are solved on two
meshes, one for Ω and an other for Ω2 which are not conformal.

An explicit formula is provided for the computation of the gradient of the cost function to minimize (see Theorem 2.3),
which enables to treat the minimization problem with a classical descent method. The general algorithm that we use is
the following: we choose an initial guess g0 for the control term. For each iteration k of the gradient algorithm, we first
solve problem (6) with g = gk and obtain the couple (ugk1 , ugk2 ). Then, we solve the adjoint problem (13) with g = gk to
get the adjoint variables (λgk1 , λgk2 ). The gradient ∇J(gk) is computed using the explicit formula given by Theorem 2.3.
Finally, the control is updated using the chosen optimization algorithm. The general formula for the update can be
written

gk+1 = gk − ρk∇J(gk),

where ρk is either a real positive parameter or a matrix, depending on the chosen optimization algorithm. This process
is summarized in the Algorithm 1.

Algorithm 1 Implementation of the smooth extension method

Choose an initial guess g0 for the control term.
k = 0.
while exit criteria are not satisfied do

Compute the solution (ugk1 , ugk2 ) of problem (6) with g = gk.
Compute the solution (λgk1 , λgk2 ) of the adjoint problem (13) with g = gk.
Compute the gradient ∇J(gk) = λgk2 − λ

gk
1|Ω2

.

Update the control gk+1 = gk − ρk∇J(gk), with ρk depending on the chosen gradient method.
Update the number of iterations k = k + 1.

end while

In practice, the exit criteria for a descent method usually concern the norm of the difference between two successive
solutions ‖gk+1 − gk‖ divided by the update coefficient ρk. The choice of the initial guess g0 is of minor importance for
the convergence of the algorithm since, as we explained in Remark 6, every extremum of the cost function J corresponds
to one of its minimizers.

3.2 Test case 1: the transmission Laplace problem in the unit square

Let Ω be the unit square of R2, divided in two pieces by a vertical segment which represents the interface Γ (see Figure 2).
We denote by xΓ the position of this interface on the x-axis. We aim to apply the smooth extension method to the
Laplace transmission problem (1) with homogeneous Dirichlet boundary conditions, studied in Subsection 2.1. Because
the interface Γ meets the boundary ∂Ω with a right-angled corner and because f1 and f2 are constants, the solution

11



Γ1 Γ2Γ

(xΓ, 0)

Ω1 Ω2

Figure 2: Two dimensional representation of the geometry for the Laplace transmission problems (1).

of (1), denoted by u, is partially of regularity H2, i.e. u|Ω1
belongs to H2(Ω1) and u|Ω2

belongs to H2(Ω2). Moreover,
the test case lies in the scope of Theorem 2.5, such that there exists a regular extension of u|Ω1

in the whole domain Ω.
Thus, all conditions are satisfied so that the smooth extension method applied to this problem converges with optimal
rates.

The numerical values of all parameters are µ1 = 1, µ2 = 10, f1 = 1, f2 = 1 and xΓ = 0.57. An approximation of the
solution u of (1), obtained with the classical finite element method, is represented in Figure 3. Because of the jump of its
gradient through Γ, the entire field u does not belong to H2(Ω). As a consequence, the use of the classical finite element
method to approach the solution of (1) leads to different rates of convergence when refining the space discretization,
whether the mesh of the domain fits the interface Γ or not. Indeed, in Figure 4 we can observe that if the mesh fits the
interface Γ, the rates of convergence are of order 2 for the L2-norm and of order 1 for the H1

0 -norm, using P1 elements.
These are the classical rates of convergence with P1 elements for a H2 solution of a Laplace problem, which is not the
case here. Then, this result is only due to the fact that the interface Γ is well represented by the mesh. On the other
hand, if the mesh does not fit the interface, we recover degraded rates of convergence: here we find a rate of order 1
in L2-norm and 0.5 in H1

0 -norm.
For the numerical resolution with the smooth extension method, we follow Algorithm 1. In particular, we choose

the initial guess g0 to be zero and use a classical gradient descent with constant parameter ρ to minimize J . The value
of ρ is chosen such that the gradient method convergences and can be different depending on the mesh size. We use
unstructured meshes for both Ω and Ω2, such that the interface Γ is not represented by the mesh on Ω. At each iteration
of the method, we solve 4 second-order boundary problems (the direct and adjoint equations) using P1 elements, whose
solutions enable us to compute the gradient ∇J(gk). Then, we update the control such that,

gk+1 = gk − ρ∇J(gk).

We also compute the residual error,
‖gk+1 − gk‖

ρ
, (17)

and stop the algorithm if it is smaller that a given tolerance ε.
The solution of (1) obtained through the minimization of the function J is represented in Figure 3. It is clear

than ug1|Ω1
and ug2 are approximations of u|Ω1

and u|Ω2
. Moreover, superposing these two solutions, we can observe that

the condition on the equality of ug1 and ug2 on Γ is fulfilled. Refining the mesh, we compute the L2 and H1
0 -errors between

the couple (ug1, u
g
2) and the reference solution obtained with the classical finite element method and using a fine conformal

mesh. We obtain the convergence graph presented in Figure 5 where we observe than optimal rates of convergence are
conserved by the smooth extension method in this case.

3.3 Test case 2: the transmission Laplace problem in a L-shape domain

Let Ω be a L-shape domain of R2 and let Ω2 be a quadrilateral included in Ω (see Figure 6). As before, we apply
the smooth extension method to the Laplace transmission problem with homogeneous Dirichlet boundary condition (1).
Because of the geometry of the problem and especially the presence of a reentrant corner, the solution is not regular
and only belongs to H1

0 (Ω). Thus, there do not exists a H2-extension from Ω1 to the whole domain and the method
will not converge with optimal order. However, the smooth extension method can also be applied in this case and we
will see that it is still better than the finite element method with non-conformal mesh (see Table 1). Considering the set
of parameters µ1 = 1, µ2 = 10, f1 = 1, f2 = 1, (xc, yc) = (0.62, 0.7), x1 = 0.43, x2 = 0.58, (x3, y3) = (0.36, 0.38) and
(x4, y4) = (0.64, 0.49), we obtain the convergence graph represented in Figure 6.

To summarise the results obtained for all test cases that we have studied, the convergence rates are presented in
Table 1. As a result, the smooth extension method applied to the Laplace transmission problem, converges with optimal
rates even with non-conformal meshes when the solution of the Laplace transmission problem is partially of regularity
H2. When the solution is less regular (because of the geometry of the domain or the regularity of the right-hand sides)
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Figure 3: Numerical solution for the Laplace problem (1) with µ1 = 1, µ2 = 10, f1 = 1, f2 = 1 and xΓ = 0.57. We
compare the reference solution u obtained with the standard finite element method on a fine mesh (a) to the one obtained
through the smooth extension method (c). The fields ug1 (b) and ug2 (d) are superposed (c) to show the continuity through
the interface Γ despite the use of non-conformal meshes. For the SEM, the mesh is 16× 16.
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Figure 4: Rates of convergence in space for the finite element method (P1 elements) applied to the resolution of the
Laplace problem (1) with µ1 = 1, µ2 = 10, f1 = 1, f2 = 1 and xΓ = 0.57. The solution with a conformal mesh (a) is
compared to the one with a non-conformal mesh (b)
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Figure 5: Rates of convergence in space for the smooth extension method applied to the resolution of the Laplace
transmission problem with homogeneous boundary conditions (1) , with µ1 = 1, µ2 = 10, f1 = 1, f2 = 2 and xΓ = 0.67.
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Figure 6: Two dimensional representation of the geometry for the Laplace transmission problem (1) in a L-shape
domain (a) and rates of convergence in space for the smooth extension method applied to the resolution of the Laplace
transmission problem (1) in a L-shape domain (b).
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Test case Method Mesh conformity conv. rate in H1
0 -norm conv. rate in L2-norm

1 FEM Conformal 1.06 1.99

1 FEM Non-conformal 0.56 1.22

1 SEM Non-conformal 1.03 (in Ω1) / 1.08 (in Ω2) 1.97 (in Ω1) / 1.99 (in Ω2)

2 FEM Conformal 0.96 1.7

2 FEM Non-conformal 0.76 1.43

2 SEM Non-conformal 0.91 (in Ω1) / 1.18 (in Ω2) 1.68 (in Ω1) / 2.04 (in Ω2)

Table 1: Comparison of the rates of convergence between the finite element method (FEM) with a conformal mesh, the
FEM with a non-conformal mesh and the smooth extension method (SEM) with a non-conformal mesh for different test
cases.

the smooth extension method can also be applied and showed to converge with the same rates than the Finite Element
method with conformal mesh. In the next section we will show that this method can be extended to other kind of coupled
problems and enables to treat the numerical resolution of more general transmission problems with non-conformal meshes.

4 Extension to other coupled problems

In this section we extend the smooth extension method to two other coupled problems: the Stokes transmission problem
in Subsection 4.1 and a fluid-structure interaction problem in Subsection 4.2.

4.1 The Stokes transmission problem

Let n > 0 and Ω be a domain of Rn that satisfies the following set of hypotheses:

i) Domain Ω is a bounded connected Lipschitz domain of Rn.
ii) Domain Ω is divided into two connected Lipschitz

subdomains, Ω1 and Ω2.
iii) The interface Γ = ∂Ω1 ∩ ∂Ω2 is not empty.
iv) The remaining boundaries Γ1 = ∂Ω1 \ Γ and Γ2 = ∂Ω2 \ Γ

are not empty.

(H2)

Consider two real coefficients, µ1 and µ2, and two external forces, f1 in (L2(Ω1))n and f2 in (L2(Ω2))n. Then, the Stokes
transmission problem writes:

find u1 : Ω1 → Rn, p1 : Ω1 → R, u2 : Ω2 → Rn and p2 : Ω2 → R such that

−µ1∆u1 +∇p1 = f1 in Ω1,

div(u1) = 0 in Ω1,

u1 = 0 on Γ1,

−µ2∆u2 +∇p2 = f2 in Ω2,

div(u2) = 0 in Ω2,

u2 = 0 on Γ2,

u1 = u2 on Γ,

(µ1∇u1 − p1I) · n1 = −(µ2∇u2 − p2I) · n2 on Γ.

(18a)

(18b)

(18c)

Equations (18a) and (18b) are two sets of Stokes equations coupled at the interface Γ with the coupling conditions (18c).
These conditions represent the continuity of the fluid velocity and the continuity of the constraints applied by the fluid
on Γ. The vectors n1 and n2 still denote the unit exterior normal vector of Ω1 and Ω2. Of course, problem (18) is
equivalent to the Stokes problem with discontinuous viscosity and external force,

find u : Ω→ Rn and p : Ω→ R such that
−div(µ∇u− pI) = f in Ω,

div(u) = 0 in Ω,
u = 0 on ∂Ω,

(19)

where µ and f are defined by

µ =

{
µ1 in Ω1

µ2 in Ω2
, f =

{
f1 in Ω1

f2 in Ω2
.
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We can define a weak formulation of problem (18). Let us introduce the functional spaces

W1 = {v1 ∈ (H1(Ω1))n; v1|Γ1
= 0},

W2 = {v2 ∈ (H1(Ω2))n; v2|Γ2
= 0},

W =
{

(v1, v2) ∈W1 ×W2; v1|Γ = v2|Γ
}
,

Q =

{
(p1, p2) ∈ L2(Ω1)× L2(Ω2);

1

|Ω|

(∫
Ω1

p1 +

∫
Ω2

p2

)
= 0

}
,

(Hdiv(X))n =
{
σ ∈ (L2(X))n×n; div(σ) ∈ (L2(X))n

}
,

where X stands for either Ω1 or Ω2. Then, the weak problem associated to problem (18) writes:

find (u1, u2) ∈ W, and (p1, p2) ∈ Q such that

µ1

∫
Ω1

∇u1 : ∇v1 + µ2

∫
Ω2

∇u2 : ∇v2 −
∫

Ω1

p1div(v1)−
∫

Ω2

p2div(v2)

=

∫
Ω1

f1 · v1 +

∫
Ω2

f2 · v2, ∀(v1, v2) ∈ W,∫
Ω1

q1div(u1) +

∫
Ω2

q2div(u2) = 0, ∀(q1, q2) ∈ Q.

(20)

The well-posedness of problem (19) in (H1
0 (Ω))n × L2

0(Ω) is a particular case of [BF12, Theorem IV.8.1], where µ
(positive) needs to be in L∞(Ω) and f belongs to (L2(Ω))n. It follows that problem (20) is well-posed and we denote
by ((w1, w2), (p1, p2)) its unique solution. In particular, σ1 = µ1∇u1 − p1I belongs to (Hdiv(Ω1))n, σ2 = µ2∇u2 − p2I
belongs to (Hdiv(Ω2))n and we are able to give a weak sense to the second transmission condition on Γ in (18c). Let

X stand for either Ω1 or Ω2 and let η be the unit exterior normal vector to X. Let Υ = (H
1/2
00 (Γ))n be the image of

(H1
∂X\Γ(X))n by the trace operator on Γ, i.e. the space of functions in (H1/2(Γ))n whose extension by zero on ∂X \ Γ

belongs to (H1/2(∂X))n. Then, for all σ in (Hdiv(X))n, we have the following Stokes formula:∫
X

σ : ∇v +

∫
X

div(σ) · v = 〈γη(σ), v〉Υ′,Υ , ∀v ∈ (H1
∂X\Γ(X))n. (21)

where Υ′ is the dual space of Υ. Then, the second transmission condition in (18c) is satisfied in the following sense:

〈γn1(σ1), v〉Υ′,Υ = −〈γn2(σ2), v〉Υ′,Υ , ∀v ∈ Υ. (22)

Now, we present the smooth extension method applied to problem (18). Formally, it writes: find g such that the
solution of the following problem,

find u1 : Ω1 → Rn, p1 : Ω1 → R, u2 : Ω2 → Rn and p2 : Ω2 → R such that

−µ1∆u1 +∇p1 = f1
Ω

+ gΩ in Ω,

div(u1) = 0 in Ω,

u1 = 0 in ∂Ω,

−µ2∆u2 +∇p2 = f2 in Ω2,

div(u2) = 0 in Ω2,

u2 = 0 on Γ2,

(µ2∇u2 − p2I) · n2 = (µ1∇u1 − p1I) · n2 on Γ,

(23a)

(23b)

satisfies the equality
u1 = u2 on Γ

Let v be in (D(Ω))n and suppose that u1, p1, u2 and p2 are sufficiently regular. Moreover, we assume for the moment that g
belongs to (L2(Ω2))n in order to do formal computations. Formally, we multiply equation (23a) by v and equation (23b)
by v|Ω2

and integrate respectively over Ω and Ω2. After an integration by part and using the Neumann condition on Γ,
we find

µ1

∫
Ω

∇u1 : ∇v −
∫

Ω

p1div(v) =

∫
Ω1

f1 · v|Ω1
+

∫
Ω2

g · v|Ω2
,

µ2

∫
Ω2

∇u2 : ∇v|Ω2
−
∫

Ω2

p2div(v|Ω2
) =

∫
Ω2

f2 · v|Ω2
+

∫
Γ

((µ1∇u1 − p1I)n2) · v.

Moreover, we remark that∫
Γ

((µ1∇u1 − p1I)n2) · v =

∫
Ω2

(µ1∆u1 −∇p1) · v|Ω2
+ µ1

∫
Ω2

∇u1 : ∇v|Ω2
−
∫

Ω2

p1div(v|Ω2
),

= −
∫

Ω2

g · v|Ω2
+ µ1

∫
Ω2

∇u1 : ∇v|Ω2
−
∫

Ω2

p1div(v|Ω2
).
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Thus, we define the weak formulation of the smooth extension problem associated to problem (23), which makes sense
for g ∈W ′2, as the problem of finding a suitable control g in W ′2, such that the solution of the following problem,

find (u1, p1) ∈ (H1
0 (Ω))n × L2

0(Ω) and (u2, p2) ∈W2 × L2(Ω2) such that

µ1

∫
Ω

∇u1 : ∇v1 −
∫

Ω

p1div(v1) =

∫
Ω1

f1 · v1|Ω1
+
〈
g, v1|Ω2

〉
W ′2,W2

, ∀v1 ∈ (H1
0 (Ω))n,∫

Ω

q1div(u1) = 0, ∀q1 ∈ L2
0(Ω),

µ2

∫
Ω2

∇u2 : ∇v2 −
∫

Ω2

p2div(v2) =

∫
Ω2

f2 · v2 − 〈g, v2〉W ′2,W2

+µ1

∫
Ω2

∇u1 : ∇v2 −
∫

Ω2

p1div(v2), ∀v2 ∈W2,∫
Ω2

q2div(u2) = 0, ∀q2 ∈ L2(Ω2),

(24)

satisfies the equality
u1 = u2 in Υ. (25)

For every f1 in (L2(Ω1))n, every f2 in (L2(Ω2))n and every g in W ′2, the two subproblems in problem (24) admit a unique
solution. They are denoted by (wg1 , p

g
1) and (wg2 , p

g
2). These are well-known results on Stokes equations; we refer to

[BF12] for details. In the following theorem, we state the existence of a control g such that the solution of (24) satisfies
the condition (25) and explain how to recover the solution of the initial Stokes transmission problem (20).

Theorem 4.1. Let Ω be a domain that satisfies Assumption (H2). Consider f1 in (L2(Ω1))n and f2 in (L2(Ω2))n.
Then, there exists a function g in W ′2 such that the solution ((wg1 , p

g
1), (wg2 , p

g
2)) of (24) satisfies (25). Moreover, we can

recover the solution of the Stokes transmission problem (20):

(w1, w2) = (wg1|Ω1
, wg2),

(p1, p2) = (pg1|Ω1
− C, pg2 − C),

where

C =
1

|Ω|

(∫
Ω1

pg1|Ω1
+

∫
Ω2

pg2

)
.

The proof of Theorem 4.1 is similar to the proof of Theorem 2.1. It relies on the construction of extensions for the
velocity w1 and the pressure p1 in the whole domain Ω. Details are given in A.

As before, the problem of finding a suitable control g such that the solution of problem (24) satisfies (25), can be
formulated as an optimization problem. In practice, it is this minimization problem which is solved in order to obtain a
suitable control and recover the solution of the transmission problem (18). The cost function to consider, that we denote
by J̃ , is now defined from W ′2 to R+ with the formula

J̃(g) =
1

2

∫
Γ

|wg1 − w
g
2 |2, (26)

where wg1 and wg2 are the velocities of the fluid, solutions of problem (24). Yet, the minimization of this cost function is
equivalent to the minimization of the real-valued function

(H1
0 (Ω))n ×W2 → R+

(v1, v2) 7→ 1

2

∫
Γ

|v1|Γ − v2|Γ |
2,

under the constraint that v1 and v2 are the velocities that solve the problem (24). Then, to this constrained optimization
problem we associate the following Lagrangian function defined from

W ′2 ×
[(

(H1
0 (Ω))n × L2

0(Ω)
)
×
(
W2 × L2(Ω2)

)]
×
[(

(H1
0 (Ω))n × L2

0(Ω)
)
×
(
W2 × L2(Ω2)

)]
to R by

L̃(g, ((u1, p1), (u2, p2)), ((λ1, π1), (λ2, π2))) =
1

2

∫
Γ

|u1 − u2|2 + µ1

∫
Ω

∇u1 : ∇λ1 − µ1

∫
Ω2

∇u1 : ∇λ2

+µ2

∫
Ω2

∇u2 : ∇λ2 −
∫

Ω

p1div(λ1)−
∫

Ω

π1div(u1)−
∫

Ω2

p2div(λ2)−
∫

Ω2

π2div(u2) +

∫
Ω2

p1div(λ2)

−
∫

Ω1

f1 · λ1|Ω1
−
〈
g, λ1|Ω2

〉
W ′2,W2

−
∫

Ω2

f2 · λ2 + 〈g, λ2〉W ′2,W2

(27)
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Figure 7: Two dimensional representation of the geometry for the Stokes transmission problem.

Again, this Lagrangian function enables to compute the gradient of J̃ and it is possible to show the equivalence between
the minimization of J̃ and the research of a suitable control such that the solution of (24) satisfies the condition (25).
For that matter, we introduce the adjoint problem of (24),

find (λ1, π1) ∈ (H1
0 (Ω))n × L2

0(Ω) and (λ2, π2) ∈W2 × L2(Ω2) such that,

µ2

∫
Ω2

∇λ2 : ∇v2 −
∫

Ω2

π2div(v2) =

∫
Γ

(wg1 − w
g
2) · v2, ∀v2 ∈W2,∫

Ω2

q2div(λ2) = 0, ∀q2 ∈ L2(Ω2),

µ1

∫
Ω

∇λ1 : ∇v1 −
∫

Ω

π1div(v1) = −
∫

Γ

(wg1 − w
g
2) · v1 + µ1

∫
Ω2

∇λ2 : ∇v1, ∀v1 ∈ (H1
0 (Ω))n,∫

Ω

q1div(λ1) =

∫
Ω2

q1div(λ2), ∀q1 ∈ L2
0(Ω).

(28)

Problem (28) admits a unique solution denoted by ((ωg1 , π
g
1), (ωg2 , π

g
2)) (see Appendix A). Then, the existence and the

characterization of the gradient of J̃ is given in the following theorem,

Theorem 4.2. The mapping g ∈W ′2 7→ J̃(g) ∈ R is differentiable and its gradient ∇J̃(g) ∈W ′′2 is given by,〈
∇J̃(g), δg

〉
W ′′2 ,W

′
2

=
〈
δg, ωg2 − ω

g
1|Ω2

〉
W ′2,W2

, ∀δg ∈W ′2, (29)

where ωg1 and ωg2 are the unique velocities that verify the adjoint problem (28).

Moreover, the equivalence between the smooth extension problem and its formulation as a minimization problem can
now be proved,

Theorem 4.3. A control g in W ′2 is a minimizer of J̃ if and only if the solution of (24) satisfies the condition (25).

For reasons of clarity, the proofs of Theorem 4.2 and Theorem 4.3 are done in Appendix A.
As for the Laplace transmission problem, the formulation of the Stokes transmission problem (18) as a control problem

and as a minimization problem on the function J̃ enables us to numerically solve these equations with a fictitious domain
approach. Here, we apply this method to the numerical simulation of a two-layer Stokes fluid in the unit square of R2.
The geometric settings are represented in Figure 7: Ω1 and Ω2 are separated by a smooth curve which encounters the
boundary ∂Ω at two points, (1, αΓ) and (βΓ, 1), where αΓ and βΓ are two positive constants. The interface Γ is defined
such that a point (x, y) in [βΓ, 1]× [αΓ, 1] belongs to Γ if and only if

1− x ≤ βΓ

√
y − αΓ

y
.

We consider homogeneous Dirichlet boundary conditions on the left and right boundaries and a pressure drop of 1 between
the top and the bottom boundaries. No external force are considered and constant viscosities µ1 = 1 and µ2 = 10 are
chosen. For the interface Γ, we choose αΓ = 0.25 and βΓ = 0.5.

The solution given by the smooth extension method is obtained following Algorithm 1 and using the gradient method
with fixed parameter ρ. This parameter is chosen such that the gradient method convergences and the stopping criteria
is defined in (17). The resolution of the four different Stokes problems appearing in the minimization process is done
using Mini elements. To compare the smooth extension method to the classical finite element method, we use meshes
that have about the same numbers of cells: 26× 26.

Results are shown in Figure 8, where both the velocity and the pressure of the fluid are plotted. We compare the
solution obtained through the standard finite element method with a mesh which is actually conform with the interface
Γ, to the one produced by the smooth extension method with unstructured meshes. We observe that both solutions are
similar at the difference that the smooth extension method well represents the physical jump in pressure through the
interface Γ, while the finite element method with Mini elements does not. Moreover, the former also has the advantage
to be computed with a non-conformal mesh.
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Figure 8: Representation of the solution for the Stokes transmission problem (18) with µ1 = 1, µ2 = 10, f1 = (1, 0),
f2 = (1, 0), αΓ = 0.25 and βΓ = 0.5. One the top, we compare the magnitude of the fluid velocity obtained with a
standard finite element method (a) and with the smooth extension method (b). On the bottom, we compare the pressure
of the fluid computed with the classical finite element method (c) and the smooth extension method (d). The interface
Γ is highlighted with a white curve.

4.2 A fluid-structure interaction problem

Now, we are interested in the resolution of a fluid-structure problem where the fluid is modeled by the Stokes equations
and the structure by the stationary equations of linear elasticity. The unknowns for these two systems of equations
are the fluid velocity and pressure as well as the displacement of the structure from its reference configuration. The
fluid problem will be set in Eulerian coordinates, i.e. in the current configuration, whereas the elastic equations will be
written in Lagrangian coordinates, i.e. in the reference configuration. This amounts to consider two configurations for
both problems, supposing that, at each time, there exists a smooth enough mapping between the two configurations to
ensure that all boundaries in the current configuration are sufficiently regular.

Let n > 0 and Ω be a domain of Rn that satisfies the following set of hypotheses:

i) Domain Ω is a bounded connected Lipschitz domain of Rn.
ii) Domain Ω is divided in two connected Lipschitz subdomains, Ωf

the fluid subdomain and Ωs the solid subdomain.
iii) The interface Γ = ∂Ωf ∩ ∂Ωs is not empty.
iv) The remaining boundaries Γf = ∂Ωf \ Γ and Γs = ∂Ωs \ Γ are not empty.

(H3)

We assume that, at each time t ≥ 0, there exists a deformation Φt, i.e. a smooth enough injective and orientation-
preserving mapping, defined from Ω to Rn, such that the current fluid configuration Φt(Ωf ) and the current solid
configuration Φt(Ωs) also are Lipschitz subdomains of Ω. Moreover, Φt(Ωf ) and Φt(Ωs) should be connected. We should
precise here that the mapping Φt directly depends on the displacement of the structure at time t. For all x in Ωs, this
mapping writes

Φt(x) = x+ ds(t)(x),

and we can easily extend Φt in the whole domain Ω. The existence of a smooth transformation Φt is rather complicated
to prove and is out of the scope of this study. However, for the numerical resolution of this fluid-structure interaction
problem, it is possible to construct Φt if the deformation of the structure is reasonable, i.e. if the structure does not
enter in contact with itself or the boundary ∂Ω \ Γs and if the mesh which represents the domain Ωs is admissible (no
overlapping cell).

Then, at each time t ≥ 0, the subdomain Φt(Ωf ) is filled with an incompressible Newtonian fluid whose velocity
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uf (t) : Φt(Ωf )→ Rn and pressure pf (t) : Φt(Ωf )→ R satisfy the Stokes equations in conservative form

−div(σf (uf (t), pf (t))) = ff (t) in Φt(Ωf ),
div(uf (t)) = 0 in Φt(Ωf ),

uf (t) = 0 on Φt(Γf ),

where σf is the fluid tensor defined for all u : Rn → Rn and all p : Rn → R by

σf (u, p) = 2µfD(u)− pI, D(u) =
1

2
(∇u+∇uT ),

the constant µf is the viscosity of the fluid and ff (t) : Φt(Ωf )→ Rn is the external force applied to the fluid at time t.
Inside the fluid lies an elastic medium, whose displacement at time t, ds(t) : Ωs → Rn, verifies the following equations of
linear elasticity written in the reference solid configuration Ωs

−div(σs(ds(t))) = fs(t) in Ωs,
ds(t) = 0 on Γs,

where σs is the solid tensor defined for all u : Rn → Rn by

σs(u) = 2µsD(u) + λsdiv(u)I,

the two positive constants µs and λs are the Lam coefficients and fs(t) : Ωs → Rn is the external force applied to
the structure at time t. To complete this system of equations, we consider at each time t the coupling conditions that
correspond to the continuity of the velocities and the normal constraints through the fluid-structure interface in the
reference configuration Γ. For that matter, we introduce the fluid velocity and pressure written in the reference fluid
configuration, denoted by wf and qf , and defined at time t by

wf (t) = uf (t) ◦ Φt and qf (t) = pf (t) ◦ Φt.

Moreover, we introduce the fluid stress tensor written in the fluid reference configuration, denoted by Πf , and defined
at time t by

Πf (wf (t), qf (t)) = µf (∇wf (t)F (ds(t)) +∇wf (t)TF (ds(t))
T )− qf (t)G(ds(t)) in Ωf ,

where F (ds(t)) and G(ds(t)) are the following matrices:

F (ds(t)) = (∇(Φ(ds(t))))
−1cof(∇(Φ(ds(t)))), G(ds(t)) = cof(∇(Φ(ds(t)))). (30)

Thus the transmission conditions write

∂ds
∂t

(t) = uf (t) ◦ Φt on Γ,

σs(ds(t))ns = Πf (wf (t), qf (t))ns on Γ,
(31)

where the vector ns denotes the exterior unit normal vector to ∂Ωs. Similarly we denote nd the exterior unit normal
vector to ∂Ωf . Furthermore, we suppose that the structure is at rest initially, i.e. that ds(0) = 0.

For the purpose of the numerical resolution we consider a discretization of R+ for the time variable. Let δt > 0 be
the step size. We construct a sequence (tk)k∈R+ such that t0 = 0 and tk+1 = tk + δt for k > 0. Thus, we define the
time-discretizations of uf , pf and ds such that, for all k ≥ 0,

ukf = uf (tk), pkf = pf (tk), dks = ds(tk).

In addition, we also define fkf = ff (tk) and fks = fs(tk) for all k ≥ 0. The discretization of the first coupling condition
(31) is obtained using the implicit Euler scheme:

dk+1
s = dks + δtuk+1

f , ∀k ≥ 0,

d0
s = δtu0

f .

At time tk the current solid domain is given by Φtk(Ωs) = (id + dk−1
s )(Ωs) and the current fluid domain Φtk(Ωf )

is obtained by extending the mapping Φtk in the whole domain Ω. Moreover, because of the homogeneous Dirichlet
boundary conditions on the external frontier ∂Ω, it is clear that for all k ≥ 0, Φtk(Ω) = Ω. Furthermore, the matrices Ftk
and Gtk only depend on the displacement of the structure at time tk−1.
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Hence, for all k ≥ 0, the triplet (ukf , p
k
f , d

k
s) is solution of the following problem,



find u : Φtk(Ωf )→ Rn, p : Φtk(Ωf )→ R and d : Ωs → Rn such that

−div(σf (u, p)) = fkf in Φtk(Ωf ),

div(u) = 0 in Φtk(Ωf ),

u = 0 in Φtk(Γf ),

−div(σs(d)) = fks in Ωs,

d = 0 on Γs,

d = dk−1
s + δtu ◦ Φtk on Γ,

σs(d)ns = Πf (u ◦ Φtk , p ◦ Φtk)ns on Γ,

(32a)

(32b)

(32c)

where by convention d−1
s = 0 for k = 0. We can define a weak formulation of problem (32). Let X stand for either Ωf ,

Ωs, Φtk(Ωf ) or Φtk(Ωs). We introduce the following functional spaces:

V kf = {v ∈ (H1(Φtk(Ωf )))n ; v|Φtk
(Γf ) = 0},

V ks = {v ∈ (H1(Φtk(Ωs)))
n ; v|Φtk

(Γs) = 0},
Vs = {v ∈ (H1(Ωs))

n ; v|Γs
= 0},

Wu =
{

(vf , vs) ∈ V kf × Vs ; (vf ◦ Φtk)|Γ = vs|Γ

}
,

Wd =
{

(vf , ds) ∈ V kf × Vs ; δt(vf ◦ Φtk)|Γ + dk−1
s = ds|Γ

}
,

(Hdiv(X))n =
{
σ ∈ (L2(X))n×n ; div(σ) ∈ (L2(X))n

}
.

The weak formulation of problem (32) writes:
find (u, d) ∈Wd and p ∈ L2(Φtk(Ωf )) such that∫

Φtk
(Ωf )

σf (u, p) : ∇vf +

∫
Ωs

σs(d) : ∇vs =

∫
Φtk

(Ωf )

fkf · vf +

∫
Ωs

fks · vs, ∀(vf , vs) ∈Wu,∫
Φtk

(Ωf )

qdiv(u) = 0, ∀q ∈ L2(Φtk(Ωf )).

(33)

Problem (33) admits a unique solution that we still denote by (ukf , p
k
f , d

k
s) (see Appendix B). Moreover, σf (ukf , p

k
f ) belongs

to (Hdiv(Φtk(Ωf )))n, σs(d
k
s) belongs to (Hdiv(Ωs))

n and we can give a weak sense to the second transmission condition

in (32c). Let X stands for either Ωf or Ωs and let η be the exterior normal vector to X. Let Υ = (H
1/2
00 (Γ))n be the

image of (H1
∂X\Γ(X))n by the trace operator on the interface Γ, i.e. the space of functions in (H1/2(Γ))n whose extension

by zero on ∂X \ Γ belongs to (H1/2(∂X))n.
Then, for all σ in (Hdiv(X))n, we have the following Stokes formula:∫

X

σ : ∇v +

∫
X

div(σ) · v = 〈γη(σ), v〉Υ′,Υ , ∀v ∈ (H1
∂X\Γ(X))n, (34)

where Υ′ is the dual space of Υ and γη is the trace normal operator on Γ. Then, the second transmission condition in
(32c) is satisfied in the following sense:〈

γns
(σs(d

k
s)), v

〉
Υ′,Υ

= −
〈
γnf

(Πf (ukf ◦ Φtk , p
k
f ◦ Φtk)), v

〉
Υ′,Υ

, ∀v ∈ Υ. (35)

Similarly, we define Υk = (H
1/2
00 (Φtk(Γ)))n which enables to also write Stokes formulas for a tensor σ in Φtk(Ωf ) and

in Φtk(Ωs).
Now, we present the smooth extension method applied to problem (32). Formally, it writes: find g in (V ks )′ such that

the solution of the following problem,

find u : Ω→ Rn, p : Ω→ R and d : Ωs → Rn such that,

−div(σf (u, p)) = fkf
Ω

+ gΩ, in Ω,

div(u) = 0, in Ω,

u = 0, in ∂Ω,

−div(σs(d)) = fks , in Ωs,

d = 0, on Γs,

σs(d)ns = Πf (u ◦ Φtk , p ◦ Φtk)ns, on Γ

(36a)

(36b)
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satisfies the equality,

u ◦ Φtk =
1

δt
(d− dk−1

s ), on Γ.

Let v be in (D(Ω))n and suppose that u, p and d are sufficiently regular. Moreover, we assume for the moment that g
belongs to (L2(Φtk(Ωs)))

n in order to do formal computations. Formally, we multiply the first equation in (36a) by v
and the first equation in (36b) by v|Ωs

, and integrate respectively over Ω and Ωs. After an integration by part and using
the Neumann condition on Γ, we find∫

Ω

σf (u, p) : ∇v =

∫
Φtk

(Ωf )

fkf · v +

∫
Φtk

(Ωs)

g · v,∫
Ωs

σs(d) : ∇v|Ωs
=

∫
Ωs

fks · v|Ωs
+

∫
Γ

(Πf (u ◦ Φtk , p ◦ Φtk)ns) · v.

Moreover, we remark that∫
Γ

(Πf (u ◦ Φtk , p ◦ Φtk)ns) · v =

∫
Ωs

div(Πf (u ◦ Φtk , p ◦ Φtk)) · v|Ωs
+

∫
Ωs

Πf (u ◦ Φtk , p ◦ Φtk) : ∇v|Ωs
,

= −
∫

Ωs

det(∇Φtk)(g ◦ Φtk) · v|Ωs
+

∫
Ωs

Πf (u ◦ Φtk , p ◦ Φtk) : ∇v|Ωs
,

= −
∫

Φtk
(Ωs)

g · (v|Ωs
◦ Φ−1

tk
) +

∫
Ωs

Πf (u ◦ Φtk , p ◦ Φtk) : ∇v|Ωs
.

Thus, we define the weak formulation of the smooth extension problem (36), which makes sense for g in (V ks )′, as the
problem of finding a suitable control g in (V ks )′, such that the solution of the following problem,

find u ∈ H1
0 (Ω), p ∈ L2

0(Ω) and d ∈ Vs such that∫
Ω

σf (u, p) : ∇vf =

∫
Φtk

(Ωf )

fkf · vf |Φtk
(Ωf ) + 〈g, vf |Φtk

(Ωs)〉(V k
s )′,V k

s
, ∀vf ∈ H1

0 (Ω),∫
Ω

qdiv(u) = 0, ∀q ∈ L2
0(Ω),∫

Ωs

σs(d) : ∇vs =

∫
Ωs

fks · vs −
〈
g, vs ◦ Φ−1

tk

〉
(V k

s )′,V k
s

+

∫
Ωs

Πf (u ◦ Φtk , p ◦ Φtk) : ∇vs, ∀vs ∈ Vs,

(37)

satisfies the equality

u ◦ Φtk =
1

δt
(d− dk−1

s ), on Γ. (38)

For every fkf ∈ (L2(Φtk(Ωf )))n and every g ∈ (V ks )′, there exists a unique solution to the Stokes problem appearing in

problem (37), denoted by (ug, pg) (see [BF12]). On the other hand, for all fks ∈ (L2(Ωs))
n, the weak problem of linear

elasticity that appears in (37) also admits a unique solution in Vs, denoted by dg (see [Cia88]). In the following theorem,
we state the existence of a control g such that the solution of (37) satisfies the equality (38) and explain how to recover
the solution of the initial fluid-structure problem (33).

Theorem 4.4. Let Ω be a domain that satisfies Assumption (H3). Consider fkf in (L2(Φtk(Ωf )))n and fks in (L2(Ωs))
n.

Then, there exists a function g in (V ks )′ such that the solution (ug, pg, dg) of problem (37) satisfies (38). Moreover, we
can recover the solution of the fluid-structure problem (33):

(ukf , p
k
f ) = (ug|Φtk

(Ωf ), p
g
|Φtk

(Ωf )),

dks = dg.

The proof of Theorem 4.4 relies on the construction of extensions for the functions ukf and pkf to the whole domain Ω,
which is what we have done for the Stokes transmission problem. Hence, the proof of Theorem 4.4 directly follows from
the one of Theorem 4.1. This is detailed in Appendix B.

As before, the problem of finding a control such that the solution of (36) verifies (38) can be formulated as an
optimization problem on the following cost function, defined for any k ≥ 0,

Jk : V ′s,k → R+

g 7→ 1

2

∫
Γ

|ug ◦ Φtk −
1

δt
(dg − dk−1

s )|2, (39)

where ug and dg are the velocity of the fluid and the displacement of the structure that solve problem (37) at time tk.
The function dk−1

s is the displacement of the structure that solves problem (32) at time tk−1. Yet, the minimization of
this cost function is equivalent to the minimization of the real-valued function,

(H1
0 (Ω))n × Vs → R+

(u, d) 7→ 1

2

∫
Γ

|u ◦ Φtk −
1

δt
(d− dk−1

s )|2,
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under the constraint that u and d are the velocity of the fluid and the displacement of the structure that solve problem
(37). Then, to this constrained optimization problem, we can associate the following Lagrangian function, defined from

(V ks )′ ×
(
(H1

0 (Ω))n × L2
0(Ω)× Vs

)
×
(
(H1

0 (Ω))n × L2
0(Ω)× Vs

)
,

to R by,

Lk(g, (u, p, d), (λf , π, νs)) =
1

2

∫
Γ

|u ◦ Φtk −
1

δt
(d− dk−1

s )|2 +

∫
Ω

σf (u, p) : ∇λf −
∫

Ω

πdiv(u) +

∫
Ωs

σs(d) : ∇νs

−
∫

Ωs

Πf (u ◦ Φtk , p ◦ Φtk) : ∇νs −
∫

Φtk
(Ωf )

fkf · λf − 〈g, λf 〉(V k
s )′,V k

s
−
∫

Ωs

fks · νs +
〈
g, νs ◦ Φ−1

tk

〉
(V k

s )′,V k
s
.

(40)

Again, this Lagrangian function can be used to compute the gradient of Jk and show that the minimization of Jk is
equivalent to the problem of finding a suitable control g such that the solution of (37) satisfies (38). For that purpose,
we introduce the adjoint problem of (37),

find νs ∈ Vs, λf ∈ (H1
0 (Ω))n and π ∈ L2

0(Ω) such that,∫
Ωs

σs(νs) : ∇vs =
1

δt

∫
Γ

(ug ◦ Φtk −
1

δt
(dg − dk−1

s ) · vs, ∀vs ∈ Vs,∫
Ω

σf (λf , π) : ∇vf = 2µf

∫
Φtk

(Ωs)

D(νs ◦ Φ−1
tk

) : D(vf )

−
∫

Γ

(ug ◦ Φtk −
1

δt
(dg − dk−1

s )) · vf ◦ Φtk , ∀vf ∈ (H1
0 (Ω))n,∫

Ω

qdiv(λf ) =

∫
Φtk

(Ωs)

qdiv(νs ◦ Φ−1
tk

), ∀q ∈ L2
0(Ω).

(41)

Problem (41) admits a unique solution that we denote (νg, λg, πg). Then, the existence and the characterization of the
gradient of Jk is given in the following theorem,

Theorem 4.5. The mapping g ∈ (V ks )′ 7→ Jk(g) ∈ R+ is differentiable and its gradient ∇Jk(g) in (V ks )′′ is given by,

〈∇Jk(g), δg〉(V k
s )′′,(V k

s )′ =
〈
δg, νg ◦ Φ−1

tk
− λg|Φtk

(Ωs)

〉
(V k

s )′,(V k
s )
, ∀δg ∈ V ′s , (42)

where λg and νg satisfy the adjoint problem (41).

Moreover, the equivalence between the smooth extension problem and its formulation as a minimization problem can
also be stated in the case of a fluid-structure interaction problem.

Theorem 4.6. A control g in (V ks )′ is a minimizer of Jk if and only if the solution of (37) satisfies (38).

Proofs of Theorem 4.5 and Theorem 4.6 can be easily adapted from the ones already done for the Stokes transmission
problem. However, the change of domains between the structure in reference configuration and the fluid in current
configuration can be confusing. For that matter, all proofs are detailed in Appendix B.

The formulation of the fluid-structure interaction problem as a control problem and as a minimization problem
enables us to numerically solve these equations with a fictitious domain approach. Here, we apply this method to the
numerical simulation of the bending of an elastic beam in a viscous fluid subjected to shear boundary condition. The
initial geometry of the problem is represented in Figure 9: Ωf is the rectangle [0, 2]× [0, 1] in R2 and Ωs is a rectangular
beam of length Lc and of radius rc. This beam is anchored at the bottom of Ωf , at positions (xc− rc, 0) and (xc + rc, 0).
We consider periodic boundary conditions on the left and right boundaries of the fluid domain and imposed a shear
condition on the top, given by

ubc(x) = (3, 0), ∀x ∈ [0, 1].

On the bottom boundaries of the fluid and solid domains, homogeneous Dirichlet boundary conditions are considered.
No external force is considered and constant values are chosen for the fluid viscosity, µf = 1, the Young’s modulus of the
solid material, Es = 105, and its Poisson’s ratio, νs = 0.49. The Lam coefficients µs and λs are then given by

µs =
Es

2(1 + νs)
, λs =

νsEs
((1 + νs)(1− 2νs))

.

For the parameters of the beam, we choose xc = 1, rc = 0.05 and Lc = 0.65. The final time of the simulation is set to
T = 0.5.

The solution given by the smooth extension method is obtained following Algorithm 1 and using the L-BFGS algorithm
(see [Noc80]). The resolution of the two different Stokes problems appearing in the minimization process is done using
Mini elements, while the resolution of the two elasticity problems is done using P1 elements. Fluid problems are solved
on a fixed mesh representing the whole domain Ω and elasticity problems are solve on a fixed mesh representing Ωs, i.e. in
the solid reference configuration. Moreover, the fluid mesh does not conform with the solid boundary. We compare this
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Ωf

Γf

Ωs

Γs

Γ

(xc − rc, Lc)

(xc − rc, 0) (xc + rc, 0)

ubc

Figure 9: Two dimensional representation of the initial geometry for the fluid-structure problem.

(a) (b)

Figure 10: Comparison of the stationary states obtained through the smooth extension method and the ALE method
(a). The darkest grey mesh represents the equilibrium position of the beam obtained with the ALE method. The lightest
grey mesh represents the initial position of the beam. The other three meshes represent the equilibrium positions of the
beam obtained with the smooth extension method for different coarsening ratios (0.99, 0.71, 0.46): the lighter is the
colour the coarser is the fluid mesh. Zoom on the tips of the beams (b).

solution to the one obtained with conformal meshes and using a Lagrangian multiplier to ensure the continuity of the fluid
and solid velocities through the interface Γ. With this method, an Arbitrary Lagrangian-Eulerian (ALE) methodology
(see [BKFG19]) is used to ensure the mesh conformity when the beam bends and prevent cells from overlapping within
the fluid mesh. However, if the quality of the fluid mesh is too poor, one needs to remesh it (this is done using the Mmg
remeshing software [DDF14]). In the following, this method will be referred as the ALE method.

In this test case, the fluid-structure system attains a stationary state, where the beam is at equilibrium in a deformed
configuration, which is well catched by both the ALE and the smooth extension methods (see Figure 10). To study the
robustness of the smooth extension method, we coarsen the fluid mesh and observe the consequences on the dynamic of
the system. To do so we define the coarsening ratio of the fluid mesh as the ratio of the number of nodes in the reference
fluid mesh used in the ALE method divided by the number of nodes of the fluid mesh used in the smooth extension
method. For example, a coarsening ratio of 1 means that the two fluid meshes have the same number of nodes, whereas
a ratio of 0.5 means that the fluid mesh used in the smooth extension method has half as many nodes than the reference
fluid mesh used for the ALE method. Then, in Figure 10, we observe that the coarser is the fluid mesh, the farther is the
stationary state from the equilibrium state obtained with the ALE method. In order to quantify this error, we use the
L1(Ω) distance between the position of the beam obtained with the ALE method and the one obtained with the smooth
extension method at time t, and defined a relative error

EALESEM (t) =

∫
Ω

|χΩSEM
s (t) − χΩALE

s (t)|∫
Ω

|χΩSEM
s (t)|+

∫
Ω

|χΩALE
s (t)|

,

whereχΩSEM
s (t) is a L2(Ω) function which is the characteristic function of the solid current domain ΩSEMs (t). Simi-
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Figure 11: Distance EALESEM between the two solid configuration ΩSEMs and ΩALEs in function of the time (a). Global
norm in time ‖EALESEM‖ in function of the coarsening ratio of the fluid mesh in the smooth extension method (b).

larly, χΩALE
s (t) is a L2(Ω) function which is the characteristic function of the solid current domain ΩALEs (t). Consequently,

this distance is 0 if the two domains are the same and 1 if they do not overlap. Moreover, for a final time T > 0, we also
consider the global norm in time of eEALESEM defined by

‖EALESEM‖ =
1

T

∫ T

0

|EALESEM (t)|dt,

which is 0 if the two domains ΩALEs (t) and ΩSEMs (t) are identical for all t in [0, T ] and 1 if they never overlap. Then, we
compute the distance EALESEM in function of the time for different coarsening ratios to study their influence on the dynamic
of the system when using the smooth extension method. This is represented in Figure 11a, where we observe that, for all
coarsening ratios, the distance EALESEM increases in time to reach a constant value when the stationary state is attained.
This result corroborates and quantifies what we observed on Figure 10, i.e. that the error on the equilibrium position
of the beam seems to increase when the coarsening ratio decreases, but stays relatively low (approximatively 10% with
a very coarsening mesh for the fluid domain). To go further, we plot in Figure 11b the global norm in time of EALESEM

in function of the coarsening ratio. In addition to the already mentioned fact that the error tends to increase when the
coarsening ratio decreases, we remark that the error in time is just above 0.1 for a coarsening ratio of 0.12, which implies
that the coarsening of the fluid mesh in the smooth extension method does not drastically change the time dynamic of
the bending of the beam in this test case.

All these results suggest that the smooth extension method is well suited for time dependent problems involving a
moving structure in a viscous fluid, where the fluid mesh is fixed, possibly Cartesian and coarser that the structure mesh.

5 Conclusion and discussion

In this article we have presented a numerical strategy for the resolution of transmission problems with non-conformal
meshes and which preserves optimal rates of convergence in space. It is based on a control formulation of the transmission
problem, namely the smooth extension formulation, whose numerical resolution can be done by minimizing a particular
objective function. This method allows the use of standard finite element functional spaces along with fixed structured
or unstructured meshes and pre-existing finite element solvers and optimization algorithms.

This smooth extension method has been derived in the particular case of the transmission Laplace problem with only
two subdomains and considering Dirichlet boundary conditions. Other boundary conditions could also be considered
with no additional difficulty, provided that the initial transmission problem is well-posed. The same methodology should
also work for transmission problems with more than two subdomains.

In addition, we have shown that the smooth extension method can be applied to a wide variety of transmission
problems, even the ones with totally different operators, such as the fluid-structure interaction problem studied in
Subsection 4.2. For each type of transmission problems considered in the present article, the smooth extension method
has been compared to a standard numerical method and has shown to give good approximations of the solutions.

A Proofs of theorems related to the Stokes transmission problem

This appendix is dedicated to the proofs of all results stated in Subsection 4.1. In particular, we are interested in showing
the existence of the control g, in giving an explicit formula for the gradient of J̃ and, finally, in proving the equivalence
between the minimization of J̃ and the resolution of the Stokes transmission problem.
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We follow the order of the previous enumeration and start with the proof of Theorem 4.1.

Proof of Theorem 4.1. We can construct two extension operators Eu and Ep that extend w1 into the whole space
(H1

0 (Ω))n (and such that Euw1 is divergence-free) and p1 into the whole space L2
0(Ω). Indeed, consider the opera-

tors defined by

Euw1 =

{
w1 in Ω1

w2 in Ω2
, Epp1 =

{
p1 in Ω1

p2 in Ω2
.

Since (w1, w2) belongs to W, the function Euw1 is an extension of w1 which belongs to (H1
0 (Ω))n. Moreover, it satis-

fies div(Euw1) = 0 because both w1 and w2 are divergence-free. Similarly, since (p1, p2) belongs to Q, the function Epp1

is an extension of p1 which belongs to L2
0(Ω). Furthermore, µ1∇(Euw1)− (Epp1)I belongs to (Hdiv(Ω))n.

Then, we construct a suitable control g in W ′2 such that

〈g, v〉W ′2,W2
= µ1

∫
Ω2

∇(Euw1)|Ω2
: ∇v −

∫
Ω2

p1|Ω2
div(v) + 〈γn1(σE), v〉Υ′,Υ , ∀v ∈W2, (43)

where we define σE = µ1∇(Euw1)− (Epp1)I. Using the Stokes formula (21) and the definition (43), it follows that the
extensions Euw1 and Epp1 satisfy

µ1

∫
Ω

∇(Euw1) : ∇v1 −
∫

Ω

(Epp1)div(v1) =

∫
Ω1

f1 · v1|Ω1
+
〈
g, v1|Ω2

〉
W ′2,W2

, ∀v1 ∈ H1
0 (Ω)∫

Ω

q1div(Euw1) = 0, ∀q1 ∈ L2
0(Ω).

Similarly, using (21), (43) and the weak transmission condition (22), (w2, p2) satisfies

µ2

∫
Ω2

∇w2 : ∇v2 −
∫

Ω2

p2div(v2)

=

∫
Ω2

f2 · v2 + µ1

∫
Ω2

∇(Euu1)|Ω2
: ∇v2 − 〈g, v2〉W ′2,W2

−
∫

Ω2

(Epp1|Ω2
)div(v2),∀v2 ∈W2,

Finally, we conclude that ((Euw1, Epp1), (w2, p2)) is the solution of problem (24). Thus,

((wg1 , p
g
1), (wg2 , p

g
2)) = ((Euw1, Epp1), (w2, p2))

and, by construction, the equality (25) is satisfied. This proves the first part of the theorem.
Now, suppose that g is a control such that the equality (25) is satisfied. In particular, the equality wg1|Γ = wg2|Γ

implies that (wg1|Ω1
, wg2) belongs to the space W. Let us define the following Hilbert space:

W̃ =
{

(v1, v2) ∈ (H1
0 (Ω))n ×W2; v1|Ω1

= v2

}
.

As the unique solution of problem (24), the couples (wg1 , p
g
1) and (wg2 , p

g
2) satisfy, in particular, for all (v1, v2) in W̃ and

for all (q1, q2) in L2
0(Ω)× L2(Ω2), the equations

µ1

∫
Ω

∇wg1 : ∇v1 −
∫

Ω

pg1div(v1) =

∫
f1 · v1|Ω1

+
〈
g, v1|Ω2

〉
W ′2,W2

,∫
Ω

qdiv(wg1) = 0,

µ2

∫
Ω2

∇wg2 : ∇v2 −
∫

Ω2

pg2div(v2) =

∫
f2 · v2 − 〈g, v2〉W ′2,W2

+ µ1

∫
Ω2

∇wg1 : ∇v2 −
∫

Ω2

pg1div(v2),∫
Ω2

q|Ω2
div(wg2) = 0.

(44)

Then, summing equations in (44), it follows that ((wg1|Ω1
, wg2), (pg1|Ω1

, pg2)) satisfies

µ1

∫
Ω1

∇wg1|Ω1
: ∇v1|Ω1

−
∫

Ω1

pg1|Ω1
div(v1|Ω1

) + µ2

∫
Ω2

∇wg2 : ∇v2 −
∫

Ω2

pg2div(v2)

=

∫
Ω1

f1 · v1 +

∫
Ω2

f2 · v2, ∀(v1, v2) ∈ W̃,∫
Ω1

q1|Ω1
div(wg1|Ω1

) +

∫
Ω2

q2div(wg2) = 0, ∀(q1, q2) ∈ L2
0(Ω)× L2(Ω2).

Because the test function v1 belongs to H1
0 (Ω) and because v2 = v1|Ω1

, we can redefine the pressures pg1 and pg2 up to a
constant, by

p̃g1 = pg1 −
1

|Ω|

(∫
Ω2

pg2 +

∫
Ω1

pg1|Ω1

)
, p̃g2 = pg2 −

1

|Ω|

(∫
Ω2

pg2 +

∫
Ω1

pg1|Ω1

)
,
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such that (p̃g1|Ω1
, p̃g2) belongs to the space Q. Moreover, for all (v1, v2) in W we can extend v1 in the whole space H1

0 (Ω)

using v2, as we did it for w1 and w2. We still denote Euv1 this extension. Similarly, for all (q1, q2) in Q, we can
extend q1 in the whole space L2

0(Ω) and we still denote Epq1 this extension. Then, the couple (Euv1, v2) belongs to W̃,
the couple (Epq1, q2) belongs to L2

0(Ω)× L2(Ω2) and, finally, ((wg1|Ω1
, wg2), (p̃g1|Ω1

, p̃g2)), satisfies the equations

µ1

∫
Ω1

∇wg1|Ω1
: ∇v1 −

∫
Ω1

p̃g1|Ω1
div(v1) + µ2

∫
Ω2

∇wg2 : ∇v2 −
∫

Ω2

p̃g2div(v2)

=

∫
Ω1

f1 · v1 +

∫
Ω2

f2 · v2, ∀(v1, v2) ∈ W,∫
Ω1

q1|Ω1
div(wg1|Ω1

) +

∫
Ω2

q2div(wg2) = 0, ∀(q1, q2) ∈ Q.

Thus, ((wg1|Ω1
, wg2), (p̃g1|Ω1

, p̃g2)) is the unique solution of the initial Stokes transmission problem (20), which proves that

we can recover the solution of the Stokes transmission problem from the solution of the smooth extension problem.

We continue with the proof of Theorem 4.2, i.e. we show the existence of the gradient of J̃ and give an explicit
formula to compute it.

Proof of Theorem 4.2. We start by computing the derivatives of the Lagrangian function L̃ with respect to u1, p1, u2

and p2, to justify the adjoint equations written in (28). These computations are similar to the ones made in the proof of
Lemma 2.1 and we have〈

∂L̃
∂u1

, δu1

〉
(H−1(Ω))n,(H1

0 (Ω))n

=

∫
Γ

(u1 − u2) · δu1 + µ1

∫
Ω

∇λ1 : ∇δu1 −
∫

Ω

π1div(δu1)

−µ1

∫
Ω2

∇λ2 : ∇δu1, ∀δu1 ∈ (H1
0 (Ω))n,

〈
∂L̃
∂u2

, δu2

〉
W ′2,W2

= −
∫

Γ

(u1 − u2) · δu2 + µ2

∫
Ω2

∇λ2 : ∇δu2 −
∫

Ω2

π2div(δu2), ∀δu2 ∈W2,

〈
∂L̃
∂p1

, δp1

〉
L2(Ω),L2(Ω)

= −
∫

Ω

δp1div(λ1) +

∫
Ω2

δp1div(λ2), ∀δp1 ∈ L2
0(Ω),

〈
∂L̃
∂p2

, δp2

〉
L2(Ω2),L2(Ω)

= −
∫

Ω2

δp2div(λ2), ∀δp2 ∈ L2(Ω2).

Then, taking (u1, p1) = (wg1 , p
g
1) and (u2, p2) = (wg2 , p

g
2), we can deduce that the adjoint problem associated to the direct

problem (24) is, 

find (λ1, π1) ∈ (H1
0 (Ω))n × L2

0(Ω) and (λ2, π2) ∈W2 × L2(Ω) such that〈
∂L̃
∂u1

, v1

〉
(H−1(Ω))n,(H1

0 (Ω))n

= 0, ∀v1 ∈ (H1
0 (Ω))n,〈

∂L̃
∂p1

, q1

〉
L2(Ω),L2(Ω)

= 0, ∀q1 ∈ L2
0(Ω),〈

∂L̃
∂u2

, v2

〉
W ′2,W2

= 0, ∀v2 ∈W2,〈
∂L̃
∂p2

, q2

〉
L2(Ω2),L2(Ω)

= 0, ∀q2 ∈ L2(Ω2).

(45)

Thus, the adjoint problem for the Stokes transmission problem is indeed the weak problem written in (28). Problem (28)
consists in two Stokes problems, whose well-posedness derives from well-known results about the Stokes equations (see
[BF12]). We denote ((ωg1 , π

g
1), (ωg2 , π

g
2)) its unique solution in

(
(H1

0 (Ω))n × L2
0(Ω)

)
×
(
W2 × L2(Ω2)

)
.

The differentiability of J̃ relies on the same arguments that the ones used in the proof of Theorem 2.3. Likewise,
taking (u1, p1) = (wg1 , p

g
1) and (u2, p2) = (wg2 , p

g
2), the Lagrangian (27) reduces to

L̃(g, ((wg1 , p
g
1), (wg2 , p

g
2)), ((λ1, π1), (λ2, π2))) = J̃(g), ∀g ∈W ′2.

Differentiating this previous inequality with respect to g using the chain rule and taking

(λ1, π1) = (ωg1 , π
g
1) and (λ2, π2) = (ωg2 , π

g
2),
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we find that, for all δg in W ′2,〈
∇J̃ , δg

〉
W ′′2 ,W2

=

〈
∂L̃
∂g

(g, ((wg1 , p
g
1), (wg2 , p

g
2)), ((ωg1 , π

g
1), (ωg2 , π

g
2))), δg

〉
W ′′2 ,W

′
2

.

Moreover, the differentiate of L̃ with respect to g, ∂L̃
∂g ∈W

′′
2 , is defined such that, for all δg in W ′2,〈

∂L̃
∂g

(g, ((u1, p1), (u2, p2)), ((λ1, π1), (λ2, π2))), δg

〉
W ′′2 ,W

′
2

=
〈
δg, λ2 − λ1|Ω2

〉
W ′2,W2

Finally, the gradient of J̃ is given by,〈
∇J̃ , δg

〉
W ′′2 ,W2

=
〈
δg, λ2 − λ1|Ω2

〉
W ′2,W2

, ∀δg ∈W ′2.

Now, let us show the equivalence between the minimization of J̃ and the research of a suitable control such that the
solution of (24) satisfies the conditions (25).

Proof of Theorem 4.3. The reciprocal statement is straightforward. If, for a given g, the solution of (24) satisfies the
condition (25) then, J̃(g) = 0.

Now, let g be a minimizer of J̃ . It follows that one has〈
δg, ωg2 − ω

g
1|Ω2

〉
W ′2,W2

= 0, ∀δg ∈W ′2,

which means that ωg1|Ω2
= ωg2 and the couple (ωg1|Ω1

, ωg2) belongs to W. Yet, the functions ωg1 , ωg2 , πg1 and πg2 satisfy the

equations in problem (28). In particular, for all (v1, v2) in W̃ and for all (q1, q2) in L2
0(Ω)× L2(Ω2), where

W̃ = {(v1, v2) ∈ (H1
0 (Ω))n ×W2; v1|Ω2

= v2},

these equations write,

µ2

∫
Ω2

∇ωg2 : ∇v2 −
∫

Ω2

πg2div(v2) =

∫
Γ

(wg1 − w
g
2) · v1,∫

Ω2

q2div(ωg2) = 0,

µ1

∫
Ω

∇ωg1 : ∇v1 −
∫

Ω

πg1div(v1) = −
∫

Γ

(wg1 − w
g
2) · v1 + µ1

∫
Ω2

∇ωg2 : ∇v1|Ω2
,∫

Ω

q1div(ωg1) =

∫
Ω2

q1|Ω2
div(ωg2).

(46)

Summing the first equation in (46) with the third one and summing the second equation with the fourth one and using
the fact that ωg1|Ω2

= ωg2 , we find that

µ1

∫
Ω1

∇ωg1|Ω1
: ∇v1|Ω1

−
∫

Ω1

πg1|Ω1
div(v1|Ω1

) + µ2

∫
Ω2

∇ωg2 : ∇v2 −
∫

Ω2

(πg2 + πg1|Ω2
)div(v2) = 0, ∀(v1, v2) ∈ W̃,∫

Ω1

q1|Ω1
div(ωg1|Ω1

) +

∫
Ω2

q2div(ωg2) = 0, ∀(q1, q2) ∈ L2
0(Ω)× L2(Ω2).

Moreover, because the test function v1 belongs to (H1
0 (Ω))n, we can redefine the pressure πg1 up to a constant by

π̃g1 = πg1 −
1

|Ω|

∫
Ω2

πg2

such that (π̃g1|Ω1
, πg2 + π̃g1|Ω2

) belongs to the space Q.

Moreover, let (v1, v2) be in W. We can construct an extension of v1 in the whole space (H1
0 (Ω))n using v2, as in the

proof of Theorem 4.1 and we still denote Euv1 this extension. Likewise, for all (q1, q2) in Q, we can extend q1 in the whole
space L2

0(Ω) and we still denote Epq1 this extension. Then, the couple (Euv1, v2) belongs to W̃, the couple (Epq1, q2)
belongs to L2

0(Ω)× L2(Ω2) and it follows that ((ωg1|Ω1
, ωg2), (π̃g1|Ω1

, πg2 + π̃g1|Ω2
)) satisfies the equations

µ1

∫
Ω1

∇ωg1|Ω1
: ∇v1 −

∫
Ω1

π̃g1|Ω1
div(v1) + µ2

∫
Ω2

∇ωg2 : ∇v2 −
∫

Ω2

(πg2 + π̃g1|Ω2
)div(v2) = 0, ∀(v1, v2) ∈ W,∫

Ω1

q1div(ωg1|Ω1
) +

∫
Ω2

q2div(ωg2) = 0, ∀(q1, q2) ∈ Q.
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We conclude that ((ωg1|Ω1
, ωg2), (π̃g1|Ω1

, πg2 + π̃g1|Ω2
)) is solution of a Stokes problem similar to (20) but with no external

force and, thus, is the zero of W ×Q. Then, the first equation in (28) becomes∫
Γ

(wg1 − w
g
2) · v2 = 0, ∀v2 ∈ W̃2,

where
W̃2 = {v ∈W2; div(v) = 0}.

Besides, wg1|Γ and wg2|Γ belongs to the space

WΓ = {v ∈ H1/2
00 (Γ);

∫
Γ

v = 0},

because div(wg1|Ω1
) = 0 and div(wg2) = 0, and for all v2 in WΓ we can construct an extension of v2 in the whole space W̃2,

according to Bogovskii’s result in [Bog79]. In particular, taking v2 = wg1|Ω1
− wg2 in WΓ, it follows that∫

Γ

|wg1 − w
g
2 |2 = 0,

which means that wg1|Γ = wg2|Γ and the equality (25) is satisfied.

B Proofs of theorems related to the fluid-structure interaction problem

This appendix is dedicated to the proofs of all results stated in Subsection 4.2. In particular, we are interested in proving
the well-posedness of Problem (33), in showing the existence of the control g, in giving an explicit formula for the gradient
of Jk and, finally, in proving the equivalence between the minimization of Jk and the resolution of the fluid-structure
interaction problem.

We follow the order of the previous enumeration and start with the well-posedness of Problem (33). To study
Problem (33), we do a change in variable on the displacement dks , in order to work on a velocity-velocity formulation of
the fluid-structure problem. We introduce the velocity of the structure at time tk,

uks =
1

δt
(dks − dk−1

s ).

Because Problem (33) is linear, it is completely equivalent to the problem where dks has been replaced with δuks + dk−1
s :

find (uf , us) ∈Wu and p ∈ L2(Φtk(Ωf )) such that
a((uf , us), (vf , vs))− (B(vf , vs), p)L2(Φtk

(Ωf )) = L(vf , vs), ∀(vf , vs) ∈Wu,

(B(uf , us), q)L2(Φtk
(Ωf )) = 0, ∀q ∈ L2(Φtk(Ωf )),

(47)

where (·, ·)L2(Φtk
(Ωf )) denotes the scalar product in L2(Φtk(Ωf )) and a, L and B are defined by

a((uf , us), (vf , vs)) = 2µf

∫
Φtk

(Ωf )

D(uf ) : D(vf ) + 2δtµs

∫
Ωs

D(us) : D(vs)

+δtλs

∫
Ωs

div(us)div(vs), ∀(uf , us), (vf , fs) ∈Wu,
(48)

L(vf , vs) = −2µs

∫
Ωs

D(dk−1
s ) : D(vs)− λs

∫
Ωs

div(dk−1
s )div(vs) +

∫
Φtk

(Ωf )

ff · vf +

∫
Ωs

fs · vs, ∀(vf , vs) ∈Wu,

B(vf , vs) = div(vf ), ∀(vf , vs) ∈Wu.

This is a saddle-point problem, whose well-posedness can be proved using results from [Bre74]. Using the well-known
Cauchy-Schwartz and Korn inequalities, we show that the bilinear form a is continuous and coercive and that the linear
form L is continuous. The operator B is also linear and continuous. It remains to show that B is surjective form Wu to
L2(Φtk(Ωf )). Indeed, let q be in L2(Φtk(Ωf )). We can easily extend q in the whole space L2

0(Ω); it is sufficient to take

Epq =


q in Φtk(Ωf ),

−1

|Φtk(Ωs)|

∫
Φtk

(Ωf )

q in Φtk(Ωs).
(49)

Then, Epq belongs to L2
0(Ω) and Bogovskii’s result in [Bog79] implies that there exists ũ in H1

0 (Ω) such that div(ũ) = Epq.
Finally, we define vf = ũ|Φtk

(Ωf ) and vs = ũ|Φtk
(Ωs) and it follows that the couple (vf , vs◦Φ−1

tk
) belongs to Wu and satisfies

B(vf , vs ◦ Φ−1
tk

) = div(vf ) = q. This proves the surjectivity of the operator B. Thus, problem (47), and consequently
problem (33), are well-posed.

We now give a proof of Theorem 4.4.
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Proof of Theorem 4.4. We can construct two extension operators, still denoted Eu and Ep, that extend ukf into the

whole space (H1
0 (Ω))n (and stays divergence-free) and pkf into the whole space L2

0(Ω). Indeed, for the pressure, consider

the operator defined in (49). Then, the extension of the pressure Epp
k
f belongs to L2

0(Ω). Now, because the fluid is
incompressible, we have that

0 =

∫
Φtk

(Ωf )

div(ukf ) =

∫
Φtk

(Γ)

ukf · nkf .

Thus, using one more time Bogovskii’s result, there exists ũf in H1(Φtk(Ωs)) such that

div(ũf ) = 0, ũf |Φtk
(Γ) = ukf |Φtk

(Γ) and ũf |Φtk
(Γs) = 0.

Then, the extension of the fluid velocity, Euu
k
f , is defined such that

Euu
k
f =

{
ukf in Φtk(Ωf )

ũf in Φtk(Ωs)
.

The extension Euu
k
f belongs to (H1

0 (Ω))n, is divergence-free and satisfies the equality

Euu
k
f ◦ Φtk =

1

δt
(dks − dk−1

s ) on Γ.

Furthermore, σf (Euu
k
f , Epp

k
f ) belongs to (L2(Ω))n×n.

Now, we construct a suitable control g in (V ks )′ such that

〈g, v〉(V k
s )′,V k

s
=

∫
Φtk

(Ωs)

σf (Euu
k
f , Epp

k
f ) : ∇v +

〈
γnk

f
(σf (Euu

k
f , Epp

k
f )), v

〉
(Υk)′,Υk

, ∀v ∈ V ks , (50)

where nkf is the unit exterior normal vector to ∂Φtk(Ωf ). Using the Stokes formula (34) and the definition (50), it follows

that the extensions Euu
k
f and Epp

k
f satisfy∫

Ω

σf (Euu
k
f , Epp

k
f ) : ∇vf =

∫
Φtk

(Ωf )

fkf · vf |Φtk
(Ωf ) +

〈
g, vf |Φtk

(Ωs)

〉
(V k

s )′,V k
s

, ∀vf ∈ (H1
0 (Ω))n,∫

Ω

qdiv(Euu
k
f ) = 0, ∀q ∈ L2

0(Ω).

Similarly, using (34), (50) and the weak transmission condition (35), dks satisfies∫
Ωs

σs(d
k
s) : ∇vs =

∫
Ωs

fks · vs −
〈
g, vs ◦ Φ−1

tk

〉
(V k

s )′,V k
s

+

∫
Ωs

Πf (Euu
k
f ◦ Φtk , Epp

k
f ◦ Φtk) : ∇vs, ∀vs ∈ Vs.

Finally, we conclude that (Euu
k
f , Epp

k
f , d

k
s) is the solution of problem (37). Thus,

(ug, pg, dg) = (Euu
k
f , Epp

k
f , d

k
s)

and condition (38) is satisfied by construction. This proves the first part of the theorem.
Now, suppose that g is a control such that the equality (38) is satisfied. In particular, this implies that the couple

(ug|Φtk
(Ωf ), d

g) belongs to the space Wd. Let us define the following Hilbert space:

W̃u =
{

(vf , vs) ∈ (H1
0 (Ω))n × Vs; (vf ◦ Φtk)|Ωs

= vs
}
.

As the unique solution of problem (37), the triplet (ug, pg, dg) satisfies, in particular for all (vf , vs) in W̃u and for all q
in L2

0(Ω), the equations∫
Ω

σf (ug, pg) : ∇vf =

∫
Φtk

(Ωf )

ff · vf + 〈g, vf 〉(V k
s )′,V k

s
,∫

Ω

qdiv(ug) = 0,∫
Ωs

σs(d
g) : ∇vs =

∫
Ωs

fs · vs − 〈g, vf 〉(V k
s )′,V k

s
+

∫
Φtk

(Ωs)

σf (ug, pg) : ∇vf .

(51)

Then adding the first and the third equations in (51) and using the fact that ug is divergence-free, it follows that the
triplet (ug|Φtk

(Ωf ), p
g
|Φtk

(Ωf ), d
g) satisfies∫

Φtk
(Ωf )

σf (ug, pg) : ∇vf +

∫
Ωs

σs(d
g) : ∇vs =

∫
Φtk

(Ωf )

ff · vf +

∫
Ωs

fs · vs, ∀(vf , vs) ∈ W̃u,∫
Φtk

(Ωf )

qdiv(ug) = 0, ∀q ∈ L2
0(Ω).
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Moreover, for all (vf , vs) in Wu, we can extend vf in the whole space (H1
0 (Ω))n as we did it for ukf and we denote Euvf this

extension. Similarly, for all q in L2
0(Φtk(Ωf )), we extend q in the whole space L2

0(Ω) and we denote Epq this extension.

Then, the couple (Euvf , vs) belongs to W̃u, Epq belongs to L2
0(Ω) and, finally, the triplet (ug|Φtk

(Ωf ), p
g
|Φtk

(Ωf ), d
g) satisfies

the equations∫
Φtk

(Ωf )

σf (ug|Φtk
(Ωf ), p

g
|Φtk

(Ωf )) : ∇vf +

∫
Ωs

σs(d
g) : ∇vs =

∫
Φtk

(Ωf )

ff · vf +

∫
Ωs

fs · vs, ∀(vf , vs) ∈Wu,∫
Φtk

(Ωf )

qdiv(ug|Φtk
(Ωf )) = 0, ∀q ∈ L2(Φtk(Ωf )).

Thus, the triplet (ug|Φtk
(Ωf ), p

g
|Φtk

(Ωf ), d
g) is the unique solution of the initial fluid-structure problem (33), which proves

that we can recover the solution of the fluid-structure interaction problem from the solution of its smooth extension
formulation.

Since there exists at least one suitable control g for the smooth extension problem, we can hope to obtain it by a
minimization process on the function Jk. This is actually possible according to Theorem 4.5, which states that Jk is
differentiable with respect to g and gives a characterization of its gradient. Here, we prove this result.

Proof of Theorem 4.5. On the first hand, the differentiation of the Lagrangian function Lk, defined in (40), with respect
to u, p, d and g follows the same process that the one explained for the Laplace and Stokes transmission problems. Here,
we only give the expressions of these different derivatives:〈

Lk
∂u
, δu

〉
H−1(Ω),H1

0 (Ω)

=

∫
Φtk

(Ωf )

σf (λf , π) : ∇δu− 2µf

∫
Φtk

(Ωs)

D(νs ◦ Φ−1
tk

) : D(δu)

+

∫
Γ

(u ◦ Φtk −
1

δt
(d− dk−1

d )) · (δu ◦ Φtk), ∀δu ∈ (H1
0 (Ω))n,

〈
Lk
∂p
, δp

〉
L2(Ω),L2(Ω)

= −
∫

Ω

δpdiv(λf ) +

∫
Ωs

δpdiv(νs ◦ Φ−1
tk

), ∀δp ∈ L2
0(Ω),〈

Lk
∂d
, δd

〉
V ′s ,Vs

=

∫
Ωs

σs(νs) : ∇δd− 1

δt

∫
Γ

(u ◦ Φtk −
1

δt
(d− dk−1

s )) · δd, ∀δd ∈ Vs,〈
Lk
∂g
, δg

〉
V ′′s,k,V

′
s,k

=
〈
δg, νs ◦ Φ−1

tk
− λf |Φtk

(Ωs)

〉
(V k

s )′,V k
s

, ∀δg ∈ V ′s,k.

They enable us, in particular, to recover the adjoint equations, written in (41). Problem (41) consists in a linear elasticity
problem and a Stokes problem, whose well-posedness derives from the same arguments that we already used. We denote
by (νg, λg, πg) its unique solution.

On the other hand, the differentiability of Jk relies on the same arguments that the ones used in the proof of
Theorem 2.3 and the fact that the transformation Φtk is sufficiently regular. Then, replacing (u, p, d) in the Lagrangian
function (40), by the solution (ug, pg, dg) of the smooth extension problem (37), the Lagrangian (40) reduces to

Lk(g, (ug, pg, dg), (λf , π, νs)) = Jk(g), ∀g ∈ (V ks )′.

Differentiating with respect to g using the chain rule and replacing the triplet (λf , π, νs) by the solution (λg, πg, νg) of
the adjoint problem (41), the gradient of Jk is finally given by,

〈∇Jk(g), δg〉(V k
s )′′,(V k

s )′ =
〈
δg, νgk ◦ Φ−1

tk
− λgk|Φtk

(Ωs)

〉
(V k

s )′,V k
s

, ∀δg ∈ (V ks )′.

With this explicit expression of the gradient of Jk, we can now state the equivalence between the research of a suitable
control such that the solution of the smooth extension problem (37) satisfies the condition (38) and the minimization of
Jk. This is the result of Theorem 4.6, that we prove in the following.

Proof of Theorem 4.6. On the one hand, if for a given g in (V ks )′, the solution (ug, pg, dg) of the smooth extension
problem (37) satisfies the condition (38), then

Jk(g) = 0.

On the other hand, suppose that g is a minimizer of Jk. Then, the adjoints λg and νg satisfy the equality,〈
δg, νg ◦ Φ−1

tk
− λg|Φtk

(Ωs)

〉
(V k

s )′,V k
s

= 0, ∀δg ∈ (V ks )′,
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which corresponds to the fact that g is a zero for the gradient of Jk. It follows, in particular, that,

νg ◦ Φ−1
tk

= λg|Φtk
(Ωs), (52)

and the couple (λg|Φtk
(Ωf ), ν

g) belongs to the space Wu. Yet, λg, πg and νg satisfy the adjoint equations in (41). In

particular, for all (vf , vs) in Ŵu and for all q in L2
0(Ω), where

Ŵu =
{

(vf , vs) ∈ (H1
0 (Ω))n × Vs; div(vf ) = 0, (vf ◦ Φtk)|Ωs

= vs
}
,

these equations write

µs

∫
Ωs

σs(ν
g) : ∇vs =

1

δt

∫
Γ

(ug ◦ Φtk −
1

δt
(dg − dk−1

s )) · vs,

2µf

∫
Φtk

(Ωf )

D(λg) : D(vf )−
∫

Ω

πgdiv(vf ) = −
∫

Γ

(ug ◦ Φtk −
1

δt
(dg − dk−1

s )) · vs,∫
Φtk

(Ωf )

qdiv(λg) = 0,

(53)

Multiplying the first equation in (53) by δt and summing it with the second one, we obtain that,

2µf

∫
Φtk

(Ωf )

D(λg|Φtk
(Ωf )) : D(vf ) + δtµs

∫
Ωs

σs(ν
g) : ∇vs = 0, ∀(vf , vs) ∈ Ŵu. (54)

Moreover, let (vf , vs) be in Wu. We can construct an extension of vf in the whole space (H1
0 (Ω))n, denoted Euvf , such

that div(Euvf ) = 0 and ((Euvf ) ◦ Φtk)|Γ = vs|Γ, as we did it in the proof of Theorem 4.4. Then, the couple (Euvf , vs)

belongs to Ŵu and it follows that the couple (λg|Φtk
(Ωf ), ν

g) satisfies the equation

2µf

∫
Φtk

(Ωf )

D(λg|Φtk
(Ωf )) : D(vf ) + δtµs

∫
Ωs

σs(ν
g) : ∇vs = 0, ∀(vf , vs) ∈Wu.

We conclude that (λg|Φtk
(Ωf ), ν

g) is solution of the problem{
find (λ, ν) in Wu such that,
a((λ, ν), (vf , vs)) = 0, ∀(vf , vs) ∈Wu,

(55)

where the bilinear continuous and coercive form a has been defined in (48), which admits the zero of Wu as unique
solution. Then, the first equation in (41) becomes∫

Γ

(
ug ◦ Φtk −

1

δt
(dg − dk−1

s )

)
· vs = 0, ∀vs ∈ Vs.

Moreover, for all vs in (H
1/2
00 (Γ))n we can construct an extension of vs in the whole space Vs. In particular, taking vs =

(ug ◦ Φtk)|Γ −
1

δt
(dg|Γ − d

k−1
s|Γ ), it follows that

∫
Γ

|(ug ◦ Φtk)|Γ −
1

δt
(dg|Γ − d

k−1
s|Γ )|2 = 0,

which means that (ug ◦ Φtk)|Γ =
1

δt
(dg|Γ − d

k−1
s|Γ ) and the equality (38) is satisfied.
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[MB02] Nicolas Moës and Ted Belytschko. X-fem, de nouvelles frontières pour les éléments finis. Revue Européenne
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