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Abstract. Quantum revival is described as the time-periodic recon-
struction of a wave packet initially localized in space and time. This
effect is expected in finite-size systems which exhibit commensurable
discrete spectrum such as the infinite quantum well. Here, we report
on the experimental observation of full and fractional quantum revival
for classical waves in a two dimensional cavity. We consider flexural
waves propagating in thin plates, as their quadratic dispersion at low
frequencies mimics the dispersion relation of quantum systems gov-
erned by Schrödinger equation. Time-dependent excitation and mea-
surement are performed at ultrasonic frequencies and reveal a periodic
reconstruction of the initial elastic wave packet.

In an infinite quantum well or a closed wave cavity, an eigenstate is a stationary
oscillating field pattern, which self-reproduces at its eigenfrequency. A set of eigen-
states can be adjusted in amplitude and phase to interfere constructively in a small
region of space and synthesize a wave packet. Because it is composed of several eigen-
states, the wave packet is not a stationary wavefunction that remains confined in
space but will spread over the entire system. The time needed by this wave packet
to get to the “maximum spreading” is often called the Ehrenfest time. Once this
time is reached, a question is raised: can the spreading reverse and the wavefunction
fold back to reconstruct the initial wave packet, in the manner of a time reversal
operation [1]. The answer is positive for dispersive systems, namely for systems with
not uniformly distributed discrete energy levels. This fundamental condition for ob-
servation of the quantum revival effect is naturally fulfilled in quantum systems fol-
lowing Schrödinger equation. For this reason, the ability of quantum systems to fold
back to their initial state triggered a lot of interest in the quantum physics commu-
nity. The quantum revival effect was first predicted in the Jaynes-Cummings model
[2–4], in Rydberg wave packets [5,6] and in chaotic quantum systems [7]. Its first
experimental observation was achieved in low dimensional systems, such as Rydberg
atoms [8–10], electrons in graphene under magnetic field [11], molecular systems [12]
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and cavity quantum electrodynamics [13]. In optics, the Talbot effect has been iden-
tified as a classical spatial analog of the temporal quantum revival effect. In 1836,
Henry Fox Talbot reported that the image of a grating is identically reproduced when
illuminated by a plane wave [14]. The theory of the Talbot effect was later derived in
the paraxial limit, where the Helmholtz equation reduces to a parabolic Schrödinger-
type equation [15,16]. Dispersion in optical waveguides served also to demonstrate
this effect [17,18]. However, not all physical aspects of the quantum revival are cap-
tured by the Talbot effect. For example, the reconstruction distance varies with the
incident wavelength in the Talbot effect, while the revival time is only a function of
the dimensions of the cavity. Two dimensional (2D) quantum revival is also an exper-
imental challenge. Apart from theoretical predictions [19], there is no experimental
demonstration of the revival effect in 2D cavities.
In this article, we report on the experimental observation of elastic wave packet

revival in a thin plate. In the limit of wavelengths much larger than the plate thickness,
three-dimensional elastic wave equations reduce to the 2D bi-harmonic Kirchhoff-Love
plate equation. This equation presents a natural quadratic dispersion relation which
mimics the dispersion relation of quantum systems. Full and fractional revival are
both observed and discussed. Time domain measurements are supported by simple
theory, which allow us to provide with a new understanding of the revival phenomenon
for classical waves.
In the case where the wavelength is large compare to the plate thickness, only two

cutoff-free modes can propagate in the plate: the symmetric, S0, and anti-symmetric,
A0, Lamb modes. The S0 mode polarization is mostly longitudinal with small off-
plane displacement, in contrast to the A0 mode which mainly generates an out of
plane movement. In our experiment, the contact transducer produces only vertical
displacement in order to excite selectively the A0 mode. In the low frequency regime,
the Kirchhoff-Love theory describes the vertical displacement with a bi-harmonic
equation that involves a bi-Laplacian spatial operator, Δ2 [20]. This fourth order
operator leads to a quadratic dispersion relation (1):

ω = ak2 with, a =

√
Eh2

12(1− ν2)ρ (1)

which involves the Young’s modulus E, the plate thickness h, the mass density ρ
and the Poisson ratio ν of the plate material. Because of the fourth order elliptical
operator, plate boundary conditions require two physical quantities to be set at the
edge. Vertical displacement and rotation around the edge axis are commonly used.
From these two quantities one can distinguish two extreme cases: the free boundary
condition where vertical displacement and rotation are free at the edge, represented
in Figure 1c, and the rigid boundary condition where both vertical displacement
and rotation are set to zero (Fig. 1d). Between those two conditions lies the simply
supported condition where vertical displacement is forbidden but rotation around the
edge is kept free as shown in Figure 1e. These three representations are conventionally
used to depict the boundary conditions. They do not represent real experimental
setups. The simply supported condition is the only one that does not modify the
dispersion relation equation 1. Both free and rigid boundary conditions induce a
slight deviation from the original dispersion relation due to local modification of the
material parameters [21]. Unfortunately, simply supported boundary conditions are
tedious to set experimentally. In our experiment, we chose to set rigid boundaries that
allow the smallest deviation from the pure quadratic dispersion relation. Quantum
revival effect in the presence of deviation from pure quadratic law or in the case of
finite potential square well has already been studied [1,22]. Both studies concludes
that the induced error is cumulative in time. Early times fractional revival dynamics
still occur but full revival of the initial wave packet might be deteriorated. We will
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Fig. 1. a) Exploded view of the elastic cavity. The thin Duraluminium plate is sketched in
blue while the two frames which enforce rigid boundaries are represented in red. b) Picture
of the experimental setup. A heterodyne laser interferometer is used to probe the vertical
displacement of the plate. The contact transducer is located under the sample and is not
visible in this picture. c, d, e) Sketch of the plate boundary conditions, free, rigid, and simply
supported. Edge vertical displacement and rotation are depicted by the arrows.

show that we can overcome such a limitation in our experiment by locating the point
source at specific positions in order to reduce the revival time.
A short Gaussian pulse with 500 kHz carrier frequency and 6μs duration is syn-

thesized by a waveform generator (Agilent 33120A). The ultrasound excitation is
applied to the plate via a contact piezoelectric transducer (Panametrics M109).
We cut a 40mm× 40mm square cavity in a Duraluminium plate with thickness
h = 0.5mm. Rigid boundary conditions are enforced by two square frames firmly
bolted on both faces of the plate as shown in Figure 1a. Out of plane displacement
is measured point by point with a laser heterodyne interferometric probe (Thales
SH140) (see Fig. 1b). A 2D scan (80× 80 points) of the optical probe is performed
over the plate with 0.5mm step to map the temporal and spatial dependence of
the elastic field. The short-pulse propagation in the thin plate gives the impulse re-
sponse of the system, while a spectral filter centered around ω is used to obtain
the propagation of a narrowband gaussian pulse with adjustable carrier frequency
ω. This measurement gives access to the time-dependent vertical displacement field
z(t) = A(t) cos(ωt+ φ(t)) with A(t) positive at all times. As the amplitude A(t) is
slow compare to the carrier period of the pulse, we perform an envelope detection
based on Hilbert transform to have direct access to A(t) and φ(t). In order to detect
wave packet full and fractional revivals we compute the following function (C(t)) at
each time step (2):

C(t) =

∑
plateA(t)

2

[
∑
plateA(t)]

2
· (2)

C(t) is a measure of the spatial confinement of the elastic field within the cavity. It
is unity for a field concentrated on a single pixel, and equals 1

N2
if the field is equally

distributed over the entire surface, where N2 is the number of pixels contained in
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Fig. 2. Top: The function C(t) as defined in the text is a function of time. Blue solid
line: experimental data for the plate. Red dashed line: simulation data for the same plate.
Black arrows pinpoint high values of C(t) corresponding to spatial confinement of the field.
Bottom: Amplitude snapshots for experiment (upper line) and FDTD simulations (lower
line). The first column is the initial pulse, positioned in that case at the center of the square.
Other snapshots show amplitude distribution corresponding to fractional revival events. Full
time evolution is available in the movie [25].

the measurement map. The function C(t) is monitored and is used to detect revival
events where the wave packet localizes in one or few locations of the plate.
Figure 2 presents the temporal evolution of C(t) for a point source located at the

center of the square plate. The experimental data (blue solid line) is compared to
3D-finite difference time domain (FDTD) simulations using SimSonic3D software
[23,24] (red dashed line) for the same plate dimensions and characteristics. Simu-
lation results are obtained on a grid of 100× 100 points which explains the lower
baseline for C(t) (red dashed line). Regularly spaced peaks in C(t) (pinpointed by
black arrows) are identified as fractional and full revival of the wave packet. This is
confirmed by the corresponding snapshots of the field amplitude distribution at these
specific times. The first snapshot represents the wave packet at initial time t=0. Full
revival is observed at time Trev = 185± 10μs when the wave packet is reformed at
the center of the plate (Fig. 2 first right snapshot). The additional rings result from
the interference between the converging and diverging waves as the wave packet ex-
pands again after Trev. Actually, the revival is expected to occur periodically. This
is confirmed numerically by a second peak observed at 2× Trev=370± 10μs, which
indeed corresponds to a second refocusing of the wavefield at the center of the plate.
Other peaks in C(t) are observed at earlier times. They are identified as fractional
revivals as they occur at fractions of the full revival time. At Trev3 =70± 10μs, the
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Fig. 3. Same as 3 for a source positioned at one third of the diagonal of the square. Black
thin line: C(t) for a membrane (simulations). In that case, dispersion relation is linear and
revival does not happen.

third revival is observed, characterized by 9 copies of the source arranged on a square
lattice. The quarter revival is detected at Trev4 = 100± 10μs and results in 4 sym-
metric images of the source. The uncertainty in the time measurements is due to the
finite pulse duration. Finally, we verified that the revival time is independent of the
incident wavelength by reproducing the data analysis for different central frequencies
of the wave packet.
A new experiment is run with a source positioned this time at a third of the

diagonal line of the square. Figure 3 presents the temporal evolution of C(t) as well as
the field amplitude distribution associated with peaks of C(t). Experimental results
and numerical simulations are again compared. Full revival is observed at Trev =
480± 10μs. This value is different from the revival time found for a source at the
center, which indicates that the revival time is dependent on the position of the
source. This observation will be explained later. A four-symmetric-points pattern is
observed at time Trev4 =132± 10μs. This is again the spatial signature of the quarter
revival. At half revival time (Trev2 =250± 10μs), the wave packet is reconstructed at
the symmetric position of the source with respect to the center of the plate. This
fractional revival is not observed in the case of Figure 2 due to the central position
of the source in that case. On the other hand, third revival does not exist in the case
of Figure 3 when the source is at a third of the diagonal.
When the position of the source is arbitrary, full revival is not observed, while

numerical simulations only show very early fractional revivals.
The general calculation of the revival time for 2D cavities is not simple, compare

to 1D systems, since two k-space coordinates are required, associated with two
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quantum numbers. For the square cavity however, the 2D potential is separable and
the cross-terms between the two coordinates disappear. Therefore, the dispersion
relation simplifies and the following expression can be deduced for the revival
time [26]:

Trev theo =
4L2

π δ
2ω
δk2

. (3)

It can be noticed that this expression is general and does not depend on the ini-
tial source position. Doncheski et al. [26] have shown that the revival time is re-
duced when the source seats on a point of symmetry of the square. The revival time
at the center of the square is Trev theo8 and it is Trev theo3 at the third of the diago-
nal. From equation (3) and the characteristics of our plate, Trev theo=1280μs. From
the measure of Trev in both cases of Figure 2 and Figure 3, we obtain respectively
Trev theo = 8× Trev center = 1480μs and Trev theo = 3× Trev diag = 1440μs. The dis-
crepancy between Trev theo measured and the theoretical prediction from equation (3)
comes from the choice for boundary conditions. Indeed, the separable analytic
expression only exist for simply supported boundary conditions [27]. Rigid bound-
ary conditions, as in our experiment, introduce a local deviation of the mechanical
parameters near the edges of the plate, which shifts the eigenstates away from the
quadratic dispersion and makes the theoretical prediction much more complicated.
A new approach is developed in order to estimate the revival time in our plate

with rigid boundary conditions. The dynamics of the wave packet is dictated by the
frequency spacing between successive eigenfrequencies. We calculate the first 50 eigen-
frequencies of our cavity using 3D-FDTD simulations and compute the distribution
of the nearest neighbor level spacing. Figure 4 reveals how they are distributed near
multiples of their least common multiple (dashed lines), which is obtained by consid-
ering the smallest non zero level spacing. The full revival time is given by the inverse
of this smallest level spacing. At this specific time, all the beating between successive
eigenfrequencies will oscillate during an integer number of periods, therefore leading
to a constructive interference and a full revival of the initial wave packet. This ap-
proach confirms that the revival time does not depend on the central frequency of the
wave packet but rather on the smallest frequency difference between the eigenvalues
excited by the wave packet. We compare, in Figure 4a–c, this distribution for three
different locations of the point source in our plate.
Figure 4a shows the level spacing distribution obtained numerically with a point

source placed at the center of the cavity. In this configuration, the smallest level
spacing is δfc = 5.5 kHz, which gives a revival time Trev center = 182μs, in excellent
agreement with direct experimental measurement in Figure 2.
Figure 4b shows the level spacing distribution obtained numerically with a point

source located on the third of the square diagonal, as in Figure 3. One can see that the
smallest frequency spacing is now δfd = 2.06 kHz, corresponding to a larger predicted
revival time Trev diag = 484μs. This value is also very close to the value obtained
experimentally. The level spacings are near multiples of the smallest level spacing
δfd.
Finally, Figure 4c shows the level spacing distribution for an arbitrary position of

the source. In that case, the distribution is no longer organized around multiple of the
smallest level spacing. This means that the commensurability of the eigenfrequencies
is lost, and explains why we are not able to observe the full revival for arbitrary initial
positions. In order to understand this behavior, we simulate for comparison a plate
with simply supported boundaries and compute the level spacing distribution for the
same source position. The results, presented in Figure 4e, show that the level spacing
distribution is commensurable with very little deviation, which ensures the existence
of the full revival. The smallest level spacing in that case is δfs = 780 Hz, which gives
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Fig. 4. Distribution of nearest neighbor level spacing computed from FDTD simulations of
the rigid plate with point source positioned a) at the center (0.5L,0.5L) (from first 15 eigen-
frequencies); b) at the third of the diagonal (0.66L,0.66L) (from first 15 eigenfrequencies);
c) at arbitrary position (0.83L,0.32L) (from first 45 eigenfrequencies). Dashed lines corre-
spond to multiple of the smallest level spacing. d) Sketch of the corresponding source posi-
tions. e) Distribution of nearest neighbor level spacing computed from finite element method
(FEM) simulations at arbitrary position for a plate with simply supported boundaries (from
first 47 eigenfrequencies)

a full revival at time Trev s = 1282μs. This time is very close to the theoretical value
calculated with equation (3) Trev theo = 1280μs.
This analysis offers an interesting explanation of how the location of the initial

excitation affects the revival time. We confirm that the shortest revival time is found
for a source placed at the center of the cavity and that it increases when the number
of symmetries is reduced due to the position of the source. Actually, when the source
is positioned at a point of high symmetry, such as the center of the square, the eigen-
modes with a node at this position are not excited and therefore do not participate to
the building of the wave packet. This results in a new organization of the level spacing
distribution with a larger minimum spacing and, consequently, a shorter revival time.
This reduction of the revival time was theoretically predicted in [26] and is nicely
illustrated here.
To further confirm that nonlinear dispersion is essential for the revival effect, we

numerically compare the propagation of an elastic pulse in a plate and in a membrane.
In contrast to flexural waves in thin plates, vibrations of membranes are described
by an regular Helmholtz equation that leads to a linear dispersion relation. This case
also describes 2D experiments with scalar acoustics and electromagnetic waves. In
the case of a membrane with fixed boundaries, one can describe the eigenfunction as
a product of sine functions such that the wavevector k obeys the following equation
k2 = k2x + k

2
y. As the membrane is a square cavity of dimension L

2, we can use two
integers (n,m) to describe the two components of the wavevector such that kx = nπ/L
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and ky = mπ/L. Therefore we can describe the wavevector by k
2 = (n2 +m2)π2/L2.

Since the dispersion relation is a linear function ω = αk, we obtain the following
relation for the angular frequencies ω(n,m) = απ/L

√
n2 +m2. It is clear that the

presence of the square root is going to give rise to frequency steps which are not
commensurable. Consequently, the revival effect cannot occur in a square cavity with
linear dispersion relation. We numerically confirm this in Figure 3. The black thin
line represents C(t) for an elastic pulse propagating in a thin membrane. C(t) for
the membrane case presents very early fluctuations which correspond to the cavity
classical time, Tcl = 70μs. However, it does not present any significant fluctuation at
longer time. This confirms the important role of the dispersion for the revival effect.
Finally, the influence of the boundary conditions in our experiment exemplified the

essential role of the quadratic nature of the dispersion in the observation of quantum
revival. We point out that in Figures 4a–c, the fluctuations of level spacing are of
the same order, typically 0.5 kHz (vertical scale is different), but much larger than
in Figure 4d. This is a direct consequence of the loss of commensurability between
eigenfrequencies for the case of rigid boundaries. By choosing the source location on
a high symmetry point, the smallest level spacing is artificially increased, as well as
the separation between its multiples. Therefore the relative fluctuations with respect
to the average mode spacing is the lowest in the case of a source centered (Fig. 4a)
while it is the largest for an arbitrary position of the source (Fig. 4c). The choice of
the source position is therefore an alternative to compensate for the non-quadratic
nature of the dispersion relation and to favor the observation of quantum revival.
In conclusion, we have investigated the dynamics of an elastic wave packet in a thin

plate. Flexural waves in thin plate fulfill the conditions needed to observe quantum
revival. We have demonstrated experimentally and confirmed numerically the exis-
tence of fractional and full revival events. We have shown how the initial wave packet
position may influence the phenomenon and have taken advantage of it to shorten the
revival time and improve its observation, in a situation where the dispersion relation
is not strictly quadratic (rigid boundaries). This spontaneous reconstruction of the
initial wave packet depends only on the dimensions and geometry of the cavity and
does not require any external active apparatus.
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