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We study the noise-driven escape of active Brownian particles (ABPs) and run-and-tumble par-
ticles (RTPs) from confining potentials. In the small noise limit, we provide an exact expression for
the escape rate in term of a variational problem in any dimension. For RTPs in one dimension, we
obtain an explicit solution, including the first sub-leading correction. In two dimensions we solve
the escape from a quadratic well for both RTPs and ABPs. In contrast to the equilibrium problem
we find that the escape rate depends explicitly on the full shape of the potential barrier, and not
only on its height. This leads to a host of unusual behaviors. For example, when a particle is
trapped between two barriers it may preferentially escape over the higher one. Moreover, as the
self-propulsion speed is varied, the escape route may discontinuously switch from one barrier to the
other, leading to a dynamical phase transition.

Activated escapes from metastable states play a ma-
jor role in a host of physical phenomena, with applica-
tions in fields as diverse as biology, chemistry, and astro-
physics [1, 2]. They also play an important role in active
matter, where they control nucleation in motility-induced
phase separation [3], activated events in glassy self-
propelled-particle systems [4, 5], or escapes through nar-
row channels [6]. However, despite recent progress [7, 8],
little is known about the physics that controls the rare
events leading to the escape of an active system from a
metastable state.

In equilibrium, most of our intuition regarding such
events is based on Kramers seminal work [9] on Brown-
ian particles (see [10] for a review). When the thermal
energy is much lower than the potential barriers, there is a
time-scale separation between rapid equilibration within
metastable states and rare noise-induced transitions be-
tween them, a simple physical picture which is at the root
of the modern view on metastability [11, 12]. In this limit,
the mean escape time over a potential barrier of height
∆V is given by 〈τ〉∼ exp( ∆V

kBT
). At the exponential level,

the crossing time over a potential barrier only depends
on its height.

To develop a corresponding intuition for activated pro-
cesses in active matter, we follow Kramers and con-
sider the dynamics of an active particle confined in a
metastable well described by a potential V :

ẋ = −µ∇V + vu(θ) +
√

2Dξ(t). (1)

Here, x is the position of the particle, v its self-propulsion
speed, and µ its mobility. The orientation of the particle
u(θ) evolves stochastically with a persistence time 1/α.
Here, θ is a generalized angle parametrizing the d− 1 di-
mensional unit sphere. Finally, ξ(t) is a Gaussian white
noise which may stem from either thermal fluctuations,
in which case D = µkBT , or from fluctuations of the ac-
tivity. As we show below, the escape of such an active
particle from a metastable state is very different from the
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FIG. 1: Active escape from a metastable well confined by two
barriers of different heights (left). We measured the fraction
of particles escaping over the higher barrier, phigh, and over
the lower one, plow, depending on the value of v and with
decreasing values of D, of Eq. (1). The right panel shows that,
as v increases, the most likely escape route switches from the
lower barrier to the higher one. The switch between preferred
barriers is manifested as a dynamical phase transition in the
small-noise limit. This can be seen as the transition becomes
sharper when D is decreased (blue: D = 0.08, red: D =
0.0675, magenta: D = 0.058, green: D = 0.051, colors online).
Details of the potential are given in [13].

equilibrium case, leading to a host of interesting phenom-
ena. For example, direct simulations of Eq. (1) show that
active particles confined between two barriers may pref-
erentially escape over the higher one, depending on the
self-propulsion v (See Fig. 1).

In what follows, we provide a complete solution of the
Kramers problem for active particles described by Eq. (1),
in any dimension, using a path-integral formalism. In
contrast to existing works on first-passage times [14–16],
we focus on cases in which the potential is strictly con-
fining at D = 0 and the barrier can only be crossed using
fluctuations. We refer to such case as confining poten-
tials. We give an explicit expression for the mean escape
time in terms of a variational problem for run-and-tumble
particles (RTPs) [17, 18] and active Brownian particles
(ABPs) [19], the latter being studied only in d ≥ 2 dimen-
sions. In one dimension, RTPs had previously been stud-
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FIG. 2: Schematic representation of the active escape prob-
lem. Top: Escape in 1d over a barrier, region (i) correspond
to the well whereas regions (ii)-(iv) make up the barrier. All
are defined in the text. Bottom: The color code represents
the height of the potential. The barrier is located around in
the yellow region.

ied in the limits α→ 0 and α→∞ [7]; Here, we provide
the full solution of the activation time for RTPs for all
α, including its sub-exponential prefactor. In cases with
multiple competing reaction paths, our results provide
the selection principle for the most likely escape route.
In particular, we explain the dynamical phase transition
observed in Fig. 1.

For confining potentials, it is natural to divide the
barrier into separate regions depending on whether the
force |∇V | is larger or smaller than the propulsion force
fp = v/µ. Consider, for instance, the escape in one
dimension from a metastable well, see Fig. 2. We can
identify four different regions separated by three points
{C1, C2, C3} satisfying |V ′(Ci)| = fp. In regions (i) and
(iii), when x ≤ C1 or C2 ≤ x ≤ C3, the particles feel a
force −V ′ smaller in magnitude than fp. In the D → 0
limit the contribution of the noise ξ(t) to the dynam-
ics can be neglected. In region (ii), where C1 ≤ x ≤ C2,
the particles cannot climb the potential without the noise
ξ(t). Crossing this region is therefore a rare event which
controls the escape from the metastable state. In region
(iv), where x > C3, the particles would need the noise to
come back to region (i), were they to reverse direction.
This is a rare event and the particle has thus effectively
crossed the barrier once it has reached C3. The gen-
eralization of these points to lines or surfaces in higher
dimensions (denoted Ci) is straightforward and an ex-
ample is displayed in Fig. 2 [26]. Note that the prob-
lem is activated only if region (ii) exists. Otherwise, the
problem, as considered for example in 1d in [20], is a
first-passage problem with no instanton physics. The ac-
tivated process only corresponds to moving across region

(ii) so that the crossing probability is given, to leading
order, by histories connecting points on C1 and C2. To
obtain the escape time we then write the transition prob-
ability P (x2, t|x1, 0) to be at x2 ∈ C2 at time t starting
at x1 ∈ C1 as a path integral in its Onsager–Machlup
form [21]

P (x2, t|x1, 0) =

∫ x2

x1

D [x(t), θ(t)] e−
1
DA[x,θ]P[θ(t)] . (2)

P[θ(t)] is the probability of a history of the angle θ. For
example, ABPs in 2d with rotational diffusivity α lead to

P[θ(t)] ∝ e−
∫ t
0
θ̇2/(4α)dt′ . In Eq. (2), the action A[x, θ] is

given by

A[x, θ] =
1

4

∫ t

0

‖ẋ + µ∇V (x)− vu(θ)‖2 dt′. (3)

We first integrate expression (2) over the paths θ(t) to ob-
tain an effective action for the probability of a path x(t).
In the limit D → 0, we use a saddle-point approximation
in (2) to get:∫

D[θ(t)]e−
1
DA[x,θ]P[θ(t)] �

D→0
e−

1
DA[x,θ̃] (4)

where � stands for logarithmic equivalence and θ̃(t) is
the path satisfying the variational problem

A[x, θ̃] = inf
θ

{
1

4

∫ t

0

‖ẋ + µ∇V (x)− vu(θ)‖2 dt′
}
. (5)

Note that P[θ(t)] is a subdominant contribution and any
cost to the action arising from it can be ignored to leading
order [27]. Clearly, the optimum requires u(θ) to be in
the same direction as ẋ + µ∇V (x) so that

u(θ̃) =
ẋ + µ∇V (x)

‖ẋ + µ∇V (x)‖
. (6)

Using Eqs. (6) and (3), we find that the transition prob-
ability between x1 and x2 is dominated by paths which
minimize the action

A[x] =
1

4

∫ ∞
−∞

(‖ẋ + µ∇V (x)‖ − v)
2

dt′ , (7)

where we have sent the limits of the integral to ±∞, us-
ing the fact that extremal trajectories start and end at
stationary points (see for instance [22, 23]). Finally, the
escape time is given by〈τ〉 �

D→0
e
φ
D ,

φ = inf
{x1∈C1,x2∈C2}

inf
x(t)
A[x(t)] .

(8)

The inner minimization corresponds to optimizing the ac-
tion over different paths; it is realized by an instanton x(t)
which connects x1 and x2. The outer minimization cor-
responds to optimizing over all possible initial and final
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positions of the instanton. Eq. (8) provides a full solu-
tion to the escape problem for both ABPs and RTPs as
a variational problem. It generalizes the Kramers law
and we discuss the physics of the quasi-potential barrier
φ below. Note that when v = 0 the minimizers of the ac-
tion are ẋ = µ∇V (x) and we recover the usual Kramers
law with φ = µ∆V , where ∆V is the minimal potential
difference across the barrier. We now turn to apply our
results to a general one-dimensional potential barrier and
to an elliptic well in two dimensions.
RTPs in one dimension: Here, u(θ) is replaced by a bi-
nary variable u = ±1 which flips with rate α/2. As in
Fig. 2, the barrier is located on the right of the metastable
well. x1,2 are then given by C1,2. Clearly, the minimal ac-
tion is obtained by particles with u = 1: particles which
reverse their motion in the middle of the instanton are
exponentially less likely to cross the barrier. The action
then reduces to

A[x] =
1

4

∫ ∞
−∞

[ẋ+ µV ′(x)− v]
2

dt′. (9)

It is thus equivalent to an equilibrium problem in an effec-
tive titled potential ϕ(x)/µ; the instanton solution obeys

ẋ = ∂x
[
µ (V (x)− V (C1))− v (x− C1)

]
≡ ∂xϕ(x) , (10)

which gives, for the quasi-potential barrier introduced in
Eq. (8),

φ = µ [V (C2)− V (C1)]− v (C2 − C1) . (11)

Our predictions (8) and (11) are verified in Fig. 3 using
direct simulation of Eq. (1) with a single barrier.

Using asymptotic techniques [13, 24], we also obtain
the leading sub-exponential amplitude of the transition
time (8). For simplicity we consider a boundary condition
in which the potential is flat on the left of the barrier
and the density of particles in that region is ρ0; other
boundary conditions are discussed in [13]. The mean time
between particles crossing the barrier is then given by

〈τ〉 ∼
D→0

Ae
φ
D , where

A =
2πe−

α
2 Tinst

ρ0v2Γ(1− α
2k2

)Γ( α
2k1

)

[
D
v2 k1

] k1−α
2k1[

D
v2 |k2|

] k2−α
2k2

(12)

×
∫ C3

C2
(α− µV ′′(y)) e

αF
∫ y
C2

µV ′(z)
v2−(µV ′(z))2

dz
dy

e
−αF

∫ C1
−∞

µV ′(y)
v2−(µV ′(y))2

dy
.

Here, Tinst = F
∫ C2

C1

dy
∂yϕ

is the duration of the instanton,

ki = µV ′′(Ci), Γ(x) is the Euler Gamma function, and F
denotes the finite part of the integral, defined by removing
the logarithmic divergences occurring at C1 and C2, e.g.

F

∫ C1

−∞

µV ′(y)

v2 − (µV ′(y))
2 dy =

lim
x→C1

{∫ x

−∞

µV ′(y)

v2 − (µV ′(y))
2 dy +

1

2k1
log

(
k1(C1 − x)

v

)}
.

(13)
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FIG. 3: We compute the mean-first passage time 〈τ〉 over
a confining barrier. Details of the potential shown in the
left panel are given in [13]. The right panel shows the va-
lidity of our generalized Kramers law for several values of
v = 1.0, 1.5, 2.0, 2.5

.

The term e−
α
2 Tinst has a simple interpretation: it is the

probability that the particle does not flip along the in-
stanton. Note that the v = 0 limit is singular: all his-
tories of u(t) are then equally likely, a degeneracy which
otherwise does not exist.

Equations (11) and (B10) provide an explicit solution
to the Kramers problem in one dimension. Note that
the effect of the activity cannot be cast into a simple
description with an effective temperature. Both φ and
the prefactor indeed depend on the full functional form
of the potential V .
Dynamical phase transition: We now show how the anal-
ysis of the quasi-potential accounts for the non-trivial
choice of escape routes when the particle is trapped be-
tween two potential barriers. In the small D limit, the
escape time is controlled by the quasi-potential (11) of
each barrier, which we can study separately. For the right
barrier, the explicit dependence of φ on v reads

φ(v) = µ [V (C2(v))− V (C1(v))]− v[C2(v)− C1(v)] .
(14)

When v = 0, we recover the standard Kramers result
φ(0) = µ (V (C2)− V (C1)). Using µV ′(C1) = µV ′(C2) =
v, one has φ′(v) = −(C2 − C1), which implies that
φ is a decreasing function of v. When v > vcr ≡
max
x
{µ|V ′(x)|}, the particle can cross the barrier with-

out thermal activation so that φ(vcr) = 0. φ(v) thus
decreases from the equilibrium v = 0 value to zero. The
initial decrease of the escape time is given by φ′(0) =
−[C2(0)−C1(0)] ≡ −` which is nothing but the distance
between the maxima and the minima of the potential V ,
i.e. the width of the barrier. The same construction holds
for the second barrier.

Next, consider the two potential barriers VR,L(x) of
equal height described in Fig. 4. The right barrier is
wider, `R > `L, but has a larger maximal slope than
the left barrier so that vR

cr > vL
cr. To leading order, the

escape rates over the two barriers for v = 0, φL(0) and
φR(0), are equal. Following the above discussion, φR(v)
decreases faster than φL(v) near v = 0 because the right
barrier is wider than the left one: for small v, the parti-
cle is more likely to escape over the right barrier. φR(v)
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FIG. 4: The first panel displays the trap with two asymmetric
escape walls VL and VR. The second panel displays the two
quasi-potentials φL(v) and φR(v) as functions of v (further ex-
planations in the text). This illustrates the dynamical phase
transition where v is the control parameter. For v = 0, par-
ticles have the same probability of escape (at the exponential
level) through both sides. For 0 < v < vtr (hatched area),
particles escape to the right, and for vtr < v they escape to
the left.

however vanishes at a value vR
cr larger than vL

cr due to
the existence of a steeper portion in the right barrier.
For large v, the escape is thus more likely through the
left barrier. Hence, there exists a critical self-propulsion
speed at which the most likely escape route changes dis-
continuously. The physics presented in Fig. 1 can be un-
derstood from the above discussion, the sole difference
being that the escape rates are different at v = 0 due
to the different barrier heights. In the D → 0 limit, the
sigmoid function presented in Fig 1 hence converges to a
discontinuous step function. In fact, it is straightforward
to see that one could also observe not one but two succes-
sive dynamical phase transitions if the larger and steeper
barrier were also higher. Interestingly, the dependence of
the escape time on v can be used to sort active particles
depending on their velocities (See Supplementary movie).
Escape from two-dimensional elliptic potentials: We now
consider the escape of active particles from a two-
dimensional potential well of the form

V (x, y) = λm
x2

2
+ λM

y2

2
, (15)

with λM > λm (for an analysis of the steady-state dis-
tribution for the case λm = λM , see [25]). We assume
that particles escape when they reach a given height
V (x, y) = V0. This level line C replaces C2 of the general
discussion, see Fig. 5.

The most-probable escape routes can be computed by
solving the Euler-Lagrange equations for the action given
in Eq. (7), as detailed in the SI. Following the previous
argument we introduce

ϕ(xf) ≡ inf
x(t)

{
A[x(t)]

∣∣ x(−∞) ∈ C1,x(∞) = xf

}
. (16)

which yields, at the exponential level, the probability to
reach any point xf on the boundary. This log-probability,
which we compute in [13], is plotted, in Figure 5, as a
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FIG. 5: Active escape from an elliptic trap (Top). Activated
escapes have to go from the curve C1 (purple) up to the trap
boundary C (red) defined by V (x) = V0. Color encodes the
density of particles during the last δt = 0.05 before the es-
capes, highlighting the preferential route through the apices
of the elliptic well. Bottom: numerical (dots) and analytical
(curve) computation of the quasi-potential ϕ along C (up to a
trivial geometric Jacobian) parametrized by θ ≡ arctan(y/x).
As expected, the quasi-potential reaches a minimum on the
major axis (direction ex). For an equilibrium system, the
quasi-potential would be flat in the D → 0 limit.

function of the angular parametrization of xf, and com-
pared with numerics. Interestingly, the quasi-potential
is not constant over the boundary: the particles have a
much larger probability to escape in the direction of the
major axis of the ellipse. This is the most striking differ-
ence with the equilibrium problem: For passive Brownian
particles, the quasi-potential is ϕ(x) = µV (x), so that
particles have an equal probability (at the exponential
level) to escape through any point along the boundary
C. Activity thus breaks the equilibrium quasi-potential
symmetry.

Furthermore, one can compute explicitly the full ex-
pression of φ given by the minimum of the function ϕ(xf)
along C:

φ = µV0

(
1−

√
v2

2µ2λmV0

)2

. (17)

The escape time from the elliptical well is then given
by 〈τ〉 � exp(φ/D). It solely depends on the potential
height, the particle speed, and the semi-axis correspond-
ing to the most likely exit direction. As expected, we
recover the standard equilibrium result φ = µV0 when
v = 0.



5

By providing a full solution to the Kramers problem for
both ABPs and RTPs in any dimensions, we have high-
lighted how the physics of these non-equilibrium systems
is very different from that of the equilibrium problem. In
particular, the activation barrier, encoded in the quasi-
potential, is not solely defined by the height of the po-
tential well. Instead, it corresponds to the region where
the self-propelling force fails to overcome the confining
one, leading to activation paths and times that depend
in a non-trivial way on both the self-propelling speed and
the full shape of the potential, and to a wealth of un-
usual features. Our results also highlight why an effective
equilibrium approach is inappropriate. Beyond the case

addressed here of an external potential, escape problems
play an important role in a host of collective phenomena,
from nucleation to glassy physics. It will thus be very
interesting to see how the phenomena uncovered in this
manuscript play a role in these more complicated systems.
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Appendix A: Path integral formulation

In this section, we give a simple derivation of the path integral formulation Eq. (2) in the main text. Let ξ(t) be the
standard Gaussian white noise in d dimensions with correlation function 〈ξi(t′)ξj(t)〉 = δijδ(t− t′). The probability of
a given realization of ξ(t) on the interval [0, T ], denoted P[ξ(t)], can be formally written as

P[ξ(t)] = N e− 1
2

∫ T
0
‖ξ(t)‖2dt, (A1)

where N is the normalization factor. From Eq. (1) in the main text, it appears that the probability distribution of
any path P[x(t)] can be expressed from the distribution of the noise P[ξ(t)] through the change of variable

1√
2D

[ẋ(t)− (−µ∇V (x(t)) + vu(θ(t)))] = ξ(t), (A2)

where θ(t) is a given realization of the angle history. Combining (A1-A2), the probability of a given path x(t)
conditioned on a realization θ(t) becomes

P[x(t)| θ(t)] = N ′e− 1
4D

∫ T
0
‖ẋ(t)−(−µ∇V (x(t))+vu(θ(t)))‖2dt,

where N ′ is the new normalization factor. Note that in the Itô convention of stochastic calculus, the Jacobian of the
change of variable is a constant independent of the field x(t), hence the new normalization factor N ′. As the dynamics
of θ(t) is decoupled from that of x(t), the joint probability of [x(t), θ(t)] is given by P[x(t), θ(t)] = P[x(t)| θ(t)]P[θ(t)].
Integrating the joint probability P[x(t), θ(t)] over all possible angle histories and all possible paths x(t) joining x1 to
x2 gives the result presented in Eq. (2) and Eq. (3) in the main text.

Appendix B: Run-and-Tumble particles in one-dimension

The most straightforward method to obtain the leading order behavior of the escape rate is presented in the main text.
However, in order to find the sub-leading correction it is useful to employ a different approach involving asymptotic
matching of solutions. In what follows this approach, whose final results is Eq. (12) of the main text, is detailed. In
addition to the result of the main text we also provide here the prefactor for the mean escape time from a metastable
well in Eq. (B18) of Sec. B 4.

1. Description of the problem and main equations

We study RTPs particles in one-dimension. The particles experience a driving force v/µ which reverses its direction
with rate α/2. In addition, they are subject to an external potential V . Denoting by P+(x, t) and P−(x, t) the
probability density of particles moving to the right and left respectively, the Fokker–Plank equation for P+, P− is{

∂tP+ = −∂x [(v − µ∂xV )P+]− α
2 (P+ − P−) +D∂2

xP+,

∂tP− = −∂x [(−v − µ∂xV )P−]− α
2 (P− − P+) +D∂2

xP−,
(B1)

Here, as in the main text, µ is the mobility and D is the diffusion coefficient. We are interested in the limit D → 0,
which can be interpreted physically as the asymptotic regime D � v` where ` is the barrier length. Let ρ = P+ + P−
be the total density of active swimmers in the medium, and m = P+ − P−. From Eq. (B1){

∂tρ = −∂x [vm− ρµ∂xV −D∂xρ] ,

∂tm = −∂x [vρ− vµ∂xV ]− αm+D∂2
xm.

(B2)

The first equation describes the mass conservation with a flux

j(x) = vm− ρµ∂xV −D∂xρ,

which is constant j(x) = J in the steady-state. This gives

vm− ρµ∂xV −D∂xρ = J. (B3)
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Using this relation in the second equation of (B2) we have

− ∂x
[
v2ρ− (ρµ∂xV +D∂xρ)µ∂xV

]
− α (ρµ∂xV +D∂xρ) +D∂2

x (ρµ∂xV +D∂xρ) =
(
α− µ∂2

xV
)
J. (B4)

We now solve this equation using standard asymptotic matching techniques with the boundary conditions{
ρ(x) −→

x→−∞
ρ0,

ρ(C3) = 0.
(B5)

In this configuration, the transition of particles across the barrier is a Poisson process with rate J . The mean waiting
time between two particles crossing the barrier is given by 〈τ〉 = 1

J . As stated above, we will also consider the
situation where the particles start from a metastable state (instead of the boundary conditions described by Eq. (B5))
and provide an explicit expression of the mean escape time in that case.

2. Methods

To proceed we solve the problem in the three regions (i), (ii), and (iii) defined in the main text and then match the
solutions. We first note the following about the different regions.

1. region (i): The flux J is so small compared to the other terms in Eq. (B4) that the solution is given by the
steady-state with D = 0 and J = 0. The corrections are of order D. Namely, we solve

− ∂x
[(
v2 − (µ∂xV )

2
)
ρ
]
− αρµ∂xV = 0, (B6)

together with the boundary condition

ρ(x) −→
x→−∞

ρ0.

2. region (ii): Here we use the WKB-like Ansatz ρ(x) = CD(x)e−
ϕ(x)
D in Eq. (B4). The expression for ϕ(x) is

identical to that obtained using the methods of the main text. Note that also here to leading order J = 0.

3. region (iii): As in region (i) the contribution of diffusion terms ∝ D to the dynamics can be neglected. However,
since the density of particles is now very low, the current J is no longer negligible and one has to be accounted
for it. Therefore, here we solve

− ∂x
[(
v2 − (µ∂xV )

2
)
ρ
]
− αρµ∂xV =

(
α− µ∂2

xV
)
J, (B7)

with the absorbing boundary condition ρ(C3) = 0.

The solutions found separately in regions (i), (ii) and (iii) have to match together at the two points C1 and C2. To
do this we have to calculate the structure of the solution near the the two points C1 and C2. These are given, as we
detail below, by boundary layers of size

√
D which can be matched to the solutions in the different regions.

3. Solutions

We next carry out the calculation outlined above in detail.

a. Region (i)

The explicit solution of Eq. (B6) is

ρ(x) =
ρ0v

2

v2 − (µ∂xV )
2 e
−α

∫ x
−∞

µ∂yV

v2−(µ∂yV )2
dy
. (B8)
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In order to match this solution we have to understand how it behaves near C1. To do this we make the change of
variable x← x− C1. The force can be expanded according to

µ∂xV = v + k1x+O(x2).

The equivalent of the integral in the exponential of Eq. (B8) is∫ x

−∞

µ∂yV

v2 − (µ∂yV )
2 dy =

x→0
− 1

2k1
log

(
k1 |x|
v

)
+ γ1 +O(|x|),

where γ1 is a finite constant that depends explicitly on the potential through the relation

γ1 = lim
x→0

{∫ x

−∞

µ∂yV

v2 − (µ∂yV )
2 dy +

1

2k1
log

(
k1 |x|
v

)}

= F

∫ 0

−∞

µ∂yV

v2 − (µ∂yV )
2 dy,

where the last equality defines, as in the main text, the finite part of the diverging integral. Note that there is some

arbitrariness in the definition of the finite part. Any function of the form 1
2k1

log
(
|x|
L

)
, where L is some arbitrary

length scale, could be removed from the integral to define the finite part. The above choice L = v
k1

has been used in
order to make the final expression for the mean escape time more compact.

Restoring the original coordinate x, we therefore find

ρ(x) ∼
x→C1

ρ0

2
(
k1|x−C1|

v

)1−α/2k1
e
−αF

∫ C1
−∞

µ∂yV

v2−(µ∂yV )2
dy
. (B9)

The solution has two different behaviors depending on the value of the second derivative k1 = µ ∂2
yV
∣∣
x=C1

. The density

diverges at the critical point x = C1 if k1 >
α
2 , and vanishes if k1 <

α
2 . Since k1 > 0 the diverging solution remains

integrable at C1. We comment that it is straightforward to see that

P−
P+

=
v − µ∂xV
v + µ∂xV

∼
x→C1

k1

2v
|x− C1| .

This implies that only right moving particles reach C1.

b. Region (ii)

In region (ii), we use the WKB-like Ansatz

ρ(x) = CD(x)e−
ϕ(x)
D ,

where the large deviation pre-factor function can be expanded in powers of D as

CD = C0
D +DC1

D +D2C2
D + ...

To leading order it is easy to check that, as expected, this reproduces the Eq. (10) of the main text for ϕ(x). Using
this solution with the expansion of the pre-factor we find to next order

∂xϕ∂xC
0
D +

α

2
C0
D = 0. (B10)

whose solution is

C0
D(x) = C

0

De
−α2

∫ x
x0

dy
∂yφ . (B11)

with x0 an arbitrary point between C1 and C2.
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Again to match this solution we have to consider its behavior close to the two critical points C1 and C2. To this
end, we make the change of variable x← x−C1 and study the behavior of C0

D(x) close to C1. Close to x = 0, we use
the expansion

∂xϕ = k1x+O(x2),

which shows that the integral in (B11) can be expanded around x = 0 as∫ x

x0

dy

∂yϕ
=

1

k1
log

(
k1x

v

)
− γ2 +O(x),

where γ2 is a finite constant, and we used Eq. (10) of the main text. Using the same notations as in section B 3 a, we
have

γ2 = lim
x→0

{∫ x0

x

dy

∂yϕ
+

1

k1
log

(
k1x

v

)}
= F

∫ x0

0

dy

∂yϕ
.

Coming back to the original variable x, this gives

C0
D(x) ∼

x→C1

C
0

D(
k1|x−C1|

v

)α/2k1 eα2 F
∫ x0
C1

dy
∂yϕ .

The same line of arguments, gives the equivalent of the pre-factor close to C2 as

C0
D(x) ∼

x→C2

C
0

D

(
|k2| |x− C2|

v

) α
2|k2|

e
−α2 F

∫ C2
x0

dy
∂yϕ ,

where k2 = µ∂2
xV (C2) is the (negative) second derivative of the potential, and F

∫ C2

x0

dy
∂yϕ

is the finite part defined as

F

∫ C2

x0

dy

∂yϕ
= lim
x→C2

{∫ C2

x0

dy

∂yϕ
+

1

|k2|
log

(
|k2| |x− C2|

v

)}
.

In what follows to match this solution with the other regions we note that the above results imply that close to C1

ρ(x) ∼
x→C1

C
0

D(
k1|x−C1|

v

)α/2k1 eα2 F
∫ x0
C1

dy
∂yϕ e−

k1|x−C1|
2

2D , (B12)

and close to C2

ρ(x) ∼
x→C2

C
0

D

(
|k2| |x− C2|

v

) α
2|k2|

e
−α2 F

∫ C2
x0

dy
∂yφ e−

ϕ(C2)
D − k2|x−C2|

2

2D . (B13)

These specify the boundary layers at the edges of region (ii). Their typical extension is
√

D
k1

and
√

D
|k2| at C1 and C2

respectively.

c. Region (iii)

Eq. (B7) can be solved to give

ρ(x) =
J

v2 − (µ∂xV )
2

∫ C3

x

(
α− µ∂2

yV
)
e
α
∫ y
x

µ∂zV

v2−(µ∂zV )2
dz

dy.
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Note that this expression is well defined, because e
α
∫ y
x

µ∂zV

v2−(µ∂zV )2
dz

is integrable close to C3. Using this we find that
near C2 the solution can be written as

ρ(x) ∼
x→C2

J

2v2
(
|k2||x−C2|

v

)1+ α
2|k2|

∫ C3

C2

(
α− µ∂2

yV
)
e
αF
∫ y
C2

µ∂zV

v2−(µ∂zV )2
dz

dy, (B14)

where again, the notation F means

F

∫ y

C2

µ∂zV

v2 − (µ∂zV )
2 dz = lim

x→C2

{∫ y

x

µ∂zV

v2 − (µ∂zV )
2 dz +

1

2|k2|
log

(
|k2| |x− C2|

v

)}
.

d. Matching at the boundary layers

We now have to match all the solutions (B9,B12,B13,B14) at the two critical points C1 and C2. To do this we need
to solve the Fokker-Planck equation in the boundary layers around C1 and C2. To this end we define the variables

x− Ci =
√

D
|ki|yi. Using this in Eq. (B4) we obtain to zeroth order in D

1

sgn(ki)
∂2
yiρki + y∂yiρki +

(
1− α

2ki

)
ρki = 0, (B15)

where sgn(k) = ±1 denotes the sign of ki. The solutions of this equation for large positive or negative values of yi
have to be matched with the solutions in the different region. The solution for i = 1 satisfies

ρk1(y1) ∼


AD1

|y1|
1− α

2k1

when y1 → −∞,
Γ
(

α
2k1

)
√

2π

AD1

y1α/2k1
e−

y1
2

2 when y1 → +∞,
(B16)

and for i = 2

ρk2(y2) ∼


AD2

|y2|α/2k2
e
y2

2

2 when y2 → −∞,
Γ
(

1− α
2k2

)
√

2π

AD2

y2
1− α

2k2

when y2 → +∞,
(B17)

where AD1 and AD2 are two undetermined constant. By matching the asymptotic behavior (B17) of the boundary
layer solution with the behavior of the solutions (B9,B12,B13,B14) in the different regions close to C1 and C2 one finds
after a lengthy calculations Eq. (12) of the main text.

4. Mean escape time from a metastable well

We now generalize our result to the mean escape time from a metastable well. We introduce the critical point C0 on
the left of C1 such that µ∂xV (C0) = −v. The metastable well is represented in Fig. 6. According to expression (B8),
the zero-fluctuations solution in region (i) writes

ρ(x) =
Nv2

v2 − (µ∂xV )
2 e
−α

∫ x
xb

µ∂yV

v2−(µ∂yV )2
dy
,

where xb is some arbitrary point between C0 and C1, and N is a constant, given by the normalization constrain∫ C1

C0
ρ(x)dx = 1. We find

N =
1∫ C1

C0

v2

v2−(µ∂xV )2
e
−α

∫ x
xb

µ∂zV

v2−(µ∂zV )2
dz

dx
.

The mean escape time is then simply given by Eq. (12) replacing the term

ρ0e
−αF

∫ C1
−∞

µ∂yV

v2−(µ∂yV )2
dy
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FIG. 6: Schematic representation of the active escape problem from a metastable well. At D = 0, active particles are trapped
between C0 and C1. When D > 0, rare escape can occur through the right barrier, by crossing region (ii).

by

e
−αF

∫ C1
xb

µ∂yV

v2−(µ∂yV )2
dy∫ C1

C0

v2

v2−(µ∂xV )2
e
−α

∫ x
xb

µ∂zV

v2−(µ∂zV )2
dz

dx

which can be equivalently written as

1∫ C1

C0

v2

v2−(µ∂xV )2
e
αF
∫ C1
x

µ∂zV

v2−(µ∂zV )2
dz

dx
.

We obtain the formula

〈τ〉 =
2π

Γ
(

α
2k1

)
Γ
(

1− α
2k2

)
(√

Dk1
v

)1− α
k1(√

D|k2|
v

)1− α
k2

∫ C1

C0

e
αF
∫ C1
y

µ∂zV

v2−(µ∂zV )2
dz

v2 − (µ∂yV )
2 dy...

...×
∫ C3

C2

(
α− µ∂2

yV
)
e
αF
∫ y
C2

µ∂zV

v2−(µ∂zV )2
dz

dy e
α
2 F
∫ C2
C1

dy
∂yϕ e

φ
D . (B18)

Appendix C: Escape from a two-dimensional elliptic potential

This section presents the computation of the quasi-potential for the active escape problem out of the two-dimensional
elliptic barrier described in the main text. The potential can be written as

µV (x) =
1

2
xTAx for V (x) < V0,

where A =

(
µλm 0

0 µλM

)
is a symmetric matrix of the second derivatives of the potential. We consider without loss

of generality that 0 < λm < λM .
Using the results of the main text, the fluctuation paths between specified initial and final positions are minimizers

of the action

A[x(t)] =
1

4

∫ 0

−∞
(‖ẋ +Ax‖ − v)

2
dt. (C1)
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To compute the fluctuation paths, we solve the Euler-Lagrange equation. As will become clear, it is useful to consider
the momentum

p(t) =
∂L
∂ẋ

=
1

2
(ẋ +Ax)

(
1− v

‖ẋ +Ax‖

)
. (C2)

Interestingly for a quadratic potentials we find from Eq. (C1)

∂L
∂x

= A
∂L
∂ẋ

.

Using this relation, the Euler-Lagrange equations then translate into an equation for the momentum p

ṗ = Ap,

whose solution is p(t) = eAtp0. In the present problem, p0 should be understood as the momentum at the final
position of the trajectory x(t = 0) = xf. The explicit solution of p(t) together with Eq. (C2) gives the first order
equation for x

1

2
(ẋ +Ax)

(
1− v

‖ẋ +Ax‖

)
= eAtp0. (C3)

To solve Eq. (C3), we first take the norm of both sides of the equality to get

1

2
(‖ẋ +Ax‖ − v) =

∥∥eAtp0

∥∥ , (C4)

with the implicit assumption that the instanton path satisfies the condition ‖ẋ +Ax‖ > v. Using (C4) in Eq. (C3),
we have

ẋ +Ax = v
eAtp0

‖eAtp0‖
+ 2eAtp0. (C5)

The boundary conditions for this equation areẋ(t) −→
t→−∞

0

x(t) −→
t→−∞

x1 ∈ C1
. (C6)

Eq. (C5) together with the constraints (C6) can only be satisfied if x1 is an eigenvector of A. To see this, we expand
of the right-hand side of Eq. (C5) in the limit t → −∞. Because the two eigenvalues of A satisfy λm < λM , we have∥∥eAtp0

∥∥ ∼
t→−∞

px0e
λmt where (px0 , p

y
0) are the two components of p0. We further have eAtp0 = px0e

λmtex + py0e
λM tey.

For px0 6= 0, the first term in Eq. (C5) thus gives

ẋ +Ax −→
t→−∞

sgn(px0)vex,

which proves, using ẋ(t) −→
t→−∞

0, that x1 =
(
± v
µλm

, 0
)

. When px0 = 0 we find x1 = xy1 = (0,± v
µλM

). This has a

simple geometric interpretation. Generically x1, sitting on the x-axis, is a local extremum of V (x) on the curve C1

(see Fig. (4) of the main text). With the exception of fluctuation paths which end on the y-axis all the paths start

at one of the two local maxima located at x1 =
(
± v
µλm

, 0
)

. This clearly minimizes the cost of the path. Fluctuation

paths which end on the y-axis start at xy1.

We now turn to the full computation of the quasi-potential ϕ(x0), where x0 is the final position of the fluctuation
path. The explicit expression of x0 can be computed from the general solution of Eq. (C5)

x0(p0) = v

∫ 0

−∞

e2Atp0

‖eAtp0‖
dt+A−1p0. (C7)

Using Eq. (C4) in Eq. (C1) and carrying out the integration in time we obtain the large deviation rate function as a
function of p0

ϕ(x0(p0)) =
1

2
pT0 A

−1p0. (C8)
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Eqs. (C7) and (C8) can both be solved numerically to compute the quasi-potential ϕ displayed in Fig. (4) of the main
text.

Besides, it is straightforward use Eq. (C7) to perform a small-fluctuations expansion around p0 in order to show
that the action is minimal for paths moving only along the x-direction. Using this one can then easily compute the
full expression for φ = min {ϕ(x)|V (x) = V0}. We find

φ = µV0

(
1−

√
v2

2µ2λmV0

)2

.

As expected, we recover the standard equilibrium result φ = µV0 when v = 0.

Appendix D: Supplementary information for the figures

In this section, we provide the details about the potential V (x) in each figure of the main text. We also describe
the algorithm used for the numerics in Fig. 1, Fig. 3, and in the supplementary movie.

1. Algorithm

For all the simulations presented in the main text, we adapted the Heun algorithm to simulate, for each individual
particle, the following over-damped stochastic differential equation (see Eq. (1) in the main text)

ẋ = vu(θ)−∇V (x) +
√

2Dξ(t) . (D1)

Here, x is the position of the particle and v is its self-propulsion speed. The orientation of the particle u(θ) evolves
stochastically with a persistence time 1/α. Note that compared to Eq. (1) of the main text, we have set µ = 1
everywhere. ξ(t) is a vector of Gaussian white noise, such that

ξi(t)ξj(t
′) = δijδ(t− t′) . (D2)

We discretized the time with time step δt, and updated the status of the particles according to

x∗ = x(t) + vδt−∇V (x(t))δt+
√

2DδtWt , (D3)

x(t+ δt) = x(t) + vδt− 1

2
[∇V (x(t)) +∇V (x∗)]δt+

√
2DδtWt , (D4)

where Wt,i ∼ N (0, 1) is a normal distributed random number.
The reorientation of the particle is independent from its position. We thus sample the next tumbling time of each

particle from the exponential distribution αe−αt. We split the time step where the tumbling happens into two smaller
time steps: we first update the position of the particle until the time it tumbles, and then we uniformly randomly
assign a new direction, and finish the remaining time.

We calculated the C1, C2, and C3 numerically using false position method. The particles were considered to have
escaped when their position reaches C3.

2. Figure 1

The left potential barrier VL(x) in Fig. (1) is defined by

VL(x) =


HL∆1(4+x/`L)2

1−(1−∆L)(4+x/`L)2 , −4`L ≤ x < −3`L ,

2HL − HL∆L(2+x/`L)2

1−(1−∆L)(2+x/`L)2 , −3`L ≤ x < −`L ,
HL∆L(x/`L)2

1−(1−∆L)(x/`L)2 , −`L ≤ x < 0 ,

(D5)

where the coefficients are defined through ∆L = 2/(`LZL), `L = 3, ZL = 1 and HL = 1.2. The width of the barrier is
4`L, the height of the potential is 2HL and the maximal slope is HLZL.
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The right potential barrier VR(x) in Fig. (1) is defined by

VR(x) =


HR∆R(x/`R)2

1−(1−∆R)(x/`R)2 , 0 ≤ x < `R ,

2HR − HR∆R(2−x/`R)2

1−(1−∆R)(2−x/`R)2 , `R ≤ x < 3`R ,
HR∆R(4−x/`R)2

1−(1−∆R)(4−x/`R)2 , 3`R ≤ x ≤ 4`R ,

(D6)

where the coefficients are defined through ∆R = 2/(`RZR), `R = 12, ZR = 2 and HR = 1. The width of the barrier is
4`R, the height of the potential is 2HR and the maximal slope is HRZR.

The parameters for the Heun algorithm defined in section D 1 are listed in Table I. We simulate each particles until
it escapes from the barrier, that is, until it reaches C3.

v δt D = 0.08 D = 0.0675 D = 0.058 D = 0.051

0.3 0.1 1117 237

0.4 0.1 19329 2000 98

0.45 0.1 396

0.5 0.005 73319 5000 2100 2000

0.6 0.005 70099 20000 20000 20000

0.7 0.002 62639 40000 40000 40000

0.8 0.002 100000 200000 40000 40000

0.9 0.001 100000 200000 200000 200000

1 0.001 100000 200000 200000 200000

1.1 0.001 100000 200000 200000 200000

TABLE I: Time step sizes and numbers of samples of the simulations in Fig. (1) of the main text. The tumbling rate is α = 1.

3. Figure 3

The potential in Fig. 3 is defined through

V (x) =


∞ , x < 0 ,

A exp
(
C − C

1−(x−B)2/B2

)
, 0 ≤ x ≤ B ,

0 , x > B ,

(D7)

where A = 1.5, B = 1, C = 2. Those conditions correspond to a reflective boundary at x = 0. We set α = 1, we use
a time step δt = 0.001, and Nsamples = 2 × 106. The values of the particle’s velocity are given by v = 1, 1.5, 2, 2.5
respectively. We simulated each particles until it reaches C3.

4. Figure 4

The functional dependence of the two barriers is exactly the same as in Fig. 1 (see section D 2), with the parameters:
Left barrier: `L = 3, ZL = 1, HL = 1.
Right barrier: `R = 8, ZR = 2, HR = 1.
Contrary to the potential of Fig. (1), the left and right barriers have the same height here. The quasi-potential has
thus the same value for the two barriers at v = 0, and escape of passive particles is equally likely left and right, at
least at the exponential level.
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5. Movie

The potential V (x) in the movie is built according to

V (x) =


3(x+ 3)6 − 3 , x < −2 ,

1.5 exp
(

5− 5
1−(x+1)2

)
, −2 ≤ x < 0 ,

exp
(

0.1− 0.1
1−(x−1)2

)
, 0 ≤ x < 2 ,

3(x− 3)6 − 3 , 2 ≤ x .

(D8)

The two populations have v = 1.5 (blue particles) and v = 3.3 (red particles) respectively. Other parameters are α = 1,
D = 0.06, δt = 0.001. Nsamples = 105 particles are used to generate the histogram. The total time of the simulation is
t = 20000.

Active particles start in the metastable state around x = 0, and escape left or right. When they escape, they are
then trapped in the two deep wells located at x = −3 and x = 3 respectively.
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