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Nous considerons un modèle qui décrit la dynamique de l'infection du VIH prenant en compte les transmissons virus-cellule et cellule-cellule et la réponse immunitaire. Ce modèle inclut quatre retards continus décrivant respectivement les retards intracellulaires et le retard de la réponse immunitaire. Ce modèle prend également en compte un taux de production des cellules CTL issue du thymus. Nous déterminons le taux de reproduction de base R 0 et montrons que la dynamique global est completement déterminé par sa valeur. Nous montrons que si R 0 ≤ 1 alors l'infection peut être éliminé ; alors que si R 0 > 1, il existe un équilibre endémique qui est globallement stable en absence du retard de la réponse immunitaire. Dans le cas spécial avec seulement la reponse immunitaire, nous déterminons des conditions de changement de stabilité de l'équilibre endémique. Des simulations numériques indiquent que les retards intracellulaires et le retard de la réponse immunitaire peuvent stabilisé et/ou destabilisé l'équilibre endémique.

ABSTRACT.

We consider a mathematical model that describes a viral infection of HIV-1 with both virus-to-cell and cell-to-cell transmission, CTL response immune and four distributed delays, describing intracellular delays and immune response delay. One of the main features of the model is that it includes a constant production rate of CTLs export from thymus, and an immune response delay. We derive the basic reproduction number R 0 and establish that the global dynamics is completely determined by the values of R 0 . We show that if R 0 ≤ 1, then the infection free equilibrium is globally asymptotically stable ; whereas, if R 0 > 1, then there exist a chronic infection equilibrium, which is globally asymptotically stable in absence of immune response delay. Furthermore, for the special case with only immune response delay, we determine some conditions for stability switches of the chronic infection equilibrium. Numerical simulations indicate that the intracellular delays and immune response delay can stabilize and/or destabilize the chronic infection equilibrium.

the activation delay of CTLs cells ( [START_REF] Yuan | Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays[END_REF]). The rest of the paper is organized as follows. In Section 2, the mathematical model is constructed. Preliminaries including the positivity and boundedness of solutions are introduced in Section 3. In Section 4, the existence of infection-free equilibrium and its global stability are studied. Existence of a chronic infection equilibrium and its global stability with intracellular delays only are presented in Section 5. Furthermore, in this section, we find sufficient conditions for the occurrence of a Hopf bifurcation includes only the immune response delay. In section 6, numerical simulations for several cases of the main model are presented. We further explore the delays and their effects on the stability of the chronic infection equilibrium. Section 7 concludes the paper.

The model formulation

The compartmental model includes the concentrations of healthy target cells T (t) which susceptible to infection, infected cells T i (t) that produces viruses, cytotoxic T lymphocytes (CTLs) cells T c (t) which are responsible of the destruction of infected cells and viruses V (t). Let β 1 be the virus-to-cell infection rate, β 2 be the cell-to-cell infection rate, δ, µ 1 , α and c be death rates of healthy target cells, activated infected cells, cytotoxic CTLs cells and viruses, respectively. Let b be the production rate of healthy target cells, λ be the production rate of CTLs cells export from thymus, a be the proliferation rate of CTLs cells. Infected cells are eliminated by CTLs cells at a rate q, which represent the lytic activity of CTLs cells. e -µ1s1 is the survival rate of cells that are infected by viruses at time t and become activated s 1 time later with a probability distribution f 1 (s 1 ). Then ∞ 0 β 1 T (t -s 1 )V (t -s 1 )f 1 (s 1 )e -µ1s1 ds 1 describes the newly activated infected target cells which are infected by free viruses s 1 time ago [START_REF] Yang | Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions[END_REF]. Similarly, ∞ 0 β 2 T (t -s 2 )T i (t -s 2 )f 2 (s 2 )e -µ1s2 ds 2 represents the newly activated infected target cells which are infected by infected cells s 2 time ago [START_REF] Yang | Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions[END_REF]. e -µ2s3 is the survival rate of CTLs cells that are activated at time t, and become cytotoxic s 3 time later with a probability distribution f 3 (s 3 ). Then, ∞ 0 aT i (t -s 3 )T c (t -s 3 )f 3 (s 3 )e -µ2s3 ds 3 represents the newly CTLs cells proliferated at time t [START_REF] Yuan | Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays[END_REF]. Let s 4 be the random variable that is the time between viral RNA transcript and viral release and maturation with a probability distribution f 4 (s 4 ). Then, ∞ 0 kT i (t -s 4 )f 4 (s 4 )e -µ3s4 ds 4 describes the mature viral particles produced at time t [START_REF] Yang | Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions[END_REF]. k is the average number of viruses that bud out from an infected cell and e -µ3s4 is the survival rates of cells that start budding from activated infected cells at time t and become free mature viruses s 4 time later. Note that s 1 ,s 2 , s 3 and s 4 are
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all integration variables, without loss of generality, they all will be represented by s. The model is given as follows :

                           dT (t) dt = b -δT -β 1 T V -β 2 T T i dTi(t) dt = ∞ 0 β 1 T (t -s)V (t -s)f 1 (s)e -µ1s ds + ∞ 0 β 2 T (t -s)T i (t -s)f 2 (s)e -µ1s ds -µ 1 T i -qT i T c dTc(t) dt = λ + a ∞ 0 T i (t -s)T c (t -s)f 3 (s)e -µ2s ds -αT c dV (t) dt = k ∞ 0 T i (t -s)f 4 (s)e -µ3s ds -cV, (1) 
f i (ν) : [0, ∞) -→ [0, ∞) are probability distributions with compact support, f i (ν) 0, and 
∞ 0 f i (ν)dν = 1, i = 1, . . . , 4.
From the modeling perspective, the model ( 1) extends the basic model developed in [START_REF] Nkoa Onana | Excitability in the host-pathogen interactions of HIV infection and emergence of viral load blips[END_REF] by : (i) incorporating the cell-to-cell transmission, (ii) intracellular delays and (iii) immune activation delay. Together with this latter improvement (iii), the incorporation of a constant production rate of CTLs export from thymus in our model also extend the works in [START_REF] Elaiw | Stability of delay-distributed virus dynamics model with cell-to-cell transmission and CTL immune response[END_REF][START_REF] Wang | Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cellmediated immune responses and distributed delay[END_REF][START_REF] Yuan | Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays[END_REF]. It is also noticeable that, our model extends the models developed in [START_REF] Lai | Modeling HIV-1 virus dynamics with both virus-to-cell infection and cell-tocell transmission[END_REF][START_REF] Yang | Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions[END_REF] by including CTL response immune delay.

Preliminaries

Define the Banach space of fading memory type (see [START_REF] Lai | Modeling HIV-1 virus dynamics with both virus-to-cell infection and cell-tocell transmission[END_REF][START_REF] Yang | Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions[END_REF]) C = φ ∈ C((-∞, 0]|φ(θ) e µθ is continuous for θ ∈ (-∞, 0] and φ < ∞ where µ is positive constant and the norm φ = sup θ 0 |φ(θ)| e µθ . The nonnegative cone of C is defined by

C + = C((-∞, 0], R + ). For φ ∈ C, Let φ t (θ) = φ(t + θ), θ ∈ (-∞, 0]. We consider solutions (T, T i , T c , V ) of system (1) with initial conditions (T (0), T i (0), T c (0), V (0)) ∈ X := C + × C + × C + × C + . (2) 
By the standard theory of functional differential equations, we can obtain the existence of solutions for t > 0. Let

η i = ∞ 0 e -µ1s f i (s)ds, i = 1, 2, η 3 = ∞ 0 f 3 (s)e -µ3s ds, η 4 = ∞ 0 f 4 (s)e -µ4s ds.
Theorem 3.1 Solutions of system (1) with initial conditions (2) are positive and ultimately uniformly bounded for t > 0.

A R I M A Proof 3.1 Let m(t) = δ + β 1 V (t) + β 2 T i (t) and d(t) = µ 1 + qT c (t).
Let r(t) be the sum of the two integral terms in the second equation of system [START_REF] Beretta | Geometric stability switch criteria in delay differential systems with delay dependent parameters[END_REF] and n(t) be the integral term in the fourth equation of system [START_REF] Beretta | Geometric stability switch criteria in delay differential systems with delay dependent parameters[END_REF]. From the first equation in (1), we have

T (t) = T (0)e -t 0 m(ξ)dξ + t 0 e -t ξ m(θ)dθ bdξ > 0 for t ≥ 0.
From the third equation in [START_REF] Beretta | Geometric stability switch criteria in delay differential systems with delay dependent parameters[END_REF], it follows that lim

t→∞ inf T c (t) ≥ λ α > 0.
From the second and fourth equation in (1), we then have

T i (t) = T i (0)e -t 0 d(ξ)dξ + t 0 r(ξ)e -t ξ d(θ)dθ dξ and V (t) = V (0) + t 0 n(ξ)e cξ dξ e -ct ,
which yield that T i (t) > 0, V (t) > 0 for small t > 0. Now we prove that T i (t) > 0 and V (t) > 0 for all t > 0. Otherwise, there exists t 1 > 0 such that min{T i (t 1 ), V (t 1 )} = 0.

If T i (t 1 ) = 0, T i (t) > 0 for 0 ≤ t < t 1 , and V (t) > 0 for 0 ≤ t < t 1 , then we have dTi(t1) dt > 0. This contradicts T i (t 1 ) = 0 and T i (t) > 0 for 0 ≤ t < t 1 . If V (t 1 ) = 0, V (t) > 0 for 0 ≤ t < t 1 , and T i (t) > 0 for 0 ≤ t < t 1 , then we obtain dV (t1) dt > 0,
which is also a contradiction. Hence, T i (t) > 0 and V (t) > 0 for all t > 0.

To prove boundedness, first by the positivity of solutions we have dT (t) dt < b -δT (t). It follows that lim

t→∞ sup T (t) ≤ b δ , implying T s (t) is bounded. Let G 1 (t) = ∞ 0 f 1 (s)e -µ1s T (t -s)ds + ∞ 0 f 2 (s)e -µ1s T (t -s)ds + T i (t).
Since T (t) is bounded and ∞ 0 f (u)du is convergent, the integral in G(t) is well defined and differentiable with respect to t. Moreover , when taking the time derivative of G(t) , the order of the differentiation and integration can be switched. Thus, we have

Ġ1 (t) = b(η 1 + η 2 ) -δ ∞ 0 f 1 (s)e -µ1s T (t -s)ds -δ ∞ 0 f 2 (s)e -µ1s T (t -s)ds -µ 1 T i -qT i T c , ≤ b(η 1 + η 2 ) -δ ∞ 0 f 1 (s)e -µ1s T (t -s)ds -δ ∞ 0 f 2 (s)e -µ1s T (t -s)ds -µ 1 + qλ α T i (t) ≤ b(η 1 + η 2 ) -d 1 G 1 (t),
where

d 1 = min δ, µ 1 + qλ α . Therefore, lim t→∞ sup G 1 (t) ≤ b(η1+η2) d1 := M 1 , implying that lim t→∞ sup T i (t) ≤ M 1 .
Then, from the fourth equation of system (1), we have

V (t) = k ∞ 0 e -µ4s f 4 (s)T i (t -s)ds -cV ≤ kM 1 η 4 -cV. A R I M A Thus, lim t→∞ sup V (t) ≤ kM1η4 c := M 2 . Now determine the upper bound of T c (t). Let G 2 (t) = ∞ 0 f 3 (s)e -µ3s T i (t -s)ds + q a T c (t).
Thus, we have

Ġ2 (t) = ∞ 0 f 3 (s)e -µ3s r(t -s)ds -µ 1 ∞ 0 f 3 (s)e -µ3s T i (t -s)ds + qλ a -α q a T c (t), ≤ bη 3 δ (β 1 η 1 M 2 + β 2 η 2 M 1 ) + qλ a -µ 1 ∞ 0 f 3 (s)e -µ3s T i (t -s)ds -α q a T c (t), ≤ d 2 -d 3 G 2 (t),
where

d 2 = bη 3 δ (β 1 η 1 M 2 + β 2 η 2 M 1 ) + qλ a and d 3 = {α, µ 1 } . Hence, lim t→∞ sup G 2 (t) ≤ d2 d3 := M 3 , implying that lim t→∞ sup T c (t) ≤ a q M 3 . Thus, T (t) 
, T i (t), T c (t) and V (t) are uniformly bounded. Theorem 3.1 implies that omega limit sets of system(1) are contained in the following bounded feasible region :

Ω = (T, T i , T c , V ) ∈ C 4 + : T s ≤ b δ , T i ≤ M 1 , λ α ≤ T c ≤ a q M 3 , V ≤ M 2 .
It can be verified that the region Ω is positively invariant with respect (1) and the system is well posed.

The infection-free equilibrium and its stability

System (1) has an infection-free equilibrium E 0 = b δ , 0, λ α , 0 . We defined the basic reproduction number as follows :

R 0 = R 01 + R 02 = k β 1 b η 1 η 4 cδ µ 1 + qλ α + β 2 bη 2 δ µ 1 + qλ α ,
which represents the average number of secondary infections. In fact, k β1 b η1 η4 cδ(µ1+ qλ α )

is the average number of secondary viruses caused by a virus, that is the basic reproduction number corresponding to virus-to-cell infection mode, while β2bη2 δ(µ1+ qλ α )

is the average
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number of secondary infected cells that caused by an infected cell, that is the basic reproduction number corresponding to cell-to-cell infection mode. The factors have the biological interpretations as follows :

-bβ1η1 δ is the number of new infections caused by a virus in target susceptible cells ;

qλ α is the rate at which infected cells are eliminated by the CTLs response ; -1 µ1+ qλ α is the average time that an infectious cell survives ; -kη 4 is the rate at which infected cells bud into viruses ; -1 c is gives the average life-span of a virus ; -bβ2η2 µ1+ qλ α represents the number of new infections caused by an infected cell in target susceptible cells.

The result below follows is straightforward.

Theorem 4.1

The infection-free equilibrium E 0 of system ( 1) is locally asymptotically stable in the feasible region Ω whenever R 0 < 1 and unstable otherwise.

Proof 4.1 The characteristic equation of system (1) at the equilibrium E 0 is

(ν + δ)(ν + α) (ν + c) ν + µ 1 + qλ α - bβ 2 η 2 δ - kbβ 1 δ η 1 η 4 = 0, (3) 
where

η i = ∞ 0 e -(µ1+ν)s f i (s)ds, i = 1, 2, η 3 = ∞ 0 e -(µ2+ν)s f 3 (s)ds and η 4 =
∞ 0 e -(µ3+ν)s f 4 (s)ds. We see that (3) has eigenvalues ν 1 = -δ, ν 2 = -α and other eigenvalues are determined by

(ν + c) ν + µ 1 + qλ α - bβ 2 η 2 δ - kbβ 1 δ η 1 η 4 = 0, which equivalent to Ψ(ν) := ν µ 1 + qλ α + 1 (ν + c) -R 0 η 2 R 02 η 2 R 0 ν + c η 2 R 02 η 2 R 0 + c η 1 η 4 R 01 η 1 η 4 R 0 = 0. (4) Thus, Ψ(0) = c(1 -R 0 ) < 0 when R 0 > 1. Note that η 1 ≤ ∞ 0 f 1 (s)ds = 1, i = 1, 2, 3, 4.
Then, we have

Ψ(ν) ≥ ν µ 1 + qλ α + 1 (ν + c) -R 0 R 02 η 2 R 0 ν + c R 02 η 2 R 0 + c R 01 η 1 η 4 R 0 → +∞, A R I M A
as ν → +∞. This yields that equation ( 4) has at least one positive root. Therefore, the infection-free equilibrium

E 0 is unstable if R 0 > 1.
Biologically speaking, Theorem 4.1 implies that infection can be eliminated if the initial sizes of cells are in the basin of attraction of the infection-free equilibrium. Thus, the infection can be effectively controlled if R 0 < 1. One can remark that R 0 depends on λ and is a decreasing function of this rate. Hence, the constant rate λ could be an important control parameter in order to reduce R 0 to a value less than unity. To ensure that the effective control of the infection is independent of the initial size of the cells, a global stability result must be established for the infection-free equilibrium.

Theorem 4.2 If R 0 ≤ 1, then the infection-free equilibrium E 0 of system ( 1) is globally asymptotically stable in Ω.

Proof 4.2 We define a Lyapunov function as follows :

L(t) = T i + bβ 1 η 1 cδ V + ∞ 0 f 1 (s)e -µ1s t t-s β 1 T (τ )V (τ )dτ ds + ∞ 0 f 2 (s)e -µ1s t t-s β 2 T (τ )T i (τ )dτ ds + bβ 1 η 1 cδ ∞ 0 f 4 (s)e -µ3s t t-s kT i (τ )dτ ds.
Then the time derivative of L(t) along solutions of system (1) satisfies

dL(t) dt = β 1 η 1 T V + β 2 η 2 T T i + kbβ 1 η 1 η 4 cδ T i -µ 1 T i -qT i T c - bβ 1 η 1 δ V.
Since T ≤ b δ and T c ≥ λ α , we have

dL(t) dt ≤ bβ 2 η 2 δ + kbβ 1 η 1 η 4 cδ -µ 1 + qλ α T i = µ 1 + qλ α (R 0 -1)T i . dL(t) dt ≤ 0 whenever R 0 ≤ 1. Moreover, dL(t) dt = 0 ⇔ T i = V = 0 or T = b δ , T c = λ α and R 0 = 1. Thus, the largest invariant set H such as H ⊂ (T, T i , T c , V ) ∈ R 4
+ / dL(t) dt = 0 is the singleton {E 0 }. By LaSalle's Principle, E 0 is globally asymptotically stable in Ω, completing the proof.
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The chronic infection equilibrium and its stability

Existence and uniqueness

The existence of a chronic infection equilibrium of the model ( 1) is addressed when R 0 > 1. The infection is endemic if the infected cells persist above a certain positive level.

Denote by E * = (T * , T * i , T * c , V * ) the chronic infection equilibrium of system [START_REF] Beretta | Geometric stability switch criteria in delay differential systems with delay dependent parameters[END_REF]. At this point, the system (1) satisfies the following relations :

                   b = δT * + β 1 T * V * + β 2 T * T * i β 1 η 1 T * V * + β 2 η 2 T * T * i = µ 1 T * i + qT * i T * c λ + aη 3 T * i T * c = αT * c kη 4 T * i = cV * (5) 
Solving ( 5) yields

                   T * = b δ+ β1+ β 2 c kη 4 V * , T * c = kbβ1η1η4+bβ2η2c-cµ1δ-cµ1 β1+ β 2 c kη 4 V * qc δ+β1V * + β 2 c kη 4 V * , T * i = cV * kη4 ,
where V * is a positive root of

λ + aη 3 T * i T * c -αT * c = 0. (6) 
After expansion and substitution of T * , T * i , T * c by their expressions, Eq. ( 6) is equivalent to polynomial

P (V ) = a 2 V 2 + a 1 V + a 0 = 0, (7) 
with the coefficients a 2 , a 1 and a 0 given by

a 2 = aη3c 2 µ1 kη4 β 1 + β2c kη4 , a 1 = aη3c 2 µ1δ kη4 -aη 3 bc β 1 η 1 + β2η2c kη4 -β 1 + β2c kη4 (µ 1 cα + qλc), a 0 = cδα µ 1 + qλ α (R 0 -1). (8) 
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Using T c ≥ 0 one shows that V ≤ V max , where

V max = kbβ 1 η 1 η 4 + bβ 2 η 2 c -cµ 1 δ cµ 1 β 1 + β2c kη4 = cµ 1 δ(R 0 -1) + R 0 cδqλ α cµ 1 β 1 + β2c kη4 > 0.
Furthermore, some calculations give

P (0) = a 0 , P (V max ) = - a 0 bλq(kβ 1 η 1 η 4 + β 2 η 2 c) µ 1 < 0,
and lim

V →+∞ P (V ) = +∞.
• If R 0 ≤ 1, then P (0) = a 0 ≤ 0 and the equation P (V ) = 0 has a unique positive root on ]V max ; +∞[. Since for all V ≥ V max , T * c ≤ 0, it follows that system (1) has no positive chronic infection equilibrium in this case.

• If R 0 > 1, then P (0) = a 0 > 0 and the equation P (V ) = 0 has two positive roots : one solution on interval ]0; V max [ and another solution on ]V max ; +∞[. Since T * c is positive for 0 < V < V max and negative for V > V max , it follows that system (1) has a unique positive chronic infection equilibrium when R 0 > 1. We have established the following result.

Theorem 5.1 System (1) always has a infection-free equilibrium E 0 , and [START_REF] Beretta | Geometric stability switch criteria in delay differential systems with delay dependent parameters[END_REF] has no positive chronic infection equilibrium ;

(i) if R 0 < 1, system
(ii) if R 0 > 1, system (1) has a unique positive chronic infection equilibrium E * .

Stability analysis of chronic infection equilibrium

On the stability analysis of the chronic infection equilibrium, we only discuss the following special cases :

(i) τ i ≥ 0, i = 1, 2, 4, τ 3 = 0 and (ii) τ i = 0, i = 1, 2, 4, τ 3 > 0.
However, aim at the case τ i > 0, i = 1, 2, 3, 4, the theoretical analysis is very complicated. We will give numerical analysis for this case in the next section.

Global stability of chronic infection equilibrium when

τ i ≥ 0, i = 1, 2, 4 and τ 3 = 0.
Here, we will prove the global stability of the chronic infection equilibrium of system (1) with τ 3 = 0 by the Lyapunov direct method. Theorem 5.2 Consider system (1) with f 1 (s) = f 2 (s), τ i ≥ 0, i = 1, 2, 4 and τ 3 = 0. If R 0 > 1, then the chronic infection equilibrium E * is globally asymptotically stable.
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Proof 5.1 Consider system (1) with τ i 0 , i = 1, 2, 4 and τ 3 = 0. Suppose R 0 > 1 and f 1 (s) = f 2 (s). For convenience of notation, we denote g(x) = x -1 -ln x. It is easy to see that g(x) 0 for x > 0 and g (x) = 1 -1

x . Furthermore, g has a global minimum at 1 and satisfies g(1) = 0. We define a Lyapunov functions as follows :

U (t) = U 1 (t) + U 2 (t) + U 3 (t)
Where

U 1 = T (t) -T * ln T (t) T * + 1 η 1 T i (t) -T * i ln T i (t) T * i + q aη 1 T c (t) -T * c ln T c (t) T * c + β 1 T * c V (t) -V * ln V (t) V * , U 2 (t) = β 1 T * V * η 1 ∞ 0 f 1 (s)e -µ1s 0 -s g T (t + τ )V (t + τ ) T * V * dτ ds + β 2 T * T * i η 1 ∞ 0 f 1 (s)e -µ1s 0 -s g T (t + τ )T i (t + τ ) T * T * i dτ ds and U 3 (t) = β 1 T * V * η 4 ∞ 0 f 4 (s)e -µ3s 0 -s g T (t + τ )T i (t + τ ) T * i dτ ds.
Calculating the time derivative of U 1 , U 2 and U 3 along the solutions of system (1), we have

dU 1 dt = 1 - T * T [b -δT -β 1 T V -β 2 T T i ] + 1 η 1 1 - T * i T i ∞ 0 f 1 (s)e -µ1s β 1 T (t -s)V (t -s)ds+ + ∞ 0 f 1 (s)e -µ1s β 2 T (t -s)T i (t -s)ds -µ 1 T i -qT i T c + q aη 1 1 - T * c T c [λ + aT i T c -αT c ] + β 1 T * c 1 - V * V ∞ 0 kT i (t -s)f 4 (s)e -µ3s ds -cV =b -δT -β 1 T V -β 2 T T i -b T * T + δT * + β 1 V T * + β 2 T i T * + 1 η 1 ∞ 0 β 1 T (t -s)V (t -s)f 1 (s)e -µ1s ds + 1 η 1 ∞ 0 β 2 T (t -s)T i (t -s)f 1 (s)e -µ1s ds A R I M A - µ 1 η 1 T i - q η 1 T i T c - 1 η 1 T * i T i ∞ 0 f 1 (s)e -µ1s β 1 T (t -s)V (t -s)ds - 1 η 1 T * i T i ∞ 0 f 1 (s)e -µ1s β 2 T (t -s)T i (t -s)ds + µ 1 η 1 T * i + qT * i T c η 1 + q aη 1 λ + aT i T c -αT c -λ T * c T c -aT i T * c + αT * c + kβ 1 T * c ∞ 0 T i (t -s)f 4 (s)e -µ3s ds -β 1 T * V + β 1 T * V * - kβ 1 T * c V * V ∞ 0 T i (t -s)f 4 (s)e -µ3s ds, dU 2 dt =β 1 T V + β 2 T T i - 1 η 1 ∞ 0 β 1 T (t -s)V (t -s)f 1 (s)e -µ1s ds - 1 η 1 ∞ 0 β 2 T (t -s)T i (t -s)f 1 (s)e -µ1s ds + β 1 T * V * η 1 ∞ 0 f 1 (s)e -µ1s ln T (t -s)V (t -s) T V ds + β 2 T * T * i η 1 ∞ 0 f 1 (s)e -µ1s ln T (t -s)T i (t -s) T T i ds,
and

dU 3 dt = β 1 T * V * T i T * i - β 1 T * V * η 4 T * i ∞ 0 T i (t -s)f 4 (s)e -µ3s ds + β 1 T * V * η 4 ∞ 0 f 4 (s)e -µ3s ln T i (t -s) T i ds.
Taking the derivative of U (t) and making use of the equations ( 5) defining the positive equilibrium E * , we obtain after simplifications :

dU dt = δT * 2 - T T * - T * T + qλ aη 1 2 - T c T * c - T * c T c + 2β 1 T * V * + β 2 T * T * i + µ 1 η 1 T * i + q η 1 T * i T * c -β 1 T * V * T * T -β 2 T * T * i T * T - 1 η 1 T * i T i ∞ 0 f 1 (s)e -µ1s β 1 T (t -s)V (t -s)ds - 1 η 1 T * i T i ∞ 0 β 2 T (t -s)T i (t -s)f 1 (s)e -µ1s ds - β 1 T * V * η 4 T * i V * V ∞ 0 T i (t -s)f 4 (s)e -µ3s ds + β 1 T * V * η 1 ∞ 0 f 1 (s)e -µ1s ln T (t -s)V (t -s) T V ds + β 1 T * V * η 4 ∞ 0 f 4 (s)e -µ3s ln T i (t -s) T i ds A R I M A + β 2 T * T * i η 1 ∞ 0 f 1 (s)e -µ1s ln T (t -s)T i (t -s) T T i ds =δT * 2 - T T * - T * T + qλ aη 1 2 - T c T * c - T * c T c + β 1 T * V * + β 2 T * T * i -β 1 T * V * T * T -β 2 T * T * i T * T + β 1 T * V * ln T * V * T i T V T * i + β 1 T * V * η 1 ∞ 0 f 1 (s)e -µ1s 1 - T (t -s)V (t -s)T * i T * V * T i + ln T (t -s)V (t -s)T * i T * V * T i ds + β 2 T * T * i η 1 ∞ 0 f 1 (s)e -µ1s 1 - T (t -s)T i (t -s) T * T i + ln T (t -s)T i (t -s) T * T i ds + β 1 T * V * η 4 ∞ 0 f 4 (s)e -µ3s 1 - T i (t -s)V * T * i V + ln T i (t -s)V * T * i V ds + β 1 T * V * ln T * i V T i V * + β 2 T * T * i ln T * T , =δT * 2 - T T * - T * T + qλ aη 1 2 - T c T * c - T * c T c -[β 1 T * V * + β 2 T * T * i ] g T * T - β 1 T * V * η 1 ∞ 0 f 1 (s)e -µ1s g T (t -s)V (t -s)T * i T * V * T i ds - β 2 T * T * i η 1 ∞ 0 f 1 (s)e -µ1s g T (t -s)T i (t -s) T * T i ds - β 1 T * V * η 4 ∞ 0 f 4 (s)e -µ3s g T i (t -s)V * T * i V ds.
According to the property of g, we obtain that dU (t) dt 0. It can be verified that dU (t) dt = 0 if and only if

T T * = T c T * c = T (t -s)V (t -s)T * i T * V * T i = T (t -s)t i (t -s) T * T i = T i (t -s)V * T * i V = 1
It means that the largest invariant set M 0 ⊆ M = (T, T i , T c , V ) : dU dt = 0 is the singleton E * . Again by the Lyapunov-LaSalle invariance principle, the chronic infection equilibrium E * of system (1) is globally asymptotically stable.

A R I M A

Local stability and Hopf bifurcation when

τ i = 0, i = 1, 2, 4, τ 3 ≥ 0.
In this subsection, we consider model (1) with particular distribution functions f i (s), i = 1, 2, 3, 4 as : f 1 (s) = f 2 (s) = δ(s -τ 1 ), f 3 (s) = δ(s -τ 3 ) and f 4 (s) = δ(s -τ 4 ), where δ(•) is the dirac delta function. We consider the special case where τ 1 = τ 2 = τ 4 = 0 and τ 3 ≥ 0. Then, we obtain that η 1 = η 2 = η 4 = 1 and η 3 = e -µ2τ3 . In this case, the characteristic equation at the equilibrium E * is

ν 4 +A 3 ν 3 +A 2 ν 2 +A 1 ν+A 0 + B 3 (τ 3 )ν 3 + B 2 (τ 3 )ν 2 + B 1 (τ 3 )ν + B 0 (τ 3 ) e -τ3ν = 0, (9) 
where

A 3 = b T * + c + α + kβ 1 T * c , A 2 = b T * c + α + kβ 1 T * c + β 2 T * (β 1 V * + β 2 T * i ) + cα + αkβ 1 T * c , A 1 = αb T * c + kβ 1 T * c + [kβ 1 + β 2 (c + α)]T * (β 1 V * + β 2 T * i ), A 0 = αT * (β 1 V * + β 2 T * i )(kβ 1 + cβ 2 ), B 3 (τ 3 ) = -aT * i e -µ2τ3 , B 2 (τ 3 ) = -aT * i e -µ2τ3 b T * + kβ 1 T * c + c + aqT * i T * c e -µ2τ3 , B 1 (τ 3 ) = aT * i e -µ2τ3 qT * c c + b T * - b T * c + kβ 1 T * c -β 2 T * (β 1 V * + β 2 T * i ) , B 0 (τ 3 ) = aT * i e -µ2τ3 cqT * c b T * -T * (kβ 1 + cβ 2 )(β 1 V * + β 2 T * i ) .
When τ 3 = 0, equation ( 9) becomes

ν 4 + (A 3 + B 3 (0))ν 3 + (A 2 + B 2 (0))ν 2 + (A 1 + B 1 (0))ν + A 0 + B 0 (0). ( 10 
)
Using the Routh-Hurwitz criterion on [START_REF] Perelson | Nelson Mathematical analysis of HIV-I dynamics in vivo[END_REF], we investigate the local stability of E * . The relevant Routh-Hurwitz determinants are :

       ∆ 1 = A 3 + B 3 (0) > 0, ∆ 2 = (A 3 + B 3 (0))(A 2 + B 2 (0)) -(A 1 + B 1 (0)) > 0, ∆ 3 = (A 1 + B 1 (0))∆ 2 -(A 3 + B 3 (0)) 2 (A 0 + B 0 (0)) > 0, ∆ 4 = (A 0 + B 0 (0))∆ 3 > 0.
Since all the parameters of model ( 1) are positive, it follows that

∆ 1 = b T * + c + kβ 1 T * c + α -aT * i = b T * + c + kβ 1 T * c + λ T * c > 0. A R I M A
Furthermore, by straightforward computations, we show that

∆ 2 = b T * + c + kβ 1 T * c + λ T * c [aqT * i T * c + β 2 T * (β 1 V * + β 2 T * i ) + b T * c + kβ 1 T * c + λ T * c b T * + c + kβ 1 T * c -aqT * i T * c c + b T * - b T * λ T * c c + kβ 1 T * c -T * (β 1 V * + β 2 T * i ) kβ 1 + β 2 c + β 2 λ T * c , = aqT * i T * c kβ 1 T * c + λ T * c + b T * c + kβ 1 T * c b T * + c + kβ 1 T * c + λ T * c b T * + c + kβ 1 T * c b T * + c + kβ 1 T * c + λ T * c +T * (β 1 V * + β 2 T * i ) β 2 b T * + kβ 1 T * c -kβ 1 > 0.
Thus, all solutions of (10) negative real parts if and only if

∆ 3 = (A 1 + B 1 (0))∆ 2 -(A 3 + B 3 (0)) 2 (A 0 + B 0 (0)) > 0. ( 11 
)
The stability is given in the following theorem.

Theorem 5.3 Consider system (1) with τ i = 0, i = 1, 2, 3, 4. If R 0 > 1, then the chronic infection equilibrium E * is locally asymptotically stable provided that (11) holds.

The root of (9) depends on τ 3 continuously. A root of (9) may pass through the imaginary axis and enter the right side when τ 3 increases. Let us consider ν = µ(τ 3 ) + iω(τ 3 ) a root of equation [START_REF] Nowak | Viral dynamics in hepatitis B virus infection[END_REF]. We are interested in the change of stability of chronic infection equilibrium E * , which will occur at the values of τ 3 for which µ(τ 3 ) = 0 and ω(τ 3 ) > 0. ν = iω is the critical case since a root may enter the right side or the left side under small perturbation when it locates on the imaginary axis. After substituting ν = iω into (9) and separating the real and the imaginary parts, we obtain that

M (ω) cos ωτ 3 + N (ω) sin ωτ 3 = E(ω), N (ω) cos ωτ 3 -M (ω) sin ωτ 3 = F (ω), (12) 
where

M (ω) = B 2 (τ 3 )ω 2 -B 0 (τ 3 ), N (ω) = B 3 (τ 3 )ω 3 -B 1 (τ 3 )ω, E(ω) = ω 4 + A 0 -A 2 ω 2 , F (ω) = -A 3 ω 3 + A 1 ω. A R I M A
From ( 12), we can get

cos ωτ 3 = M (ω)E(ω) + N (ω)F (ω) M (ω) 2 + N (ω) 2 and sin ωτ 3 = N (ω)E(ω) -M (ω)F (ω) M (ω) 2 + N (ω) 2 .
(13) Squaring and adding [START_REF] Tarfulea | A mathematical model for HIV treatment with time-varying antiretroviral therapy[END_REF], we obtain

F (ω, τ 3 ) := ω 8 + C 6 (τ 3 )ω 6 + C 4 (τ 3 )ω 4 + C 2 (τ 3 )ω 2 + C 0 (τ 3 ) = 0, (14) 
where

C 6 (τ 3 ) = A 2 3 -2A 2 -B 3 (τ 3 ) 2 , C 4 (τ 3 ) = A 2 2 -2A 3 A 1 + 2A 0 -B 2 (τ 3 ) 2 + 2B 3 (τ 3 )B 1 (τ 3 ), C 2 (τ 3 ) = A 2 1 -2A 2 A 0 -B 1 (τ 3 ) 2 + 2B 2 (τ 3 )B 0 (τ 3 ), C 0 (τ 3 ) = A 2 0 -B 0 (τ 3 ) 2 . Denote I = ω(τ 3 ) > 0 : F (ω, τ 3 ) = 0 ,
which is a finite set. If I = ∅, then E * is stable for τ 3 ≥ 0. Note that

F (0, τ 3 ) = A 2 0 -B 0 (τ 3 ) 2 , lim ω→+∞ F (ω, τ 3 ) = +∞.
In addition, we have

A 0 + B 0 (τ 3 ) = T * (β 1 V * + β 2 T * i )(kβ 1 + cβ 2 )(α -aT * i e -µ2τ3 ) + aT * i cqT * c b T * e -µ2τ3 , = λ T * c T * (β 1 V * + β 2 T * i )(kβ 1 + cβ 2 ) + aT * i cqT * c b T * e -µ2τ3 > 0. Therefore, if (H 1 ) A 0 < B 0 (τ 3 )
holds, then I = ∅ and F (ω, τ 3 ) = 0 has at least one positive solution.

Assume I = {ω 1 , ω 2 , . . . , ω j0 }. For j ∈ {1, 2, . . . , j 0 }, choose the unique angle

θ j (τ 3j ) ∈ [0, 2π) such that cos θ j (τ 3j ) = M (ω j )E(ω j ) + N (ω j )F (ω j ) M (ω j ) 2 + N (ω j ) 2 , sin θ j (τ 3j ) = N (ω j )E(ω j ) -M (ω j )F (ω j ) M (ω j ) 2 + N (ω j ) 2 . (15) 
A R I M A Now, define the function as follows

S n (τ 3j ) = τ 3j - θ j (τ 3j ) + 2nπ ω j (τ 3j ) , n ∈ {0, 1, 2, • • • }.
Then, the characteristic equation ( 9) has a purely imaginary root ν = iω j (τ * 3j ) at delay τ 3 = τ * 3j with ω j (τ * 3j ) > 0 if and only if τ * 3j is a root of function S n (τ 3j ) = 0 for some n ∈ N and j ∈ {1, 2, . . . , j 0 }. Thus, the following results come from Theorem 2.2 in [START_REF] Beretta | Geometric stability switch criteria in delay differential systems with delay dependent parameters[END_REF].

Theorem 5.4 The characteristic equation (9) admits a pair of simple and conjugate roots ν(τ * 3j ) = ±iω j (τ * 3j ), ω j (τ * 3j ) > 0 at τ * 3j if S n (τ * 3j ) = 0 for some n ∈ N and j ∈ {1, 2, . . . , j 0 }. This pair of simple conjugate pure imaginary roots crosses the imaginary axis from left to right δ(τ * 3j ) > 0 and crosses the imaginary axis from right to left if δ(τ * 3j ) < 0, where

δ(τ * 3j ) = sign dReν dτ 3 ν=iω(τ * 3j ) = sign dS n (τ 3 ) dτ 3 τ3=τ * 3j = sign{F ω (ω j , τ * 3j )}.
Based on the above analysis, we obtain the following results by Theorem 5.4 and the Hopf bifurcation theorem in [START_REF] Beretta | Geometric stability switch criteria in delay differential systems with delay dependent parameters[END_REF].

Theorem 5.5 Consider system (1) with τ i = 0, i = 1, 2, 4 and the special form f 3 (s) = δ(s -τ 3 ). Assume that R 0 > 1 and (H 1 ) holds. Then, there exists a τ * 3 such that the chronic infection equilibrium E * is locally asymptotically stable when 0 ≤ τ 3 < τ * 3 , and becomes unstable when τ 3 staying in some right neighborhood of τ * 3 . Furthermore, a Hopf bifurcation occurs at τ 3 = τ * 3 .

Numerical simulations

In this section, we perform numerical simulations for the model (1) with particular distribution functions f i (s), i = 1, 2, 3, 4 as :

f 1 (s) = f 2 (s) = δ(s -τ 1 ), f 3 (s) = δ(s -τ 3 ) and f 4 (s) = δ(s -τ 4 )
, where δ(•) is the dirac delta function, s i , i = 1, 2, 3, 4 are positive constants. Then, we can see that η 1 = η 2 = e -µ1τ1 , η 3 = e -µ2τ3 and η 4 = e -µ3τ4 . We examine the behavior of the infected steady state E * using data sets that are commonly used in the literature [START_REF] Nkoa Onana | Excitability in the host-pathogen interactions of HIV infection and emergence of viral load blips[END_REF][START_REF] Wang | Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cellmediated immune responses and distributed delay[END_REF][START_REF] Yang | Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions[END_REF]. Values of parameters are defined as : b = 10, δ = 0.01, β 1 = 2.5e -4, β 2 = 6.5e -4, µ 1 = 0.1, a = 3e -2, q = 4e -2, k = 100, α = 0.15, c = 3, λ = 1, µ 2 = 0.3 and µ 3 = 0.1. By simple computing when R 0 > 1, the global stability of the chronic infection equilibrium E * as demonstrated in Theorem 5.2 is numerically shown on Figure 1 for fixed delays τ 1 = τ 2 = 8, τ 3 = 0 and τ 4 = 2.5. 

A R I M A

Effect of CTLs constant production rate

In order to investigate the effect of CTLs production rate, we carry out some numerical simulations to show the contribution of CTLs constant production rate during the whole infection. We set the production rate λ as 0.5, 1, 1.5, 2. We choose τ 1 = τ 2 = 3, τ 3 = 0 and τ 4 = 2.5. From the four figures of Figure 1, we can observe that uninfected and CTLs cells reach a higher peak level as λ increases. While, the peak level of infected cells and viruses decreases as λ increases. If we interpret the constant rate λ > 0 as an inflow of antiviral drugs, one can observe from Figure 1 that the entry of antiviral drugs into the host is important as a control parameter in order to reduce the viral load.

Effect of immune response delay

In order to illustrate our theoretical findings obtained in Theorem 5.5, we simulate model (1) with τ 1 = τ 2 = τ 4 = 0 and the special form f 3 (s) = δ(s -τ 3 ) with τ 3 ≥ 0. First, we set τ 3 = 0 and keep others parameters. We get E * = (207.7479, 4.2451, 44.1567, 141.5038), R 0 = 24.5000 and ∆ 3 = 6.0670 > 0 i.e condition [START_REF] Perelson | Dynamics of HIV infection of CD4+ T-cells[END_REF] holds. Then, the local stability of the chronic infection equilibrium E * as established in Theorem 5.3 is numerically shown on Figure 2. Now, we vary the value of τ 3 more than zero to see the effect of immune response delay. Through numerical calculations, we get two critical values of delay τ 3 , denoted by τ * 3 = 0.2683 and τ * * 3 = 5.5527. 1) for τ i = 0, i = 1, 2, 4, and τ 3 = 0.2. The chronic infection equilibrium E * is asymptotically stable when τ 3 < τ * 3 = 0.2683. When we increase the value of immune response delay to τ 3 = 0.3 ∈ (τ * 3 , τ * * 3 ), Figure 4 shows that E * becomes unstable and system undergoes Hopf bifurcation at τ 3 = τ * 3 . This latter case is also illustrated on Figure 5 for τ 3 = 5.4 ∈ (τ * 3 , τ * * 3 ). Now, we increase again the value of immune response delay to τ 3 = 5.7 > τ * * 3 . We see from Figure 6 that the chronic infection equilibrium E * regain its stability for τ 3 > τ * * 3 and Hopf bifurcation occurs at τ 3 = τ * * 3 . 

A R I M A

Effect of intracellular delays and immune response delay on the dynamics of model (1)

It is challenging to analyze model (1) for the joint effect of four delays theoretically. So, we use numerical simulations to further investigate the effect of intracellular delays 1) for τ i = 0, i = 1, 2, 4, and τ 3 = 5.7. The chronic infection equilibrium E * becomes stable when τ 3 > τ * * 3 = 5.5527. and immune response delay on the dynamics of model when τ i > 0, i = 1, 2, 3, 4. To this end, we choose τ 4 = 2.5 and τ 1 = τ 2 . Figure 7 plots the chronic infection equilibrium E * when τ 1 varies and τ 3 = 5 is fixed. From this figure, we see that for fixed immune response delay, when we increase the intracellular delay for both virus-to-cell and cell-tocell infections, the trajectories of model (1) evolve from unstable to stable state. A similar result is observed in Figure 8 when we fix intracellular delay (τ 1 = 3) and vary immune response delay τ 3 . These figures demonstrate that the chronic infection equilibrium E * destabilizes as τ 1 and τ 3 decreases. Therefore, an increase in the intracellular delay or the immune response delay can stabilize the infected steady state E * .

Conclusion

In this paper, we have investigated the dynamical properties of a delayed HIV-1 infection model with both virus-to-cell and cell-to-cell transmissions, and CTL immune response delay. This model extends some previous models and also take into account of a rate of CTLs cells exported from thymus. We have derived the basic reproductive number, R 0 and we have shown that its value allow to determine the global dynamics of model. We have established that when the basic reproductive number R 0 is less than unity, there is a disease free equilibrium E 0 which is globally asymptotically stable ; while when the basic reproductive number R 0 is greater than unity, there exists an unique chronic infection equilibrium E * which is globally asymptotically stable in absence of immune response delay. Furthermore, we have explored the local stability of the chronic infection equilibrium for the special case with only immune response delay. We have determined some

A R I M A

Figure 1 -

 1 Figure 1 -Simulation results showing the effect of λ on the dynamics of the model with τ 1 = τ 2 = 3, τ 3 = 0 and τ 4 = 2.5.

Figure 3 Figure 2 -Figure 3 -

 323 Figure 2 -The time series of model (1) for τ i = 0, i = 1, 2, 3, 4. The chronic infection equilibrium E * is asymptotically stable when.

Figure 4 -Figure 5 -

 45 Figure 4 -The time series of model (1) for τ i = 0, i = 1, 2, 4, and τ 3 = 0.3. The chronic infection equilibrium E * becomes unstable and a Hopf bifurcation occurs when τ 3 ∈ (τ * 3 , τ * * 3 ). Here, τ * * 3 = 5.5527.

Figure 6 -

 6 Figure6-The time series of model[START_REF] Beretta | Geometric stability switch criteria in delay differential systems with delay dependent parameters[END_REF] for τ i = 0, i = 1, 2, 4, and τ 3 = 5.7. The chronic infection equilibrium E * becomes stable when τ 3 > τ * * 3 = 5.5527. and immune response delay on the dynamics of model when τ i > 0, i = 1, 2, 3, 4. To this end, we choose τ 4 = 2.5 and τ 1 = τ 2 . Figure7plots the chronic infection equilibrium E * when τ 1 varies and τ 3 = 5 is fixed. From this figure, we see that for fixed immune response delay, when we increase the intracellular delay for both virus-to-cell and cell-tocell infections, the trajectories of model (1) evolve from unstable to stable state. A similar result is observed in Figure8when we fix intracellular delay (τ 1 = 3) and vary immune response delay τ 3 . These figures demonstrate that the chronic infection equilibrium E * destabilizes as τ 1 and τ 3 decreases. Therefore, an increase in the intracellular delay or the immune response delay can stabilize the infected steady state E * .

conditions leading to the occurrence of Hopf bifurcation and found that when immune response delay increase, there are stability switches of the chronic infection equilibrium. Since it is challenging to analyze model ( 1) for the joint effect of four delays theoretically, numerical simulations were used to further investigate the infected steady state and the existence of the Hopf bifurcation when τ i > 0, i = 1, 2, 3, 4. We have observed that for fixed immune response delay, when intracellular delay increase, there is also stability switches of the chronic infection equilibrium. these analysis reveal that the sustained oscillations occur when the intracellular delays and immune delay are incorporated simultaneously in the model. These results have enriched our understanding of the effects of production delay in a viral infection processes and its interaction with immune response. Meanwhile, the analysis helps us to understand how intracellular incubation period in the virus-to-cell and cell-to-cell infection, virus replication delay and immune response delay affect the cell-virus-immune system dynamics. As far as future investigations are concerned, we are planning to study local stability and Hopf bifurcation of the chronic infection equilibrium in a general case with all delays being positive. This possible extension on which we are already working will be more complex and bigger challenge in the future.