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Recently observed quantum corrections to the conductivity of SnO2 films suggest the existence of extended
states and thus raise the question about the presence and mechanism of a metal-insulator transition. We present a
comparative analysis of negative magnetoresistance, observed in fields up to 52 T on SnO2 polycrystalline films,
performed in the frame of both hopping conduction model and quantum corrections to the conductivity model,
with the purpose to establish the ranges of agreement between these models and the obtained data. Our results
suggest that the observed negative magnetoresistance of SnO2 films is due to corrections stemming from the
weak localization and electron-electron interaction.
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I. INTRODUCTION

Tin dioxide is a wide band-gap n-type semiconductor
(Eg = 3.6 eV)1–4 in which the conductivity may vary with
doping and structure particularities over several orders of
magnitude.5 The coexistence of electronic conduction and
optical transparency makes this material prospective for var-
ious applications where other transparent conducting oxides
(TCO), like TiO2, In2O3, and so on are used. The electrical
properties of SnO2 films depend on the sizes of grains6–8 and
the height of the potential barrier between them,7,9 doping and
film thickness,10,11 concentration of oxygen vacancies,12–14

the presence of ionized impurities,15,16 and so on the degree
of disorder. At the same time, the nature of electronic
conduction in SnO2 remains a mystery. It is known that
both doping12,15,17,18 and disorder7,15 can significantly change
the conductivity. Different charge transport mechanisms,
varying from activation10,19 and hopping10,11,20,21 conductivity
to tunneling7,10,22 and diffusive transport23,24 were reported
for thin SnO2 films. The origins of charge carriers in
unintentionally doped SnO2 structures are associated with
oxygen vacancies25 and shallow donors from tin interstitials26

or with inevitable contaminations (namely with hydrogen).27,28

Although this question remains controversial, we know that
the degree of disorder and the sizes of granules in SnO2

films are linked with charge transport mechanisms. Activation
and hopping transport are observed in SnO2 films with small
sizes (∼5–10 nm) of granules.19,21 For the films with larger
sizes (∼100 nm) and higher perfection of granules, the
depletion layer at the boundaries as well as the barrier height
between the granules is believed to diminish.7,15 In Ref. 21 the
resistivity decrease and the change of functional dependence
of resistance on temperature after the UV irradiation were
interpreted as being due to the oxygen desorption from
the surface and the decrease of barrier heights. In Ref. 16
it was suggested that the increase of temperature in the
sample fabrication procedure leads to the formation of oxygen
vacancies in the bulk and on the surface of crystallites (this
can happen both because of the diffusion of the atoms of a
doping element and by the surface reduction). During this

process, two electrons left by each oxygen atom2 contribute to
conductivity. The observed insulating (hopping conductivity)
and metallic (diffusive transport) behaviors in the samples of
doped and undoped SnO2 thin films, characterized by different
degrees of disorder, suggest the existence of a metal-insulator
(MI) transition. In a recent paper24 Serin et al. reported an
observation of a doping-induced MI transition together with
quantum correction to conductivity due to electron-electron
interactions (EEI) in thin polycrystalline SnO2 films. Earlier
it was reported about the band-gap narrowing due to EEI
in degenerate SnO2 films.29 All these facts lead us to the
supposition of an important role of EEI in the conduction
mechanisms that take place in tin dioxide structures.

The present paper has the following structure. After a brief
discussion of the ranges of applicability of the theory of
quantum corrections to the conductivity and its implications
to SnO2 films, we present the experimental details. Next, we
discuss the temperature dependences of resistivity and mag-
netoresistance separately for strongly and weakly localized
regimes. The last section, devoted to the data obtained in pulsed
magnetic fields, is followed by conclusions. In the Appendix
we consider the problem of effective dimensionality of our
films with respect to quantum corrections to conductivity.

A. Quantum corrections to conductivity

Usually, EEI in disordered structures is accompanied by
a weak localization (WL) effect at low temperatures.30,31

An evidence of two-dimensional weak localization in poly-
crystalline SnO2 films was reported in Ref. 23, the electron
dephasing being due to electron-electron interaction with
small energy transfer. An explanation of the experimental
data, which are based on EEI and WL models, requires the
existence of extended states at low temperatures. It is known
that in quasi-two-dimensional systems both WL and EEI lead
to logarithmic temperature dependence of resistance in the
absence of magnetic field.30,31 In a weak magnetic field WL
manifests itself in negative magnetoresistance (NMR). This
is caused by destruction of quantum interference of electrons
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in the Cooper channel,30–32 the characteristic values of the
magnetic field being

Bφ = h̄

4eDτφ

, Btr = h̄

4eDτ
, (1)

where h̄ is the Plank’s constant, e is the electron’s charge, D

is the diffusion coefficient, τφ is the electron’s dephasing time,
and τ is the elastic scattering time. Bφ is the characteristic
value of the magnetic field at which magnetic flux through the
closed loop, formed by coherent electron waves, is equal to the
flux quantum �0. Btr is the so-called “transport field”, which
can also be defined as the field at which 2πBtrl

2 = �0 (where l

is the mean free path). The quantum correction to conductivity
stemming from EEI also depends on the applied magnetic
field, the characteristic value of which is Bint = πT

eD
(for the

Cooper channel) and ωcτ > 1 (for the diffusion channel; ωc

being the cyclotron frequency).33 Thus, EEI manifests itself
in magnetoresistance at higher magnetic fields than the WL
does. Generally, the theory of WL is applicable for weakly
disordered materials with kF l � 1 (kF is the Fermi wave
vector), although there are some extensions of this theory on
the so-called weak insulator regime.34–36 The small parameters
in the theory of corrections to single-particle density of states
(DOS), originating from EEI, are T τ � 1 (this is also the
criterion of validity for the diffusion approximation) and
κ/pF � 1 (κ being the inverted screening length).33 In Ref. 24
the values of kF l, calculated for the samples of SnO2 films
doped with Sb, were found to be slightly less than unity,
thus suggesting the proximity of these samples to the MI
transition. Nevertheless, the theory of quantum corrections
to conductivity due to EEI was used for the interpretation
of data obtained for these samples. What happens in the
vicinity of the MI transition (at kF l ≈ 1) is not clear, but it
is commonly believed that the particularity in the DOS at the
Fermi level, predicted by Altshuler and Aronov, transforms
into the Coulomb gap37 when the system becomes an insulator
and hopping transport takes place.38 In this paper we focus on
the temperature dependences of resistance and magnetic field
dependences of conductivity and perform an analysis of the
experimental data using the same ideas as in Refs. 39–42 with
the purpose to establish the ranges of agreement between the
theories of quantum corrections to conductivity and the data
obtained for our polycrystalline SnO2 films.

II. EXPERIMENTAL DETAILS

The samples of SnO2 polycrystalline films were fabricated
following a three-stage procedure:43 (a) formation (on either
Al2O3 or Si/SiO2 substrates) of a polymer network containing
Sn particles, the cations of Sn being introduced by means of
ion-exchange sorption

2[C5H5O2(ONO2)2(COOH)]n + Sn2+(CH3COO)2

= [[C5H5O2(ONO2)2(COO)]2Sn2+]n+2n(CH3COOH).

(2)

(b) Gas transport of tin chloride vapor [as a result of the heating
of the tin chloride hydrate (SnCl2.2H2O)] on the substrates
with previously deposited Sn-containing networks. After the
deposition of tin chloride on the substrate, it was decomposed

to the tin (II) oxide during the thermohydrolysis. (c) During
the subsequent heat treatment in air at temperature 823 K,
SnO was transformed to SnO2. As a result, we have obtained
porous films of SnO2 which almost completely reproduced
the morphology of a polymeric precursor. Electron diffraction
results confirmed the polycrystallinity (type cassiterite) of
obtained films, the thickness of whole structures being found
to be of the order of 200 nm.

In this paper we report the results of low-temperature
studies performed on the SnO2 polycrystalline thin films in
both static and pulsed magnetic fields. Low values of electron
mobility (μ ≈ 300 cm2/Vs) and diffusion coefficient (D ≈
1.8 · 10−2 m2/s), estimated for our samples (see Sec. III B),
exclude the Shubnikov–de Haas oscillations from one side, and
demand very high magnetic fields to achieve classically strong
magnetic fields conditions (ωcτ > 1), where the corrections
in diffusion channel can be observed, from the other side.
Moreover, the asymptotics of magnetoresistance in high
magnetic field for interacting electrons appears when44 ωcτ �
h̄/(εF τφ) (εF is the Fermi energy). Thus, pulsed magnetic fields
provide us the possibility of a thorough and full study of this
asymptotic. We have performed measurements of temperature
and magnetic field dependences of resistance (MR) and
conductivity in both static (up to 8 T) and pulsed magnetic
fields (up to 52 T). The measurements were performed using
the standard four-probe technique.

III. DISCUSSION

Figure 1 shows the temperature dependence of resistance,
measured at zero magnetic field and normalized to its value at
T = 300 K. From the inset in Figs. 1 and 2 , one can see that
the conductivity varies logarithmically in a temperature range
T = 2–10 K (the units of the x axis in the inset of Fig. 1 are

FIG. 1. (Color online) Temperature dependence of normalized
resistance, measured in zero magnetic field on a SnO2 polycrystalline
thin film. Inset shows the conductivity of the same sample as a
function of kBT τ/h̄ in magnetic field B = 10 T [G0 = e2/(2π 2h̄),
kB - is the Boltzmann constant], red solid line being the fitting result
of Eq. (5); see discussion in the text.
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FIG. 2. (Color online) Temperature dependences of resistance,
measured at different fixed values of applied magnetic field. One
can see that the curves form two groups according the transverse or
longitudinal configuration of the films surface and magnetic field. In
both configurations electric current was perpendicular to the applied
magnetic field.

dimensionless kBT τ/h̄). This weak logarithmic temperature
dependence can be a sign of WL or EEI corrections in a quasi-
two-dimensional system [if the dephasing length Lφ > t and
LT = √

(Dh̄/(kBT )) > t ,33 t being the thickness of a film;
see Appendix for details]. A way to distinguish them, is to
analyze the MR and temperature dependences of resistance in
a nonzero magnetic field. As it was noticed in the Introduction,
EEI manifests itself in MR in higher magnetic fields than the
WL does. Thus, applying a relatively small magnetic field and
measuring the temperature dependence of resistance, one can
destroy the WL effects without affecting the contribution from
the EEI. If the temperature dependence of resistance, measured
in the nonzero magnetic field, remains logarithmic, then EEI is
responsible for such behavior. As one can see from Fig. 2, the
temperature dependences of conductivity remain logarithmic
under the application of relatively small magnetic field (here,
less than 0.3 T). The inset in Fig. 1 shows that the temperature
dependence of conductivity remains logarithmic even in field
B = 10 T.

Nevertheless, as it was pointed out in Refs. 35 and 40 the
study of only the temperature dependence of resistance of
strongly disordered electronic systems is not sufficient to make
a solid conclusion about the charge transport mechanism. The
MR studies provide the additional possibility to distinguish
hopping conduction in strongly localized regime and quantum
corrections to conductivity in a weakly localized regime (or
in the regime of a weak insulator).34 We thus turn to the
discussion of magnetotransport results.

A. Magnetotransport

In Fig. 3 the magnetic field dependences of MR, measured
at several temperatures, are presented. One can see that MR is
negative in the full range of applied magnetic fields. Generally,
NMR can be observed both in the strongly and weakly
localized regimes.

FIG. 3. (Color online) Magnetic field dependences of magnetore-
sistance measured at different temperatures. Inset shows the same
curves at lower values of magnetic fields.

1. Strongly localized regime

In the first regime all single-particle states are localized and
the electric transport takes place by means of hopping between
those localized states.38,45–48 In this case NMR is related to the
presence of the underbarrier scattering of hopping electrons
by intermediate hopping sites and to interference between
different hopping trajectories.47,48 As a result, NMR exhibits
linear dependence on the magnetic field (at intermediate values
of magnetic fields) with a saturation at high fields45

Bsat = �0

2πR
3/2
h ξ 1/2

, (3)

where Rh is the hopping length, ξ is the localization length,
and �0 is the elementary magnetic flux.

Another mechanism of magnetoresistance in the strongly
localized regime is related to the magnetic field induced
shrinkage of the localized wave functions.38 This mechanism
leads to positive magnetoresistance (PMR). Thus, both NMR
and PMR can be observed in this regime, providing the
possibility of a minimum in the magnetic field dependence
of magnetoresistance (at some value of magnetic field Bmin).
As it was shown in Refs. 45 and 49 in three-dimensional (3D)
semiconductors the NMR is suppressed when the temperature
decreases, after the crossover from Mott-type hopping (at
higher temperatures) to Efros-Shklovskii (ES) hopping over
the states within the Coulomb gap, the values of Bmin

decreasing with temperature. At the same time, the amplitude
of NMR increases with temperature decrease for the Mott-type
hopping and decreases for the Coulomb gap hopping.45 As
one can see from Fig. 3, the amplitude of NMR measured on
our SnO2 sample increases with temperature decrease, thus
excluding the ES hopping over the states within the Coulomb
gap. To verify the presence of Mott-type hopping, one could, in
principle, determine the temperature dependences of Bsat(T )
and Bmin(T ) and compare them with those predicted in Ref. 45
(Bsat ∝ T 1/2, Bmin ∝ T 7/6). Unfortunately our data provide no
possibility to make decisive conclusions on the temperature
dependence of these parameters.
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FIG. 4. (Color online) Magnetic field dependences of resistance
obtained at different temperatures (the same data as in Fig. 3). Straight
solid lines show the ranges where ln(R) ∝ √

B. The inset shows
temperature dependence of the slopes of these lines in accordance
with Ref. 41.

Another possible way to verify the presence of hopping
mechanism is to perform analysis similar to that of Ref. 41. Ac-
cording to Refs. 50 and 51, magnetic field effectively increases
the localization length (ξ ), and hence one observes NMR. In
this case one assumes that the main effect of the magnetic
field is to change the localization length without appreciably
changing the DOS, the magnetic field dependence of resistance
being41


ln[R(B)] ∝ T −1/α
√

B, (4)

where α is the characteristic exponent (α = 4 Mott’s law;
α = 2 Efros and Shklovskii’s law). Following this analysis,
Fig. 4 shows the magnetic field dependences of resistance in
logarithmic scale, plotted as a function of

√
B for different

temperatures. One can see that the behavior of the regions
where ln[R(B)] ∝ √

B is completely different from that
reported in Ref. 41: these regions shrink with the decrease
of temperature and a nonlinear behavior becomes more and
more pronounced. Moreover, the temperature dependence of
the slopes of the straight lines in Fig. 4 does not produce
T −1/2 behavior [it goes as if α = 68 in Eq. (4)]. These results,
together with a weak temperature dependence of resistance
(see Fig. 1) suggest either some particularities not accounted
in the model of NMR in the strongly localized regime, or
realization of weakly localized regime where the theory of
quantum corrections to conductivity (WL and EEI) should be
applicable.

2. Weakly localized regime

Let us now turn to the discussion of the weakly localized
regime. As it was already mentioned, the temperature depen-
dence of conductance is very weak and exhibits logarithmic
behavior at low temperatures (Fig. 1). Such logarithmic
behavior can be a sign of both two-dimensional (2D) WL and
2D EEI corrections to conductivity.30 To verify which effect is
responsible for the temperature dependence of conductivity we

use the fact that EEI manifests itself in magnetoconductance
in higher magnetic fields than the WL does (Bφ < Bint).39,40

From Fig. 2, one can see that the temperature dependences
of conductance, obtained at different fixed values of magnetic
fields, remain logarithmic up to the values of 0.3 T. At higher
values of magnetic fields, we observed some changes in the
slope of the curves in coordinates σ (T ) vs ln(T ). Thus, the
total correction to the conductivity can be written as a sum of
the WL and EEI contributions

σ (T ) = σD + δσWL(T ) + δσEEI(T ) = σD + λG0ln

(
T τ

h̄

)
,

(5)

where σD is the Drude conductivity, G0 = e2

2π2h̄
, τ is the elastic

scattering time, and30,52,53

λ = p + 1 + 3

(
1 − 1 + γ2

γ2
ln(1 + γ2)

)
, (6)

where p is an exponent in the temperature dependence of
dephasing time τφ ∝ T −p, γ2 = −Fσ

0
1+Fσ

0
is the Landau’s Fermi-

liquid amplitude, and Fσ
0 is the interaction constant in the

triplet channel.54 In magnetic fields B � Btr (Btr ≈ 0.3 T for
our samples) the WL contribution to the quantum correction
to conductivity is suppressed [p must be omitted in Eq. (6)],
thus providing a possibility to determine the value of λ in
Eq. (5), which refers to EEI in the diffusion channel. We have
found Fσ

0 = −0.2 and γ2 = 0.3 by fitting the data at B =
10 T (see inset in Fig. 1) for the sample under study. Using
the following relation between Fσ

0 and the gas parameter of a
system rs

54

Fσ
0 → 1

2π

rs√
2 − r2

s

ln

[√
2 + √

2 − r2
s√

2 − √
2 − r2

s

]
, (7)

we have obtained rs = 0.6. Thus, the temperature dependences
of conductivity suggest that the corrections stemming from
EEI are important and, then should also contribute to the
field dependences of conductivity. In Fig. 5 the magnetic field
dependences of conductivity are presented. Solid lines in Fig. 5
are the fitting results of the expression55


σ (B)

G0
= α

[
�

(
1

2
+ Bφ

B

)
− �

(
1

2
+ Btr

B

)
− ln

(
τ

τφ

)]
,

(8)

which describes the magnetic field dependence of the quantum
correction to conductivity due to WL, to the experimental
data. In Eq. (8) G0 = e2/(2π2h̄), α is a parameter in the
renormalization group equation (α = 1 for the orthogonal and
α = 0 for the unitary symmetries of disordered Hamiltonian),
�(x) is the digamma function, Bφ = h̄/(4eDτφ) and Btr =
h̄/(4eDτ ) are the characteristic values of the magnetic field
defined by Eq. (1), and τφ is the electron dephasing time. From
the fitting results one can calculate the temperature dependence
of dephasing length Lφ(T ) = √

Dτφ and electron dephasing
time τφ(T ) (see inset in Fig. 5) which give information about
the dominant dephasing mechanism. In the fitting procedure
we have used α and Bφ as the fitting parameters, Btr being
fixed constant at 0.34 T.56,57 As one can see from the
Inset in Fig. 5, Lφ(T ) ∝ T −1/2 (τφ ∝ T −1). This temperature
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FIG. 5. (Color online) Magnetic field dependences of normal-
ized magnetoconductance [G0 = e2/(2π 2h̄)], measured at several
temperatures. Black solid lines are the fitting results obtained with
Eq. (8). Inset shows the temperature dependence of dephasing length
Lφ(T ), extracted from the fitting results. Thus obtained values of Lφ

justify the quasi-two-dimensional behavior of the films with respect
to quantum corrections to conductivity.

dependence of dephasing length is a sign of electron-electron
scattering with small energy transfer in quasi-two-dimensional
systems.30

As it was pointed out in Ref. 40, for the systems character-
ized by kF l < 2 it is difficult to identify reliably the mechanism
of conductivity considering only its temperature dependence.
Above we have already considered the possibilities of in-
terpretation of the magnetic field dependences of resistance
in the frame of hopping conduction and weak localization
mechanisms. We now turn to the discussion of data obtained
in high pulsed magnetic fields and look on how it can be
reconciled with the WL regime.

B. High magnetic fields

In Fig. 6 the magnetic field dependences of magnetoconduc-
tance are presented in the whole range of the applied magnetic
field. One can see that in high magnetic fields, the field
dependencies of magnetoconductance resemble those derived
theoretically in Refs. 42 and 58. When these data are presented
in coordinates 
σ/G0 vs ln(B/Bφ), the curves obtained at
different temperatures overlap (similar results were reported
in Ref. 23). Black solid lines in Fig. 6 are the extensions
of the fitting curves obtained with Eq. (8) to high magnetic
fields. One can see that these black curves do not capture
the behavior of magnetoconductance in a high magnetic field.
The red solid line in this Fig. 6 represents the asymptotic
behavior of magnetoconductance (for B � Btr), described by
the following expression42


σ WL(B)

G0
= −7.74

√
Btr

B
, (9)

where Btr = 0.34 T (see Sec. III A 2).

FIG. 6. (Color online) Magnetic field dependences of normal-
ized magnetoconductance [G0 = e2/(2π 2h̄)], measured at several
temperatures (the same data as in Figs. 3, 4, and 5). Black solid
lines are the extrapolation results of the curves presented in Fig. 5,
which correspond to the WL contribution [see also Eq. (8)]. Red solid
line represents the asymptotic behavior of magnetoconductance (at
B � Btr), described by Eq. (9).

Interestingly, these high-field data (B > 1 T) can also be
fitted with the expression, describing corrections which stem
from EEI in the Cooper channel,33 thus supporting the result
of Grochev and Novokshenov59 that the cooperon preserves
its diffusion propagator form in the particle-particle channel in
the entire range of classically strong magnetic fields (l < Rc,
Rc being the cyclotrone radius). However, we did not consider
the spatial and time nonlocality of the generalized diffusion

coefficient in the high-field ballistic regime (l >

√
h̄
eB

).59

Similarly to Eq. (5), one has for the magnetoconductivity

σxx(B) = σD
xx(B) + 
σ WL

xx (B) + 
σ EEI
xx (B), (10)

where

σD
xx(B) = σ0

1 + (ωcτ )2
, (11)

is the Drude conductivity in the presence of magnetic field, and
ωc = eB

m∗ is the cyclotron frequency; m∗ is the effective mass.
In high magnetic field, when B � kBT /(4eD) (B � Btr) and
the contribution from WL is suppressed [
σ WL

xx (B) = 0],


σ EEI
xx (B)

G0
= ln

[
1 + λ0ln(ε0τ )

1 + λ0ln
(

ε0τ

h

Btr
B

)
]

, (12)

for a 2D system.33 In Eq. (12) λ0 > 0 is the bare dimensionless
interaction constant, ε0 is the cutoff parameter (ε0 ≈ εF ), τ is
the elastic scattering time.

In Fig. 7 the same experimental curves as in Fig. 6 are
shown as a function of ( Bh

Btrε0τ
) together with the fitting results

of Eqs. (10) through (12) (at B > 1 T). The black solid line
represents the asymptotic behavior of magnetoconductance
(at B � Btr), described by Eq. (9). The blue solid line in
Fig. 7 is the extrapolation of the fitting result of Eq. (8)
(the same as presented in Fig. 6) and red solid line is the

165309-5



DAUZHENKA, KSENEVICH, BASHMAKOV, AND GALIBERT PHYSICAL REVIEW B 83, 165309 (2011)

FIG. 7. (Color online) Magnetic field dependences of nor-
malized magnetoconductance [G0 = e2/(2π 2h̄)], measured at sev-
eral temperatures (the same curves as in Fig. 6). Blue
solid line is the extrapolation of the fitting result of
Eq. (8), presented in Figs. 5 and 6, to the high field region. Red
solid line is the fitting result of Eq. (12) at B > 1 T. Black solid
line represents the asymptotic behavior of magnetoconductance (at
B � Btr), described by Eq. (9)

fitting result of Eq. (12) at B > 1 T. One can see that
Eq. (12) gives a satisfactory fitting result, the fitting parameters
λ0, ε0, τ taking the values 0.1, 59 meV and 3.6 · 10−14 s,
respectively. Using the following relation between kF and εF :
εF = (h̄kF )2/(2m∗), one obtains kF ≈ 5.1 · 108 m−1 (the value
of effective mass being m∗ ≈ 0.17me, as reported in Refs. 7
and 60). Using the estimated value of τ and taking m∗ ≈
0.17me, one obtains the value for charge carrier mobility μ ≈
300 cm2/(V s), which seems to be reasonable as ωcτ > 1 for
B > 26 T. Taking the Fermi velocity υF = (105 − 106)m/s,
we obtain kF l ≈ (1.9–19) and D = υ2

F τ/2 = (1.8–180) cm2/s.
Reasonable values of obtained parameters and fitting results
suggest that the samples we study are on the metallic side
of the MI transition and charge transport is of a diffusive
nature.

IV. CONCLUSION

In conclusion, we propose a possible explanation of
the observed changes in charge transport characteristics of
polycrystalline SnO2 quasi-2D films. First, we assume that
the disorder-driven MI transition takes place. In the frame
of self-consistent theory of Anderson localization,61 static
electronic conductivity of a system at T = 0 K turns to zero
when the Fermi energy εF → EC (or, the same, kF l ≈ 1),
where EC is a single-particle mobility edge37,62

E
(3D)
C ∝ m3(ρν2)2. (13)

In Eq. (13) ρ is the dimensionless concentration of scatter-
ing centers, corresponding to shallow donors in the conduction
band (ρ = Nia

3, Ni is the concentration of scattering centers,
a is the lattice constant), ν is the scattering potential (barrier

height). Thus, at some values of ρ and ν [ρ is sufficiently large
to provide charge carriers (formation of an impurity band);
ν is sufficiently small to permit diffusion over the potential
barriers], one can reach the regime where εF > EC . This
regime would correspond to crystallites with high perfection
(ν are small) and presence of charge carriers in the conduction
band. When (ρν2)2 is sufficiently large (εF < EC), all single
particle states are localized and the charge transport takes place
by means of hopping.

Thus, we have shown that the theory of quantum cor-
rections to conductivity due to WL and EEI gives more or
less reasonable description of the observed charge transport
characteristics of SnO2 polycrystalline films on the metallic
side of the MI transition.

We recognize that without the results of Hall effect mea-
surements our analysis is incomplete. These results, which are
nontrivial for an inhomogeneous strongly disordered system,
will be reported in the next work.
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APPENDIX: EFFECTIVE DIMENSIONALITY WITH
RESPECT TO QUANTUM CORRECTIONS

TO CONDUCTIVITY

In this Appendix we address the question of effective
dimensionality of our samples with respect to quantum
corrections to conductivity. In the analysis of temperature
and magnetic field dependences of conductivity we have used
expressions suitable for 2D systems. To justify that our films
exhibit 2D-like behavior, we notice that t = 200 nm is the
whole thickness of obtained structures (i.e., it includes the
thicknesses of both Sn network and SnO2 film. Thus, there
should be a depletion layer at the interface between the Sn
network and SnO2 polycrystalline film, which makes the
effective thickness of conductive layer even thinner (teff < t)
and teff is less than the values of Lφ and LT . With the
purpose of a more rigorous justification of this question, we
present below the results of analysis, which was proposed by
Rosenbaum et al.63

If one compares the functions w(T ) = dln(σ )
dln(T ) , calculated

using expressions for quantum corrections to conductivity

σ3D(T ) = σD + G0 · l

Lφ(T )
, (A1)

and

σ2D(T ) = σD + λ · G0 · ln

(
T τ

h̄

)
, (A2)
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FIG. 8. (Color online) Magnetic field dependences of normal-
ized magnetoconductance [G0 = e2/(2π 2h̄)], measured at several
temperatures (the same curves as in Fig. 5). Black solid lines are
the fitting results obtained with Eq. (8). Red dashed lines are the
fitting results obtained with Eq. (A5). Inset (a) shows the temperature
dependence of dephasing length L

(3D)
φ (T ), extracted from the fitting

results. Inset (b) shows the temperature dependence of w(T ), red
solid line representing the mean value w = 0.043.

one will see that in the 3D case w3D(T ) has the following
temperature dependence

w3D(T ) ∼ p

2
· G0 · T p/2

σ
∼ T p/2, (A3)

where G0 = e2

2π2h̄
and p is the exponent in the temperature

dependence of dephasing time τφ ∝ T −p. At the same time,
in the 2D case the function w2D(T ) appears to be temperature
independent

w2D(T ) = λ · G0

σ
≈ λ

πkF l
, (A4)

where λ is a constant, which assembles both WL and EEI con-
tributions to the quantum correction [see Eq. (6)], kF and l have
their usual meaning. Taking λ = 1.6 (as determined from our
temperature and magnetic field dependences of conductivity)
and kF l ≈ 10 (as it was suggested in Sec. III B), one obtaines
w2D = 0.051. Figure 8(b) presents the temperature depen-
dence of w(T ), obtained from the experimental data in Fig. 1,
red solid line indicating the mean value of w(T ) = 0.043 ±
0.005, calculated for the whole set of data presented in this
inset.

One can see that, indeed, w(T ) exhibits no temperature
dependence and that the determined mean value is close to
λ/(πkF l), the difference may being due to a rough estimation
of kF l.

Let us now look what will give an attempt to fit our magne-
toconductance data with expressions for 3D WL. The main part
of Fig. 8 shows the field dependences of magnetoconductance
together with the fitting results. For comparison both 2D- and
3D-based fitting results are presented, black solid lines being

the fitting results using Eq. (8) and red dashed curves being
the results of fitting using the following expression:63


σ

G0
=

√
B

Btr
· 1

2
f3

(
B

Bφ

)
, (A5)

where

f3(x) ≈ 2 ·
√

2 + 1/x − 2 ·
√

1/x − 1

1/2 + 1/x

− 1

3/2 + 1/x
+ 1

48
(2.03 + 1/x)−3/2. (A6)

From Fig. 8 one can see that the 3D fitting curves at
higher temperatures (T = 4, 5, and 8 K), starting from some
value of magnetic field, grow faster and deviate from the
experimental data. At the same time, at T = 2 K, the 3D fitting
curve grows slower and also deviates from the experimental
data. As the temperature decreases, the disagreement between
3D fitting curves and experimental data becomes more and
more pronounced. This fact correlates with the values of
dephasing length L

(3D)
φ (T ), calculated from the fitting results

and presented in Fig. 8(a): at temperatures T < 5K , L
(3D)
φ >

200 nm (i.e., even analyzing the data in the 3D case, one
obtains the parameters suggesting a presence of crossover from
3D to the 2D behavior when the temperature decreases). The
problem of this probable dimensional crossover is beyond the
scope of the present work.

Finally, we present the comparison of the fitting results in
the form of [(
σ/G0)fit − (
σ/G0)exp]/(
σ/G0)exp versus
B dependence (Fig. 9). In Fig. 9 one can see that the
deviation of 2D fitting results generally does not exceed 10%
(filled symbols), while the deviation of 3D fitting results is
more pronounced and becomes larger in higher fields (empty
symbols).

FIG. 9. (Color online) Magnetic field dependences of the
[(
σ/G0)fit − (
σ/G0)exp]/(
σ/G0)exp for 3D fitting results (open
symbols) and 2D fitting results (filled symbols). One can see that 2D
fitting provides better agreement with experimental data.
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J. Electron. Mater. 39, 1152 (2010).
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