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RÉSUMÉ. Nous considerons un modèle qui décrit la dynamique de l’infection du VIH prenant en
compte les transmissons virus-cellule et cellule-cellule et la réponse immunitaire. Ce modèle inclut
quatre retards continus décrivant respectivement les retards intracellulaires et le retard de la réponse
immunitaire. Ce modèle prend également en compte un taux de production des cellules CTL issue du
thymus. Nous déterminons le taux de reproduction de base R0 et montrons que la dynamique global
est completement déterminé par sa valeur. Nous montrons que si R0 ≤ 1 alors l’infection peut être
éliminé ; alors que siR0 > 1, il existe un équilibre endémique qui est globallement stable en absence
du retard de la réponse immunitaire. Dans le cas spécial avec seulement la reponse immunitaire, nous
déterminons des conditions de changement de stabilité de l’équilibre endémique. Des simulations
numériques indiquent que les retards intracellulaires et le retard de la réponse immunitaire peuvent
stabilisé et/ou destabilisé l’équilibre endémique.

ABSTRACT. We consider a mathematical model that describes a viral infection of HIV-1 with both
virus-to-cell and cell-to-cell transmission, CTL response immune and four distributed delays, describ-
ing intracellular delays and immune response delay. One of the main features of the model is that
it includes a constant production rate of CTLs export from thymus, and an immune response delay.
We derive the basic reproduction number R0 and establish that the global dynamics is completely
determined by the values ofR0. We show that ifR0 ≤ 1, then the infection free equilibrium is globally
asymptotically stable ; whereas, if R0 > 1, then there exist a chronic infection equilibrium, which
is globally asymptotically stable in absence of immune response delay. Furthermore, for the special
case with only immune response delay, we determine some conditions for stability switches of the
chronic infection equilibrium. Numerical simulations indicate that the intracellular delays and immune
response delay can stabilize and/or destabilize the chronic infection equilibrium.

MOTS-CLÉS : Dynamique viral, Retards continus, Réponse immunitaire, Stabilité
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1. Introduction

Research on HIV/AIDS infection is performed in various domains including mathe-
matical modelling. The mathematical modelling is about modelling the evolution of the
disease using mathematical tools, mainly differential equations. Over the recent years,
great efforts have been paid in mathematical modeling of within-host virus dynamics.
Mathematical models have been developed to describe the in vivo infection process of
many viruses such as human immunodeficiency virus type I (HIV-I), hepatitus C vi-
rus (HCV), hepatitus B virus (HBV), and human T-cell lymphotropic virus I (HTLV-I)
[11, 12, 9, 2, 17, 6, 5]. These within-host models are useful for exploring possible me-
chanisms and outcomes of the viral infection process [11, 12], and for estimating key
parameter values such as virion clearance rate, life span of infected cells, and average
viral generation time in vivo [9].

Mathematical models and their analysis are helpful in understanding the dynamical be-
havior of many human viruses such as HIV, HTLV-I and HBV (e.g., [3, 7, 8, 15, 16, 19]).
Recently, it has been reported that the uninfected cells can also become infected because
of direct contact with infected cells. The viral infection model with cell-to-cell transmis-
sion and distributed time delay have been proposed in [3, 7, 16, 18]. They observed that
the basic reproduction number of their model might be underevaluated if either cell-to-cell
spread or virus-to-cell infection is neglected.

Note that the immune response after viral infection is common and is necessary for
eliminating or controlling the disease. In most virus infections, cytotoxic T lymphocytes
(CTLs) play a critical role in antiviral defense by attacking virus-infected cell. Many exis-
ting mathematical models for HIV infection with CTLs response are given by systems of
ordinary differential equation (ODE) (see, e.g. [3, 8, 15, 16, 19]). However, time delays
can not be ignored when modeling immune response, since antigenic stimulation genera-
ting CTLs may need a period of time, that is, the activation rate of CTL response at time t
may depend on the population of antigen at a previous time [19]. Moreover, all the afore-
mentioned works not take into account of the constant production rate of CTLs exported
from thymus. This consideration of export rate of new CTLs from thymus is considered
in [8, 13, 14, 15] and is ignored by many authors.

Motivated by the works in [3, 8, 13, 18], in the present paper, we are concerned by
the effect of both virus-to-cell and cell-to-cell transmissions with intracellular delays, and
immune response activation delay on the global dynamics of HIV-1 infection model. We
consider a within-host viral infection model with both virus-to-cell and cell-to-cell trans-
missions, immune response and four distributed delays, in which the first, second and
fourth delay respectively describes the intracellular latency for virus-to-cell infection, the
intracellular latency for the cell-to-cell infection and the time period that viruses pene-
trated into cells and infected cells release new virions [18], and the third delay describes
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the activation delay of CTLs cells ([19]). The rest of the paper is organized as follows. In
Section 2, the mathematical model is constructed. Preliminaries including the positivity
and boundedness of solutions are introduced in Section 3. In Section 4, the existence of
infection-free equilibrium and its global stability are studied. Existence of a chronic in-
fection equilibrium and its global stability with intracellular delays only are presented in
Section 5. Furthermore, in this section, we find sufficient conditions for the occurrence of
a Hopf bifurcation includes only the immune response delay. In section 6, numerical si-
mulations for several cases of the main model are presented. We further explore the delays
and their effects on the stability of the chronic infection equilibrium. Section 7 concludes
the paper.

2. The model formulation

The compartmental model includes the concentrations of healthy target cells T (t)
which susceptible to infection, infected cells Ti(t) that produces viruses, cytotoxic T lym-
phocytes (CTLs) cells Tc(t) which are responsible of the destruction of infected cells and
viruses V (t). Let β1 be the virus-to-cell infection rate, β2 be the cell-to-cell infection
rate, δ, µ1, α and c be death rates of healthy target cells, activated infected cells, cyto-
toxic CTLs cells and viruses, respectively. Let b be the production rate of healthy target
cells, λ be the production rate of CTLs cells export from thymus, a be the prolifera-
tion rate of CTLs cells. Infected cells are eliminated by CTLs cells at a rate q, which
represent the lytic activity of CTLs cells. e−µ1s1 is the survival rate of cells that are
infected by viruses at time t and become activated s1 time later with a probability distri-

bution f1(s1). Then
∞∫
0

β1T (t − s1)V (t − s1)f1(s1)e−µ1s1ds1 describes the newly acti-

vated infected target cells which are infected by free viruses s1 time ago [18]. Similarly,
∞∫
0

β2T (t − s2)Ti(t − s2)f2(s2)e−µ1s2ds2 represents the newly activated infected target

cells which are infected by infected cells s2 time ago [18]. e−µ2s3 is the survival rate of
CTLs cells that are activated at time t, and become cytotoxic s3 time later with a proba-

bility distribution f3(s3). Then,
∞∫
0

aTi(t− s3)Tc(t− s3)f3(s3)e−µ2s3ds3 represents the

newly CTLs cells proliferated at time t [19]. Let s4 be the random variable that is the time
between viral RNA transcript and viral release and maturation with a probability distri-

bution f4(s4). Then,
∞∫
0

kTi(t − s4)f4(s4)e−µ3s4ds4 describes the mature viral particles

produced at time t [18]. k is the average number of viruses that bud out from an infected
cell and e−µ3s4 is the survival rates of cells that start budding from activated infected
cells at time t and become free mature viruses s4 time later. Note that s1,s2, s3 and s4 are
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all integration variables, without loss of generality, they all will be represented by s. The
model is given as follows :

dT (t)
dt = b− δT − β1TV − β2TTi

dTi(t)
dt =

∞∫
0

β1T (t− s)V (t− s)f1(s)e−µ1sds

+
∞∫
0

β2T (t− s)Ti(t− s)f2(s)e−µ1sds− µ1Ti − qTiTc

dTc(t)
dt = λ+ a

∞∫
0

Ti(t− s)Tc(t− s)f3(s)e−µ2sds− αTc

dV (t)
dt = k

∞∫
0

Ti(t− s)f4(s)e−µ3sds− cV,

(1)

fi(ν) : [0,∞) −→ [0,∞) are probability distributions with compact support, fi(ν) > 0,
and

∫∞
0
fi(ν)dν = 1, i = 1, . . . , 4.

From the modeling perspective, the model (1) extends the basic model developed in
[8] by : (i) incorporating the cell-to-cell transmission, (ii) intracellular delays and (iii)
immune activation delay. Together with this latter improvement (iii), the incorporation
of a constant production rate of CTLs export from thymus in our model also extend the
works in [3, 16, 19]. It is also noticeable that, our model extends the models developed in
[7, 18] by including CTL response immune delay.

3. Preliminaries

Define the Banach space of fading memory type (see [7, 18])
C =

{
φ ∈ C((−∞, 0]|φ(θ) eµθ is continuous for θ ∈ (−∞, 0] and ‖φ‖ < ∞

}
where µ

is positive constant and the norm ‖φ‖ = supθ60 |φ(θ)| eµθ. The nonnegative cone of C is
defined by C+ = C((−∞, 0],R+). For φ ∈ C, Let φt(θ) = φ(t + θ), θ ∈ (−∞, 0]. We
consider solutions (T, Ti, Tc, V ) of system (1) with initial conditions

(T (0), Ti(0), Tc(0), V (0)) ∈ X := C+ × C+ × C+ × C+. (2)

By the standard theory of functional differential equations, we can obtain the existence of
solutions for t > 0. Let

ηi =

∫ ∞
0

e−µ1sfi(s)ds, i = 1, 2, η3 =

∫ ∞
0

f3(s)e−µ3sds, η4 =

∫ ∞
0

f4(s)e−µ4sds.

Theorem 3.1 Solutions of system (1) with initial conditions (2) are positive and ultima-
tely uniformly bounded for t > 0.
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Proof 3.1 Let m(t) = δ + β1V (t) + β2Ti(t) and d(t) = µ1 + qTc(t). Let r(t) be the
sum of the two integral terms in the second equation of system (1) and n(t) be the integral
term in the fourth equation of system (1). From the first equation in (1), we have

T (t) = T (0)e−
∫ t
0
m(ξ)dξ +

∫ t

0

e−
∫ t
ξ
m(θ)dθbdξ > 0 for t ≥ 0.

From the third equation in (1), it follows that lim
t→∞

inf Tc(t) ≥ λ
α > 0.

From the second and fourth equation in (1), we then have

Ti(t) = Ti(0)e−
∫ t
0
d(ξ)dξ+

∫ t

0

r(ξ)e−
∫ t
ξ
d(θ)dθdξ and V (t) =

[
V (0) +

∫ t

0

n(ξ)ecξdξ

]
e−ct,

which yield that Ti(t) > 0, V (t) > 0 for small t > 0. Now we prove that Ti(t) > 0 and
V (t) > 0 for all t > 0. Otherwise, there exists t1 > 0 such that min{Ti(t1), V (t1)} = 0.
If Ti(t1) = 0, Ti(t) > 0 for 0 ≤ t < t1, and V (t) > 0 for 0 ≤ t < t1, then we have
dTi(t1)
dt > 0. This contradicts Ti(t1) = 0 and Ti(t) > 0 for 0 ≤ t < t1. If V (t1) = 0,

V (t) > 0 for 0 ≤ t < t1, and Ti(t) > 0 for 0 ≤ t < t1, then we obtain dV (t1)
dt > 0,

which is also a contradiction. Hence, Ti(t) > 0 and V (t) > 0 for all t > 0.

To prove boundedness, first by the positivity of solutions we have dT (t)
dt < b − δT (t).

It follows that lim
t→∞

supT (t) ≤ b
δ , implying Ts(t) is bounded. Let

G1(t) =

∫ ∞
0

f1(s)e−µ1sT (t− s)ds+

∫ ∞
0

f2(s)e−µ1sT (t− s)ds+ Ti(t).

Since T (t) is bounded and
∫∞
0
f(u)du is convergent, the integral in G(t) is well defined

and differentiable with respect to t. Moreover , when taking the time derivative of G(t) ,
the order of the differentiation and integration can be switched. Thus, we have

Ġ1(t) = b(η1 + η2)− δ
∫ ∞
0

f1(s)e−µ1sT (t− s)ds− δ
∫ ∞
0

f2(s)e−µ1sT (t− s)ds

−µ1Ti − qTiTc,

≤ b(η1 + η2)− δ
∫ ∞
0

f1(s)e−µ1sT (t− s)ds− δ
∫ ∞
0

f2(s)e−µ1sT (t− s)ds

−
(
µ1 +

qλ

α

)
Ti(t) ≤ b(η1 + η2)− d1G1(t),

where d1 = min
{
δ, µ1 + qλ

α

}
. Therefore, lim

t→∞
supG1(t) ≤ b(η1+η2)

d1
:= M1, implying

that lim
t→∞

supTi(t) ≤M1. Then, from the fourth equation of system (1), we have

V̇ (t) = k

∫ ∞
0

e−µ4sf4(s)Ti(t− s)ds− cV ≤ kM1η4 − cV.
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Thus, lim
t→∞

supV (t) ≤ kM1η4
c := M2. Now determine the upper bound of Tc(t). Let

G2(t) =

∫ ∞
0

f3(s)e−µ3sTi(t− s)ds+
q

a
Tc(t).

Thus, we have

Ġ2(t) =

∫ ∞
0

f3(s)e−µ3sr(t− s)ds− µ1

∫ ∞
0

f3(s)e−µ3sTi(t− s)ds+
qλ

a
− αq

a
Tc(t),

≤ bη3
δ

(β1η1M2 + β2η2M1) +
qλ

a
− µ1

∫ ∞
0

f3(s)e−µ3sTi(t− s)ds− α
q

a
Tc(t),

≤ d2 − d3G2(t),

where
d2 =

bη3
δ

(β1η1M2 + β2η2M1) +
qλ

a
and d3 = {α, µ1} .

Hence, lim
t→∞

supG2(t) ≤ d2
d3

:= M3, implying that lim
t→∞

supTc(t) ≤ a
qM3. Thus, T (t),

Ti(t), Tc(t) and V (t) are uniformly bounded. �

Theorem 3.1 implies that omega limit sets of system(1) are contained in the following
bounded feasible region :

Ω =

{
(T, Ti, Tc, V ) ∈ C4+ : ‖Ts‖ ≤

b

δ
, ‖Ti‖ ≤M1,

λ

α
≤ Tc ≤

a

q
M3, ‖V ‖ ≤M2

}
.

It can be verified that the region Ω is positively invariant with respect (1) and the system
is well posed.

4. The infection-free equilibrium and its stability

System (1) has an infection-free equilibrium E0 =
(
b
δ , 0,

λ
α , 0

)
. We defined the basic

reproduction number as follows :

R0 = R01 +R02 =
k β1 b η1 η4

cδ
(
µ1 + qλ

α

) +
β2bη2

δ
(
µ1 + qλ

α

) ,
which represents the average number of secondary infections. In fact, k β1 b η1 η4

cδ(µ1+
qλ
α )

is the

average number of secondary viruses caused by a virus, that is the basic reproduction
number corresponding to virus-to-cell infection mode, while β2bη2

δ(µ1+
qλ
α )

is the average
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number of secondary infected cells that caused by an infected cell, that is the basic re-
production number corresponding to cell-to-cell infection mode. The factors have the
biological interpretations as follows :

– bβ1η1
δ is the number of new infections caused by a virus in target susceptible cells ;

– qλ
α is the rate at which infected cells are eliminated by the CTLs response ;

– 1
µ1+

qλ
α

is the average time that an infectious cell survives ;

– kη4 is the rate at which infected cells bud into viruses ;
– 1
c is gives the average life-span of a virus ;

– bβ2η2
µ1+

qλ
α

represents the number of new infections caused by an infected cell in target
susceptible cells.

The result below follows is straightforward.

Theorem 4.1 The infection-free equilibrium E0 of system (1) is locally asymptotically
stable in the feasible region Ω wheneverR0 < 1 and unstable otherwise.

Proof 4.1 The characteristic equation of system (1) at the equilibrium E0 is

(ν + δ)(ν + α)

[
(ν + c)

(
ν + µ1 +

qλ

α
− bβ2η2

δ

)
− kbβ1

δ
η1η4

]
= 0, (3)

where ηi =
∫∞
0
e−(µ1+ν)sfi(s)ds, i = 1, 2, η3 =

∫∞
0
e−(µ2+ν)sf3(s)ds and η4 =∫∞

0
e−(µ3+ν)sf4(s)ds. We see that (3) has eigenvalues ν1 = −δ, ν2 = −α and other

eigenvalues are determined by

(ν + c)

(
ν + µ1 +

qλ

α
− bβ2η2

δ

)
− kbβ1

δ
η1η4 = 0,

which equivalent to

Ψ(ν) :=

(
ν

µ1 + qλ
α

+ 1

)
(ν+ c)−R0

(
η2R02

η2R0
ν + c

η2R02

η2R0
+ c

η1η4R01

η1η4R0

)
= 0. (4)

Thus, Ψ(0) = c(1−R0) < 0 whenR0 > 1. Note that

η1 ≤
∫ ∞
0

f1(s)ds = 1, i = 1, 2, 3, 4.

Then, we have

Ψ(ν) ≥

(
ν

µ1 + qλ
α

+ 1

)
(ν + c)−R0

(
R02

η2R0
ν + c

R02

η2R0
+ c

R01

η1η4R0

)
→ +∞,
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as ν → +∞. This yields that equation (4) has at least one positive root. Therefore, the
infection-free equilibrium E0 is unstable ifR0 > 1. �

Biologically speaking, Theorem 4.1 implies that infection can be eliminated if the
initial sizes of cells are in the basin of attraction of the infection-free equilibrium. Thus,
the infection can be effectively controlled if R0 < 1. One can remark that R0 depends
on λ and is a decreasing function of this rate. Hence, the constant rate λ could be an
important control parameter in order to reduce R0 to a value less than unity. To ensure
that the effective control of the infection is independent of the initial size of the cells, a
global stability result must be established for the infection-free equilibrium.

Theorem 4.2 If R0 ≤ 1, then the infection-free equilibrium E0 of system (1) is globally
asymptotically stable in Ω.

Proof 4.2 We define a Lyapunov function as follows :

L(t) = Ti +
bβ1η1
cδ

V +

∫ ∞
0

f1(s)e−µ1s

∫ t

t−s
β1T (τ)V (τ)dτds+

∫ ∞
0

f2(s)e−µ1s

∫ t

t−s
β2T (τ)Ti(τ)dτds+

bβ1η1
cδ

∫ ∞
0

f4(s)e−µ3s

∫ t

t−s
kTi(τ)dτds.

Then the time derivative of L(t) along solutions of system (1) satisfies

dL(t)

dt
= β1η1TV + β2η2TTi +

kbβ1η1η4
cδ

Ti − µ1Ti − qTiTc −
bβ1η1
δ

V.

Since T ≤ b
δ and Tc ≥ λ

α , we have

dL(t)

dt
≤
[
bβ2η2
δ

+
kbβ1η1η4

cδ
−
(
µ1 +

qλ

α

)]
Ti =

(
µ1 +

qλ

α

)
(R0 − 1)Ti.

dL(t)
dt ≤ 0 wheneverR0 ≤ 1. Moreover, dL(t)dt = 0⇔ Ti = V = 0 or T = b

δ , Tc = λ
α and

R0 = 1. Thus, the largest invariant setH such asH ⊂
{

(T, Ti, Tc, V ) ∈ R4
+/

dL(t)
dt = 0

}
is the singleton {E0}. By LaSalle’s Principle, E0 is globally asymptotically stable in Ω,
completing the proof. �
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5. The chronic infection equilibrium and its stability

5.1. Existence and uniqueness

The existence of a chronic infection equilibrium of the model (1) is addressed when
R0 > 1. The infection is endemic if the infected cells persist above a certain positive
level.

Denote by E∗ = (T ∗, T ∗i , T
∗
c , V

∗) the chronic infection equilibrium of system (1). At
this point, the system (1) satisfies the following relations :

b = δT ∗ + β1T
∗V ∗ + β2T

∗T ∗i

β1η1T
∗V ∗ + β2η2T

∗T ∗i = µ1T
∗
i + qT ∗i T

∗
c

λ+ aη3T
∗
i T
∗
c = αT ∗c

kη4T
∗
i = cV ∗

(5)

Solving (5) yields 

T ∗ = b

δ+
(
β1+

β2c
kη4

)
V ∗
,

T ∗c =
kbβ1η1η4+bβ2η2c−cµ1δ−cµ1

(
β1+

β2c
kη4

)
V ∗

qc
(
δ+β1V ∗+

β2c
kη4

V ∗
) ,

T ∗i = cV ∗

kη4
,

where V ∗ is a positive root of

λ+ aη3T
∗
i T
∗
c − αT ∗c = 0. (6)

After expansion and substitution of T ∗, T ∗i , T ∗c by their expressions, Eq. (6) is equivalent
to polynomial

P (V ) = a2V
2 + a1V + a0 = 0, (7)

with the coefficients a2, a1 and a0 given by

a2 = aη3c
2µ1

kη4

(
β1 + β2c

kη4

)
,

a1 = aη3c
2µ1δ

kη4
− aη3bc

(
β1η1 + β2η2c

kη4

)
−
(
β1 + β2c

kη4

)
(µ1cα+ qλc),

a0 = cδα
(
µ1 + qλ

α

)
(R0 − 1).

(8)
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Using Tc ≥ 0 one shows that V ≤ Vmax, where

Vmax =
kbβ1η1η4 + bβ2η2c− cµ1δ

cµ1

(
β1 + β2c

kη4

) =
cµ1δ(R0 − 1) +R0

cδqλ
α

cµ1

(
β1 + β2c

kη4

) > 0.

Furthermore, some calculations give

P (0) = a0, P (Vmax) = −a0bλq(kβ1η1η4 + β2η2c)

µ1
< 0, and lim

V→+∞
P (V ) = +∞.

• If R0 ≤ 1, then P (0) = a0 ≤ 0 and the equation P (V ) = 0 has a unique positive
root on ]Vmax; +∞[. Since for all V ≥ Vmax, T ∗c ≤ 0, it follows that system (1) has no
positive chronic infection equilibrium in this case.

• IfR0 > 1, then P (0) = a0 > 0 and the equation P (V ) = 0 has two positive roots :
one solution on interval ]0;Vmax[ and another solution on ]Vmax; +∞[.
Since T ∗c is positive for 0 < V < Vmax and negative for V > Vmax, it follows that
system (1) has a unique positive chronic infection equilibrium when R0 > 1. We have
established the following result.

Theorem 5.1 System (1) always has a infection-free equilibrium E0, and

(i) ifR0 < 1, system (1) has no positive chronic infection equilibrium ;

(ii) ifR0 > 1, system (1) has a unique positive chronic infection equilibrium E∗.

5.2. Stability analysis of chronic infection equilibrium

On the stability analysis of the chronic infection equilibrium, we only discuss the
following special cases : (i) τi ≥ 0, i = 1, 2, 4, τ3 = 0 and (ii) τi = 0, i = 1, 2, 4,
τ3 > 0. However, aim at the case τi > 0, i = 1, 2, 3, 4, the theoretical analysis is very
complicated. We will give numerical analysis for this case in the next section.

5.2.1. Global stability of chronic infection equilibrium when τi ≥ 0,
i = 1, 2, 4 and τ3 = 0.

Here, we will prove the global stability of the chronic infection equilibrium of system
(1) with τ3 = 0 by the Lyapunov direct method.

Theorem 5.2 Consider system (1) with f1(s) = f2(s), τi ≥ 0, i = 1, 2, 4 and τ3 = 0. If
R0 > 1, then the chronic infection equilibrium E∗ is globally asymptotically stable.
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Proof 5.1 Consider system (1) with τi 6 0 , i = 1, 2, 4 and τ3 = 0. SupposeR0 > 1 and
f1(s) = f2(s). For convenience of notation, we denote g(x) = x− 1− lnx. It is easy to
see that g(x) > 0 for x > 0 and g′(x) = 1− 1

x . Furthermore, g has a global minimum at
1 and satisfies g(1) = 0. We define a Lyapunov functions as follows :

U(t) = U1(t) + U2(t) + U3(t)

Where

U1 = T (t)− T ∗ ln
T (t)

T ∗
+

1

η1

(
Ti(t)− T ∗i ln

Ti(t)

T ∗i

)
+

q

aη1

(
Tc(t)− T ∗c ln

Tc(t)

T ∗c

)
+
β1T

∗

c

(
V (t)− V ∗ ln

V (t)

V ∗

)
,

U2(t) =
β1T

∗V ∗

η1

∫ ∞
0

f1(s)e−µ1s

∫ 0

−s
g

(
T (t+ τ)V (t+ τ)

T ∗V ∗

)
dτds

+
β2T

∗T ∗i
η1

∫ ∞
0

f1(s)e−µ1s

∫ 0

−s
g

(
T (t+ τ)Ti(t+ τ)

T ∗T ∗i

)
dτds

and

U3(t) =
β1T

∗V ∗

η4

∫ ∞
0

f4(s)e−µ3s

∫ 0

−s
g

(
T (t+ τ)Ti(t+ τ)

T ∗i

)
dτds.

Calculating the time derivative of U1, U2 and U3 along the solutions of system (1), we
have

dU1

dt
=

(
1− T ∗

T

)
[b− δT − β1TV − β2TTi]

+
1

η1

(
1− T ∗i

Ti

)(∫ ∞
0

f1(s)e−µ1sβ1T (t− s)V (t− s)ds+

+

∫ ∞
0

f1(s)e−µ1sβ2T (t− s)Ti(t− s)ds− µ1Ti − qTiTc
)

+
q

aη1

(
1− T ∗c

Tc

)
[λ+ aTiTc − αTc]

+
β1T

∗

c

(
1− V ∗

V

)(∫ ∞
0

kTi(t− s)f4(s)e−µ3sds− cV
)

=b− δT − β1TV − β2TTi − b
T ∗

T
+ δT ∗ + β1V T

∗ + β2TiT
∗

+
1

η1

∫ ∞
0

β1T (t− s)V (t− s)f1(s)e−µ1sds+
1

η1

∫ ∞
0

β2T (t− s)Ti(t− s)f1(s)e−µ1sds

A R I M A
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− µ1

η1
Ti −

q

η1
TiTc −

1

η1

T ∗i
Ti

∫ ∞
0

f1(s)e−µ1sβ1T (t− s)V (t− s)ds

− 1

η1

T ∗i
Ti

∫ ∞
0

f1(s)e−µ1sβ2T (t− s)Ti(t− s)ds+
µ1

η1
T ∗i +

qT ∗i Tc
η1

+
q

aη1

(
λ+ aTiTc − αTc − λ

T ∗c
Tc
− aTiT ∗c + αT ∗c

)
+
kβ1T

∗

c

∫ ∞
0

Ti(t− s)f4(s)e−µ3sds− β1T ∗V + β1T
∗V ∗

− kβ1T
∗

c

V ∗

V

∫ ∞
0

Ti(t− s)f4(s)e−µ3sds,

dU2

dt
=β1TV + β2TTi −

1

η1

∫ ∞
0

β1T (t− s)V (t− s)f1(s)e−µ1sds

− 1

η1

∫ ∞
0

β2T (t− s)Ti(t− s)f1(s)e−µ1sds

+
β1T

∗V ∗

η1

∫ ∞
0

f1(s)e−µ1s ln
T (t− s)V (t− s)

TV
ds

+
β2T

∗T ∗i
η1

∫ ∞
0

f1(s)e−µ1s ln
T (t− s)Ti(t− s)

TTi
ds,

and

dU3

dt
= β1T

∗V ∗
Ti
T ∗i
− β1T

∗V ∗

η4T ∗i

∫ ∞
0

Ti(t− s)f4(s)e−µ3sds

+
β1T

∗V ∗

η4

∫ ∞
0

f4(s)e−µ3s ln
Ti(t− s)

Ti
ds.

Taking the derivative of U(t) and making use of the equations (5) defining the positive
equilibrium E∗ , we obtain after simplifications :

dU

dt
= δT ∗

(
2− T

T ∗
− T ∗

T

)
+

qλ

aη1

(
2− Tc

T ∗c
− T ∗c
Tc

)
+ 2β1T

∗V ∗ + β2T
∗T ∗i +

µ1

η1
T ∗i

+
q

η1
T ∗i T

∗
c − β1T ∗V ∗

T ∗

T
− β2T ∗T ∗i

T ∗

T
− 1

η1

T ∗i
Ti

∫ ∞
0

f1(s)e−µ1sβ1T (t− s)V (t− s)ds

− 1

η1

T ∗i
Ti

∫ ∞
0

β2T (t− s)Ti(t− s)f1(s)e−µ1sds− β1T
∗V ∗

η4T ∗i

V ∗

V

∫ ∞
0

Ti(t− s)f4(s)e−µ3sds

+
β1T

∗V ∗

η1

∫ ∞
0

f1(s)e−µ1s ln
T (t− s)V (t− s)

TV
ds+

β1T
∗V ∗

η4

∫ ∞
0

f4(s)e−µ3s ln
Ti(t− s)

Ti
ds
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+
β2T

∗T ∗i
η1

∫ ∞
0

f1(s)e−µ1s ln
T (t− s)Ti(t− s)

TTi
ds

=δT ∗
(

2− T

T ∗
− T ∗

T

)
+

qλ

aη1

(
2− Tc

T ∗c
− T ∗c
Tc

)
+ β1T

∗V ∗ + β2T
∗T ∗i

− β1T ∗V ∗
T ∗

T
− β2T ∗T ∗i

T ∗

T
+ β1T

∗V ∗ ln
T ∗V ∗Ti
TV T ∗i

+
β1T

∗V ∗

η1

∫ ∞
0

f1(s)e−µ1s

[
1− T (t− s)V (t− s)T ∗i

T ∗V ∗Ti
+ ln

T (t− s)V (t− s)T ∗i
T ∗V ∗Ti

]
ds

+
β2T

∗T ∗i
η1

∫ ∞
0

f1(s)e−µ1s

[
1− T (t− s)Ti(t− s)

T ∗Ti
+ ln

T (t− s)Ti(t− s)
T ∗Ti

]
ds

+
β1T

∗V ∗

η4

∫ ∞
0

f4(s)e−µ3s

[
1− Ti(t− s)V ∗

T ∗i V
+ ln

Ti(t− s)V ∗

T ∗i V

]
ds

+ β1T
∗V ∗ ln

T ∗i V

TiV ∗
+ β2T

∗T ∗i ln
T ∗

T
,

=δT ∗
(

2− T

T ∗
− T ∗

T

)
+

qλ

aη1

(
2− Tc

T ∗c
− T ∗c
Tc

)
− [β1T

∗V ∗ + β2T
∗T ∗i ] g

(
T ∗

T

)
− β1T

∗V ∗

η1

∫ ∞
0

f1(s)e−µ1sg

(
T (t− s)V (t− s)T ∗i

T ∗V ∗Ti

)
ds

− β2T
∗T ∗i
η1

∫ ∞
0

f1(s)e−µ1sg

(
T (t− s)Ti(t− s)

T ∗Ti

)
ds

− β1T
∗V ∗

η4

∫ ∞
0

f4(s)e−µ3sg

(
Ti(t− s)V ∗

T ∗i V

)
ds.

According to the property of g, we obtain that dU(t)
dt 6 0. It can be verified that dU(t)

dt = 0
if and only if

T

T ∗
=
Tc
T ∗c

=
T (t− s)V (t− s)T ∗i

T ∗V ∗Ti
=
T (t− s)ti(t− s)

T ∗Ti
=
Ti(t− s)V ∗

T ∗i V
= 1

It means that the largest invariant set M0 ⊆ M =

{
(T, Ti, Tc, V ) : dU

dt = 0

}
is

the singleton
{
E∗
}
. Again by the Lyapunov-LaSalle invariance principle, the chronic

infection equilibrium E∗ of system (1) is globally asymptotically stable.
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5.2.2. Local stability and Hopf bifurcation when τi = 0, i = 1, 2, 4, τ3 ≥ 0.

In this subsection, we consider model (1) with particular distribution functions fi(s),
i = 1, 2, 3, 4 as : f1(s) = f2(s) = δ(s− τ1), f3(s) = δ(s− τ3) and f4(s) = δ(s− τ4),
where δ(·) is the dirac delta function. We consider the special case where τ1 = τ2 = τ4 =
0 and τ3 ≥ 0. Then, we obtain that η1 = η2 = η4 = 1 and η3 = e−µ2τ3 . In this case, the
characteristic equation at the equilibrium E∗ is

ν4+A3ν
3+A2ν

2+A1ν+A0+
[
B3(τ3)ν3 +B2(τ3)ν2 +B1(τ3)ν +B0(τ3)

]
e−τ3ν = 0,

(9)
where

A3 =
b

T ∗
+ c+ α+

kβ1T
∗

c
,

A2 =
b

T ∗

(
c+ α+

kβ1T
∗

c

)
+ β2T

∗(β1V
∗ + β2T

∗
i ) + cα+

αkβ1T
∗

c
,

A1 =
αb

T ∗

(
c+

kβ1T
∗

c

)
+ [kβ1 + β2(c+ α)]T ∗(β1V

∗ + β2T
∗
i ),

A0 = αT ∗(β1V
∗ + β2T

∗
i )(kβ1 + cβ2),

B3(τ3) = −aT ∗i e−µ2τ3 ,

B2(τ3) = −aT ∗i e−µ2τ3

(
b

T ∗
+
kβ1T

∗

c
+ c

)
+ aqT ∗i T

∗
c e
−µ2τ3 ,

B1(τ3) = aT ∗i e
−µ2τ3

[
qT ∗c

(
c+

b

T ∗

)
− b

T ∗

(
c+

kβ1T
∗

c

)
− β2T ∗(β1V ∗ + β2T

∗
i )

]
,

B0(τ3) = aT ∗i e
−µ2τ3

[
cqT ∗c

b

T ∗
− T ∗(kβ1 + cβ2)(β1V

∗ + β2T
∗
i )

]
.

When τ3 = 0, equation (9) becomes

ν4 + (A3 +B3(0))ν3 + (A2 +B2(0))ν2 + (A1 +B1(0))ν +A0 +B0(0). (10)

Using the Routh-Hurwitz criterion on (10), we investigate the local stability of E∗. The
relevant Routh-Hurwitz determinants are :

∆1 = A3 +B3(0) > 0,
∆2 = (A3 +B3(0))(A2 +B2(0))− (A1 +B1(0)) > 0,
∆3 = (A1 +B1(0))∆2 − (A3 +B3(0))2(A0 +B0(0)) > 0,
∆4 = (A0 +B0(0))∆3 > 0.

Since all the parameters of model (1) are positive, it follows that

∆1 =
b

T ∗
+ c+

kβ1T
∗

c
+ α− aT ∗i =

b

T ∗
+ c+

kβ1T
∗

c
+

λ

T ∗c
> 0.
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Furthermore, by straightforward computations, we show that

∆2 =

(
b

T ∗
+ c+

kβ1T
∗

c
+

λ

T ∗c

)
[aqT ∗i T

∗
c + β2T

∗(β1V
∗ + β2T

∗
i )

+
b

T ∗

(
c+

kβ1T
∗

c

)
+

λ

T ∗c

(
b

T ∗
+ c+

kβ1T
∗

c

)]
− aqT ∗i T ∗c

(
c+

b

T ∗

)
− b

T ∗
λ

T ∗c

(
c+

kβ1T
∗

c

)
− T ∗(β1V ∗ + β2T

∗
i )

(
kβ1 + β2c+ β2

λ

T ∗c

)
,

= aqT ∗i T
∗
c

(
kβ1T

∗

c
+

λ

T ∗c

)
+

b

T ∗

(
c+

kβ1T
∗

c

)(
b

T ∗
+ c+

kβ1T
∗

c

)
+
λ

T ∗c

(
b

T ∗
+ c+

kβ1T
∗

c

)(
b

T ∗
+ c+

kβ1T
∗

c
+

λ

T ∗c

)
+T ∗(β1V

∗ + β2T
∗
i )

[
β2

(
b

T ∗
+
kβ1T

∗

c

)
− kβ1

]
> 0.

Thus, all solutions of (10) have negative real parts if and only if

∆3 = (A1 +B1(0))∆2 − (A3 +B3(0))2(A0 +B0(0)) > 0. (11)

The stability is given in the following theorem.

Theorem 5.3 Consider system (1) with τi = 0, i = 1, 2, 3, 4. IfR0 > 1, then the chronic
infection equilibrium E∗ is locally asymptotically stable provided that (11) holds.

The root of (9) depends on τ3 continuously. A root of (9) may pass through the imaginary
axis and enter the right side when τ3 increases. Let us consider ν = µ(τ3) + iω(τ3)
a root of equation (9). We are interested in the change of stability of chronic infection
equilibrium E∗, which will occur at the values of τ3 for which µ(τ3) = 0 and ω(τ3) > 0.
ν = iω is the critical case since a root may enter the right side or the left side under small
perturbation when it locates on the imaginary axis. After substituting ν = iω into (9) and
separating the real and the imaginary parts, we obtain that

M(ω) cosωτ3 +N(ω) sinωτ3 = E(ω),
N(ω) cosωτ3 −M(ω) sinωτ3 = F (ω),

(12)

where

M(ω) = B2(τ3)ω2 −B0(τ3), N(ω) = B3(τ3)ω3 −B1(τ3)ω,

E(ω) = ω4 +A0 −A2ω
2, F (ω) = −A3ω

3 +A1ω.
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From (12), we can get

cosωτ3 =
M(ω)E(ω) +N(ω)F (ω)

M(ω)2 +N(ω)2
and sinωτ3 =

N(ω)E(ω)−M(ω)F (ω)

M(ω)2 +N(ω)2
.

(13)
Squaring and adding (13), we obtain

F (ω, τ3) := ω8 + C6(τ3)ω6 + C4(τ3)ω4 + C2(τ3)ω2 + C0(τ3) = 0, (14)

where

C6(τ3) = A2
3 − 2A2 −B3(τ3)2,

C4(τ3) = A2
2 − 2A3A1 + 2A0 −B2(τ3)2 + 2B3(τ3)B1(τ3),

C2(τ3) = A2
1 − 2A2A0 −B1(τ3)2 + 2B2(τ3)B0(τ3),

C0(τ3) = A2
0 −B0(τ3)2.

Denote
I =

{
ω(τ3) > 0 : F (ω, τ3) = 0

}
,

which is a finite set. If I 6= ∅, then E∗ is stable for τ3 ≥ 0. Note that

F (0, τ3) = A2
0 −B0(τ3)2, lim

ω→+∞
F (ω, τ3) = +∞.

In addition, we have

A0 +B0(τ3) = T ∗(β1V
∗ + β2T

∗
i )(kβ1 + cβ2)(α− aT ∗i e−µ2τ3) + aT ∗i cqT

∗
c

b

T ∗
e−µ2τ3 ,

=
λ

T ∗c
T ∗(β1V

∗ + β2T
∗
i )(kβ1 + cβ2) + aT ∗i cqT

∗
c

b

T ∗
e−µ2τ3 > 0.

Therefore, if
(H1) A0 < B0(τ3)

holds, then I 6= ∅ and F (ω, τ3) = 0 has at least one positive solution.

Assume I = {ω1, ω2, . . . , ωj0}. For j ∈ {1, 2, . . . , j0}, choose the unique angle
θj(τ3j) ∈ [0, 2π) such that

cos θj(τ3j) =
M(ωj)E(ωj) +N(ωj)F (ωj)

M(ωj)2 +N(ωj)2
,

sin θj(τ3j) =
N(ωj)E(ωj)−M(ωj)F (ωj)

M(ωj)2 +N(ωj)2
.

(15)
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Now, define the function as follows

Sn(τ3j) = τ3j −
θj(τ3j) + 2nπ

ωj(τ3j)
, n ∈ {0, 1, 2, · · · }.

Then, the characteristic equation (9) has a purely imaginary root ν = iωj(τ
∗
3j) at delay

τ3 = τ∗3j with ωj(τ∗3j) > 0 if and only if τ∗3j is a root of function Sn(τ3j) = 0 for some
n ∈ N and j ∈ {1, 2, . . . , j0}. Thus, the following results come from Theorem 2.2 in [1].

Theorem 5.4 The characteristic equation (9) admits a pair of simple and conjugate roots
ν(τ∗3j) = ±iωj(τ∗3j), ωj(τ∗3j) > 0 at τ∗3j if Sn(τ∗3j) = 0 for some n ∈ N and j ∈
{1, 2, . . . , j0}. This pair of simple conjugate pure imaginary roots crosses the imaginary
axis from left to right δ(τ∗3j) > 0 and crosses the imaginary axis from right to left if
δ(τ∗3j) < 0, where

δ(τ∗3j) = sign

{
dReν

dτ3

∣∣∣
ν=iω(τ∗

3j)

}
= sign

{
dSn(τ3)

dτ3

∣∣∣
τ3=τ∗

3j

}
= sign{F ′ω(ωj , τ

∗
3j)}.

Based on the above analysis, we obtain the following results by Theorem 5.4 and the Hopf
bifurcation theorem in [1].

Theorem 5.5 Consider system (1) with τi = 0, i = 1, 2, 4 and the special form f3(s) =
δ(s − τ3). Assume that R0 > 1 and (H1) holds. Then, there exists a τ∗3 such that the
chronic infection equilibrium E∗ is locally asymptotically stable when 0 ≤ τ3 < τ∗3 ,
and becomes unstable when τ3 staying in some right neighborhood of τ∗3 . Furthermore, a
Hopf bifurcation occurs at τ3 = τ∗3 .

6. Numerical simulations

In this section, we perform numerical simulations for the model (1) with particular
distribution functions fi(s), i = 1, 2, 3, 4 as : f1(s) = f2(s) = δ(s − τ1), f3(s) =
δ(s − τ3) and f4(s) = δ(s − τ4), where δ(·) is the dirac delta function, si, i = 1, 2, 3, 4
are positive constants. Then, we can see that η1 = η2 = e−µ1τ1 , η3 = e−µ2τ3 and
η4 = e−µ3τ4 . We examine the behavior of the infected steady state E∗ using data sets
that are commonly used in the literature [8, 16, 18]. Values of parameters are defined as :
b = 10, δ = 0.01, β1 = 2.5e − 4, β2 = 6.5e − 4, µ1 = 0.1, a = 3e − 2, q = 4e − 2,
k = 100, α = 0.15, c = 3, λ = 1, µ2 = 0.3 and µ3 = 0.1. By simple computing when
R0 > 1, the global stability of the chronic infection equilibrium E∗ as demonstrated in
Theorem 5.2 is numerically shown on Figure 1 for fixed delays τ1 = τ2 = 8, τ3 = 0 and
τ4 = 2.5.
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Figure 1 – Simulation results showing the effect of λ on the dynamics of the model with
τ1 = τ2 = 3, τ3 = 0 and τ4 = 2.5.
6.1. Effect of CTLs constant production rate

In order to investigate the effect of CTLs production rate, we carry out some numerical
simulations to show the contribution of CTLs constant production rate during the whole
infection. We set the production rate λ as 0.5, 1, 1.5, 2. We choose τ1 = τ2 = 3, τ3 = 0
and τ4 = 2.5. From the four figures of Figure 1, we can observe that uninfected and CTLs
cells reach a higher peak level as λ increases. While, the peak level of infected cells and
viruses decreases as λ increases. If we interpret the constant rate λ > 0 as an inflow of
antiviral drugs, one can observe from Figure 1 that the entry of antiviral drugs into the
host is important as a control parameter in order to reduce the viral load.

6.2. Effect of immune response delay

In order to illustrate our theoretical findings obtained in Theorem 5.5, we simulate mo-
del (1) with τ1 = τ2 = τ4 = 0 and the special form f3(s) = δ(s− τ3) with τ3 ≥ 0. First,
we set τ3 = 0 and keep others parameters. We getE∗ = (207.7479, 4.2451, 44.1567, 141.5038),
R0 = 24.5000 and ∆3 = 6.0670 > 0 i.e condition (11) holds. Then, the local stability of
the chronic infection equilibrium E∗ as established in Theorem 5.3 is numerically shown
on Figure 2.

Now, we vary the value of τ3 more than zero to see the effect of immune response
delay. Through numerical calculations, we get two critical values of delay τ3, denoted by
τ∗3 = 0.2683 and τ∗∗3 = 5.5527. Figure 3 illustrates the local asymptotic stability of E∗

for τ3 = 0.2 < τ∗3 as established in Theorem 5.5.
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Figure 2 – The time series of model (1) for τi = 0, i = 1, 2, 3, 4. The chronic infection
equilibrium E∗ is asymptotically stable when.
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Figure 3 – The time series of model (1) for τi = 0, i = 1, 2, 4, and τ3 = 0.2. The chronic
infection equilibrium E∗ is asymptotically stable when τ3 < τ∗3 = 0.2683.

When we increase the value of immune response delay to τ3 = 0.3 ∈ (τ∗3 , τ
∗∗
3 ), Figure

4 shows that E∗ becomes unstable and system undergoes Hopf bifurcation at τ3 = τ∗3 .
This latter case is also illustrated on Figure 5 for τ3 = 5.4 ∈ (τ∗3 , τ

∗∗
3 ).

Now, we increase again the value of immune response delay to τ3 = 5.7 > τ∗∗3 .
We see from Figure 6 that the chronic infection equilibrium E∗ regain its stability for
τ3 > τ∗∗3 and Hopf bifurcation occurs at τ3 = τ∗∗3 .
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Figure 4 – The time series of model (1) for τi = 0, i = 1, 2, 4, and τ3 = 0.3. The
chronic infection equilibrium E∗ becomes unstable and a Hopf bifurcation occurs when
τ3 ∈ (τ∗3 , τ

∗∗
3 ). Here, τ∗∗3 = 5.5527.
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Figure 5 – The time series of model (1) for τi = 0, i = 1, 2, 4, and τ3 = 5.4. The chronic
infection equilibrium E∗ becomes unstable and a Hopf bifurcation occurs at τ3 = τ∗3 .
6.3. Effect of intracellular delays and immune response delay on
the dynamics of model (1)

It is challenging to analyze model (1) for the joint effect of four delays theoretically.
So, we use numerical simulations to further investigate the effect of intracellular delays
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Figure 6 – The time series of model (1) for τi = 0, i = 1, 2, 4, and τ3 = 5.7. The chronic
infection equilibrium E∗ becomes stable when τ3 > τ∗∗3 = 5.5527.
and immune response delay on the dynamics of model when τi > 0, i = 1, 2, 3, 4. To this
end, we choose τ4 = 2.5 and τ1 = τ2. Figure 7 plots the chronic infection equilibrium
E∗ when τ1 varies and τ3 = 5 is fixed. From this figure, we see that for fixed immune
response delay, when we increase the intracellular delay for both virus-to-cell and cell-to-
cell infections, the trajectories of model (1) evolve from unstable to stable state. A similar
result is observed in Figure 8 when we fix intracellular delay (τ1 = 3) and vary immune
response delay τ3. These figures demonstrate that the chronic infection equilibrium E∗

destabilizes as τ1 and τ3 decreases. Therefore, an increase in the intracellular delay or the
immune response delay can stabilize the infected steady state E∗.

7. Conclusion

In this paper, we have investigated the dynamical properties of a delayed HIV-1 in-
fection model with both virus-to-cell and cell-to-cell transmissions, and CTL immune
response delay. This model extends some previous models and also take into account of a
rate of CTLs cells exported from thymus. We have derived the basic reproductive number,
R0 and we have shown that its value allow to determine the global dynamics of model. We
have established that when the basic reproductive numberR0 is less than unity, there is a
disease free equilibrium E0 which is globally asymptotically stable ; while when the ba-
sic reproductive numberR0 is greater than unity, there exists an unique chronic infection
equilibrium E∗ which is globally asymptotically stable in absence of immune response
delay. Furthermore, we have explored the local stability of the chronic infection equili-
brium for the special case with only immune response delay. We have determined some
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Figure 7 – Simulation results showing the effect of intracellular delay τ1 when immune
response delay is fixed (τ3 = 5).
conditions leading to the occurrence of Hopf bifurcation and found that when immune
response delay increase, there are stability switches of the chronic infection equilibrium.
Since it is challenging to analyze model (1) for the joint effect of four delays theoreti-
cally, numerical simulations were used to further investigate the infected steady state and
the existence of the Hopf bifurcation when τi > 0, i = 1, 2, 3, 4. We have observed that
for fixed immune response delay, when intracellular delay increase, there is also stabi-
lity switches of the chronic infection equilibrium. these analysis reveal that the sustained
oscillations occur when the intracellular delays and immune delay are incorporated simul-
taneously in the model. These results have enriched our understanding of the effects of
production delay in a viral infection processes and its interaction with immune response.
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Figure 8 – Simulation results showing the effect of immune response delay τ3 when in-
tracellular delay τ1 is fixed (τ1 = 3).
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Meanwhile, the analysis helps us to understand how intracellular incubation period in the
virus-to-cell and cell-to-cell infection, virus replication delay and immune response delay
affect the cell-virus-immune system dynamics. As far as future investigations are concer-
ned, we are planning to study local stability and Hopf bifurcation of the chronic infection
equilibrium in a general case with all delays being positive. This possible extension on
which we are already working will be more complex and bigger challenge in the future.
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