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The ubiquitousness of the Internet is changing the way users perform their tasks. There is a trend and 

sometimes a real need to be always connected. The client-server paradigm used in the Web greatly 

facilitates the consumption of contents. However, there are many situations where the user’s tasks in a 

Web application might be interrupted due to an unexpected loss of connectivity, temporary unavailability 

of Web servers, external events, etc., setting the browse to an offline state. The availability of local storage 

in Web browsers might suggest that users can perform some of their tasks when offline. Nonetheless, 

several technical constraints might prevent users from efficiently resuming their tasks over the Web after 

the offline period. In this paper we present a model-based approach called the Offline Model, which is 

aimed at supporting the execution of tasks interrupted by loss of connectivity based on user navigation 

with Web applications. Furthermore, we demonstrate how the Offline Model can be exploited to mitigate 

some of the disruptive effects of interruptions, due to offline navigation, on user tasks based on Web 

navigation in existent Web applications. The feasibility of such a model approach is demonstrated by a 

support tool and illustrated by a case study of navigation in a real scenario: the DBLP Web site. 

Key words: Interactive Applications, Interruptions, Web, Offline, Model-Based 
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1 Introduction  

Interruptions of users’ tasks over the Web are frequent but very few works have addressed this 

problem. For example, Tauscher & Greenberg [31] have examined patterns of Web site revisitation 

and they highlight strategies users employ to bookmark the address of Web sites. Revisitation patterns 

have been reviewed, following the work of Tauscher, over the last decade, such as in the work of 

Herder [15]. Indeed, users can rely on bookmarks to recall the addresses of Web sites they have been 

working on before being interrupted, but this is a minimal solution that does not automatically resume 

interrupted user tasks. Herder also presents a classification of the main categories of Web activities: 



  

search, work or academic and news are the major categories they found. Among these categories, 

Albertos presents several scenarios where the need to consider interruptions caused by the loss of 

connectivity is shown, such as in e-Learning scenarios [21] or in applications with distributed user 

interfaces[2]. Marco et al. [20] have also argued in a previous work that, if Web applications are meant 

to ensure continuity of services for the users, developers should not rely on Web technology alone, but 

design the application to mitigate the effect of interruptions caused by the loss of connectivity. 

However, interruptions might affect user tasks in different ways and might be caused by different 

sorts of events, for example unexpected loss of connectivity (e.g. caused by network failures), 

temporary unavailability of the Web server (e.g. for maintenance purposes), external events that 

prompt users to interrupt online tasks (e.g. mandatory turn off of electronic devices during 

takeoff/landing…), etc. 

As a result, and mainly as a consequence of the wide availability of devices supporting Web 

navigation on the move, users are exposed of been interrupted while navigating the Web. Therefore, 

users need mechanisms for continuing performing their tasks in offline scenarios. The approach of 

navigating the Web offline is similar to other scenarios where online tasks are supported in offline 

environments. An example of these scenarios is the task of listening to music over streaming services, 

such as Spotify [29] or Apple Music [4]. These applications offer the option of listening to music in a 

disconnected or offline mode. In a similar way, YouTube Red [44] allows to view streaming videos in 

disconnected mode. Dropbox [11] also allows to save locally resources for been using when offline. 

Our approach follows the same idea but dealing with the peculiarities of navigating the Web. 

In order to compare interruptions impact, we review the literature in this field and compare it in 

the light of interrupted work caused by loss of connectivity over the Web. Moreover, in order to 

overcome the drawbacks of currently available Web technology, we propose a model-based approach 

for making Web navigation resilient to interruptions. Below we propose a meta-model, referred to as 

the Offline Model (OM), which is aimed at supporting the design and development of Web navigation 

that is resilient to interruptions. The rest of the paper is organized as follows. Section 2 presents an 

overview of interruptions in the context of Web and navigational tasks. Section 3 describes the meta-

model for specifying offline navigation. Section 4 describes the process for the generation of the OM 

in the navigation view as well as the overall architecture and tool support for the execution of the OM. 

Section 5 presents a case study. Related work is presented in section 6. Finally, section 7 contains the 

discussion and conclusions of this work, as well as other aspects we are working on for the definition 

of all the application levels in order to make Web navigation resilient to interruptions. 

2 Overview of Interruptions in the Context of the Web 

This section presents the main concepts of this work. First, we define how interruptions are viewed in 

interactive applications, characterizing them according to several factors in order to present the key 

elements for this work. Then we compare the characteristics of interruptions with respect to the 

architecture of Web navigation. 



 

2.1  Interruptions in Interactive Applications 

There are many definitions for interruptions depending on the discipline [24]. In Human-Computer 

Interaction, an interruption is often defined as part of the coordination process that requires alternation 

in multitasking human activity. 

 

Figure 1 Anatomy of an interruption (adapted from Trafton et al. [2.32]). 

Based on this definition, figure 1 [33] shows a time line where a task, called the primary task, is 

interrupted by another task, called the secondary task. Tasks described by Czerwinski et al. [9] (e.g: 

daily schedule preparation, synch mobile device, check internet email, check and respond to email, 

matlab coding, create charts for meeting, edit word documents for meeting, …)  are an example of 

complex, long-lasting tasks susceptible of being interrupted. Therefore, a person is working on a 

primary task. Next, an alert for a secondary task occurs. Alerts come in different forms—for example, 

a phone ringing, a person coming into the room to ask the person a question, or a fire alarm. During the 

interruption lag, the person has a moment (or longer) before turning his or her attention to the 

interrupting task. Then the person starts the secondary task. After the secondary task is completed, the 

person must resume the primary task. During the resumption lag, the person must figure out what he or 

she was doing during the primary task and what to do next. Finally, the person resumes the primary 

task. From this task analysis and the real-world examples, it is clear that different aspects of the 

cognitive system are relevant to the study of interruptions and resumptions. First, executive control is 

very important for all interruption/resumption tasks. Second, upon completing the secondary task, the 

person’s main goal is to remember what task he or she was working on and what to do next (though in 

some real-world situations, new task demands occur or the environment may have changed so that 

significant re-planning may need to occur). Third, there may or may not be a link between the primary 

and secondary tasks. There are also means to aid remembering following these aspects of cognitive 

systems: people may or may not use some sort of cue in the environment to actively help them 

remember what they had been doing; and, in some situations (e.g., an emergency), cues may not have 

been thought about—there may be relatively different preparatory processes that occur. This 

characterization presents some important aspects worth highlighting: the existence of a task whose 

execution is stopped to execute another task, and the existence of periods or delays caused by the 

switch between tasks, known as lags. 

McFarlane [24] analyzes interruptions by means of a classification where eight main dimensions 

for the problem of human interruptions are identified, including the source of the interruption (internal 

or external to human activity), user characteristics, method of coordination used to handle an 

interruption (i.e. immediate, negotiate, mediated or scheduled), meaning of the interruption (e.g. 

reminder, warning, etc), representation of the interruption in the system, channel of conveyance (e.g. 

visual, auditory, etc.), changes in the activity caused by interruptions and their effects. 



  

Another factor identified by Adamczyk [1] is the moment when the interruption occurs. It may 

affect user task outcomes. Adamczyk’s results show that it is necessary to identify the moments that 

are susceptible to being affected by interruptions in order to analyze the best way to deal with 

interruptions and their effects on the task. 

Most of the research on interruptions has been done by conducting empirical studies with users, 

either under controlled conditions (i.e. usability labs) or in work environments. Current knowledge 

[32] suggests the following strategies for reducing the disruptive effects of interruptions: 

Human training: it has been shown that trained users can recover from interrupted work by 

rehearsing and/or by learning how to use environmental clues. 

 Design guidelines may help to produce user interfaces that could reduce the effects of 

interruptions; for example, specifying where to place visual clues to help users to resume 

from interrupted tasks. 

 Specialized tool support, such as GroupBar [9], can help people to save and retrieve 

applications and window management setups when switching tasks. 

2.2  User Interaction with Web Applications 

The basic user interaction over the Web implies a request for a Web page and/or a service from a Web 

server (either by using a bookmark, by clicking on existing links, by typing the URI (Universal 

Resource Identification) or by using a search engine). If everything works properly, the server 

responds with the requested information. This kind of information/request communication (as shown 

in figure 2) between the client and the server is repeated until the users have finished their tasks. In this 

process, a proxy may act as an intermediary between the client and the Web server. This proxy can 

provide several functionalities, such us cache proxy or Web proxy, among others. In the browser the 

users see contents such as an HTML file displayed as a single Web page. Nonetheless, Web pages are 

quite often a composition of several contents that are stored in individual files on the server side. 

Indeed, access to the information available on the Web is subject to the inner client-server architecture 

and the possibility of navigating the information space, which is articulated in three levels [42], as 

depicted in figure 3. The domain level of the application represents the data model, which is usually 

managed by a database system or a set of semi-structured documents available on the Web server. The 

hypertext level represents a non-sequential relationship between the different units of information that 

make up the application. The presentation level defines the interface with its graphical representation 

and the distribution of the different elements that constitute it.  

It is interesting to note that the local cache on browsers allows the storage on the client side of 

most recent contents accessed by the users. Therefore, some user interaction with Web contents might 

occur both with online and offline contents. But it is worthy of mention that currently available cache 

technologies only store contents with no explicit representation for those tasks users are engaged in. 



 

 
Figure 2 Overview of interaction flow between the user and Web applications through the Web browser, local cache, proxy and 

the Web server. 

 

Figure 3 Web application modelling levels. 



  

 
Figure 4 Web application levels in online and offline scenarios. 

To illustrate how interruptions affect Web applications, figure 4 depicts the main levels in Web 

applications, presented in figure 3, and their characterization in online and offline scenarios. This 

characterization explains why elements at each level of the Web application may not be available 

during the connection interruption, when the site is offline. For example, at the hypertext level, it can 

be shown that when the site is online, all the nodes or Web pages are available, allowing normal 

navigation between them through the hypertext links available in the application. This is because the 

data structures that support those information units, described in the domain level of the application, 

are available. It should be noted that the mapping between levels, navigation mapping in this case, 

establishes the association between the elements at the domain level with the hypertext level. 

Similarly, through the mapping between levels, each element at the presentation level is available for 

each element at the hypertext level. 

However, in the offline scenario depicted in figure 4, it can be seen that there are elements that are 

unavailable in some levels. These are depicted in grey and in an attenuated form. At the hypertext level 

there are non-available nodes because during the interruption some of the elements at the domain level 

of the application are not available for the Web application. In the same way, and according to the 

mapping between the corresponding levels, there are elements at the presentation level that cannot be 

visualized, either partially or totally. That means that there will be Web pages that, in the presence of 

interruptions, can be navigated normally, but others that cannot be navigated at all, while other Web 

pages which can only be navigated partially. 



 

Available elements will depend on several factors. Due to the complexity of Web applications and 

the diverse nature of the tasks that can be performed, we cannot leave to chance the available elements. 

Moreover, the availability or unavailability of those elements would depend on the requirements 

identified by the software engineers or Web site designers. However, in certain situations, the 

particular execution for each instance for the task performed by users through the Web browser would 

also have to be taken into account, and the actions performed by these users. 

 

Figure 5 Offline support in interactive tasks. 

2.3  Interruptions and the Execution of User Tasks in Web Applications 

An analysis of the offline support for interactive tasks, as seen figure 5, shows how a task is executed 

with, and without, interruptions. When the task is executed without interruptions, the user can perform 

the task continuously; the task can be executed without any breaks or stops. On the other hand, when 

the task is performed with interruptions, this affects the way it is carried out. It has to be considered 

that there are two periods during the interruption, called interruption lag and resumption lag. These 

periods are located at the beginning and at the end of the interruption, respectively. During these lags, 

tasks are susceptible to being suspended. Consequently, considering that the abscissa in figure 5 

represents the time from when the task starts, tasks affected by interruptions will take longer 

depending on the lags that affect them. 

 



  

Support Characteristics 

Group 1:  

None 

The task cannot continue its normal execution due to the interruption. While the interruption 

occurs, the task is suspended, continuing with the execution once the interruption ends. 

Group 2: 

Full  

The task can continue its normal execution during the interruption. It is not affected by it. 

Group 3: 

Partial 

The task can continue the execution during the interruption, but only partially. As a result, part of 

the execution takes place during the interruption and the other part is executed once the 

interruption ends. 

Table 1 Offline support groups in Web applications. 

A task may belong to one of the three groups presented above (table 1) depending on different 

circumstances. This classification does not only depend on the task itself. There are several factors that 

influence the task execution during the interruption, especially the availability of necessary resources 

to perform all the stages of the task. As a result, some tasks may belong to different groups depending 

on that availability. There will be tasks that, given their nature, belong to Group 1. Other tasks, 

however, could belong to any of the three groups depending on the scenario. Depending on the 

available elements on each of the Web application levels, when the interruption occurs the task that is 

being executed will or will not be able to be performed. As a result, for a Web application, based on 

the available elements in each of the three levels and its mapping functions, the offline groups’ support 

may vary depending on the particular execution. 

2.4  Aspects Affecting Navigational Tasks of Web Sites 

In view of the set of main categories in Web activities [15] and the analysis made on interruptions and 

the execution of user tasks in Web applications, user tasks over the Web will reveal that the disruptive 

effect of interruptions depends on several aspects, including:  

• Availability of contents when online or offline. Contents such as video streaming are only 

accessible online, but other types of contents (such as html pages and images) can be stored 

in the local cache. The availability of contents is thus determinant to know whether (or not) 

users can pursue their tasks.  

• How the browser informs users about changes in connection modes. To decide if they can 

carry on with tasks users must know which contents are available. Visual clues provided by 

changes in the Web page can help users to determine if they can navigate contents in the 

local cache and/or access the necessary contents.  

• Actions undertaken to mitigate effects of interruptions. Before an interruption caused by loss 

of connectivity occurs, it is possible to download contents related to the user’s tasks in case 

they could be useful in the future, so that if users get disconnected, they can pursue their 

tasks using contents previously downloaded by the browser. Restoring the state where users 

left tasks can help them to complete interrupted work.  

Also, we can summarize that the activities carried out involve Creating, Retrieving and Updating or 

Deleting information on the Web. When dealing with interruptions we can establish two groups 

depending on the implications when the task is interrupted: 

• Group Storage: when retrieving information from the Web it has to be stored in order to be 

available when the task is interrupted. It does not need to synchronize user interaction with 



 

the system after the interruption. This group uses mainly two mechanisms to retrieve 

information: 

o Through the URI, as the core of the hypertext information systems. It uses mainly 

static pages. 

o Entering queries to interact with service-oriented interactive systems. This approach 

uses mainly forms to interact with users. 

• Group Update: Create, Update or Delete information on the Web. When one of these actions 

is taken when the task is interrupted, user interaction has to be stored in order to be updated 

when the task is resumed.  

These aspects and groups are at the core of strategies for developing tools for dealing with 

interrupted work on the Web. 

3 A Meta-Model for Specifying Offline Navigation 

In this section, we present a model-based approach called the Offline Model (OM), which is aimed at 

supporting the analysis of interrupted tasks based on user navigation with Web applications. This 

model provides mechanisms to describe states and operations that users can perform when the 

interruption begins and ends. It also provides adequate mechanisms so that users can keep performing 

their tasks in the presence of interruptions. 

We start by presenting the meta-model that contains all the concepts necessary to understand the 

behaviour of Web application in online and offline connection modes. This meta-model enables the 

instantiation of different models for the description of layers that make up Web applications: hypertext 

and presentation.  

For the presentation layer, the meta-model uses conceptual elements extracted from USIXML 

[19]. USIXML is a markup language based on XML that describes the user interface from various 

perspectives. It uses four abstraction levels as a framework for the development of user interfaces: 

tasks & concepts, abstract UI (AUI), specific UI (CUI) and final UI. When it comes to describing the 

user abstract UI, USIXML provides abstract interaction objects, in which four main facets have been 

identified: Input, Output, Navigation and Control. These facets will be used in offline meta-models as 

constructors for the characterization of the elements in the presentation level. 

3.1  Overview of the Offline Meta-Model 

The offline meta-model is depicted in figure 6. The concepts represented in it are the foundations for 

the description of the navigation in Web applications in the presence of interruptions. These concepts 

are introduced below. 

3.1.1  WebApplication 

The root element in the model is called the WebApplication and it has the information to characterize 

the Web site that is represented. This information contains: domain name, name and description. With 

this information the Web site is unequivocally identified. It also contains the boolean attribute named 



  

“captured”. It indicates if the Web Application has been processed and the site has been captured to be 

available when the Web application is in Offline Mode. 

3.1.2  Mode 

The attribute mode is of the type Mode, which is an enumeration. It represents the states of the OM in 

each phase of the interruption. The OM Mode has three values: online, offline and edition. The first 

two values are directly related to the interruptions occurring during task execution. Therefore, the OM 

Mode is offline when the task is between the beginning and the end of the interruption, and online the 

rest of the time. The edition mode represents the status when the model is being edited. It is used in 

edition tools. 

 

Figure 6 Offline meta-model. 

3.1.3  Scheme 

We have identified three schemes for Web sites that characterize the offline behaviour of Web 

applications: Fixed, Free and Incremental. These schemes enable us to classify Web sites when 

designing the Web application levels, according to the availability of the corresponding elements. In 

the Fixed scheme, available elements are set in design time. These elements are independent of further 

decisions or actions made by users. In the Free scheme, available elements completely depend on 

decisions or actions made by users during the execution of the Web application. In this scheme, there 



 

is no fixed set of available elements before the Web application execution. Finally, the Incremental 

scheme is a mix between the previous schemes, Fixed and Free. In the Incremental scheme there is a 

fixed set of available elements, but user actions and decisions may add or remove elements from other 

sets of variable elements, such as the Free scheme. The main characteristics of these schemes are 

shown in table 2. 

 

Schema Available elements Initial elements 
Does it take into account user 

actions? 

Fixed Fixed Yes No 

Free Variable No Yes 

Incremental Fixed + Variable Yes Yes 

Table 2 Schemes for the characterization of offline Web applications. 

3.1.4  Abstract Node 

The Abstract node is a Composite pattern in which two kinds of elements are used: Nodes and 

Elements (see below). 

3.1.5  Node 

The Abstract Node enables the definition of the relationship between related entities. One of the main 

characteristics in Web applications is that they allow navigation between a type of their elements 

called Web pages. Consequently, when designing the OM we define a Node as a Web page within the 

Web application. The information needed to characterize a Node in the OM is its URI and a Name. 

The name is needed to identify the Node within the OM. 

The Composite attribute indicates if the node represents a composite node. When it is set to true, it 

supports the creation of composite nodes within the model. A composite node contains nodes which 

share a navigational structure. Nodes contained in a composite node inherit relationships from their 

parents. They are used to improve models readability. In some cases, e.g. due to space constraints, only 

the composite node is detailed in the model although the contained set of nodes could be expanded. 

At the same time, a node is defined with a type with the following values: NoCache, PreCache and 

Default. Therefore, the OM allows the definition of Node availability or unavailability during OM 

execution. As a result, we can establish that: a NoCache Node will never be available in the Offline 

Mode; a PreCache Node will always be available in Offline Mode; and a Default Node will be 

available in Offline Mode depending on the execution of the OM, for instance, when the user performs 

some actions or takes decisions.  

Within the set of Nodes, it is mandatory that a node with the Initial attribute set to true exists in the 

entire Web site as well as for each composite node. Initial nodes are considered the entry or starting 

point within the model at two levels: the entire Web site level (for the high level node) and composite 

level (for nodes within a composite). This constraint is detailed in section 3.3. 

Navigation between nodes is defined in the OM by means of the Navigation class. This class 

enables navigation between nodes. It allows classification of navigation depending on the navigation 

type and the OM Mode. As a result, Normal navigation allows navigation between nodes regardless of 



  

the mode. On the other hand, Online and Offline navigation only enable navigation between nodes in 

the homonymous OM mode. 

It is worth pointing out that node type and Navigation class are founded on the first aspect we have 

detected that affects navigational tasks of Web sites: the availability of contents when the user is online 

or offline. 

3.1.6  Element 

The abstract Node may also contain components of the Element type. These components describe 

elements within a Node. As a restriction, an Element cannot be directly inside an Abstract Node; it will 

always be inside a Node. 

Each Element has one or more facets. These facets identify particular functions that the element 

may carry out in the physical world. In the OM 4 facets that have been previously described in 

UsiXML [19] are defined: Input, Output, Control and Navigation. Each facet is described as follows: 

• Input facet: the element accepts user inputs. 

• Output facet: the element offers outputs for users. 

• Control facet: the element performs system functions. 

• Navigational facet: the element activates a transition between Nodes. 

At the same time, each facet is characterized by four attributes that typify the described element. 

They are described as follows: 

• EnabledOnline: it specifies if the element is enabled or if it allows interaction with users 

when the OM is in Online Mode. 

• EnabledOffline: it specifies if the element is enabled or if it allows interaction with users 

when the OM is in Offline Mode. 

• Storage: the element requires local storage to be used when the OM is in Offline Mode. It is 

used when the element is a resource that is not directly included in the Node it belongs to 

and it is not a node. For example, a linked PDF document. This attribute is related with the 

group storage presented in Section 2.4. 

• Update: it defines an element that requires interaction when the OM is in Offline Mode, and 

also requires updating the Web application when the interruption ends, that is, when the OM 

returns to the Online Mode. This attribute is related with the group update presented in 

Section 2.4. 

3.2  Model’s Navigation View 

Within the OM, we can classify Web application elements according to the level they belong to (table 

3). Nodes in the OM are in the hypertext level because they describe information units that make up 

the application and their relationships. Elements in the OM are classified according to their facets. 

Therefore, Input, Output and Control facets belong to the presentation level. The Navigation facet 

belongs to the hypertext and presentation level. This is because this facet modifies the behaviour of 



 

both levels, since both navigation between elements of the model and the representation of the 

interface are affected.  

 

Element\Level Hypertext Presentation 

Node X  

Input Facet  X 

Output Facet  X 

Control Facet  X 

Navigation Facet X X 

Table 3 Characterization of the OM elements according to modelling levels. 

 

OM Component Description Representation 

Node 
Represents a node within the model. It includes the name of 

the node in the upper-left side of the node 

 

Initial Nodes with this icon are initial nodes 
 

NoCache Nodes with this icon are of type NoCache  

PreCache Nodes with this icon are of type PreCache  

Default Nodes with this icon are of type Default  

Cached 
Nodes with this icon have the attribute isAvailableOffline 

set to true  

Visited 
Nodes with this icon have the attribute Visited set to true, 

meaning the user has visited the node  

Current The node with this icon is been currently visited by the user 
 

Visitable 
The node with this icon could be visited from the current 

node  

Navigation enabled 

online/offline 

Navigation between the nodes connected with this arrow, in 

the arrow’s direction, is enable in both modes: online and 

offline 
 

Navigation enabled 

only online 

Navigation between the nodes connected with this arrow (in 

the arrow’s direction) is enable only in online mode  

Navigation enabled 

only offline 

Navigation between the nodes connected with this arrow (in 

the arrow’s direction) is enable only in offline mode  

Table 4 Graphic notation for the hypertext view in the OM. 

 



  

In the hypertext view, nodes, their characteristics and the relations between them are represented. 

For this representation, we use the notation depicted in table 4. This language enables us to graphically 

represent the concepts presented in the meta-model for the definition of models in line with our OM. 

3.3  Restriction Representation in the OM with Ecore / OCL 

There are restrictions that cannot be represented directly in the presented OM. That is the case, for 

example, of the requirement to always have an initial state in the OM, or that every element needs to 

have a parent node. As a consequence, we have enriched the meta-model with invariants defined in 

OCL to formally express all the restrictions of the OM. These invariants are presented as follows: 

IncrementalScheme: this invariant establishes whether the OM scheme is incremental. That implies 

the existence of a PreCache Node and the absence of a Default Node. The OCL expression for this 

invariant is shown below. 
Context OfflineModel 

invariant IncrementalScheme:  

scheme = Scheme::Incremental implies Node.existPreCacheNode() and Node.existDefaultNode(); 

FixedScheme: this invariant establishes whether the OM scheme is Fixed. That implies the existence 

of a PreCache node and the absence of a Default Node. The OCL expression for this invariant is 

shown below. 
Context OfflineModel 

invariant FixedScheme:  

scheme = Scheme::Fixed implies ((Node.existPreCacheNode() or Node.isInitial) and not Node.existDefaultNode()); 

FreeScheme: this invariant establishes whether the OM scheme is Free. That implies the absence of a 

PreCache Node and the existence of a Default Node. The OCL expression for this invariant is shown 

below. 
Context OfflineModel 

invariant FreeScheme:  

scheme = Scheme::Free implies not Node.existPreCacheNode() and Node.existDefaultNode(); 

NotNavigationElement: this invariant prevents a node from always having a navigational Element. 

The OCS expression for this invariant is shown below. 
Context Node 

invariant NotNavigationElement:  

self.children->exists(oclIsTypeOf(offlinemodel::Element)) and ( 

self.children->collect(oclAsType(offlinemodel::Element)).facets-> exists(oclIsTypeOf(offlinemodel::Normal)) 

or self.children->collect(oclAsType(offlinemodel::Element)).facets-> exists(oclIsTypeOf(offlinemodel::Online)) 

or self.children->collect(oclAsType(offlinemodel::Element)).facets-> exists(oclIsTypeOf(offlinemodel::Offline))); 

ForceParentNode: this invariant prevents an element from always having a parent Node. The OCL 

expression for this invariant is shown below. 
Context Node 

invariant ForceParentNode:  

not self.parent.oclIsUndefined(); 

NotConnectedPage: this invariant prevents a node from always having a valid connection with other 

node/s. The OCL expression for this invariant is shown below. 
Context Node 

invariant NotConnectedPage:  

self.existDestNavigationElement(); 



 

OnlyOneRoot: this invariant prevents the creation of more than one initial node at high level. The 

OCL expression for this invariant is shown below. 
Context WebApplication 

invariant OnlyOneRoot: 

self.rootNodes()->select(oclIsTypeOf(Node))->collect(oclAsType(Node))->select(isInitial)->size()=1; 

OnlyOneComposite: this invariant prevents the creation of more than one initial node in composite 

level model. The OCL expression for this invariant is shown below. 
Context Node 

invariant OnlyOneComposite: 

self.children->select(oclIsTypeOf(Node))->select(composite)->select(isInitial)->size()<2; 

3.4  Some OM Properties 

The scheme can be defined according to the Nodes that it comprises. Therefore, the Fixed Scheme is 

defined as follows: an OM follows a Fixed Scheme if there is at least one PreCache Node, and there is 

no Default Node. This scheme describes an OM where available Nodes for user interaction in Offline 

Mode are always the same during the whole execution of the OM. The Incremental Scheme is defined 

as an OM where there is at least one PreCache Node and also a Default Node. An OM with this 

scheme has a variable number of available Nodes during the execution of the OM. That number will 

vary according to the user interaction with the site, and it will be always greater or equal to the number 

of PreCache Nodes. Finally, an OM follows the Free Scheme if there is no Precache Node and there is 

at least one Default Node. These OMs have at least one Node that will be available in Offline Mode, 

the initial node, and the number of available nodes in Offline Mode will be limited to the number of 

nodes included in the OM. 

Table 5 shows the possible combination of values that define the scheme according to the 

existence or absence of the different types of Nodes in the OM. 

Default Pre Cache No Cache Scheme 
No No No There is no Model 

No No Yes Fixed 

No Yes No Fixed 

No Yes Yes Fixed 

Yes No No Free 

Yes No Yes Incremental 

Yes Yes No Incremental 

Yes Yes Yes Incremental 

Table 5 Scheme characterization according to the node types of the OM. 

4 OM Generation Process: Navigation View 

The main function of Web applications is to enable users to execute their tasks. Therefore, to generate 

the navigation view of the OM we start from a task model. Once the task model has been produced, the 

next step is to transform that model into our OM. To do this, we have decided to use an existent 

navigational model: SWC [42]. It is worth noting that the OM is not limited to extending SWC. It 

could be used to extend other navigational models thanks to the fact that the OM meta-model has 

common elements to describe navigation on Web applications. To generate the OM from another 



  

navigational model it is only necessary to define the transformation process, as was the case for the 

SWC model transformation process. 

The decision to extend SWC is based upon the following facts: 

• It allows the use of an existent navigational model with a formal base. 

• There is an existent method to transform a task model (CTT [25]), into the navigational model 

(SWC) [43]. 

• It allows the generalization of the transformation process, opening up the possibility of 

extending other existent navigational models, as well as other task models. Therefore, other 

navigational models will be able to use our OM. 

Consequently, the creation process of the OM navigation view is as follows: 

• The first artefact is the task model. It expresses task requirements according to user 

intentions. 

• The task model is transformed into a navigational model: in this case SWC. 

• Transformation of the navigational model into the OM. 

Once the transformation process from the task model to SWC has been defined, as we have 

already seen, we only need to define the process for the transformation from the navigational model 

(SWC) into the OM. That process is divided into two steps: 

1. Defining the mapping function between SWC concepts and the OM.  

2. Defining the method to perform the transformation between the two models. 

The actors involved in the transformation and/or generation process of the OM depend on the stage 

of the process model. They have to be set in order to fulfill the requirements or goals of the Web 

application. 

4.1  Mapping Function Between SWC and the OM 

The first step is the definition of a mapping function between the concepts of the OM’s meta-model 

and the navigation model, SWC. Consequently, the meta-model’s Nodes correspond to the states in 

SWC. Transitions in SWC correspond to the Navigation Facet in the meta-model. Thus, a mapping 

function, as presented in Tables 6, 7, 8, 9 and 10, that makes it possible to establish a correspondence 

between the two models can be established so that, ultimately, we can transform an SWC model into 

an OM. In our proposal this process is manually performed. 

At this point, it is worth highlighting that both SWC and the corresponding OM are conceptual 

models that allow the designing of user tasks for Web applications in the hypertext level. However, 

given the nature of Web applications and the OM, a second OM, called the Execution Offline Model 

(EOM), has been defined. The reason for this is the existence of states or dynamic nodes whose results 

depend on every instance of the Model. Therefore, conceptual models show the static design of the 

Web. The execution model shows the interaction between the user and the Web application that, along 

with the conceptual design, will establish the state for each specific execution of the model. 



 

In the following tables we present the transformations between the elements of the conceptual 

SWC, the conceptual OM and the execution OM. Table 6 presents the transformation for the static, 

transient and dynamic states in the SWC model with their correspondent OM elements. 

 

Conceptual Models Execution Model 

SWC Offline Model Offline Model 

Online Offline 

Static state 

  

Static node 

  

Static node 

   
Default 

              
PreCache 

   
NoCache 

                  
  Visited   

 
    

                                                                           Current 

 
             

Transient state   
- - 

Dynamic state   Dynamic node   

 

Static node   

As many nodes as produced 

during the execution 

Table 6 Transformations between SWC and the OM: Static, Transient and Dynamic states. 

Table 7 presents the transformation for the external and initial states in the SWC model with their 

correspondent OM elements. 

 

Conceptual Models Execution Model 

SWC Offline Model Offline Model 

Online Offline 

    External state          External node       - 

    Initial                       Initial                      

Table 7 Transformations between SWC and the OM: External and Initial states. 

 



  

Table 8 represents the transformations for the composite states in the SWC model with their 

correspondent OM elements. 

 

Conceptual Models Execution Model 

SWC Offline Model Offline Model 

Online Offline 

Composite XOR-state 

 

Composite XOR-node 

 

Composite XOR-node 

 
Composite AND-state 

 

Composite AND-node 

 

Composite AND-node 

 

Table 8 Transformations between SWC and the OM: Composite states. 

Table 9 presents the transformation for the special states in the SWC model with their 

correspondent OM elements. 

 

Conceptual Models Execution Model 

SWC Offline Model Offline Model 

Online Offline 

Shallow history state 

 

History 

 

 
Last visited page becomes the 

current page 

Deep history state 

 

- - 

End state 

 

Delete Model on Runtime 

 
 

Table 9. Transformations between SWC and the OM: special states. 

Finally, table 10 presents the transformation for the transitions in the SWC model with their 

correspondent OM elements. 

4.2 Transformation Method Between SWC and the OM 

In order to carry out the transformations between SWC and the OM models, two phases have been 

defined. In the first phase, the SWC conceptual model is transformed into the OM. For this stage, five 

steps are defined: 

• Step 1: OM node generation and their transitions: composite states (XOR and AND) and 

static states remain unchanged. Dynamic states are transformed into the OM Dynamic 



 

Nodes. User and Realization transitions remain unchanged among the existing nodes. Initial 

states remain unchanged. 

• Step 2: Temporary state elimination: temporary states are deleted, maintaining existent 

transitions and their initial states. 

• Step 3: Transition adjustment on deleted states: execution and user transitions that have 

dynamic or static states as a source, and the deleted temporary state as a target, are 

completed with the transitions of systems that have these states as a source, and the 

corresponding static/dynamic nodes as a target. Once the process has been performed, if a 

transition does not have a target, it is deleted from the model. 

• Step 4: Initial node adjustment: initial nodes that belong to deleted states are moved from the 

deleted states to the static/dynamic nodes. To carry out this process, the transition directions 

created in the previous steps are followed. The transitions without source and/or destiny are 

also deleted. The labels for the existing transitions remain. 

• Step 5: OM decoration with the attributes that characterize offline navigation: the elements 

that describe how the Web application is going to behave in the presence of interruptions are 

inserted in the OM. This step fully depends on designer decisions. The characterization 

allows the OM to support user tasks in the Web site. The behaviour will be different 

according designer’s decisions on this step. Available nodes (Web pages), elements, as well 

as connections, for offline use are decided here. The process consists on the decoration of the 

model with the elements presented in the tables of the previous section. 

 

Conceptual Models Execution Model 

SWC Offline Model Offline Model 

Online Offline 

User transition 

 
Completion transition 

 

Connection Connection 

Normal  

 
 

 
Offline  

 
 

 
Online  

 

 

 
 

System transition 

 
- - 

User defined label or stereotype 

<<Stereotype name>> 
<<Stereotype name>> <<Stereotype name>> 

Table 10 Transformations between SWC and the OM: transition. 



  

The second phase corresponds to the transformation of the conceptual OM into the execution OM. 

Four steps for this transformation have been defined: 

• Step 1: For each visit to a dynamic node, a static node is generated. 

• Step 2: This node inherits attributes from the dynamic node, with the exception of the initial 

attribute. The initial attribute is only inherited by the first generated node from the dynamic 

node. 

• Step 3: Each generated static node has the same transitions as the dynamic node that 

generated it. 

• Step 4: For each static generated node, the reflexive connections that have the same state as a 

source and target are transformed into connections to all the nodes generated from the source 

dynamic node. 

4.3 Availability of Nodes and Elements in the EOM 

The availability of nodes at runtime is determined depending of the type of node and the value of the 

attribute “Captured” within the OM. This attribute is set to true when the Web site has been saved for 

offline use. Table 11 represents the availability of nodes. 

 

Site Captured 
Node Type 

NoCache PreCache Default 

False Not Available Offline Not Available Offline Not Available Offline 

True Not Available Offline Available Offline Depends on User Actions 

Table 11 Availability of nodes at runtime within the EOM when offline. 

As can be seen in table 11, the node will be available offline when the node is of type “PreCache” 

and the site has been captured. When the node is of type “Default”, the availability of nodes depends 

on specific user actions over the nodes (Web pages). These actions could be implicit or explicit, 

depending of the concrete implementation of the tool support for the EOM. 

Another attribute to take into account is the attribute “isInitial”. When the node is set to Initial 

(isInitial=true), from the point of view of node availability, it behaves in the same way as if it were of 

type “PreCache”. 

The process of determining the availability of elements is similar as for nodes, but taking into 

account the facets of the element. An element will be available online/offline if the attribute 

EnabledOnline/EnabledOffline is set to true. Also, in offline mode the attribute “Captured” has to be 

taken into account for the Element availability (as for the case of nodes). 

4.4 Overall Architecture and Tool Support for Offline Model Execution 

To validate the proposal, a support tool that allows OM execution has been developed. As a result, the 

theoretical proposal is implemented, verifying if it is working according to the design of the OM. 

The tool is mainly composed by two pieces of software: the Offline Proxy (OP) that is in charge of 

injecting the OM and the Offline Engine (OE) in the original Web application and the Offline Engine. 



 

The figure 7 depicts the process of a client requesting a Web page and how the OM and the OE is 

injected in the original Web application by the OP. 

 

Figure 7 Overview of the interaction flow between the user and Web applications using the Offline Proxy. 

The OP is a piece of software located between the client and the Web server. It is a proxy that 

captures each client’s request to the Web server and sends a modified answer. This answer supports the 

OM in the client. The OP forwards the request from the client to the Web server and receives the 

answer from it. The answer contains the original HTML code and the resources of the Web application 

requested by the client. 

At this point the Offline Proxy is in charge of two tasks: modify the original HTML code 

according to the OM and the injection of the OE in the answer. The modification of the original HTML 

code follows the design of the OM. It is in charge of the enrichment of DOM elements and the 

inclusion of the OE library. This process includes the OM in the original Web application. 

The OE is a JavaScript and CSS library that is in charge of translating the conceptual OM into the 

Execution OM (EOM) for each execution of the Web application in the Client. It is also in charge of 

determining the availability of Nodes and Elements in the EOM. This process is automated and there is 

no need for manual intervention. The OE is located in the OP, but it is injected in the Web application 

for each request. The OE is loaded in the browser during the execution of the Web application on the 

client side. It is in charge of making the operations so that the Web application behaves according to 

the conceptual OM injected in the DOM by the OP for the Web application. To this end, the OE 



  

modifies the Web application levels and is in charge of managing the browser’s local cache to allow 

offline support.The operations the OE performs in the Web application depend on three factors: 

• Connection status: online and offline. 

• Conceptual OM design. 

• User actions over the Web application: navigation and decisions made over the OM. 

As mentioned in the previous section, the process of saving the Web for offline use and user 

actions over nodes depends on the concrete implementation of the tool support. For saving the Web for 

offline use there are many strategies: saving the Web site only the first time the user visits it, each time 

the user loads a Web page or on demand through explicit user actions (e.g. pressing a button on the 

Web application). User actions over nodes may also have different strategies, such as set each visited 

paged as available for offline use or on demand through explicit user actions. 

From the technologically point of view, we have used several technologies to support the 

functionality of the OM on this tool. In the server side, the OP has been implemented in PHP. In client 

side, the OE has been implemented in JavaScript and CSS. We use the jQuery library to hide/show 

elements and to enable/disable user interactions with them. To provide offline interaction we use 

HTML5 technologies: Offline Web Applications [34], Web storage [37] and File Api [41]. 

It is worthy of mention that in this section is presented an overview of the tool support. A complete 

description of the support tool, transformations on each Web application level and a complete analysis 

of how user actions over the Web application are managed will be presented in future work. 

5 Case Study 

Now that the OM and the process for its generation have been presented, we illustrate the process with 

a specific case study. Since, according to the process described above, the starting point is the user task 

to generate the OM, first the task is presented. The task consists of searching for information on the 

DBLP Web site [10]. Thus, once the task has been modelled by using the relevant transformations, the 

corresponding navigation and OM models will be obtained. For this case study the Web master is in 

charge of designing the task model, as well as generating the OM through the transformations defined 

previously. Other actors involved are the end users, who will generate the EOM for each execution 

over the Web application. 

But before presenting the case study it is important to understand how the conceptual design of the 

OM affects the visualization of offline contents. Therefore, in the next chapter the visualization of 

offline contents is illustrated in a simple Web site. 

5.1  Visualization of Offline Contents 

During OM execution there are transformations in the visualization of offline content that depend on 

the conceptual design of the OM. The design of the transformations over the visualization is beyond 

the scope of this work, but the mechanisms used for the visualization of offline content are presented. 

Next, we describe a simple scenario in which the OM has been used to modify the visualization for 

offline contents. 



 

The scenario to illustrate page layout transformations can be seen in figure 8. There, a Web 

application that uses video streaming is depicted. When the Web application is in online mode, the 

video is made visible to the user (highlighted with a dotted red line). But when the Web application is 

in offline mode, the video streaming is hidden. In the figure 8, within the offline mode (right) can be 

seen at the bottom of the image a blue arrow indicating that the offline information tool is available. 

This tool shows information about the transformations made on the Web application as well as 

available Web pages in offline mode. 

 

Figure 8 Offline content transformations: page layout with video element. 

 

Figure 9 Offline information tool: removed elements and offline navigation map. 

Transformations in visualization when offline allow users to focus on the actions that can be 

carried out within the offline task. In the figure 9 can be seen how when the user activates the offline 

information tool can be seen two new elements overlapped to the Web application: 1) Removed 

Elements: textual information about removed elements from the user interface; 2) Offline Navigation 

Map: graphical information is provided depicting a navigation map for the offline Web application. 



  

5.2  Task: Searching for Publications on DBLP Web Site 

The case study task consists of searching for publications by the authors that belong to a specific 

paper. This scenario is much more complicated than the one presented before and shows how the OE 

can be used in a wide range of Web applications. 

DBLP is an online computer science bibliographic reference server that allows searching for 

publications by authors. It enables searching by the name of the author and types of publications, as 

well as navigating through related authors. To perform the task of the case study, it is necessary to 

know the title of the paper and the name of its first author. The main goal of the task is to know all the 

publications by the author and the name of the co-authors of that paper. In order to perform this task, 

the user has to take several steps, as described below. 

First, the user goes to the main page of the DBLP site. Once there, the user introduces the name of 

the first author of the paper in the search box. The user sends the query to execute the search. The 

system returns the search results with the author's publications. Among these publications, the user can 

find the paper he or she was looking for. Next, the user collects the author information and browses the 

co-authors’ pages. For each author, the user repeats the same procedure until he or she has visited all 

the pages related to the author of the selected paper. In addition, the DBLP site allows navigation 

through other types of publications. This task is represented in figure 10 using CTT [25]. 

 

Figure 10 Case study task: searching for authors on DBLP site. 

The described task may belong to more than one of the offline support groups introduced in 

previous sections. For example, if it is performed in a scenario without any kind of offline interaction 

support, it will belong to the group with no offline support. This is because once the interruption 

occurs, the user cannot continue with the task. The user has to wait until the interruption ends to 

continue performing the task. In the same way, if the task is performed within a scenario that uses 

offline interaction with the Web site (for example, using the browser to locally save information 



 

related to all the authors that belong to the publication the user is looking up), then the user will be able 

to complete the task even if there is an interruption. In this case, the task belongs to the full offline 

support group. 

5.3  Interruption Characterization 

The presented task is exposed to interruptions that may affect its performance. To achieve navigation 

that is resilient to interruptions during task execution, firstly the key factors to design the OM have to 

be identified. 

One of the key points that has to be identified is the moment when the interruption occurs, as we 

have seen in previous sections. It is noteworthy that in our case study there are several critical points 

that could be affected by interruptions. These occur when there is an interaction with the server. As a 

result, they have to be identified in order to manage them properly when designing the OM, as 

depicted in figure 11, where critical points are inside a gray square. 

 

Figure 11 Searching for authors on DBLP site: critical points. 

It can be seen that these critical points correspond to user interaction with the Web server. 

Therefore, the information resulting from this interaction has to be properly taken into account to 

manage these states in a proper way. In this case, we chose a mechanism that allows the system to 

make this information available once the interruption occurs. Then, the user will be able to keep 

interacting with the site and perform the task normally. 

   

Regarding the dimensions that characterize interruptions and that have been presented in previous 

sections as important for designing our OM, here is a list of all of them: 



  

• Source of the interruption: the source of the interruption is the loss of connectivity with the 

DBLP platform. 

• Individual characteristics of the person: the use of the platform is not limited to specific users. 

Only a basic knowledge of navigating using a Web browser is needed. Therefore, any user 

who is able to browse the Web site without interruptions has to be able to browse it with 

interruptions. 

• Coordination methods: interruptions supported by the OM are both the expected and the 

unexpected. 

• Impact of the interruption: users have to be able to continue performing the task during the 

interruption in order to navigate through previous searches and visits made before the 

interruption. 

Once the interruption has been characterized, the next step for the generation of the OM is the 

generation of the navigation model. As we have already seen, the SWC model will be used. 

5.4  Navigation Model: SWC 

Based on the task model, we performed the transformation into the SWC model. Special attention has 

to be paid to server tasks, as depicted in figure 11. These tasks are transformed into temporary states in 

the SWC model. The tasks that produce results that are previously unknown, for example author pages 

that are going to be visited by the user, are represented by means of dynamic states. The other states 

represent pages that are visited by the user during the task. The existent transition between the states is 

also represented. In figure 12, the resulting SWC model for the task of searching for authors on the 

DBLP platform is depicted. 

 

Figure 12 SWC model for the case study. 

Based on the SWC model, we define the required transformations to obtain the corresponding OM. 

5.5  Conceptual OM Generation 

The following is a description of the five steps required to transform the SWC model for this case 

study into the OM. To illustrate the transformation process a set of figures is included. In these figures, 

the SWC model elements are shown in an attenuated form. On the other hand, the OM elements 

produced are shown in a regular way. 



 

Step 1: Generation of OM nodes and their transitions. In this step, the static and dynamic nodes 

from the homonymous SWC states are generated. As a result, the static nodes labeled “DBLP home” 

and “About” are generated. The composite states labeled “Navigation”, “Query by Author” and 

“Browse” are also generated. Dynamic states are transformed into dynamic nodes, obtaining as a result 

the dynamic nodes “List of publications” and “list of items in category”. User transitions are 

transformed into connections. The resulting model for this step is depicted in figure 13. 

 

Figure 13 Step 1 of the transformation SWC- OM for the case study. 

Step 2: Temporary state elimination. Temporary states are deleted, keeping existing transitions 

between them and initial states in order to operate with them later. Temporary states are depicted with 

dashed borders. The resulting model for this step is depicted in figure 14. 

 

Figure 14 Step 2 of the transformation SWC- OM for the case study. 

Step 3: Transition adjustment on deleted states. Transitions whose target is a deleted temporary 

state are joined to the transitions whose source is the deleted temporary state. In this way, transitions 

are joined, producing a unique transition. This is the case of the outgoing transitions of the node “List 

of publications” or “List of items in category”. The resulting model for this step is depicted in figure 

15. 



  

 

Figure 15 Step 3 of the transformation SWC- OM for the case study. 

Step 4: Initial node adjustment. Initial states are moved, when necessary, from the deleted 

temporary states in the Step 2, following the direction of the existing transitions between states. In this 

way, the nodes “List of publications” and “List of items in category” become initial states. Figure 15 

shows how these initial states belonged to deleted states and, following the corresponding direction, 

become part of the corresponding node. The resulting model for this step is depicted in figure 16. 

 

Figure 16 Step 4 of the transformation SWC- OM for the case study. 

Step 5: OM decoration with the attributes that characterize offline navigation. For this case 

study, the attribute precache is added to the dynamic states of the model. This step depends on the 

scheme the designer wants the model to follow, as well as the relevant decisions made for the 

behaviour of the OM according to its elements. The resulting model for this step is depicted in figure 

17. 

5.6  Generation of the Execution OM 

Based on the conceptual OM, the specific instances according to user navigation from the OM 

generated in the previous phase are generated. These instances correspond to the execution OM. The 

transformation between elements on both models is described in tables 6, 7, 8, 9 and 10. 

Once the transformation to the execution model has been performed, the peculiarity comes from 

the dynamic states. A priori, produced states are unknown. They depend on the specific execution of 



 

the model. In order to carry out the transformation between the conceptual OM and the execution OM, 

we consider that the user performs the following operations on the DBLP platform: the user visits the 

following pages: authors FAM, JAG, VP and MW. The user also visits the following categories: 

Conferences, Journals and Series. 

 

Figure 17 Conceptual OM for the case study. 

Based on the transformation rules between the conceptual OM and the execution OM with the 

instance described above, the execution OM depicted in figure 18 is produced. There we can see how 

dynamic nodes have been transformed into as many static nodes as there are executions performed 

over them. Furthermore, these static nodes have inherited the attributes from the dynamic node. In this 

case, all of them have inherited the ‘precache’ attribute. However, only the first generated static node 

has inherited the ‘initial’ state. 

 

Figure 18 Execution OM for an instance of the case study. 

With the execution model, the process for the generation of the OM described in the above 

sections has been completed. Thus, all the phases and steps to follow in a real case study have been 

illustrated, proving its feasibility: from a task model, a navigation model that has been transformed into 

the OM has been generated. 



  

5.7  Execution of the Offline Model Described in the Case Study 

In our case study using the DBLP site, transformations make links for publication details and parts of 

the Web application that are available or unavailable. To do this, the OE performs two operations: 

• When the Web application is in online mode, it is in charge of saving the necessary elements 

into local storage for later use. 

• When the Web application is in offline mode, it makes the necessary transformations in the 

Web application levels to enable the user to continue interaction with the parts of the Web 

applications that are available in the local cache. These transformations enable or disable 

links, so that the user cannot navigate through Web application parts that are not available 

for offline use. As a result, the user is not allowed to browse elements that are not available 

according to the designed conceptual OM and the actions carried out by the user. In addition, 

it prevents the user from receiving error pages that are not related to the task he or she is 

performing. 

To illustrate OE operation in the case study, the conceptual OM (figure 17) is executed in the 

developed tool to obtain the execution model detailed in the case study (figure 18). Figure 19 shows 

the result of the execution of the case study OM. It shows the execution of the Web application in both 

OM modes: online and offline. We can see parts of the publication list of the author of the case study 

in both modes. 

 

Figure 19 Transformations performed by the OE within the case study. 

At the top of figure 19, the Web application in Online Mode is depicted. In this mode, there was 

no transformation in the user interface. The user is viewing the results of the performed query. The OE 

does not perform any transformation. At the bottom of the figure 19, the same Web page but in Offline 

Mode is depicted. We can see how the links to the parts of the application that are not available in 



 

Offline Mode do not allow user interaction: they have been attenuated and the user cannot click on 

them. 

According to figure 18, in the execution of the case study the user visits some authors. These 

authors are the ones the user has visited during OM execution, that is, during the navigation with the 

Web application. The OE is in charge of saving the information associated to the navigation through 

the authors by using the mechanism available on the browser. As a result, links to those authors are 

available in the Web application in Offline Mode. However, for the rest of authors, those links are not 

available because the user has not visited them before. In figure 19, some of the authors that are not 

available due to the transformation performed by the OE are highlighted with a red square. For this 

purpose, links have been attenuated, not allowing the user to navigate through those authors. 

It is worth pointing out that without the use of the OE in the case study, it would not be possible to 

navigate through those authors in Offline Mode. In this mode, the user could only visit the last Web 

page they were visiting before the interruption, without the possibility of browsing the other pages. 

Through the use of the OE with the tool developed, it is possible to execute the conceptual OM, 

producing as a result the execution OM for the case study. Thus, our proposal has been validated in a 

real case study. It has to be emphasized that the use of the OE is not limited to the presented case 

study. It could be used on any Web site to support offline navigation. 

5.8 Remarks on Using the Offline Engine within Real Web Applications 

Using the OE does not have a major impact on the performance of the Web applications presented in 

this work, or on others that have been used. The OE affects Web applications in the following ways: 

• Adapting the user interface. This adaptation does not have any performance impact on the 

Web application. Modern browsers support the mechanism used. The OE modifies the 

presentation level by hiding or disabling elements within the Web application. 

• Storing information locally. At the moment of loading the Web application, users do not 

suffer any issue with the user experience in terms of loading time or application 

functionality. The process is performed in the background. Concerning the storage needed to 

store the Web application, browsers have mechanisms to manage this issue. They usually ask 

users to allow Web applications to use these features. 

Also, the adoption of the standards used in the development of the OE is broadly supported by the 

major vendors of mobile devices. Therefore, there are not any issues regarding the main functionality 

of the OE on these devices. 

As a final remark, and in view of the current trend of Web design, our approach fully supports all 

the functionality in nowadays Web applications in offline mode. It is usual that Web sites are presented 

in one Web page, without or minimizing navigation to other Web pages. Our approach supports 

anchors or on page links. It also supports the functionality and effects provided by JavaScript and CSS 

libraries. The only restriction is concerned with functionality that requires communication with the 

remote server and it is not related with navigation. As an example, AJAX functionality would not work 

in offline mode. 



  

6 Related Work  

The main contribution of this paper is a model-based approach that is aimed at helping users to 

perform their tasks, as far as possible, in an offline mode. For this purpose the offline model proposes 

to handle the information available in local cache. In order to understand the most noteworthy points 

of this contribution we summarize below the state of the art with respect to model-based approaches 

for the Web and technologies for supporting local cache management in Web clients.  

6.1  Model-based approaches for the Web 

In the last few years several model-based approaches have been proposed to deal with the increasing 

complexity of Web applications. Model-based approaches are sought as a suitable solution for 

describing the actual behaviour of applications. Each approach supports basic navigation constructors 

(based on nodes, anchors and links) but with the aim to provide different abstraction levels, to enrich 

navigation description, to support new Web applications’ requirements or focusing on some of the 

modelling dimensions. 

Some model-based approaches for the Web rely on UML extensions, such as WAE [8], a UML 

extension that employs stereotypes to describe parts of the application that are deployed on the client 

and/or the server side. Showing the separation of components in the client and/or server is an 

interesting view for distributed applications. In a similar way, Gómez [13] introduced the OO-H 

method as an extension of UML for the definition of Web interfaces, adding several constructors to 

characterize navigation in Web applications. Knapp [17] uses an approach based on UML state 

machines that systematically allows the integration of the business logic of the Web at hypertext level. 

Han [14] also uses State Charts to formally model navigation on Web applications. Knoch [18] 

proposes the use of UML-Based Web Engineering (UWE), a Web process where the levels of a Web 

application are modelled through UML diagrams with the aim of unifying all the processes of Web 

engineering.  

Some model-based approaches focus on domain-specific languages. For example, Ricca [26] 

proposes a method where the structure of Web sites is modelled and analyzed by means of graphs to 

obtain the evolution of individual Web pages and their links, highlighting the updates that can degrade 

the original structure. Syriani [30] shows how the formal Specification and Description Language 

(SDL) can be used to model the architecture of a Web system through elements such as hyperlinks, 

sending and receipt of information, and client-server communication. Robles [27] presents WebSpec 

diagrams, a Domain Specific Language (DSL) for the specification of the most important and relevant 

requirements of Web applications: those involving interaction and navigation. Ceri [6] presents 

WebML, a set of orthogonal models that allow the description of the data model, the navigational 

model or models (including different types of links), and the presentation model. In recent years, the 

Interaction Flow Modelling Language (IFML) has been presented. IFML allows expressing the 

content, user interaction and behaviour of the presentation level in applications of different domains, 

including Web applications. 

UML-based and DSL-based approaches are interesting alternatives but they might lack the 

appropriate level of formalization for describing fine-grained user interaction with the systems. For 



 

that reason, some authors have explored formal model notation based on State Charts, state machine 

and Petri nets.  

Winckler [42] presents State Web Charts (SWCs), a formal description technique based on State 

Charts for the description of Web navigation. The operation semantic of SWC defines that the content 

of active states in a configuration and their corresponding outgoing transitions are visible to the users. 

When a user selects a link, the corresponding transition is validated and the system changes the 

configuration to the target state returning the appropriate content to the user. For that purpose, he 

proposes elements that belong to four groups: states and pseudo-states, transitions (relations between 

states) and stereotypes (user defined label that allows designers to enrich the semantic of a state or a 

transition). Basic states can be associated to a container which is assumed in any target language for 

the implementation of the Web application. A static state refers to a container with a static set of 

objects, a static Web page. Transient states are needed when a single transition cannot determine the 

next state. They can be used to refer to server-side parts of Web applications, such as CGI and Java 

Servelts programs. Dynamic states represent content that is dynamically generated at runtime. Usually 

they are the result of a transient state process. External states represent information that is accessible 

through relationships (transitions) but are not part of the current design. 

Chen [7] presents a formal model in terms of a labelled transition system from a particular abstract 

description of navigation in a Web application, taking into account abstract aspects concerning the 

behaviour of Web browsers. Escolar et al. [28] address the issue of create applications able to work not 

only when connection is available but also when disconnected. To that end, they introduce a model-

based method for the development of connection-aware mobile Web applications using state-chart-

based navigation model and a specific notation to represent it. Andrews [3] uses Finite State Machines 

(FNS) to model the behaviour at the user level of Web applications regardless of their implementation. 

All these approaches help in different ways to build Web applications. Nonetheless, only a few are 

executable, so they cannot be used for testing the behaviour at run time. Moreover, they do not provide 

specific constructs that enable a description of an alternative behaviour for the application when an 

interruption occurs due to connectivity loss. Unfortunately, we found very little evidence of research in 

issues such as offline functionality [5]. Only the work by Escolar et al. [28] roughly addresses the issue 

of modelling offline Web applications but without taking into account the disruptive effects of task 

interruptions on interactive tasks over the Web. 

6.2 Web Technologies for Local Storage 

Previous research shows that client-side persistent objects can also support offline usage, as in a 

desktop application [12]. But most of the approaches for cache management rely on server-side 

technologies such as proxy and server-side templates. However, technologies such as Gears-monkey 

[16], HTML5 [36] and Web storage [37] make it possible to envisage new strategies for storing 

information from Web applications locally. Gears-monkey allows the injection of code into third-party 

Web sites that are visualized in browsers. Client-side scripts developed by users can thus be injected to 

support offline information management. Nonetheless, this solution is limited to a few platforms and 

cannot be executed on most of them, such as on mobile phones. Moreover, it requires experienced 

users to write the required scripts. There are also ad hoc solutions for specific scenarios. For example, 



  

McAllister [22] proposed an offline Web application using offline Web technologies to allow patients 

to save their readings offline without the need for network connection. 

As stated above, storing information locally can be achieved using Web storage. It introduces two 

mechanisms similar to HTTP session cookies for storing name-value pairs on the client side. The first 

is designed for scenarios where the user is carrying out a single transaction, but could carry out 

multiple transactions in different windows at the same time. The second storage mechanism is 

designed for storage that spans multiple windows. Despite the fact that Web storage is useful for 

storing pairs of keys and values, it does not provide in-order retrieval of keys, nor efficient searching 

over values or storage of duplicate values for a key. This technology could be used to store anything 

from user preferences or shopping cart information up to complex data structures, such as json objects 

or image files (e.g. using the base64 encoding). 

But there are ways to store and retrieve complex information structures locally. Web SQL 

Database [35] and Indexed Database API [38] allow the design of data schemas that are far more 

complex than simply using Web storage. These technologies allow using data queries and advanced 

mechanisms to manage the Application Domain Level of Web applications locally. But Web SQL is 

no longer in active maintenance. Therefore, it is recommended to use Indexed Database for advanced 

local databases. Indexed Database provides a concrete API to perform advanced key-value data 

management that is at the heart of most sophisticated query processors. It does so by using 

transactional databases to store keys and their correspondent values (one or more per key), and 

provides a means to store keys in a deterministic order. Furthermore, files can be also saved locally. 

The File API [41] allows the management of directories and files as in the operating system. 

The World Wide Web Consortium (W3C) has recently proposed to integrate local storage 

management into their recommendations [36]. Indeed, the candidate recommendation of HTML5 fully 

integrates functions for local cache management and offline work using the Offline Web Applications 

technology [34], which was completely neglected in previous versions. Using HTML5’s application 

Cache technology allows us to address the requirement of being always connected to use the Web. 

However, one of the main issues with the Application Cache proposed in HTML5 is that there is no 

underlying model. Advanced databases and the Offline Web Application technology are used in 

current applications to store complex data structures in offline environments, such as Microsoft Office 

365 mail Web application. 

Apart from the inexistence of a model to describe offline Web applications, building offline Web 

applications is not a solved problem. The W3C is still developing specifications for dealing with the 

problems related to offline navigation, among others, in offline Web applications. One of the last and 

more promising efforts is the definition of the Service Workers [39]. This specification describes a 

method that could be used to manage Web applications while offline in conjunction with the 

specifications presented above. 

7 Discussion, Conclusions and Future Work 

In this paper, we have presented the OM whose goal is to make navigation in Web applications 

resilient to interruptions. To that end, we have analyzed the way interruptions caused by the loss of 

connectivity affect user tasks performed through Web applications. As a result, a taxonomy for 



 

interruptions on Web applications has been defined. Based on that taxonomy, the aspects that affect 

navigational tasks for Web sites identified in our proposal have been inferred. Once those aspects have 

been established, and considering that we have not found any technique that supports those aspects 

through their constructors, we have defined a meta-model that contains the constructors for the 

definition of the OM. Also, we have designed a metamodel defined in MOF enriched with OCL 

restrictions, together with a model editor as an Eclipse plugin. The editor allows us to define offline 

models and validate their properties according to the designed meta-model. 

During this process, we have found some properties that characterize Web applications in the 

presence of interruptions. These properties are the scheme and the offline support, depending on the 

Web application and the task that is performed with the Web application. 

Once the OM has been completely characterized, and with the expertise gained through the 

previous process, a process for the design of applications whose navigation is resilient to interruptions 

has been defined. In this process, the task model is transformed into successive stages in the OM. This 

process is based on the transformation of the task model into a navigation model for its further 

transformation into the OM. SWC has been used as a navigation model and the transformation between 

SWC and the OM has been defined. To complete the process, two phases with their corresponding 

steps to complete the transformation process have been defined. Due to the particularities of navigation 

in Web applications, we have introduced conceptual models and an execution model for the OM. As a 

result, all the transformation process is completed because it is possible to obtain the execution OM for 

each specific execution of a task based on the conceptual OM. A case study illustrates this process. 

Finally, and as a validation for the OM, a tool for the execution of the OM in real Web 

applications has been developed. This tool, called OE, has been used within the case study. It allows 

the verification of the execution of the OM. 

In view of the work that has been done, even though the main contribution of this paper is the 

presentation of the meta-model for the generation of the OM, we can also list the following outcomes 

of the presented work: 

• Interruption dimension characterization for Web navigation. 

• Aspects that affect navigational tasks of Web sites for making Web navigation resilient to 

interruptions. 

• Meta-model to generate the OM. 

• Properties of Web navigation in the context of interruptions caused by the loss of 

connectivity. 

• A language for the description of Web applications in the hypertext level. 

• The transformation process from a navigation model, SWC, into the OM. 

• OM execution on real Web applications through the OE. 

At the moment of writing this publication, we are working on the definition of a language for 

modelling the presentation level. Some concepts, such us page layout and menu options have been 

introduced in this article. But, these issues and other important topics, such us working with Web 

forms or sessions management, will be fully addressed in the future. We are also preparing an article 



  

that describes in detail the developed tool (OE) for the execution of the OM that has been briefly 

introduced in this article. We will address some of the concepts presented here, such where and how 

saving the Web site for offline use or an analysis of user actions to set nodes for offline use. We have 

also conducted user testing with the developed prototypes to measure the outcomes of user tasks using 

the OM with the OE, whose results will be published in future publications. 
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