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Design and experimental validation of an active catheter for endovascular navigation

Endovascular technique has many advantages but relies strongly on operator skills and experience. Robotically steerable catheters have been developed but few are clinically available.

We describe here the development of an active and efficient catheter based on Shape Memory Alloys (SMA) actuators.

We first establish the specifications of our device considering anatomical constraints. We then present a new method for building active SMA-based catheters. The proposed method relies on the use of a core body made of three parallel metallic beams and integrates wire-shaped SMA actuators. The complete device is encapsulated into a standard 6F catheter for safety purposes.

A trial-error campaign comparing 70 different prototypes is then conducted to determine the best dimensions of the core structure and of the SMA actuators with respect to the imposed specifications. The final prototype is tested on a silicon-based arterial model and on a 23-kg pig.

During these experiments we were able to cannulate the supra-aortic trunks and the renal arteries with different angulations and without any complication.

INTRODUCTION

Cardiovascular diseases are the first cause of death in the world according to the World Health Organization. The most frequent pathologies are myocardial infarction, stroke, and peripheral vascular diseases. The treatment of the underlying lesions (stenosis of coronary, carotid and other peripheral vessels) can be performed using surgical or endovascular techniques. The last option has rapidly developed over the last two decades. It relies on the use of catheters and guide wires to reach pathological lesions and deliver stents or balloons to treat them. Endovascular techniques are less invasive approaches than conventional surgeries, allowing early postoperative recovering, a decreased risk of complications and reduced operating times. Despite all these advantages, the success of a procedure often relies on the operator skills and experience. Patient challenging anatomy is the most frequent cause of difficulties or failure. Approximately one in eight patients have a renal artery take-off angle that is less than 50° [START_REF] Coghlan | An experimental study to determine the optimal access route for renal artery interventions[END_REF]. In these patients, an approach via a femoral access site can be technically challenging and may result in an unsuccessful procedure. In most cases, several material exchanges are needed in one procedure, increasing the operative time. Several endovascular robotic systems have been developed to improve catheter navigation and reduce both the operating time and material.

Extracorporeal robots

Extracorporeal robots constitute a first kind of endovascular robotic systems (Fig. 1). This category includes robotically steerable catheters like the Magellan robot (Hansen Medical, Mountain View, Calif) and magnetically controlled systems like the Niobe system (Stereotaxis, St. Louis, Mo). The main advantages of extracorporeal systems are: reduced number of catheter exchanges, enhanced catheter stability and positional control, reduced contrast and fluoroscopy time, reduced requirements in manual skill and shorter learning curve [START_REF] Antoniou | Clinical applications of robotic technology in vascular and endovascular surgery[END_REF][START_REF] Cochennec | Improved catheter navigation with 3D electromagnetic guidance[END_REF].

The Magellan system has been studied on animal models and through clinical studies [4][START_REF] Bismuth | Feasibility and safety of remote endovascular catheter navigation in a porcine model[END_REF][6][START_REF] Cochennec | Feasibility and safety of renal and visceral target vessel cannulation using robotically steerable catheters during complex endovascular aortic procedures[END_REF]. Its advantages in terms of catheterization times, absolute number of movements of the catheter tip and number of wall hits have been demonstrated in-vitro [START_REF] Riga | The role of robotic endovascular catheters in fenestrated stent grafting[END_REF][START_REF] Riga | Evaluation of robotic endovascular catheters for arch vessel cannulation[END_REF][START_REF] Riga | Tortuous iliac systems -a significant burden to conventional cannulation in the visceral segment: is there a role for robotic catheter technology?[END_REF]. But in a recent literature review on endovascular navigation systems [START_REF] De Ruiter | Current state in tracking and robotic navigation systems for application in endovascular aortic aneurysm repair[END_REF], the authors concluded that there were not enough proof of the superiority of such robotically driven catheters over classical techniques and that robotic systems should be reserved only in case of conventional techniques failures.

A meta-analysis [START_REF] Shurrab | Robotically assisted ablation of atrial fibrillation: a systematic review and meta-analysis[END_REF] in 2013 on magnetically controlled systems reports decreased scopy times, a superior safety and efficiency during cardiac rhythm trouble ablation compared to conventional catheters. However, high cost, high volume, long set-up time and lack of haptic feedback have limited their use to expert centers only.

The concentric tubes approach is a third extracorporeal solution for robotizing the endoluminal surgery [START_REF] Gilbert | Elastic Stability of Concentric Tube Robots: A Stability Measure and Design Test[END_REF]. It aims at improving the motion control of catheters while reducing the overall size of the extracorporeal robotic system. This approach relies on a set of pre-shaped tubes translated and rotated into one-another by an external motorization unit. A proper combination of the tubes curvatures produces the desired motion at the catheter distal end. Application of concentric tubes to beating-heart intracardiac surgery has been investigated and in-vivo trials were performed [14].

However, the size and complexity of the extra-corporal drive unit is still important. Moreover, problems appear in controlling the distal tip due to complex transfer functions and stability issues [START_REF] Kim | Toward a solution to the snapping problem in a concentric-tube continuum robot: Grooved tubes with anisotropy[END_REF]. Because the system is fully tele-operated, there is also a lake of force perception by the surgeon during the navigation process.

Active catheters with embedded actuators

For the aforementioned reasons, some authors have proposed the development of more ergonomic, low-cost and low-volume systems suited to easier daily usage. To this purpose, various solutions having the form of drivable active catheters with embedded micro-actuators were proposed in the literature. Some of these solutions are based on electro-active polymers. Liu [16] imagined a micro-actuator based on an Ionic Conductive Polymer Film (ICPF) for controlling the bending of a tube. In [START_REF] Shoa | Conducting polymer based active catheter for minimally invasive interventions inside arteries[END_REF], the electrochemical actuation of a catheter coated with polypyrrol is studied. This kind of actuator is interesting for its shapability and small volume but can't deliver the sufficient forces necessary to resist external contact in the blood vessels. Moreover there are issues about their biocompatibility. Another microtechnological solution relies on the hydraulic actuation principle. For example Ikuta [START_REF] Ikuta | Hydrodynamic Active Catheter with Multi Degrees of Freedom Motion[END_REF] produced a hydrodynamic active catheter driven by integrated micro valves. Ikeuchi [START_REF] Ikeuchi | Membrane micro emboss following excimer laser ablation (MeME-X) process for pressure-driven micro active catheter[END_REF] proposes a pressure driven micro-catheter, made by laser ablation in a thermo-plastic membrane, with a 300 µm diameter. These solutions are interesting for safety and biocompatibility but rely on very complex manufacturing and assembling processes.

SMA based active catheters

Shape Memory Alloys (SMA) were also widely investigated in the field of active catheterism for their biocompatibility and excellent density-to-power ratio [START_REF] Huber | The selection of mechanical actuators based on performance indices[END_REF]. The basic concept of SMA actuation for catheterism is depicted on Fig. 2. The bending motion is obtained by a mere electrical current i which induces a phase transformation in the SMA material through the Joule effect. Here, the SMA actuator can have the shape of a flat spring or a coil spring or a wire. Besides, more than one SMA actuator are often integrated at the tip of the catheter in order to fully control its bending in the 3-D space (see Fig. 3).

Fig. 2. SMA actuated catheter (principle)

[21] Fig. 3. Active catheter featured with three SMA actuators [START_REF] Szewczyk | Active Catheters for Neuroradiology[END_REF] SMA actuators having the shape of flat springs have been used regarding the possibility to produce very small actuators [START_REF] Chang | Development of endovascular microtools[END_REF][START_REF] Mineta | Batch fabricated flat meandering shape memory alloy actuator for active catheter[END_REF][START_REF] Namazu | Titanium-Nickel Shape Memory Alloy Spring Actuator for Forward-Looking Active Catheter[END_REF]. In [START_REF] Mineta | Batch fabricated flat meandering shape memory alloy actuator for active catheter[END_REF] for example, a 0.9-mm-diameter catheter has been realized this way. It integrates batch-fabricated small flat NiTi springs as actuators. The springs were obtained by photolithography and electrochemical etching. While kinematic performances with flat-spring SMA actuators are interesting (see Table 1), the fabrication process is always complex and thus poorly compatible with the low-cost criterion associated to single-use devices.

Table 1. Performances of small dimeter active catheters using SMA actuators

Coil-shaped SMA micro-actuators were also used in active catheterism for their high strain capabilities [START_REF] Haga | Bending, torsional and extending active catheter assembled using electroplating[END_REF][START_REF] Lim | Active catheter with multi-link structure based on silicon micromachining[END_REF][START_REF] Fu | Research on the axis shape of an active catheter[END_REF][START_REF] Haga | Small diameter active catheter using shape memory alloy[END_REF]. However, coil-shaped SMA actuators are usually limited in the tensile force they can deliver. This leads to relatively poor kinematic performances as shown in Table 1. As we can see, in most cases coil-shaped SMA actuators result in high bending angles only at the expense of large radii of curvature. In [START_REF] Haga | Small diameter active catheter using shape memory alloy[END_REF], a small radius of curvature is achieved by an active catheter featured with only one coil-shaped SMA actuator. However, the proposed device is not covered by any external sheath or tube which is mandatory for safety purpose.

In contrary, wire-shaped SMA actuators exhibit high stress capabilities. They were thus often exploited in the design of active catheters. Their kinematic performances are shown in the last part of Table 1. Fukuda [START_REF] Fukuda | Micro active catheter system with multi degrees of freedom[END_REF] and Takizawa [START_REF] Takizawa | Development of a microfine active bending catheter equipped with MIF tactile sensors[END_REF] have developed catheters actuated by three SMA wires as depicted in Figure 3. These devices however bend with quite large radii of curvature. In [START_REF] Mizuno | Shape memory alloy catheter system for peroral pancreatoscopy using an ultrathincaliber endoscope[END_REF], a similar device has been applied to peroral pancreatoscopy in pigs. It performs well in terms of curvature and bending angle but has a quite important outer diameter. In [START_REF] Szewczyk | Active Catheters for Neuroradiology[END_REF], the proposed catheter is quite thin and exhibits a small radius of curvature but has never been covered with any outer sheath and thus could not be tested in-vivo.

Aim of the paper

Our purpose is to develop a dexterous actuated catheter presenting low-cost, easy to use and small size properties. Consistently with the above state of the art, we directed our work toward the design of an active catheter embedding its own actuators. The embedded micro-actuators will be SMA wires for their simplicity of integration and kinematic performances. Moreover, only one SMA wire actuator will be embedded at a given bending section as the reachable radius of curvature seems to invariably decrease with the number of embedded actuators as illustrated on Fig. 4.

In case of only one actuator at the catheter tip, we assume that the device can be manually rotated like a conventional catheter in order to reach any bending direction in the 3D space. Lastly, the core structure and assembly process of our device will not involve any complex operation in order to: a-limit the production costs, b-achieve very small outer diameters. 

MATERIAL AND METHODS

Anatomical considerations

For practical reasons but without loss of generality, we focus in this paper on the cannulation of the peripheral arteries, namely: the supra-aortic trunks (brachiocephalic trunk, left common carotid artery and left subclavian artery), the celiac trunk, the superior mesenteric artery, the renal arteries and the common iliac arteries. Anatomical dimensions for these arteries were obtained from the review of the specialized literature [START_REF] Clogenson | Design optimization of a deflectable guidewire[END_REF][START_REF] Wilbring | Aortic Arch Mapping by Computed Tomography for Actual Anatomic Studies in Times of Emerging Endovascular Therapies[END_REF][START_REF] Vučurević | Anatomy and radiology of the variations of aortic arch branches in 1,266 patients[END_REF][START_REF] Demertzis | Aortic arch morphometry in living humans[END_REF][START_REF] Chiu | Anatomical characteristics of the thoracic aortic arch in an Asian population[END_REF][START_REF] Finlay | Surgically relevant aortic arch mapping using computed tomography[END_REF][START_REF] Shin | A morphometric study on cadaveric aortic arch and its major branches in 25 korean adults : the perspective of endovascular surgery[END_REF][START_REF]Average vessel sizes and choice of the suitable coil size[END_REF][START_REF] Noordergraaf | The use of an analog computer in a circulation model[END_REF][START_REF] Kahraman | The diameters of the aorta and its major branches in patients with isolated coronary artery ectasia[END_REF][START_REF] Turba | Normal renal arterial anatomy assessed by multidetector CT angiography: are there differences between men and women?[END_REF][START_REF] Kaufman | Vascular and Interventional Radiology: the requisites[END_REF][START_REF] Rogers | Distribution, determinants, and normal reference values of thoracic and abdominal aortic diameters by computed tomography (from the Framingham Heart Study)[END_REF][START_REF] Pedersen | Ultrasound measurement of the luminal diameter of the abdominal aorta and iliac arteries in patients without vascular disease[END_REF][START_REF] Shah | Geometric anatomy of the aortic-common iliac bifurcation[END_REF][START_REF] Silveira | Arterial diameter of the celiac trunk and its branches. Anatomical study[END_REF][START_REF] Malnar | Properties of the celiac trunk--anatomical study[END_REF]. They are listed in Tables 2 and3. 

Functional specifications

The functional specifications of our active bending device were derived from the above anatomical information. Our device is intended to be used in combination with a conventional 6F catheter (2mm internal diameter and 65cm length) which is the type of catheter generally used to navigate the above mentioned regions. This imposes to our device an outer diameter less than 2 mm and a total length greater than 65 cm.

We also relied on the existing material to specify the number of active bending sections.

The most current approach for conventional catheters (e.g. "Renal double Curve" probe, "Cobra" probe) but also for steerable systems (e.g. Magellan®, Medrobotics Flex System®) is to combine two sequential curvatures in the same plane and with the same sense of bending. Our device will thus be featured with two sequentially arranged active bending sections. The first one is called the proximal section and the second one is called the distal section. These active sections will be separated by a passive section with minimal length L sep = 10 mm. This minimal spacing is necessary for assembly and connection purposes and is consistent with the values encountered on several existing devices [START_REF] Helene | Multi-selective catheter for MR-guided endovascular interventions[END_REF].

In order to specify the lengths and the flexion angles of the two active sections we analyzed the way an operator should proceed to enter a lateral artery as illustrated on Fig. 5. The first step of the manoeuver is to point toward the targeted artery by bending the distal section at 90° in the direction of the lateral ostium (see Fig. 5-b). For this reason, the total bending angle of the distal section must be at least θ 2max = 90°. To perform this movement without risking contacting and stucking against the arterial wall around the ostium, the corresponding radius of curvature R 2min must be smaller than the diameter of the original artery. According to Table 3, the smaller aorta diameter is 15 mm which leads to R 2min < 15mm.

The second step of the manoeuver is to activate the proximal flexion to have the catheter extremity penetrate into the ostium with an alignment corresponding to the axis of the targeted artery (see Fig. 5-c). Taking into account that the maximal branch angulation reported in Table 4 is 155°, the maximal bending for the proximal flexion must be at least θ 1max = 65° in order to have :

θ 1max + θ 2max ≥ 155°.
Finally, in case of a very large original arteries, the operator has to cope with a large distance between the ostium and the opposite arterial wall (see Fig. 5-d). In this case, he/she will bend the proximal section while the distal one is kept straight. The aim here is to maximize the span L s of the device to be able to point and penetrate the targeted ostium despite its remoteness. Considering a maximal aorta diameter D max = 40 mm (see Table 3), we have to satisfy L s > D max (see Fig. 5-d), which is equivalent to:

( R 1min + L sep +L 2tot ). sin( θ 1max ) > D max (1)
where R 1min is the radius of curvature of the proximal section when it is completely bent and L 2tot stands for the total length of the distal active section.

The functional specifications of our device are summarized in Table 4. 

Technical specifications

The general description of our active device is given on Fig. 6 for a system comprised of two different active sections. All the mathematical symbols used in the following are listed in the nomenclature at the end of this paper.

As we can see on Fig. 6, any active section (either the proximal or the distal one) is composed of a flexible part and a rigid part. L and θ max are the length and the maximal bending angle of such a flexible part. And R min is the minimal radius of curvature associated to L and θ max :

R min = L /θ max (2)
In a given active section, the rigid part with length L rig is aimed at hosting the electrical connections as well as a portion of the associated SMA wire. Indeed, partly locating an SMA wire along a rigid section significantly improves its kinematic performances. In fact, assuming that an SMA wire undergoes a contraction rate t max in the fully bended configuration (Fig. 7), the radius of curvature of the bended part verifies:

(𝑅 𝑚𝑖𝑛 -𝑟)𝜃 𝑚𝑎𝑥 = 𝐿 -𝜏 𝑚𝑎𝑥 .(𝐿 + 𝐿 𝑟𝑖𝑔 ) (3)
where r is the radial distance between the bended structure neutral line and the SMA axis (see Fig. 7). Finally, (2) combined with (1) leads to:

𝑅 𝑚𝑖𝑛 = 𝑟⋅𝐿 𝜏 𝑚𝑎𝑥 •(𝐿+𝐿 𝑟𝑖𝑔 ) (4) 
From equation (4) it is obvious that including a rigid part with length L rig makes the radius of curvature smaller. We take advantage of this property throughout the development of our device.

Core structure

The core structure of an SMA-based active catheter is intended to host the SMA actuators as well as to produce an elastic restoring force to make the device naturally return to its straight configuration after activation. In our case, the core structure will be based on the combination of three thin metallic wires arranged in a triangle as shown on Fig. 8. This approach has many advantages:

 to create the flexible part of a given active section, one of the three wires has just to be locally removed, 2°) An SMA wire has to be maintained close to the bended flexible part of the structure in order to avoid any arch-like configuration. In our case, this is achieved by ligating a given SMA wire close to its corresponding flexible part using a large pitch helix made of a simple electrically isolated cupper wires (Fig. 10). This helix has a constant pitch of about 1 mm and doesn't need any peculiar fixation at its extremities.


Finally, to protect the active device we cover it by a common commercially available 6F catheter (Fig. 11). 

Sizing of the prototype

In order to guide the sizing of our active catheter, we first derived a theoretical model of its kinemato-static behavior. According to this modelling (see the appendix section for the details of the derivation), the expression of the maximal bending angle of an active section is:

𝜃 𝑚𝑎𝑥 = 𝐿 • 𝜏 𝑙𝑖𝑚 ( 𝐸 𝐶 (𝑟 𝑒𝑥𝑡 4 -𝑟 𝑖𝑛𝑡 4 )+2.𝐸 𝑚𝑒𝑡 .𝑟 𝑚𝑒𝑡 4 𝑟𝐸 𝐴 𝑑 2 + 𝑟𝐿 𝐿+𝐿 𝑟𝑖𝑔 ) -1 (5) 
The notations used in equ. ( 5) are illustrated on Fig. 12 and explained in the nomenclature that can be found at the end of this paper.

Regarding equ. ( 5), we can conclude that the maximum bending angle θ max can be increased through the achievement of several physical compromises:

 The first term on the right side of equ. [START_REF] Bismuth | Feasibility and safety of remote endovascular catheter navigation in a porcine model[END_REF] indicates that the influence of the SMA wire diameter d on θ max is twofold : on the one hand it has to be as large as possible to increase this term and, on the other hand, it has to be kept small enough to cope with the maximal outside diameter specified in Table 4 (2 mm),  Regarding the contradictory influence of the parameter r on the two terms on the right hand side of equ. ( 5), there exists a theoretical optimal value for this parameter to be found,  The diameter r met of the metallic wires should be chosen as small as possible regarding its influence on equ. ( 5) but should also be large enough to avoid any buckling phenomenon in the structure. Given the complexity of the above mathematical formulation, we chose not to rely on model ( 5) to determine the best dimensions for our device. We instead solved this optimization problem following a practical approach consisting in realizing and testing a large number of prototypes. Along this exploration, the geometrical parameters d, r, r met , L and L rig varied according to the values indicated in Table 5. The simplicity of the structure of our active catheter allowed us to build and test more than 70 prototypes.

The mean time to build a complete prototype was about 2 hours. All the components of our active catheters were found among commercially available products. Lengths of the sections, radii of curvature and bending angles were graphically assessed for each prototype using images like Fig. 4. The best prototype characteristics are given in Table 5 and are further discussed in the results section.

Besides to this dimensional optimization, we also investigated the validity of the theoretical model [START_REF] Bismuth | Feasibility and safety of remote endovascular catheter navigation in a porcine model[END_REF]. For a randomized sample of 13 prototypes, we compared the experimental and theoretical values of the bending angles θ max for both the proximal and the distal active sections.

Experimental validation

Our final prototype with its control interface were tested in-vitro and in-vivo. For the invitro experiments, we used a silicon-based, transparent, anthropomorphic phantom (Fig. 13) representing the thoracic and the abdominal aorta with their main branches (Elastrat Sarl, Geneva, Switzerland). A blood-mimicking mixture of water and glycerol (60%/40%) was circulated in the model with a pump. We tried out the cannulation of the contralateral common iliac artery, of both renal arteries (with different angles: 90°, 120° and 150°), and of all the supra-aortic trunks by a right femoral approach. Success or failure to cannulate was recorded for each artery. In-vivo experiments were carried out on a 23 kg pig under general anaesthesia and fluoroscopic guidance in the operating room of the Ecole de Chirurgie (UPMC, Paris, France). Through a right femoral approach, we tested the cannulation of the supraaortic trunks, of both renal arteries and of the celiac trunk. We systematically performed an angiographic control after each cannulation in order to look for an embolism or a perforation. 

Control architecture

The SMA actuators are activated in an open-loop manner relying on the transfer function between the supplied currents i in a SMA actuator and the resulting bending of the activated section of the catheter (Fig. 14). At a higher level of control, the operator is adjusting the catheter configuration through a visual feedback featured by a X-ray imaging system. As we can see on Fig. 14, a minimal current intensity (and voltage) of approximately 0,8 A (and 4 V) is required to start the bending of the flexible part.

Besides, there is a maximal current intensity and voltage (2 A and 10 V) beyond which no additional bending is observed. Between these two values, the angulation of the flexible part of the catheter is nearly linear with respect to i. This allowed us to implement a linear feedforward controller.

The hardware architecture of our control solution is depicted on Fig. 15. An Arduino Uno card with an ATmega328P microcontroller (Atmel Corporation, San Jose, CA) was used to host the program converting the command from the operator into an electric signal.

The power amplification is achieved using a 4x4 Driver Shield (Logos Electromechanical, Seattle, WA). We found that a minimal PWM period of 20 ms was necessary to avoid vibrations of the active device. We chose a pedal board as human-machine interface (Fig. 16). This kind of interface let the operator handle the catheter and the guidewire with his/her hands as usual.

RESULTS

Dimensioning of the active catheter

Our final prototype is depicted on Fig.17 Table 6 presents the functional characteristics of our best prototype compared to the initial specifications. Length, diameters and bending angles satisfy the initial specifications. Only the bending radius of the distal section doesn't exactly comply with the corresponding required value. This may lead to unexpected contacts between the device tip and the arterial wall especially when pointing to a lateral ostium located in a small diameter section of the abdominal aorta (e.g. : the renal arteries or the celiac trunk as can be seen in Table 2). However, given the relatively small difference between the desired and actual radii of curvature, the selected prototype appears to be acceptable regarding its global kinematic performances. On Fig. 18, we represented the evolution of the maximal bending angle of the distal section of a prototype having the dimensions specified in Table 5. We can see that the performances are stable until 280 cycles which is enough to perform an even complex surgical procedure. During this experiment, we used an activation current of 2A and the device, surrounded by an Envoy 6F catheter, was immersed in a 37°C water-bath. The catheter external temperature showed no significant change during this test.

Finally, of the 70 tested prototypes 13 were randomly selected in order to evaluate the relevance of the theoretical model (equ.( 5)) in terms of θ max prediction. In equ. ( 5), the catheter Young modulus was fixed to E c = 1.9 GPa according to the values that can be found in the literature [START_REF] Shin | A morphometric study on cadaveric aortic arch and its major branches in 25 korean adults : the perspective of endovascular surgery[END_REF] and to the composition of the Envoy 6F catheter we used :

nylon ( Young's modulus E = 2 GPa), polyurethane (E = 1,5 GPa), stainless steel (E = 220 GPa) in minority, PTFE (E = 0,5 GPa). Fig. 19 represents the relative errors between the experimental and theoretical values of θ max .

Experimental validation

The experimental validation was performed on the silicon model described earlier. The active catheter was able to cannulate all the supra-aortic trunks (brachiocephalic trunk, left common carotid artery and left subclavian artery) and both renal arteries (with different angles: 90°, 120° and 150°) via a right femoral approach. The catheterization of the contralateral common iliac artery failed and didn't allow the catheter tip to enter into the ostium of the considered artery. The total span of the prototype when bended at its maximal capabilities was too important. The main reason for that is a slight unexpected bending of the supposed rigid part of the distal active section. Throughout our in-vivo experiments on a 23-kg pig (Fig. 20), all the cannulations were successful: both renal arteries, the celiac trunk, all the supra-aortic trunks (common trunk for the right subclavian artery and both common carotid arteries). The angle between the aorta and the celiac trunk was 45° and the angles between renal arteries and the aorta were 80° and 90°. The pig however was too small to cannulate the contralateral iliac. On the other hand, because of the small size of the arteries, this experiment allowed us to evaluate the feasibility and safety of navigation in a difficult anatomy. Security was evaluated after each cannulation. All the arteriographies showed integrity of the arterial wall (neither perforation nor dissection) -no emboli or thrombosis were visualized. Some post-cannulation arteriographies and successful catheterizations are presented in Fig. 21. Five copies of the active catheter sized according to the results reported in Table 5 were used during this experiment. We didn't find any evidence of thrombosis inside any of these catheters. Each prototype has been used for a mean duration of 30 minutes, with a mean time of activation of 20 minutes. Only 2 hours are needed to build a complete prototype.

In terms of dimensions and kinematic performances, our final device compares favorably to the active catheters of the literature presented in Table 1. Compared to the device presented in [START_REF] Mizuno | Shape memory alloy catheter system for peroral pancreatoscopy using an ultrathincaliber endoscope[END_REF], which appears to be the best existing prototype among those in Table 1 that are equipped with an external protective sheath, our final device shows a quite similar radius of curvature for an equivalent external diameter and with a significantly higher maximal bending angle.

We performed in-vitro and in-vivo experiments to validate the robustness and safety of our active catheters. We were able to cannulate several bifurcations up to 150° in a silicon-based model but failed to pass the aortic bifurcation because our device had a animal, we were able to navigate through the peripheral arteries without causing any damage to the vessels (Fig. 21). Note that a glucose flush between the active structure and the external catheter was maintained during the experiment in order to limit temperature elevation. On a pig having a narrow aorta, we successfully cannulated the supra-aortic trunks, the celiac trunk and both renal arteries. We faced some difficulties in performing the cross-over (go into the contralateral iliac artery). These difficulties are probably due to an unexpected bending of the supposed rigid parts during activation of the catheter.

In comparison, Clogenson [START_REF] Clogenson | Multi-selective catheter for MR-guided endovascular interventions[END_REF] could reach the contralateral iliac bifurcation, the left renal artery, the left subclavian artery and the brachiocephalic trunk on the Elastrat model with their multiselective MRI-guided catheter. But on the animal they only could cannulate the supraaortic trunks because the abdominal aorta was too narrow for their prototype. In another publication, the authors could successfully cannulate most of the small bifurcations with an angle inferior to 120°, but their deflectable guidewire was unable to cross bifurcations with large diameters [START_REF] Clogenson | Design optimization of a deflectable guidewire[END_REF]. Besides, only two studies to our knowledge have described the use of SMA-based catheters during in-vivo experiments.

Fukuda have evaluated an active catheter on a dog but no explicit results were given [START_REF] Fukuda | Micro active catheter system with multi degrees of freedom[END_REF]. Mizuno tested its active catheters on 19 patients with good results but the field of application was the peroral pancreatoscopy and thus was completely different from ours [START_REF] Mizuno | Shape memory alloy catheter system for peroral pancreatoscopy using an ultrathincaliber endoscope[END_REF]. In particular, thermal effects in hollow organs have less probability to appear than in blood.

In this paper, we also developed a mathematical model for predicting the bending angle and radius of curvature of our active catheters. We first used this model to state some general qualitative rules useful for the iterative dimensional optimization of our devices.

We then made a quantitative comparison between the actual and predicted bending angles for a sample of prototypes. It happens that the relative error is less than 20% for bending angles between 100° and 150° which is the interval of interest for our applications. Based on this model, a more formal and systematic dimensioning process can now be developed for serving future applications. For example, the theoretical variations of θ max with respect to r (Fig. 22) can be used to adjust the diameter of the loose ligatures and maximize the range of bending of our devices. Our next study aims at evaluating the relevancy of our active catheters in a more statistical manner. We intend to conduct a quantitative campaign to assess the benefit of our active catheters in difficult contexts such as the catheterism of stenosed arteries and the crossing of tight bifurcation angles. This campaign will be conducted on anatomical phantoms and will involve experienced surgeons as well as young fellows. In a future work we also want to extend our approach to other endovascular technics such as interventional neuroradiology. The very simple structural composition of our device will be preserved and exploited to conduct a size scale reduction accounting for the tiny diameters of the brain vessels. To operate this scale reduction we will also rely on the theoretical model [START_REF] Bismuth | Feasibility and safety of remote endovascular catheter navigation in a porcine model[END_REF] validated in this paper. 
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Fig. 12 .
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  . The estimated measuring errors are Dθ = 1°, DL = 1 mm and DR = 2 mm. At the end of the process we selected the prototype with the best kinematic performances and whose characteristics best match the functional specifications of Table
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 1314 Fig. 13. Test on a silicon-based anatomical phantom

  . The external catheter is an Envoy 6F catheter (Codman Neuro, Raynham, MA). The metallic wires are Radifocus Guidewires M Standard Type (Terumo France SAS, Guyancourt, France) having a diameter of 0,018 inches (= 0.46 mm). The SMA wires are SmartFlex wires (Memry GmbH, Weil am Rhein, Germany) with diameter 0.2 mm. Their lengths are: L = 24.5 mm and L rig = 21 mm for the first active section and L = 19 mm and L rig = 23 mm for the second active section. The tip of the device is composed of a 5 mm long rigid portion used for various SMA anchoring and electrical connections.
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 21 Fig. 21. a-Successful cannulations of right renal artery, left renal artery, celiac trunk, left subclavian artery, common bi-carotid and right subclavian trunk; b-angiographic control after cannulation of the right and left renal arteries, and of the celiac trunk
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 22 Fig. 22. Expression of θmax in function of r according to the theoretical model
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 3 Figure Captions List

  Fig. 17Final prototype in maximal bending conditions

  

Table 3 .

 3 Min and max bifurcation angles for the region of interest

	Zone	Vessel	Angulations [°]
			Min	Max
	Abdominal arota	Abdominal aorta -celiac trunk Abdominal aorta -renal artery Abdominal aorta -superior mesenteric artery	115 105 120	155 135 150
	Supra-aortic trunks	Aortic arch -brachiocephalic trunk Aortic arch -left common carotid	27 5	96 97
		Aortic arch -left subclavian artery	2	102

Table 2 .

 2 Min and max diameters of the arteries of interest

	Zone	Vessel	Diameters [mm]
			Min	Max
		Abdominal aorta	15	20
	Abdominal	Celiac trunk	6	8
	arota	Common iliac artery	7	10
		Renal artery	4	6
		Distal aortic arch	20	41
	Supra-aortic	Brachiocephalic trunk	11	31
	trunks	Left common carotid	7	14
		Left subclavian artery	5	18

Table 4 .

 4 Functional specifications

	Constraints	Specification values
	Total length of the device	> 650 mm
	Outer diameter of the device	< 2 mm
	Bending angle distal section θ2max	> 90°
	Bending angle proximal section θ1max	> 65°
	Radius of curvature distal section R2min	< 15 mm
	Condition of reachability (inequality (1)) on Ls	> 40 mm

Table 5 .

 5 Tested values of the geometric parameters

	Geometric Parameters	Symbols	Tested values Min Max	Values of the best prototype
	SMA wire diameter	d	0.125	0.250	0.2
	Distance SMA axis -neutral line	r	0.1	0.2	0.2
	Metallic core radius	rmet	0.3	0.55	0.46
	Length of a flexible part	L	19	42	19 (prox.), 31.5 (dist.)
	Length of a rigid part	Lrig	18	30	23 (prox.), 21 (dist.)

Table 6 .

 6 Comparison between the initial functional specifications and the characteristics of the best prototype

	Constraints	Specification values	Best prototype values
	Total length of the device	> 650 mm	1000 mm
	Outer diameter of the device	< 2 mm	0.98 mm
	Bending angle distal section θ2max	> 90°	110°
	Bending angle proximal section θ1max	> 65°	70°
	Radius of curvature distal section R2min	< 15 mm	16.4 mm
	Condition of reachability (inequality (1)) Ls	> 40 mm	74.1 mm

Table Caption List

 Caption Table 1Performances of small dimeter active catheters using SMA actuators Table 2 Min and max diameters of the arteries of interest Table 3 Min and max bifurcation angles for the region of interest

	Table 4	Functional specifications

Table 5

 5 Tested values of the geometric parameters Table 6Comparison between the initial functional specifications and the characteristics of the best prototype

FUNDING

This work was supported by French state funds managed by the ANR within the Investissements d'Avenir program (Labex CAMI) under reference ANR-11-LABX-0004 and by the Association chirurgicale pour le développement et l'amélioration des techniques de dépistage et de traitement des maladies cardio-vasculaires (ADETEC).

CONCLUSION

Endovascular treatment of arterial pathologies using conventional material is time consuming and faces major difficulties in its access phase due to anatomical constraints.

In this paper we propose a new kind of SMA-based active catheter to facilitate the endovascular navigation. The new SMA-based catheter we present has a core structure made of three thin metallic wires in triangle. Such a structure allows an easy anchoring of the SMA wires and a precise control of the bending curve. A 6F introductor can be used as an external protective sheath thanks to the limited overall diameter of our core structure which is less than 2mm.

The technical specifications of our device were identified relying on the specialized literature. A trial-error campaign comparing about 70 different prototypes was conducted to determine the best dimensions of the core structure and of the SMA actuators with respect to the imposed specifications. A second major contribution of this paper is the derivation of a reliable mathematical model for predicting the kinematic behavior of such an active catheter.

In-vitro experiments in realistic conditions proved the validity of the concept for most of the peripheral arteries and for different bifurcation angles. Several prototypes were also extensively tested in-vivo on a 23 kg pig. We succeeded in the cannulation of numerous
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NOMENCLATURE θ max maximum bending angle of an active section

where T stands for the tensile strength undergone by the contracted SMA wire and r is the distance between the SMA wire axis and the axis of the bended structure.

Moreover, the tensile strength T in the fully bended configuration is related to EA, τmax and SA the cross-sectional area of the SMA by the Hook's law of the SMA material in its fully austenitic state: