Manuel Kauers
email: manuel@kauers.de

Marc Mezzarobba

Multivariate Ore Polynomials in SageMath

We present the latest update of the ore algebra package for SageMath. The main new feature in this release is the support of operators in several variables.

Introduction

Ore polynomials are important features of computer algebra systems because they provide functionality for manipulating differential and recurrence operators that describe so-called D-finite functions and sequences [START_REF] Stanley | Differentiably finite power series[END_REF][START_REF] Kauers | The Concrete Tetrahedron[END_REF][START_REF] Kauers | The holonomic toolkit[END_REF]. Packages for working with Ore polynomials include, among others, OreTools [START_REF] Abramov | OreTools: a computer algebra library for univariate ore polynomial rings[END_REF] and gfun [START_REF] Salvy | Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable[END_REF] for Maple, the HolonomicFunctions package of Koutschan [START_REF] Koutschan | HolonomicFunctions (User's Guide)[END_REF] for Mathematica, and ore algebra package by Kauers, Jaroschek and Johansson [START_REF] Kauers | Ore polynomials in Sage[END_REF] for SageMath (Sage) [START_REF] Zimmermann | Computational Mathematics with SageMath[END_REF]. This software demo abstract is about the most recent version of the latter package, which works with Sage 8.7.

Earlier versions of the ore algebra package already provided functionality for basic arithmetic and actions; GCRD and LCLM; D-finite closure properties; natural transformations between related algebras; guessing; desingularization; solvers for polynomials, rational functions and (generalized) power series. Mezzarobba [START_REF] Mezzarobba | Rigorous multiple-precision evaluation of D-finite functions in SageMath[END_REF] added a subpackage ore algebra.analytic for symbolic-numeric computations with D-finite analytic functions, which is now fully integrated into the main version of the package. Hofstadler [START_REF] Hofstadler | D-finite sequences and functions in Sage[END_REF] contributed a set of convenience functions which support a better integration with symbolic expressions.

While basic arithmetic of Ore polynomials in several variables has been supported since the beginning, everything else so far was limited to the univariate case. The main new feature in versions 0.3-0.4 of the package is an extension of the core functionality to multivariate operators, with efficient support of D-finite closure properties and creative telescoping as well as a rudimentary implementation of Gröbner bases. Other novelties include substantially improved numerical evaluation code compared to the status described in [START_REF] Mezzarobba | Rigorous multiple-precision evaluation of D-finite functions in SageMath[END_REF], and preliminary support for Python 3.

Basic Examples

With a typical Sage setup, ore algebra v0.4 can be installed using the shell command $ sage -pip install git+https://github.com/mkauers/ore_algebra.git@0.4 (Omit the @0.4 suffix for the latest development version.)

After loading the package and creating the base ring Z[x, y], the Ore algebra of differential operators for x and y can be created as follows.

sage: from ore_algebra import * Of course, combinations like Z[x, y] Sx, Dy and other generators besides shift and derivation are also possible. The available operators are the same as in the univariate case, see [START_REF] Kauers | Ore polynomials in Sage[END_REF] for more details.

In the univariate case, methods for executing closure properties were directly attached to the annihilating operators. In the multivariate case, where several annihilating operators are needed to describe a D-finite object, we must work with left ideals of Ore algebras. Ideals can be constructed as follows. Most of these operations rely on a generic FGLM implementation which uses the packages own linear system solvers. There is also a direct implementation of Buchberger's algorithm for computing Gröbner bases, which however is not highly optimized. sage: I.groebner_basis() Dy 2 , Dx Dy, Dx 2 + (-y) Dy + 1

All operations discussed so far are generalizations of the univariate counterparts that already existed in earlier versions. A feature that is inherently multivariate is creative telescoping [START_REF] Zeilberger | The method of creative telescoping[END_REF][START_REF] Chyzak | An extension of Zeilberger's fast algorithm to general holonomic functions[END_REF][START_REF] Chyzak | The ABC of Creative Telescoping -Algorithms, Bounds, Complexity[END_REF]. Here, the input is a left ideal I ⊆ A, say A = Q(x, y) Dx, Dy and the task is to find the ideal consisting of all operators P ∈ Q(x) Dx such that there exists Q ∈ A with P -D y Q ∈ I. The operators P are called telescopers, and the corresponding operators Q are called their certificates. Our new version of ore algebra includes an implementation of Chyzak's algorithm [START_REF] Chyzak | An extension of Zeilberger's fast algorithm to general holonomic functions[END_REF] for creative telescoping in the general D-finite setting.

Creative telescoping is a central operation for evaluating definite sums and integrals [START_REF] Chyzak | The ABC of Creative Telescoping -Algorithms, Bounds, Complexity[END_REF]. We cannot explain here in detail the relevance of creative telescoping for these applications, but the use of the package is easily demonstrated:

sage: A.ideal([Dx -2*x*y^2, Dy -2*x^2*y]).ct(Dy) ([-xDx -1] , [-y])
The output is a pair

([P 1 , P 2 , . . .], [Q 1 , Q 2 , . . .]
) whose first component is a basis of the ideal of telescopers and whose second component contains the certificates corresponding to the basis elements. The example above originates from the integration problem y exp(x 2 y 2)dy. The following example is the essence of a proof of the binomial theorem k n k = 2 n : sage: B.<Sx,Sy> = OreAlgebra(R) sage: B.ideal([(y+1)*Sy + (y-x), (x-y+1)*Sx -(x+1)]).ct(Sy -1)

[Sx -2] , y -x + y -1
Finally, also the guessing features have been extended to the multivariate setting. For example, annihilating operators for the binomial coefficients can be found as follows.

sage: data = [[binomial(n,k) for k in range(20)] for n in range(20)] sage: guess(data, B, point_filter = lambda n,k : k<=n).groebner_basis()

[(y + 1) Sy -x + y, (x -y + 1) Sx -x -1]
The option point_filter informs the guessing engine which part of the input array contains interesting data. A number of further options is specified in the documentation.

Some Slightly Larger Examples

The examples shown above need virtually no computation time. In order to get some idea about the performance of our implementation, we consider a set of 19 creative telescoping problems that appeared in a study of restricted lattice walks [START_REF] Bostan | Hypergeometric expressions for generating functions of walks with small steps in the quarter plane[END_REF]. Each of the 19 problems starts from a certain rational function r ∈ Q(u, v, t) and the task consists of two applications of creative telescoping. Writing I for the ideal of annihilating operators of r in Q(u, v, t) Du, Dv, Dt , we first have to compute the ideal T v in Q(u, t) Du, Dt of all telescopers of I with respect to Dv and then the ideal T u,v in Q(t) Dt of telescopers of T v with respect to Du. The smallest rational function in the collection is

-u 2 v 2 +u 2 +v 2 -1 tu 3 v 2 -tu 3 v+tu 2 v 3 -2tu 2 v 2 +2tu 2 v-tu 2 -tuv 3 +2tuv 2 -2tuv+tu-tv 2 +tv-u 2 v 2 +u 2 v+uv 2 -uv ,
and the largest is about twice as long. The complete data is available in ore algebra.examples.ssw.

In the table below, we compare our performance to that of Koutschan's package [START_REF] Koutschan | HolonomicFunctions (User's Guide)[END_REF]. We do not claim that a performance comparison will look similarly for any creative telescoping problem, but we think the experiment is at least an indication that our implementation is not too bad. Note in passing that reaching an acceptable performance level required a number of improvements to the implementation of multivariate polynomials and rational functions in Sage itself. Although ore algebra is developed as an external Sage package, a significant part of the development effort reported here will thus directly benefit other Sage users.

 sage: R.<x,y> = PolynomialRing(ZZ) sage: A.<Dx,Dy> = OreAlgebra(R) sage: A Z[x, y] Dx , Dy The usual arithmetic respects the required commutation rules. sage: (Dx + Dy)*(y + x) (x + y) Dx + (x + y) Dy + 2 sage: (x + y)*(Dx + Dy) (x + y) Dx + (x + y) Dy Differential operators can be applied to objects which Sage knows to differentiate and to multiply by base ring elements: sage: (Dx + Dy)(sin(x*y)) x cos (xy) + y cos (xy) Using Sx, Sy instead of Dx, Dy creates an Ore algebra with shift operators instead of differential operators.

 sage: I = A.ideal([Dy^2, Dx*Dy, Dx^2 -y*Dy + 1]) sage: I Dy 2 , Dx Dy, Dx 2 + (-y) Dy + 1 Frac(Z[x, y]) Dx , Dy Note that the base ring is always converted to a field. Various ideal theoretic operations are available as methods. sage: I.eliminate([Dy]) Dx 3 + Dx Frac(Z[x, y]) Dx sage: Dx^3 + Dx in I # (membership) True sage: J = A.ideal([-Dy^2 + x*Dx -1, Dx*Dy, Dx^2]) sage: I == J False sage: K = I.intersection(J) # closure property 'addition' sage: K <= J # (inclusion) True sage: K = I.symmetric_product(I) # closure property 'multiplication' sage: K.vector_space_basis() # terms under the staircase 1, Dy, Dx , Dy 2 , Dx Dy, Dx 2 sage: I.annihilator_of_associate(Dx + Dy) # closure property 'ore action' Dy, Dx 3 + Dx Frac(Z[x, y]) Dx , Dy sage: I.annihilator_of_composition(x=x^2,y=1-x^2) # closure property 'composition' Dy, -x 4 + x 2 Dx 3 + 5x 3 -3x Dx 2 + -4x 6 + 4x 4 -5x 2 + 3 Dx + 8x 5 Frac(Z[x, y]) Dx , Dy

Acknowledgements. We thank Bruno Grenet, Ben Hutz, Julian Rüth, and Travis Scrimshaw for reviewing the Sage patches mentioned above.

* Supported by the Austrian FWF grants P31571-N32, F5004 † Supported in part by ANR grant ANR-14-CE25-0018-01 (FastRelax).