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ABSTRACT 

 
In this communication, we report on the design, fabrication, and testing of silicon-on-insulator (SOI) and silicon-nitride-
on-insulator (SiNOI) photonic circuits for nonlinear and quantum optics applications. As recently demonstrated, the 
generation of correlated photons on Si platforms can be used for quantum cryptography and quantum computing. 
Concerning SiNOI waveguides, Kerr frequency combs have been proposed in many applications, such as atomic clocks, 
on-chip spectroscopy, and terabit coherent communications. Silicon is an attractive platforms for correlated photons 
sources because of its high nonlinearity, they can have several modes in telecom band with sharp line widths (tens of 
µeV) and its inherent complementary metal-oxide-semiconductor (CMOS) compatibility. Moreover, the SiNOI is an 
attractive platform for Kerr comb generation due to their large bandgap and consequently the low two-photon 
absorption in the telecommunication band. Furthermore, in all the previous SiNOI-based frequency combs, the silicon 
nitride film undergoes long and high-temperature annealing to reduce the absorption in the telecommunication band 
caused by the dangling N-H bonds, thus making such annealed Si3N4 films non-CMOS compatible. However, both in 
the case of correlated photons pairs generation and Kerr frequency combs, the source efficiency is related to the quality 
factor (Q), so that a high-Q resonator is required to get highly-efficient sources. Authors report here about the 
fabrication and the characterization of annealing-free CMOS-compatible SiNOI- and hydrogen-annealed silicon-based 
waveguides and microresonators featuring ultra-low losses (e.g., 0.6 dB/cm for single-mode Si waveguides) that can be 
used, respectively, as efficient sources for Kerr combs and correlated photon pairs sources. 
 
Keywords: Complementary metal-oxide-semiconductor (CMOS), nonlinear integrated optics, quantum integrated circuits, Kerr-
based comb generation, resonators, photonic integrated circuits (PICs), silicon nitride (Si3N4), correlated photons, hydrogen 
annealing. 
 
 
 

1. LOW-LOSS SILICON NITRIDE FOR NONLINEAR PHOTONICS 
Kerr frequency combs constitute a paradigm shift in the development of high-capacity data transmission, integrated 
spectroscopy, high precision metrology, and frequency synthesis [1]. Since 2010, silicon-nitride-on-insulator (SiNOI) 
has imposed as an attractive chip-based platform for the generation of wideband frequency combs pumped at telecom 
wavelengths, because of its relatively high nonlinearity (×10 that of silica and larger than that of highly nonlinear 
Hydex glass [2]) as well as the absence of two-photon absorption and free carrier generation that plague crystalline 
silicon. In the meanwhile, silicon photonics integrated circuits (Si-PICs) have demonstrated increasing maturity levels 
for a wide range of optical functions such as III-V-on-Si integrated lasers [3], high-speed modulators [4], Ge-on-Si 
photodiodes [5], as well as filters and wavelength (de)multiplexers [6], thus continuously highlighting the potential of 
silicon optoelectronics integration with cost-effective complementary metal-oxide-semiconductor (CMOS) technology 
[7,8]. In this context, the monolithic co-integration of Kerr-based frequency combs with Si photonics holds the promise 
for on-chip high-capacity transmitters that would benefit from the maturity and low cost of CMOS manufacturing and 
scalability.  

The realization of relatively thick (> 700 nm) stoichiometric Si3N4 films, as required by microring frequency combs, 
which imply both a tight confinement of light and anomalous group velocity dispersion (GVD), remains challenging. In 
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particular, all prior works strictly made use of long high-temperature annealing (~1200 °C for at least 3h) of the 
deposited silicon nitride film [9-12]. This extreme annealing step has been accounted for by the need to densify the 
silicon nitride film through driving out excess hydrogen and break N-H bonds, so as to get closer to a stoichiometric 
Si3N4 film and reduce the material absorption loss in the C-band. However, this annealing induces thermal stress that 
eventually leads to cracks during the device processing unless sophisticated pre-patterning strategies are adopted prior 
to the film deposition [10, 11]. Yet, in the context of nonlinear optics-silicon optoelectronics co-integration, these 
extreme annealing temperatures would severely degrade the front-end silicon optoelectronics circuit underneath. 
Specifically, doped optical circuits would be unacceptably affected by the undesirable dopant diffusion in junction-
based Si modulators and by the hetero-interface degradation of Ge-on-Si photodetectors. Very recently, we reported a 
new method that avoids thermal annealing for realizing relatively thick (740 nm) crack-free Si3N4-based straight 
nanowaveguides with good linear and nonlinear properties measured by self-phase modulation [15]. Here, we report for 
the first time the realization of annealing-free silicon nitride comb microresonators, following a tailored deposition 
method which minimizes the hydrogen content. Our annealing-free and crack-free fabrication process (shown in Fig. 1) 
provides our devices with the right specification (microring GVD and characteristics) to underpin Kerr frequency 
combs, thus representing a significant step toward the full compatibility of Si3N4-based Kerr comb sources with the 
thermal budgets of Si photonics processing. In contrast to all previous approaches, our process does not exceed neither 
the dopant activation temperature (1030 °C) required for Si modulators [13], nor the H2 annealing thermal budget used 
for dislocations control for Ge-on-Si photodiodes (825 °C) [14]. 

 

Fig. 1. Schematics of the annealing-free fabrication process for Si3N4 nonlinear photonics (a)-(f). 

The measured spectrum of an annealing-free silicon-nitride-on-insulator microring with a 56-µm radius is shown in Fig. 
2. A native line spacing frequency comb spanning across about 730 nm between 1340 nm - 2070 nm was measured 
when a continuous-wave pump power of ~ 1 W at 1569 nm– was coupled in the bus waveguide. The loaded quality 
factor of the ring resonator separated by a 350 nm gap from the bus waveguide exceeds 580,000 at the pump 
wavelength. The cross-section dimensions (1.5-µm-wide × 740-nm-thick) of the ring ensure that GVD is anomalous at 
the pump wavelength. 
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Fig. 2. Comb generation using annealing-free silicon nitride on insulator. A 730-nm-spanning comb generation using a 56-µm-radius 

Si3N4 microresonator. 
 

Interestingly, a slight signature of residual hydrogen-related absorption can be observed in the comb around 1508 nm, 
but it remains comparable to previous works employing film annealing and does not hinder the generation of a 
relatively wide and flat comb spectrum. The difference between the losses at 1550 nm (ܳ = 350,000) and the losses at 
1520 nm (ܳ = 190,000) can thus be estimated to be 0.9 dB/cm. This additional loss due to residual N-H absorption for 
our annealing-free process is comparable to the value (0.6 dB/cm) inferred for high-temperature annealed Si3N4 
waveguides [16], and, as shown above, it does not preclude the parametric oscillation and comb generation in the C-band. 

In conclusion, generating a wideband comb at telecom wavelengths using annealing-free silicon nitride nonlinear 
circuits featuring a full FEOL process compatibility with Si photonics is possible [17]. Via such demonstration, we claim 
the first-time realization of annealing-free silicon nitride frequency comb microresonators, following a tailored 
deposition method, minimizing the hydrogen content. The right specification (microring group velocity dispersion and 
characteristics) are provided by our annealing-free and crack-free fabrication process to underpin Kerr frequency 
combs, thus representing a significant step toward the full compatibility of Si3N4-based Kerr-comb sources monolithic 
integration with standard CMOS and Si photonics processing. Through allowing the monolithic integration of broadband 
comb sources with CMOS-compatible optoelectronics, our work represents a milestone toward the realization of next-
generation Petabit/s data transmitters on a chip. 

 
 
 

2. ULTRA-LOW LOSS SILICON PHOTONICS CIRCUITS FOR QUANTUM APPLICATIONS 
 
 

In previous publications [18], [19], we reported that the introduction of a high-temperature hydrogen annealing (> 800 ° 
C) after the silicon waveguide etching was particularly effective to decrease the silicon sidewalls roughness and 
consequently reduce the optical losses. However, this annealing leads also to a pattern deformation which depends on 
the shape of the guide and the interfaces. Indeed, the surface migration of silicon atoms activated by the H2 annealing 
evolves towards a surface energy-minimizing configuration, while the total volume is preserved. The consequence is 
that the right angles of the pattern tend to round off. Typically, in the case of STRIP guides, the deformation is limited 
by the Si / SiO2 BOX interface at the bottom of the pattern, which is no longer the case for the RIB guides. Figure 3 
illustrates the STRIP and RIB waveguide deformations occurring with our standard H2 annealing conditions (850 °C/20 
Torr /2 min.). In this example, the Si waveguides are patterned with a resist mask that is removed before the annealing 
treatment. For both STRIP and RIB, the pattern height and volume are not modified by the annealing, while top corners 
round. In the STRIP case, the bottom CD is reduced of about 30 nm while the middle CD is enlarged of about 20 nm, 
which is acceptable In the RIB case, a severe enlargement of the bottom CD is observed in the RIB case, which is an 
acceptable pattern dimension variation. In the RIB case, the bottom CD is significantly increased of 170 nm, which is 
not tolerable for the circuitry design. 
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