
ACM Communications in Computer Algebra, Vol.xx, No.xx, Issue xxx, month 201x ISSAC 2019 abstracts

Multivariate Ore Polynomials in SageMath

Manuel Kauers∗ and Marc Mezzarobba†

Institute for Algebra · Johannes Kepler University · Linz, Austria
Sorbonne Université, CNRS, Laboratoire d’informatique de Paris 6, LIP6, F-75005 Paris, France

manuel@kauers.de · marc@mezzarobba.net

Abstract

We present the latest update of the ore algebra package for SageMath. The main new feature in this
release is the support of operators in several variables.

1 Introduction

Ore polynomials are important features of computer algebra systems because they provide functionality
for manipulating differential and recurrence operators that describe so-called D-finite functions and se-
quences [13, 9, 7]. Packages for working with Ore polynomials include, among others, OreTools [1] and
gfun [12] for Maple, the HolonomicFunctions package of Koutschan [10] for Mathematica, and ore algebra
package by Kauers, Jaroschek and Johansson [8] for SageMath (Sage) [5]. This software demo abstract is
about the most recent version of the latter package, which works with Sage 8.7.

Earlier versions of the ore algebra package already provided functionality for basic arithmetic and
actions; GCRD and LCLM; D-finite closure properties; natural transformations between related algebras;
guessing; desingularization; solvers for polynomials, rational functions and (generalized) power series.
Mezzarobba [11] added a subpackage ore algebra.analytic for symbolic-numeric computations with D-finite
analytic functions, which is now fully integrated into the main version of the package. Hofstadler [6]
contributed a set of convenience functions which support a better integration with symbolic expressions.

While basic arithmetic of Ore polynomials in several variables has been supported since the beginning,
everything else so far was limited to the univariate case. The main new feature in versions 0.3–0.4 of
the package is an extension of the core functionality to multivariate operators, with efficient support of
D-finite closure properties and creative telescoping as well as a rudimentary implementation of Gröbner
bases. Other novelties include substantially improved numerical evaluation code compared to the status
described in [11], and preliminary support for Python 3.

2 Basic Examples

With a typical Sage setup, ore algebra v0.4 can be installed using the shell command

$ sage -pip install git+https://github.com/mkauers/ore_algebra.git@0.4

(Omit the @0.4 suffix for the latest development version.)
After loading the package and creating the base ring Z[x, y], the Ore algebra of differential operators

for x and y can be created as follows.
sage: from ore_algebra import *

∗Supported by the Austrian FWF grants P31571-N32, F5004
†Supported in part by ANR grant ANR-14-CE25-0018-01 (FastRelax).

1

mailto:manuel@kauers.de
mailto:marc@mezzarobba.net


Multivariate Ore Polynomials in SageMath ISSAC 2019 abstracts

sage: R.<x,y> = PolynomialRing(ZZ)

sage: A.<Dx,Dy> = OreAlgebra(R)

sage: A

Z[x, y]〈Dx ,Dy〉

The usual arithmetic respects the required commutation rules.
sage: (Dx + Dy)*(y + x)

(x + y) Dx + (x + y) Dy + 2

sage: (x + y)*(Dx + Dy)

(x + y) Dx + (x + y) Dy

Differential operators can be applied to objects which Sage knows to differentiate and to multiply by base
ring elements:
sage: (Dx + Dy)(sin(x*y))

x cos (xy) + y cos (xy)

Using Sx, Sy instead of Dx,Dy creates an Ore algebra with shift operators instead of differential operators.
Of course, combinations like Z[x, y]〈Sx,Dy〉 and other generators besides shift and derivation are also
possible. The available operators are the same as in the univariate case, see [8] for more details.

In the univariate case, methods for executing closure properties were directly attached to the annihi-
lating operators. In the multivariate case, where several annihilating operators are needed to describe a
D-finite object, we must work with left ideals of Ore algebras. Ideals can be constructed as follows.
sage: I = A.ideal([Dy^2, Dx*Dy, Dx^2 - y*Dy + 1])

sage: I(
Dy2,DxDy ,Dx 2 + (−y) Dy + 1

)
Frac(Z[x, y])〈Dx ,Dy〉

Note that the base ring is always converted to a field.
Various ideal theoretic operations are available as methods.
sage: I.eliminate([Dy])(

Dx 3 + Dx
)

Frac(Z[x, y])〈Dx 〉

sage: Dx^3 + Dx in I # (membership)

True

sage: J = A.ideal([-Dy^2 + x*Dx - 1, Dx*Dy, Dx^2])

sage: I == J

False

sage: K = I.intersection(J) # closure property ‘addition‘

sage: K <= J # (inclusion)

True

sage: K = I.symmetric_product(I) # closure property ‘multiplication‘

sage: K.vector_space_basis() # terms under the staircase[
1,Dy ,Dx ,Dy2,DxDy ,Dx 2

]
sage: I.annihilator_of_associate(Dx + Dy) # closure property ‘ore action‘(

Dy ,Dx 3 + Dx
)

Frac(Z[x, y])〈Dx ,Dy〉

sage: I.annihilator_of_composition(x=x^2,y=1-x^2) # closure property ‘composition‘

2



Manuel Kauers, Marc Mezzarobba

(
Dy ,

(
−x4 + x2

)
Dx 3 +

(
5x3 − 3x

)
Dx 2 +

(
−4x6 + 4x4 − 5x2 + 3

)
Dx + 8x5

)
Frac(Z[x, y])〈Dx ,Dy〉

Most of these operations rely on a generic FGLM implementation which uses the packages own linear
system solvers. There is also a direct implementation of Buchberger’s algorithm for computing Gröbner
bases, which however is not highly optimized.
sage: I.groebner_basis()[

Dy2,DxDy ,Dx 2 + (−y) Dy + 1
]

All operations discussed so far are generalizations of the univariate counterparts that already existed in
earlier versions. A feature that is inherently multivariate is creative telescoping [14, 3, 4]. Here, the input
is a left ideal I ⊆ A, say A = Q(x, y)〈Dx,Dy〉 and the task is to find the ideal consisting of all operators
P ∈ Q(x)〈Dx〉 such that there exists Q ∈ A with P −DyQ ∈ I. The operators P are called telescopers,
and the corresponding operators Q are called their certificates. Our new version of ore algebra includes an
implementation of Chyzak’s algorithm [3] for creative telescoping in the general D-finite setting.

Creative telescoping is a central operation for evaluating definite sums and integrals [4]. We cannot
explain here in detail the relevance of creative telescoping for these applications, but the use of the package
is easily demonstrated:
sage: A.ideal([Dx - 2*x*y^2, Dy - 2*x^2*y]).ct(Dy)

([−xDx − 1] , [−y])

The output is a pair ([P1, P2, . . . ], [Q1, Q2, . . . ]) whose first component is a basis of the ideal of telescopers
and whose second component contains the certificates corresponding to the basis elements. The example
above originates from the integration problem

∫
y exp(x2y2)dy. The following example is the essence of a

proof of the binomial theorem
∑

k

(
n
k

)
= 2n:

sage: B.<Sx,Sy> = OreAlgebra(R)

sage: B.ideal([(y+1)*Sy + (y-x), (x-y+1)*Sx - (x+1)]).ct(Sy - 1)(
[Sx − 2] ,

[
y

−x + y − 1

])
Finally, also the guessing features have been extended to the multivariate setting. For example, anni-

hilating operators for the binomial coefficients can be found as follows.
sage: data = [[binomial(n,k) for k in range(20)] for n in range(20)]

sage: guess(data, B, point_filter = lambda n,k : k<=n).groebner_basis()

[(y + 1) Sy − x + y, (x− y + 1) Sx − x− 1]

The option point_filter informs the guessing engine which part of the input array contains interesting
data. A number of further options is specified in the documentation.

3 Some Slightly Larger Examples

The examples shown above need virtually no computation time. In order to get some idea about the
performance of our implementation, we consider a set of 19 creative telescoping problems that appeared
in a study of restricted lattice walks [2]. Each of the 19 problems starts from a certain rational function
r ∈ Q(u, v, t) and the task consists of two applications of creative telescoping. Writing I for the ideal of an-
nihilating operators of r in Q(u, v, t)〈Du,Dv,Dt〉, we first have to compute the ideal Tv in Q(u, t)〈Du,Dt〉
of all telescopers of I with respect to Dv and then the ideal Tu,v in Q(t)〈Dt〉 of telescopers of Tv with
respect to Du. The smallest rational function in the collection is

−u2v2+u2+v2−1

tu3v2−tu3v+tu2v3−2tu2v2+2tu2v−tu2−tuv3+2tuv2−2tuv+tu−tv2+tv−u2v2+u2v+uv2−uv
,

and the largest is about twice as long. The complete data is available in ore algebra.examples.ssw.

3



Multivariate Ore Polynomials in SageMath ISSAC 2019 abstracts

In the table below, we compare our performance to that of Koutschan’s package [10]. We do not claim
that a performance comparison will look similarly for any creative telescoping problem, but we think the
experiment is at least an indication that our implementation is not too bad. Note in passing that reaching
an acceptable performance level required a number of improvements to the implementation of multivariate
polynomials and rational functions in Sage itself. Although ore algebra is developed as an external Sage
package, a significant part of the development effort reported here will thus directly benefit other Sage
users.

case 1 2 3 4 5 6 7 8 9 10

ore algebra 601ms 668ms 705ms 862ms 4.82s 10.3s 5.22s 10.7s 11.1s 11.9s
HolonomicFunctions.m 1.55s 1.59s 1.86s 2.09s 25.2s 51.9s 26.8s 55.1s 51.5s 63.4s

case 11 12 13 14 15 16 17 18 19

ore algebra 4.46s 8.57s 11.1s 11.7s 4.21s 8.27s 18.9s 36.2s 2.05s
HolonomicFunctions.m 19.4s 35.4s 51.3s 62.3s 19.1s 34.7s 198s 445s 5.77s

Acknowledgements. We thank Bruno Grenet, Ben Hutz, Julian Rüth, and Travis Scrimshaw for re-
viewing the Sage patches mentioned above.

References

[1] S. A. Abramov, H. Q. Le, and Z. Li. OreTools: a computer algebra library for univariate ore polynomial rings.
Technical Report CS-2003-12, University of Waterloo, 2003.

[2] A. Bostan, F. Chyzak, M. van Hoeij, M. Kauers, and L. Pech. Hypergeometric expressions for generating
functions of walks with small steps in the quarter plane. European Journal of Combinatorics, 61:242–275, 2017.

[3] F. Chyzak. An extension of Zeilberger’s fast algorithm to general holonomic functions. Discrete Mathematics,
217:115–134, 2000.

[4] F. Chyzak. The ABC of Creative Telescoping – Algorithms, Bounds, Complexity. Habilitation à diriger des
recherches. University Paris-Sud 11, 2014.

[5] P. Zimmermann et al. Computational Mathematics with SageMath. SIAM, 2018.

[6] C. Hofstadler. D-finite sequences and functions in Sage. Bachelor’s thesis, J. Kepler University, Linz, 2019.

[7] M. Kauers. The holonomic toolkit. In Johannes Blümlein and Carsten Schneider, editors, Computer Algebra in
Quantum Field Theory: Integration, Summation and Special Functions. Springer, 2013.

[8] M. Kauers, M. Jaroschek, and F. Johansson. Ore polynomials in Sage. In Computer Algebra and Polynomials,
LNCS 8942, pages 105–125. Springer, 2014.

[9] M. Kauers and P. Paule. The Concrete Tetrahedron. Springer, 2011.

[10] C. Koutschan. HolonomicFunctions (User’s Guide). Technical Report 10-01, RISC Report Series, University of
Linz, Austria, January 2010.

[11] M. Mezzarobba. Rigorous multiple-precision evaluation of D-finite functions in SageMath. Technical Report
1607.01967, ArXiv, 2016. Presented at ICMS’16.

[12] B. Salvy and P. Zimmermann. Gfun: a Maple package for the manipulation of generating and holonomic
functions in one variable. ACM Transactions on Mathematical Software, 20(2):163–177, 1994.

[13] R. P. Stanley. Differentiably finite power series. European Journal of Combinatorics, 1:175–188, 1980.

[14] D. Zeilberger. The method of creative telescoping. Journal of Symbolic Computation, 11:195–204, 1991.

4


	Introduction
	Basic Examples
	Some Slightly Larger Examples

