
HAL Id: hal-02145965
https://hal.science/hal-02145965

Submitted on 3 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A FORMAL ONTOLOGY FOR DESCRIBING
INTERACTIVE BEHAVIORS ON USER

INTERFACES
Thiago Rocha Silva, Jean-Luc Hak, Marco Winckler

To cite this version:
Thiago Rocha Silva, Jean-Luc Hak, Marco Winckler. A FORMAL ONTOLOGY FOR DESCRIBING
INTERACTIVE BEHAVIORS ON USER INTERFACES. International Journal of Semantic Com-
puting, 2017. �hal-02145965�

https://hal.science/hal-02145965
https://hal.archives-ouvertes.fr

1

A FORMAL ONTOLOGY FOR DESCRIBING INTERACTIVE BEHAVIORS ON

USER INTERFACES

THIAGO ROCHA SILVA

ICS-IRIT, Université Paul Sabatier

Toulouse, France

rocha@irit.fr

JEAN-LUC HAK

ICS-IRIT, Université Paul Sabatier

Toulouse, France

jean-luc.hak@irit.fr

MARCO WINCKLER

ICS-IRIT, Université Paul Sabatier

Toulouse, France

winckler@irit.fr

Received (Day Month Year)

Revised (Day Month Year)

Accepted (Day Month Year)

Nowadays many software development frameworks implement Behavior-Driven Development

(BDD) as a mean of automating the test of interactive systems under construction. Automated testing

helps to simulate user’s actions on the User Interface and therefore check if the system behaves

properly and in accordance to scenarios that describe functional requirements. However, tools

supporting BDD run tests on implemented User Interfaces and are a suitable alternative for assessing

functional requirements in later phases of the development process. However, even when BDD tests

can be written in early phases of the development process they hardly can be used with specifications

of User Interfaces such as prototypes. To address this problem, this paper proposes to raise the

abstraction level of both system interactive behaviors and User Interfaces by the means of a formal

ontology that is aimed at supporting test automation using BDD. The paper presents an ontology and

an ontology-based approach for automating the test of functional requirements of interactive systems.

We demonstrate the feasibility of this ontology-based approach to assess functional requirements in

prototypes and full-fledge applications through an illustrative case study of e-commerce applications

for buying flight tickets.

Keywords: Automated Requirements Assessment, Behavior-Driven Development, Ontological

Modeling, User Interfaces, Prototyping, Testing of Interactive Systems.

1. Introduction

Assessing interactive systems is an activity that requires a considerable amount of efforts

from development teams because it implies to assess systems features with respect to the

many possible data and system outputs that might occur when a user is interacting with the

system. Conducting this activity manually is a very time-consuming and error-prone task

due to the diversity of user scenarios and the many ways of testing data. Moreover, the

system behavior should pass acceptance testing, which is aimed to determine if the user’s

point of view about a feature is in accordance with the requirements previously specified.

Thus, the automation of tests for assessing the system behaviors becomes a convenient

choice, requiring the use of frameworks to simulate the user’s actions when interacting

with the system.

In recent years, there is an increasing interest both from academic and industrial

communities in Behavior Driven Development (BDD) [1] [2] [3] for supporting automated

acceptance testing of functional requirements. One of the strengths of BDD is to support

the specification of requirements in a comprehensive natural language format specification,

the so-called User Stories [4] that encompass testing Scenarios. With the help of external

frameworks, it is possible to automate the test of Scenarios directly on the User Interface

(UI). The execution of such executable requirements work as a “live documentation” that

inform developers about the status of the system with respect to clients requests set in the

acceptance test.

During the last seven years, we have been involved in the development of web

applications where we have observed certain patterns of low-level behaviors that are

recurrent when writing BDD Scenarios for testing functional requirements with the User

Interfaces (UI). Besides that, we could also observe that User Stories specified in natural

language often contain semantic inconsistencies. For example, it is not rare to find

Scenarios that specify an action such as a selection to be made in semantically inconsistent

widgets such as a Text Field. These observations motivated us to investigate the use of a

formal ontology for describing pre-defined behaviors that could be used to specify

Scenarios. On one hand the Ontology should act as a taxonomy for terms removing

ambiguities in the description. In the other hand, the Ontology would operate as a common

language that could be used to write tests that can be run on many artefacts used along the

development process of interactive systems.

In this paper, we introduce our ontological model for describing interactive behaviors

on UIs. The ontology aims to support testing automation of interactive systems specified

using a scenario-based approach, covering UI concepts in both presentation and dialog

aspects. For the presentation layer, we have modeled the semantics of several web and

mobile UI elements. For the dialog layer, we have modeled the semantics of User Stories

as a State Machine. Such models have allowed us to provide a semantically consistent

catalog of interactive behaviors that can be used for automating the test of UIs in different

levels of abstraction.

Results of our ontology validation are also presented by demonstration of its

correctness through a consistency checking. In addition, we describe an exploratory case

study that has been conducted for the flight tickets e-commerce domain. In this study, we

have used our ontology-based tools to support the assessment of evolutionary prototypes

and final UIs. In the following sections, we discuss the foundations for this work, how we

have built the ontological model to support the automated assessment of interactive

systems, followed by its validation. We conclude with a discussion and future works.

2. Foundations

2.1. Computational Ontologies and Related Works

Computational ontologies [5] come to play as a means to formalize the vocabulary and the

concepts used in User Stories, Scenarios and user’s behaviors. Without a common

agreement on the concepts and terms used it would be difficult to support the assessment

of user requirements. Some approaches have tried to define languages or at least a common

vocabulary for specifying UIs for interactive systems. Useful abstractions for describing

interactive systems include the components that compose the presentation of a User

Interface and the dialog parts that describe the system behavior.

The Camaleon Framework [6] treats the presentation and the dialog in three levels of

abstractions: Abstract, Concrete and Final User Interfaces. The idea is that as abstract user

interface component (such as a Container) could be refined to a more concrete

representation (such as a Window) that will ultimately feature a final implementation in a

target platform (e.g. MacOS or Windows). User Interface (UI) specifications include more

or less details according to the level of abstraction as shown in Figure 1. The UsiXML

(USer Interface eXtensible Markup Language) [7] implements the principles of the

Cameleon framework in a XML-compliant markup language featuring many dialects for

treating Character User Interfaces (CUIs), Graphical User Interfaces (GUIs), Auditory

User Interfaces, and Multimodal User Interfaces. UsiXML is a declarative language that

captures the essence of User Interface components. At a highest level of abstraction,

UsiXML describes concepts of widgets, controls, containers, modalities and interaction

techniques. UsiXML contain a few basic elements for describing the dialog part such as

the concept of events, conditions and actions. For that some authors have proposed to use

a notation based on statecharts called SWC (StateWebCharts) [9] to specify the UsiXML

dialog. The same authors [8] have demonstrated that, using SWC, it is possible to describe

the system behavior at different levels of abstraction using UsiXML.

As far as a common vocabulary is at a concern, the W3C published a glossary of

recurrent terms for presentation components called MBUI (Model-based User Interface)

[10]. For the dialog component, SWC [9] and SXCML (State Chart XML: State Machine

Notation for Control Abstraction) [11] offer a language based on the State Machine

concepts.

Fig. 1. The Cameleon Reference Framework (from [7])

2.2. User Stories

User Stories in Software Engineering was first proposed by Cohn [4] as a mean to formalize

artifacts for describing system’ features and their corresponding acceptance criteria. User

Stories are formatted to fulfill two main goals: (i) assure testability and non-ambiguous

descriptions and (ii) provide reuse of business scenarios. User Stories express concrete

examples of what should be tested to consider these features as “done”. Below we present

a template proposed by North [12] and Cohn [4]:

Title (one line describing the story)

Narrative:

As a [role]

I want [feature]

So that [benefit]

Acceptance Criteria: (presented as Scenarios)

Scenario 1: Title

Given [context]

 And [some more context]...

When [event]

Then [outcome]

 And [another outcome]...

Scenario 2: ...

A User Story contains a Title, a Narrative and a set of Scenarios representing the

Acceptance Criteria. The Title provides a general description of the story, making reference

to a feature that this story represents. The Narrative describes the role (played by a user),

the feature itself, and the benefits it will bring to the business and/or to the role. The

Acceptance Criteria are defined through a set of Scenarios defined with a Title and three

main clauses: “Given” provides the context, “When” describe events that trigger the

Scenario and “Then” shows the expected outcomes (that should be checked). Each clause

can include an “And” statement. Each statement in this representation is called Step.

In Behavior-Driven Development (BDD) [1], the user’s point of view about the system

is captured by User Stories. The BDD approach assumes that clients and teams can

communicate using this semi-structured natural language description, in a non-ambiguous

way. Following this assumption, we have defined a conceptual model to represent users’

functional requirements. A functional requirement defines statements of services that the

system should provide, how the system should react to particular inputs, and how the

system should behave in particular situations. Requirements should be expressed in a way

they can be reused to assess the system’s behavior.

Figure 2 presents the conceptual model of our approach. Requirements are expressed

as a set of User Stories (US) encompassing a Narrative and Acceptance Criteria.

Acceptance Criteria are presented as Scenarios composed by at least three main Steps

(“Given”, “When” and “Then”) that represent the expected system’ Behaviors. Behaviors

handle actions on Interaction Elements in the User Interface (UI) and include data using in

the test. These concepts and rules are defined as classes and axioms in the proposed

ontology presented hereafter.

3. Ontology Modeling

Our ontology for describing interactive systems is based on concepts borrowed from

different languages found in the literature. From Camaleon [6] and UsiXML [7] we borrow

concepts of abstract and concrete UIs. Presentation and definition of graphical components

come from W3C MBUI [10]. From W3C Web Ontology Language we get concepts for

graphical components (behavior and presentation aspects) commonly used to build web

and mobile applications, and also the textual representations used to describe how users

interact with those graphical components. SWC [8] inspire concepts used in the dialog.

The ontology has been modeled in Protégé 5.0. Figure 3 presents the classes of the

ontology and their properties divided in 4 wide groups: Platform Concepts, UI Concepts,

State Machine Concepts and Scenario-based Concepts. The first group defines the web and

mobile platforms covered by the ontology. The second one encompasses concepts allowing

modeling the UI. The classes Dialog, Presentation and Platform model the concept of a

Prototype. A Prototype is built for at least one Platform and is specified by no more than

one Dialog and one Presentation. The third group specifies the State Machine concepts. A

Dialog is described as a State Machine while a Presentation is composed by Interaction

Elements. Likewise, in the fourth group, the classes Narrative, Scenario, Step and Task

model the concept of a User Story. A User Story is described by exactly one Narrative and

some Scenarios. A Scenario is an occurrence of only one Task and is a set of Steps. A Step

shall represent some Event, Condition and/or Action that are Transition elements from the

State Machine, performing the Dialog component of a Prototype.

Concepts have been modeled as Classes. Relationships between concepts have been

modeled as Object Properties (subtype “relations”). Classes that handle data have such

descriptions modeled as Data Properties. As core elements in the ontology, UI Elements

and the interactive behaviors are respectively as Classes and Object Properties (subtype

“behaviors”).

Fig. 2. Conceptual Model of User Requirements

In the following subsections, we detail the basic concepts of Object (subsection 3.1)

and Data Properties (subsection 3.2), as well as the four main group of concepts described

above: Platform (subsection 3.3), UI (subsection 3.4), State Machine (subsection 3.5), and

finally Scenario-based concepts (subsection 3.6). The current version of the ontology bears

an amount of 422 axioms (being 277 logical axioms), 56 classes, 33 object properties, 17

data properties and 3 individuals. A visual representation of all the concepts can be found

at https://goo.gl/IZqSJ0 and its complete specification in OWL can be found at

https://goo.gl/1pUMqp.

3.1. Object Properties

Relationships between individuals in classes are represented as Object Properties. We have

classified those properties in “Relations” and “Behaviors”. “Relations” groups conceptual

relationships between objects from internal classes, i.e. objects that do not directly address

interactive behaviors. “Behaviors” on the other hand groups conceptual relationships

between interactive behaviors and UI Elements on the UI. The “Relations” group is

detailed hereafter and the “Behaviors” groups will be detailed in the subsection 3.6.

Fig. 3. Main classes and their properties in the ontology

https://goo.gl/IZqSJ0
https://goo.gl/1pUMqp

3.1.1. Relations

The sub property “relations” defines the semantic correspondence between internal classes.

Table 1 presents the whole set of relationships between objects of internal classes defined

in the ontology. The class that drives the property is called Domain Class and the class

affected by the property is called Range Class. The Restriction Type adds constraints to

the modeled property. Figure 4 illustrates the relations between elements in the State

Machine. As a sub property of Relations, objects from the Dialog class are composed by

some States and Transitions. This relationship is described by the property isComposedBy

(left side of Figure 4). Accordingly, objects from the Transition class are triggered by a

sequence of some Conditions, Events and Actions. This relationship is described by the

property isTriggeredBy (right side of Figure 4).

Table 1. “Relations” as Object Properties in the ontology

Domain Class Object Property Restriction Type Range Class

State concerns only Presentation

Step isAnOccurrenceOf only Task

Scenario isASetOf only Step

Prototype isBuiltFor min 1 Platform

Dialog
isComposedBy some State

isComposedBy some Transition

User Story
isDescribedBy exactly 1 Narrative

isDescribedBy some Scenario

Presentation isRepresentedBy min 1 Interaction Element

Prototype
isSpecifiedBy max 1 Dialog

isSpecifiedBy max 1 Presentation

Transition

isTriggeredBy some Event

isTriggeredBy some Condition

isTriggeredBy some Action

Transition performs only Scenario

Step

shoudRepresent some Event

shoudRepresent some Condition

shoudRepresent some Action

Fig. 4. Object Properties isComposedBy (left) and isTriggeredBy (right)

3.2. Data Properties

Data Properties are used to describe semantically data domains used by each class that

handles data. The root tree shown in Figure 5a gives an overview of the properties created,

while Figure 5b expands the Data Property “message”, showing that this kind of data is

used by the UI Elements “Message Box”, “Notification”, “Tool Tip” and “Modal

Window”. “Message” has also been defined to range the primitive data String. Table 2

shows the whole set of Data Properties created, their respective Domain Classes as well as

their Datatypes. As some UI Elements can handle another UI Elements or even different

Datatypes, we have defined the generic type “element” for modeling this property. For

example, Menus present options for users, but these options can be of any type, i.e. images,

text, or even another UI Element such as a Menu Item. The other Datatypes come from the

standard XSD specification. Finally, notice that the only Data Property that does not use a

Datatype is the property “Level”, which refers to the level of a Prototype.

Table 2. Data Properties in the ontology

Data Property Domain Classes Datatype

Actions Menu Item, Link, Message Box, Button, Modal Window element

State - xsd:boolean

Agreement Notification xsd:string

Data and Time Input Calendar xsd:dataTime

Images Image Carousel xsd:hexBinary

Level Prototype -

Locations Breadcrumb xsd:string

State - xsd:boolean

Message Message Box, Notification, Text, Tool Tip, Modal Window xsd:string

Number Input Numeric Stepper xsd:double

Options
Tabs Bar, Checkbox, Dropdown List, Toggle, List Box, Radio Button,

Accordion, Menu, Progress Bar, Dropdown Button
element

State - xsd:boolean

Pages Pagination xsd:integer

Symbol Icon xsd:hexBinary

Fig. 5. (a) Left: Data Properties. (b) Right: Data Property “message”

Text Input Search Field, Text Field, Autocomplete xsd:string

Title Button, Field Set, Link, Label, Menu Item xsd:string

Value Slider
xsd:double

xsd:string

Words Tag xsd:string

3.3. Platform Concepts

Concepts of the platform are modeled in the ontology to determine which kind of UI is

supported by the model. So far, the ontology supports only interactive behaviors for web

and mobile UIs. As a consequence of such choice, only UI Elements that are supported by

web and mobile environments have been described in the superclass Interaction Elements.

The set of UI Elements that suits each platform is presented as Object Properties in the

subsection 3.4. Finally, the classes Web and Mobile have been modeled as specializations

of the class Platform, which allows us to eventually cover other platforms in the future.

3.4. UI Elements Concepts

UI Elements in the ontology represent an abstraction of GUI components in web and

mobile platforms. Figure 6 illustrates a hierarchy of UI Elements.

As we shall see at Figure 6, the four main superclasses are Container, Information

Component, Input Control and Navigational Component. The first one contains elements

Fig. 6. Graph describing the hierarchy of User Interface (UI) Elements

that group other elements in a User Interface, such as Windows and Field Sets. The second

one contains elements in charge of displaying information to the users such as Labels and

Message Boxes. The third one represents elements that accept users inputs such as Buttons

and Text Fields. Finally, the last one contains elements useful to navigate through the

system such as Links and Menus. Some elements like Dialog Windows, for example, are

inherited by more than one superclass, once they keep semantic characteristics of

Containers and Information Components as well.

The complete list of UI Elements modeled in the ontology is presented in Table 3,

specifying for each one the correspondent superclass, a brief description and both Data and

Object Properties associated. In Data Properties (DP) is identified the type of data handled

by the UI Element as well as the Object Properties (OP) describing, for Interaction

Elements, whether they are supported by web and/or mobile platforms.

Table 3. UI Elements in the ontology

 Int. Element Description Properties

Container

Accordion An Accordion is a vertically stacked list of items that

utilizes show/hide functionality. When a label is

clicked, it expands the section showing the content

within. There can have one or more items showing at a

time and may have default states that reveal one or more

sections without the user clicking.

DP:

options

OP: Web,

Mobile

Field Set A Field Set element represents a set of form controls

optionally grouped under a common name.

DP: title

OP: Web,

Mobile

Tabs Bar A Tab Bar is a container widget that has typically

multiple Tab Bar Buttons, which controls visibility of

views. It can be used as a tab container.

DP:

options

OP: Web,

Mobile

Window A Window is an area on the screen that displays

information, with its contents being displayed

independently from the rest of the screen.

-

Window

Browser Window The top of a typical Web browser window contains a title

bar that displays the title of the current page. Below the

title is a toolbar with back and forward buttons, an

address field, bookmarks, and other navigation buttons.

Below the toolbar is the content of the current Web page.

The bottom of the window may contain a status bar that

displays the page loading status.

OP: Web

Window Dialog A Window or Dialog Box is a small window that

communicates information to the user and prompts them

for a response.

OP: Web

Window Dialog Modal Window A Modal Window requires users to interact with it in

some way before they can return to the system.

DP:

actions,

message

OP: Web

Information

Component

Label A Label displays content classification. DP: title

OP: Web,

Mobile

Message Box A Message Box is a small window that provides

information to users and requires them to take an action

before they can move forward.

DP:

actions,

message

OP: Web,

Mobile

Notification A Notification is an update message that announces

something new for the user to see. Notifications are

typically used to indicate items such as, the successful

completion of a task, or an error or warning message.

DP:

agreement,

message

OP: Web,

Mobile

Progress Bar A Progress Bar indicates where a user is as they advance

through a series of steps in a process. Typically,

progress bars are not clickable.

DP:

options

OP: Web,

Mobile

Text Informative content in a page. DP:

message

OP: Web,

Mobile

Tool Tip A Tooltip allows a user to see hints when they hover

over an item indicating the name or purpose of the item.

DP:

message

OP: Web,

Mobile

Window Dialog - -

Input Control

Autocomplete The Autocomplete widgets provides suggestions while

you type into the field.

DP:

text_input

OP: Web

Button A Button indicates an action upon touch and is typically

labeled using text, an icon, or both.

DP:

actions,

title

OP: Web,

Mobile

Calendar A Calendar (date picker) allows users to select a date

and/or time. By using the picker, the information is

consistently formatted and input into the system.

DP:

data_and_t

ime_input

OP: Web,

Mobile

Checkbox Checkboxes allow the user to select one or more options

from a set. It is usually best to present checkboxes in a

vertical list. More than one column is acceptable as well

if the list is long enough that it might require scrolling

or if comparison of terms might be necessary.

DP:

options

OP: Web,

Mobile,

allowsMult

iple

Dropdown Button The Dropdown Button consists of a button that when

clicked displays a drop-down list of mutually exclusive

items.

DP:

options

OP: Web,

Mobile,

allowsUniq

ue

Dropdown List Dropdown Lists allow users to select one item at a time,

similarly to radio buttons, but are more compact

allowing you to save space. Consider adding text to the

DP:

options

OP: Web,

Mobile,

field, such as ‘Select one’ to help the user recognize the

necessary action.

allowsUniq

ue

List Box List Boxes, like Checkboxes, allow users to select a

multiple items at a time, but are more compact and can

support a longer list of options if needed.

DP:

options

OP: Web,

Mobile,

allowsMult

iple

Numeric Stepper A Numeric Stepper serves the same function as a

Numeric Input Object. It is a method of entering

numeric data in which the numbers can be typed directly

into the input object. However, numeric values can also

be adjusted by using up and down arrows next to the

numeric input. Clicking the up and down arrows

normally causes the value to increment by one.

DP:

number_in

put

OP: Web,

Mobile

Radio Button Radio Buttons are used to allow users to select one item

at a time.

DP:

options

OP: Web,

Mobile,

allowsUniq

ue

Text Field Text Fields allow users to enter text. It can allow either

a single line or multiple lines of text.

DP:

text_input

OP: Web,

Mobile

Toggle A Toggle button allows the user to change a setting

between two states. They are most effective when the

on/off states are visually distinct.

DP:

options

OP: Web,

Mobile,

allowsUniq

ue

Grid A Grid or a Datagrid is a graphical control element that

presents a tabular view of data.

DP:

text_input

OP: Web,

Mobile

Navigational

Component

Breadcrumb Breadcrumbs allow users to identify their current

location within the system by providing a clickable trail

of proceeding pages to navigate.

DP:

locations

OP: Web

Icon An Icon is a simplified image serving as an intuitive

symbol that is used to help users to navigate the system.

Typically, icons are hyperlinked.

DP:

symbol

OP: Web,

Mobile

Image Carousel Image Carousels allow users to browse through a set of

items and make a selection of one if they so choose.

Typically, the images are hyperlinked.

DP:

images

OP: Web

Link A Link is a reference to data that can be directly follow

by clicking. It points to a whole document or to a

specific element within a document.

DP:

actions,

title

OP: Web

Menu Menu is a list of options or commands presented to an

operator.

DP:

options

OP: Web,

Mobile

Menu Item A Menu Item is a resultant item in a list of options or

commands presented to an operator by clicking in a

menu.

DP:

actions,

title

OP: Web,

Mobile

Pagination Pagination divides content up between pages, and

allows users to skip between pages or go in order

through the content.

DP: pages

OP: Web

Search Field A search box allows users to enter a keyword or phrase

(query) and submit it to search the index with the

intention of getting back the most relevant results.

Typically, search fields are single-line text boxes and

are often accompanied by a search button.

DP:

text_input

OP: Web,

Mobile

Slider A slider, also known as a track bar, allows users to set

or adjust a value. When the user changes the value, it

does not change the format of the interface or other info

on the screen.

DP: value

OP: Web,

Mobile

Tag Tags allow users to find content in the same category.

Some tagging systems also allow users to apply their

own tags to content by entering them into the system.

DP: words

OP: Web

Tree With a Tree, we can display hierarchical data. Each row

displayed by the Tree contains exactly one item of data,

which is called a node. Every Tree has a root node from

which all nodes descend. By default, the Tree displays

the root node. A node can either have children or not.

We refer to nodes that can have children — whether or

not they currently have children — as branch nodes.

Nodes that cannot have children are leaf nodes.

DP:

actions

OP: Web

3.5. State Machine Concepts

The dialog part of a User Interface, as illustrated by Figure 7, is described in the ontology

using concepts borrowed from abstract State Machines. A Scenario meant to be run in a

given UI is represented as a Transition, illustrated by Figure 8. States are used to represent

the original and resulting UIs after a transition occur (States A and B in Figure 8). Scenarios

in the Transition state always have at least one or more Conditions (represented in

Scenarios by the “Given” clause), one or more Events (represented in Scenarios by the

“When” clause), and one or more Actions (represented in Scenarios by the “Then” clause).

The clauses “Given”, “When” and “Then” have been modeled as Individuals of each

respective class.

State A

Condition

[X] Given I go to “#page”

Event

[V] When I choose “#value” in

the field “#field”

Action

[X] Then will be displayed

“#message”

State B

Fig. 8. A Transition being represented in the State Machine

3.6. Scenario-based Concepts

Scenario-based concepts allow us modeling behaviors that describe how users are supposed

to interact with graphical elements of the User Interface. An example of behavior

specification is illustrated by Figure 9.

Fig. 7. State Machine Elements and their Individuals

Fig. 9. Behavior “chooseRefferingTo”

Behaviors are structured and described in natural language so that they can also be read

by humans. The specification of behaviors encompasses when the interaction can be per-

formed (using Given, When and/or Then clauses) and graphical elements (i.e. Radio

Button, CheckBox, Calendar, Link, etc.). Altogether, behaviors and graphical elements are

used to implement the test of expected system behavior. In the example below, the behavior

receives two parameters: a “$elementName” and a “$locatorParameters”. The first

parameter is associated to data, the second parameter refers to the Interaction Element

supported by this behavior: “Radio Button”, “CheckBox”, “Calendar” and “Link”. To

comply with semantic rules, the behavior “I chose \”$elementName\” referring to

\”$locatorParameters\”” shown in Figure 9 can be modelled into a predefined behavior

“chooseReferringTo” as shown in Figure 10.

The ontology includes a large set of predefined behaviors grouped by context of use,

as shown at Table 4. Notice that each Behavior is associated to diverse transition

components (Context, Event and/or Action) that compose a Transition. The column UI

Elements enlists the set of Interaction Elements that can fit to trigger a particular behavior.

Table 4. Predefined Behaviors described in the ontology

Checkbox and Radio Button Behaviors

Behavior
Transition

UI Elements
C E A

theFieldIsUnchecked
Checkbox

Radio Button

theFieldIsChecked
Checkbox

Radio Button

assureTheFieldIsUnchecked Checkbox

assureTheFieldIsChecked Checkbox

Common Behaviors

Behavior
Transition

UI Elements
C E A

choose

Calendar

Checkbox

Radio Button

Link

chooseByIndexInTheField Dropdown List

chooseReferringTo

Calendar

Checkbox

Radio Button

Link

chooseTheOptionOfValueInTheField Dropdown List

clickOn
Menu

Menu Item

Fig. 10. Components on the ontology used to specify a behavior

Button

Link

clickOnReferringTo

Menu

Menu Item

Button

Link

Grid

doNotTypeAnyValueToTheField ≡

resetTheValueOfTheField
 Text Field

goTo Browser Window

goToWithTheParameters Browser Window

isDisplayed Window

setInTheField ≡ tryToSetInTheField

Dropdown List

Text Field

Autocomplete

Calendar

setInTheFieldReferringTo
Dropdown List

Text Field

typeAndChooseInTheField Autocomplete

willBeDisplayed Text

willNotBeDisplayed Text

willBeDisplayedInTheFieldTheValue Element

willNotBeDisplayedInTheFieldTheValue Element

willBeDisplayedTheValueInTheFieldReferringTo Element

willNotBeDisplayedTheValueInTheFieldReferringTo Element

isNotVisible Element

valueReferringToIsNotVisible Element

waitTheFieldBeVisibleClickableAndEnable Element

waitTheFieldReferringToBeVisibleClickableAndEnable Element

theElementIsVisibleAndDisable Element

theElementReferringToIsVisibleAndDisable Element

setInTheFieldAndTriggerTheEvent Text Field

clickInTheRowOfTheTree Tree

Data Generation Behaviors

Behavior
Transition

UI Elements
C E A

informARandomNumberWithPrefixInTheField Text Field

informARandomNumberInTheField Text Field

Data Provider Behaviors

Behavior
Transition

UI Elements
C E A

inform Grid

informTheField ≡ informTheFields Grid

selectFromDataSet -

informTheValueOfTheField Element

informKeyWithTheValue ≡

defineTheVariableWithTheValue
 -

obtainTheValueFromTheField Element

Debug Behaviors

Behavior
Transition

UI Elements
C E A

printOnTheConsoleTheValueOfTheVariable -

Dialog Behaviors

Behavior
Transition

UI Elements
C E A

confirmTheDialogBox Window Dialog

cancelTheDialogBox Window Dialog

informTheValueInTheDialogBox Window Dialog

willBeDisplayedInTheDialogBox Window Dialog

Mouse Control Behaviors

The vocabulary chosen to express each behavior emerged from Scenarios specified in

our past projects. It outlines only one of the several possible vocabularies to represent the

same user’s behaviors, and could be extended in the future by more representative phrases

or expressions. Some synonyms concerning the user’s goal have been also identified in

order to increase the expressivity of the ontology. For example, the behavior

doNotTypeAnyValueToTheField is considered equivalent to the behavior

resetTheValueOfTheField as they perform or assert exactly the same action on the affected

UI element, looking for the same output. Likewise, the behavior setInTheField is

equivalent to the behavior tryToSetInTheField as they refer to the same action. However,

tryToSetInTheField better expresses violation attempts in the business rules.

4. Validation

The ontology has been validated in two steps: at first, consistency has been continuously

checked through the use of reasoners. Then, using a tool support, we applied the approach

to a case study in the flight tickets e-commerce domain using a set of tools we have

developed for dealing with tests over Prototypes and for testing the implementation.

4.1. Consistency Checking

Consistency checking was done using the reasoners FaCT++, ELK, HermiT and Pellet.

FaCT++ started identifying no support for the datatypes xsd:base64Binary and

xsd:hexBinary used to range images and symbols in the Data Properties. Those properties

have been used to define domains for objects in the classes Image Carousel and Icon,

respectively. ELK has failed by no support to Data Property Domains as well as Data and

Object Property Ranges. HermiT and Pellet have succeeded processing the ontology

respectively in 4926 and 64 milliseconds, as presented in Figure 11.

Behavior
Transition

UI Elements
C E A

moveTheMouseOver

Menu

Menu Item

Button

Link

Table Behaviors

Behavior
Transition

UI Elements
C E A

clickOnTheRowOfTheTableReferringTo Grid

storeTheCellOfTheTableIn Grid

storeTheColumnOfTheTableIn Grid

compareTheTextOfTheTableCellWith Grid

compareTheTextOfTheTableColumnWith Grid

clickOnTheCellOfTheTable Grid

clickOnTheColumnOfTheTable Grid

chooseTheOptionInTheCellOfTheTable Grid

chooseTheOptionInTheColumnOfTheTable Grid

typeTheTextInTheCellOfTheTable Grid

typeTheTextInTheColumnOfTheTable Grid

4.2. Validation by a Case Study

To illustrate how the ontology can be used to support the specification of requirements and

the testing automation for interactive systems, we have chosen a flight tickets e-commerce

application. Below we describe one of the User Stories from this case study with a Scenario

for searching flights. Therein, the user should provide at least: the type of sought ticket

(one-way or round trip), the departure and the arrival airports, the number of passengers,

and finally the dates. In the Scenario “One-Way Tickets Search”, a typical search of tickets

is presented concerning a one-way trip from Paris to Dallas for 2 passengers on 12/15/2016.

According to the business rule, the expected result for this search is a new screen presenting

the title “Choose Flights”, in which the user might select the desired flight from a list of

flights matching his search.

User Story: Flight Tickets Search

Narrative:

As a frequent traveler

I want to be able to search tickets, providing locations and dates

So that I can obtain information about rates and times of the flights.

Scenario: One-Way Tickets Search

Given I go to "Find flights"

When I choose "One way"

And I type "Paris" and choose "CDG - Paris Ch De Gaulle, France" in the field "From"

And I type "Dallas" and choose "DFW - Dallas Fort Worth International, TX" in the field

"To"

And I choose the option of value "2" in the field "Number of passengers"

And I choose "12/15/2016" referring to "Depart"

And I click on "Search"

Then will be displayed "Choose Flights"

Fig. 11. Results of ontology processing: HermiT (top) and Pellet (bottom)

4.2.1. Ontology Support for Testing Prototypes using PANDA

PANDA (Prototyping using Annotation and Decision Analysis) [13] is a tool support

specifically created to support the development of UI prototypes built upon an UI

Ontology. Using our Ontology, PANDA can also support the test of BDD Scenarios. For

that PANDA starts by reading an OWL file describing our ontology. Using the inner

organization of ontological classes, PANDA dynamically instantiates a palette of widgets

(see Figure 12) that can be used to build a Prototype. From an interaction point of view,

the construction of Prototypes is done by performing drag and drop operations. From a

storage point of view, a Prototype is an XML file that describes a composition of widgets

whose description is semantically annotated by elements of our ontology.

For the construction of the palette, PANDA uses a description of a widget we called

“OntologicalClass” which feature its name, list of subclasses and set of properties. This

ontological class has been defined as a generic class that is customized through its

properties. Indeed, those classes represent each component of a Prototype in PANDA and

its behaviors regarding their usage in the prototyping tool: they are placed in an edition

area in which the user can edit the instance of a property. Thus, for the Presentation

component, PANDA uses a flexible structure that allows to dynamically instantiate the set

of widgets that will be used to build Prototypes.

PANDA creates a category for each superclass including: Container, Information

Component, Input Control, Interaction Element, Navigational Component, Platform, State

Machine Element, Window and Window Dialog. Each category contains a set of widgets

defined by the classes inheriting the superclass. As for the properties, ontological classes

are displayed in the property window in the category “Ontological properties”. Each

property identified in the ontology is therefore inserted in the list of properties of the class

with a name and a value.

Fig. 12. Pallets with the widget Button and its properties extracted from the ontology

For the Dialog component, our ontology encompasses behavioral properties to describe

the interaction supported by a class. For example, a Button must feature a behavioral

property “clickOn” which indicates that buttons support an event click. Click events allow

the designer to specify interactions on widgets. If a button has a behavioral property

“clickOn”, PANDA adds an event handler to handle click events when users interact with

the Prototype. Figure 13 shows how Scenarios are tested in PANDA. For each Step of

Scenarios, PANDA assesses actions with respect to widget properties defined in the

ontology. For example, in the Step “And I click on ‘Search’”, PANDA looks for any widget

named “Search” in the initial State, and check if the description of the widget in the

ontology support the behavior “clickOn”. The results of the tests are displayed by a colored

symbol next to each Step, a red “X” representing failure, a green “V” representing success,

and a black “?” representing an untested Step.

Fig. 13. A State Machine Transition between sketches of a PANDA Prototype for the User Story “Flight Tickets

Search”. From top to bottom: the initial State “Find Flights”, a Transition represented by the Scenario “One-

Way Tickets Search”, and finally the resultant State “Choose Flights”.

4.2.2. Ontology Support for Testing Web Final UIs

To test the Scenarios over Web Final UIs, we have employed a set of frameworks to

provide automated simulation of user’s interaction. More specifically, we have used

Selenium WebDriver to run navigational behavior as well as JBehave and Demoiselle

Behave to parse Scenario scripts. The ontology is charged as a CommonSteps Java Class,

pre-defining behaviors that can be used when writing Scenarios, and where each action

and/or assert for each behavior is defined. This class implements the dialog component and

contains all the knowledge about how performing the mentioned behaviors on the UI

elements, thus when using them to write Scenarios, tests are delivered without any

additional effort of implementation. Hence, methods in this class have been writ-ten for

every Step addressed on the ontology. As illustrated in Figure 14, behaviors “When/Then I

choose ‘…’ referring to ‘…’” are addressed to the Selenium method click(), with the

appropriated sequence of actions to perform this task on the Final UI. As this behavior can

be performed only in Radio Buttons, Check Boxes, Links or Calendars, the concrete in-

stance of any of these elements are searched on the Presentation layer.

The Presentation component includes the MyPages Java Class that makes the mapping

between abstract UI elements of the ontology and the concrete/final UI components

instantiated on the interface being tested. For that purpose, we make use of annotations in

Java code following the Page Objects pattern [14] as illustrated in Figure 15. UI

components are identified through their XPath references or some other unique ID

eventually used for some frameworks to implement the interface. This link is essential to

allow the framework to automatically run the Steps on the right components on the Final

UI.

public class MyPages {

@ScreenMap(name = "Find Flights", location = "..")

public class MainPage {

@ElementMap(name = "Search", locatorType = ElementLocatorType.XPath, locator

= "…") // concrete UI component

 private Button Search; // abstract UI element

 …

}

Fig. 15. Concrete and Abstract UI elements being associated in a Java class.

For behaviors not addressed by the ontology, the MySteps Java Class allows developers

and testers to set their own business behaviors and implement as well how they should be

attended by the Selenium methods on the UI components. For both classes the main

Fig. 14. Behavior “chooseRefferingTo” being structured as a Java method.

incomes are behaviors extracted from the User Stories that can be represented in simple

packages of text files.

In short, once the ontology is charged, it is enough to identify on the Final UI under

testing the concrete UI elements that were instantiated to represent abstract UI elements.

Afterwards, when Scenarios are triggered, the application runs and Selenium performs Step

by Step the specified behaviors, reporting testing results either by the JUnit green/red bar

or by JBehave reports with the context and attached print-screens of each identified failure.

4.3. Mapping Ontological Concepts

The ontology-based approach we have proposed for testing UIs allows us establishing a

direct mapping of abstract concepts in the ontology and concrete instances in scenarios,

prototypes and final UIs. Table 5 provides an example of how these concepts are mapped

for the Scenario “One-Way Tickets Search”.

Table 5. Mapping ontological concepts for scenarios, prototypes and Final UIs

Ontological Concepts Scenario Prototype and Final UI

Condition: Given
Given I go to "Find flights"

Browser Window: “Find

flights” Behavior: goTo

Event: When
When I choose "One way" Link: “One way”

Behavior: choose

Event: When And I type "Paris" and choose "CDG - Paris

Ch De Gaulle, France" in the field "From"
Autocomplete: “From”

Behavior: typeAndChooseInTheField

Event: When And I type "Dallas" and choose "DFW -

Dallas Fort Worth International, TX" in the

field "To"

Autocomplete: “To”
Behavior: typeAndChooseInTheField

Event: When
And I choose the option of value "2" in the

field "Number of passengers"

Dropdown List:

“Number of passengers”
Behavior:

chooseTheOptionOfValueInTheField

Event: When And I choose "12/15/2016" referring to

"Depart"
Calendar: “Depart”

Behavior: chooseReferringTo

Event: When
And I click on "Search" Button: “Search”

Behavior: clickOn

Action: Then
Then will be displayed "Choose Flights" Text: “Choose Flights”

Behavior: willBeDisplayed

4.4. Discussion

The ontology presented in this paper describes behaviors that report Steps of Scenarios

performing actions directly on the User Interface through Interaction Elements. Thus, the

ontological model is domain-free, which means that it is not dependent of business

characteristics that are described in the User Stories. Specific business behaviors shall be

specified only for the systems to which they make reference, not affecting the whole

ontology. Therefore, it is possible to reuse Steps in multiple testing Scenarios. For example,

the ontological behaviors goTo, choose, chooseReferringTo, typeAndChooseInTheField,

chooseTheOptionOfValueInTheField, clickOn, and willBeDisplayed presented in the case

study can be reused for Scenarios of other system requiring those kind of user’s actions.

However, Scenarios should be specified in the user interaction level, writing Steps for

each click, selection, typing, etc. A possible solution to avoid this level of detail would be

to work with higher level behaviors that are described by user’s tasks. Nonetheless, user’s

tasks often contain information from specific application domains. For example, high-level

Steps like “When I search for flights to ‘Destination’” encapsulate all low-level behaviors

making reference for individual clicks, selections, etc., however it also contains

information that refers to the airline domain (i.e. behavior “search for flights”). Therefore,

that Step would only makes sense on that particular application domain. For further

researches, it could be interesting to investigate domain ontologies to be used in parallel

with our ontology, defining a higher level business vocabulary database in which business

behaviors could be mapped to a set of interaction behaviors, covering recurrent Scenarios

for a specific domain, and avoiding them to be written every time a new interaction may

be tested.

Another aspect to be discussed is that even having mapped synonyms for some specific

behaviors, our approach does not provide any kind of semantic interpretation, i.e. the Steps

might be specified exactly as they were defined on the ontology. The JBehave plugin for

Eclipse shows (through different colors) if the Step being written exists or not on the

ontology. This resource reduces the workload to remember as exactly some behavior has

been described on the ontology.

On one hand the restricted vocabulary seems to bring less flexibility to designers,

testers and requirements engineers. Nonetheless, on the other hand, it establishes a common

vocabulary, avoiding typical problems of ambiguity and incompleteness in requirements

and testing specifications. Further studies on Natural Language Processing (NLP)

techniques might help to improve the process of specification adding more flexibility to

write Scenarios that could be semantically interpreted to meet the behaviors described on

the ontology. This issue is certainly a worthwhile topic for further research.

It is also worthy of mention that the concepts and definitions in the ontology presented

herein are only one of the possible solutions for addressing and describing behaviors and

their relations with UIs. Despite the fact that our Ontology covers concepts available in

well-known languages such as MBUI, UsiXML and SCXML, we don’t assume that the

coverage is exhaustive for that we suggest that other behaviors, concepts and relationships

might be included in the future to express idiosyncrasies of specific interaction techniques

(ex. multimodal interaction techniques) and/or specific platforms (ex. ambient systems). If

so, new elements can be added by direct imports into the ontology or simply adding new

more expressive behaviors to the Object Property “behaviors” and linking them to the

appropriate set of Interactive Elements.

Finally, when representing the various Interaction Elements that can attend a given

behavior, the ontology also allows extending multiple design solutions for the UI,

representing exactly the same requirement in different perspectives. Thus even if a

Dropdown List has been chosen to attend for example a behavior setInTheField in a

Prototype, an Auto Complete field could be chosen to attend this behavior on the Final UI,

once both UI elements share the same ontological property for this behavior under testing.

This kind of flexibility makes tests pass, leaving the designer free for choosing the best

solutions in a given time of the project, without modifying the behavior specified for the

system.

5. Conclusion

In this paper, we have presented a behavior-based ontology aiming at test automation that

can help to validate functional requirements when building interactive systems. The

proposed ontology acts as a base for a common vocabulary which is articulated to map

interactive behaviors to UI Elements allowing automation of acceptance test of functional

requirements in prototypes and/or in full-fledge user interfaces. The ontology also supports

the design of User Interfaces by providing a consistent set of UI Elements that meet

particular behaviors.

In addition, behaviors described in the ontology are already implemented for

automating tests on UIs, which means we can freely reuse them to write new Scenarios in

natural language, providing test automation with little effort from development teams. It

allows specifying tests in a generic way, which benefits reuse along the development

process. For that reason, we are also investigating the use of the ontology for testing model-

based artifacts such as low-fidelity Prototypes and Task Models. Testing in this kind of

artifacts could be conducted through a static verification of their source codes and would

help to integrate testing in a wider spectrum of artifacts commonly used to build interactive

systems.

We have also presented tools that demonstrate how this ontology can support testing

of interactive systems. So far, only interactive Prototypes built in PANDA can be tested by

the ontology once it requires that tools are able to read and support the set of described

behaviors. On the other hand, tests in Web Final UIs can run independently of the frame-

works used to build these UIs. It is possible because tests provided by our tool assess the

concrete UI elements found on the interface in the final HTML page.

5.1. Future Works

Although the results presented in this paper are still preliminary, the current version of the

Ontology open the door for many interesting research questions that motivate our future

work. First of all, we are planning to investigate the acceptability of the approach with

users. The idea is to assess through empirical evaluation whether (or not) people involved

in the development process of interactive applications are able to employ our approach to

specify their functional requirements using the proposed template and the concepts present

in our Ontology. We are planning to conduct these empirical studies with developers,

requirement engineers, clients and end-users, in order to determine the potential in the

context of multidisciplinary and complex development teams.

 Currently we are also investigate more complex behaviors in real cases of software

development. We suggest that it would be useful to collect data about the effectiveness and

the workload when specifying tests using the ontology. Other case studies including mobile

platforms are planned as well. In a longer run we also want to explore idiosyncrasies of

interaction techniques and/or platforms to check hypothesis related to the coverage of

concepts in the current Ontology. These studies might also help to improve the Ontology.

Future work should also consider Ontologies as knowledge bases, keeping specific

behaviors for specific groups of business models in domain ontologies. It would allow us

to also reuse entire business Scenarios in systems sharing similar business models.

Last but not least, we also want to investigate the reuse of Stories created using our

approach to assess other types of artifacts used during the development process. In this

paper we have shown how to test model-based prototypes build with PANDA and full-

fledge implementation of an interactive systems. However, we suggest that the potential of

reuse of Stories created with our approach can be used with other kind of artifacts that also

describe some aspects of behavioral aspects of interactive systems. We are particularly

interested in artifacts such as tasks models and business models. So far we don’t know how

much our approach is applicable to these artifacts as they only partially describe the system

behavior, for that further studies are necessary.

References

[1] D. Chelimsky, D. Astels, B. Helmkamp, D. North, Z. Dennis and A. Hellesoy, “The RSpec

Book: Behaviour Driven Development with Rspec, Cucumber, and Friends,” Pragmatic

Bookshelf, 2010.

[2] K. Pugh, “Lean-Agile Acceptance Test-Driven-Development,” Pearson Education, 2010.

[3] G. Adzic, “Specification by Example: How Successful Teams Deliver the Right Software,”

Manning Publications, 2011.

[4] M. Cohn, “User Stories Applied: For Agile Software Development,” Addison-Wesley

Professional, 2004.

[5] N. Guarino, D. Oberle and S. Staab, “What is an Ontology?” in Handbook on ontologies,

Springer Berlin Heidelberg, p. 1-17, 2009.

[6] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, J. Vanderdonckt, “A Unifying

Reference Framework for multi-target user interfaces”, in Interacting with Computers 15(3):

289-308, 2003.

[7] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon and V. López-Jaquero, “USIXML: a

Language Supporting Multi-Path Development of User Interfaces,” EHCI/DS-VIS, 2004.

[8] M. Winckler, J. Vanderdonckt, A. Stanciulescu & F. Trindade, “Cascading dialog modeling

with UsiXML”, in International Workshop on Design, Specification, and Verification of

Interactive Systems, p. 121-135, 2008, Springer Berlin Heidelberg.

[9] M. Winckler, P. Palanque, “StateWebCharts: A Formal Description Technique Dedicated to

Navigation Modelling of Web Applications”, in Design Specification and Verification of

Interactive Systems (DSV-IS), p. 61-67, 2003, Springer-Verlag.

[10] J. Pullmann, “MBUI - Glossary - W3C”, Fraunhofer FIT, 2016. [Online].

https://www.w3.org/TR/mbui-glossary/

[11] J. Barnett et al., “State Chart XML (SCXML): State Machine Notation for Control

Abstraction”, W3C, 2016. [Online]. http://www.w3.org/TR/scxml/

[12] D. North, What's in a Story? 2016. [Online]. http://dannorth.net/whats-in-a-story/

[13] J-L. Hak, M. Winckler and D. Navarre, “PANDA: prototyping using annotation and decision

analysis,” in Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive

Computing Systems (EICS '16), ACM, New York, NY, USA, p. 171-176, 2016.

[14] M. Fowler, PageObject, 2016. [Online]. http://martinfowler.com/bliki/PageObject.html

