
HAL Id: hal-02145625
https://hal.science/hal-02145625v1

Submitted on 8 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effective driven dynamics for one-dimensional
conditioned Langevin processes in the weak-noise limit

Nicolás Tizón-Escamilla, Vivien Lecomte, Eric Bertin

To cite this version:
Nicolás Tizón-Escamilla, Vivien Lecomte, Eric Bertin. Effective driven dynamics for one-dimensional
conditioned Langevin processes in the weak-noise limit. Journal of Statistical Mechanics: Theory and
Experiment, 2019, 2019 (1), pp.013201. �10.1088/1742-5468/aaeda3�. �hal-02145625�

https://hal.science/hal-02145625v1
https://hal.archives-ouvertes.fr


Effective driven dynamics for one-dimensional conditioned
Langevin processes in the weak-noise limit

Nicolás Tizón-Escamilla1,2, Vivien Lecomte2 and Eric Bertin2

1 Departamento de Electromagnetismo y F́ısica de la Materia, and Instituto Carlos I de F́ısica Teórica y
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Abstract. In this work we focus on fluctuations of time-integrated observables for a particle diffusing in a
one-dimensional periodic potential in the weak-noise asymptotics. Our interest goes to rare trajectories
presenting an atypical value of the observable, that we study through a biased dynamics in a large-
deviation framework. We determine explicitly the effective probability-conserving dynamics which makes
rare trajectories of the original dynamics become typical trajectories of the effective one. Our approach
makes use of a weak-noise path-integral description in which the action is minimised by the rare trajectories
of interest. For ‘current-type’ additive observables, we find the emergence of a propagative trajectory
minimising the action for large enough deviations, revealing the existence of a dynamical phase transition
at a fluctuating level. In addition, we provide a new method to determine the scaled cumulant generating
function of the observable without having to optimise the action. It allows one to show that the weak-noise
and the large-time limits commute in this problem. Finally, we show how the biased dynamics can be
mapped in practice to an effective driven dynamics, which takes the form of a driven Langevin dynamics in
an effective potential. The non-trivial shape of this effective potential is key to understand the link between
the dynamical phase transition in the large deviations of current and the standard depinning transition of
a particle in a tilted potential.
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1. Introduction

Traditional approaches in statistical physics are based on the study of the probability distribution of
microscopic configurations at a given time [1]. Although such approaches have been very successful at
equilibrium where configurations with the same energy are distributed uniformly in an isolated system,
one is faced with difficulties when considering the statistics of configurations in nonequilibrium steady-
states, as this statistics is in general non-uniform and unknown. It has been realised in the last decades
that a more general space-time formulation, which deals with the statistics of full trajectories (that is,
configurations as a function of time on a large time window) could be formulated in a quite general way, even
for non-equilibrium systems [2, 3]. Moreover, the large-deviation formalism provides an efficient framework
to formulate the problem [4, 5, 6, 7, 8]. The large-deviation formalism is particularly useful for instance
to evaluate the statistics of time-integrated observables (e.g., particle current or dynamical activity), which
are natural observables when characterising the statistics of trajectories [7, 8, 9, 10, 11, 12, 13, 14, 15].
One can for instance consider a modified equilibrium statistics of trajectories conditioned to a given value
of a time-integrated observable, like the average particle current. It is then of interest to ask whether this
artificial, biased dynamics shares some similarities with (or even could be mapped to) a ‘real’ non-equilibrium
dynamics. In other words, does a physical force which drives a system into a non-equilibrium state (and thus
generates a given current) selects all trajectories having a given average current in a uniform way?

In practice, fixing a given average value of an integrated observable is done by introducing a conjugated
Lagrange multiplier, in the same way as, at equilibrium, temperature fixes the average energy in the canonical
ensemble [7]. This Lagrange multiplier enters the definition of a ‘deformed’ Markov operator that describes
the biased dynamics. A well-know difficulty is that this deformed Markov operator no longer conserves
probability, and cannot straightforwardly be interpreted as describing a bona fide probability-preserving
dynamics. It has however been shown [16, 17, 18, 19] how a relatively simple but formal transformation of
the deformed Markov operator allows one to define a closely related probability-conserving Markov operator.

The goal of this paper is to go beyond formal definitions and to show how such a transformation can
be used in practice, on the example of a particle diffusing in a potential in a one-dimension. Weak-noise,
Wentzel–Kramers–Brillouin (WKB) [20] type approximations allow us to obtain an explicit mapping onto
a non-equilibrium dynamics. We extend a recent work in which the large deviations of the current were
studied in the weak-noise asymptotics [21] to the case of generic time-integrated observables‡. Besides, we
find explicit generic solutions to the optimisation principle that governs the value of large deviation functions.

The appearance of singularities (as non-differentiabilities) is known to occur in the quasi-potential of
non-equilibrium dynamics in the weak-noise limit [24, 25, 26], when considering the large-deviation scaling of
the steady-state distribution. In the context of time-integrated observables, the occurrence of another type
of singularities has been reported during the last decade in varied systems [27, 10, 28, 29, 30, 12, 31], and
corresponds to the type of dynamical phase transitions we are interested in in this paper. These describe
how the trajectories that lead to an atypical value of the time-integrated observable can change from one
class to another when varying the value of this observable.

The paper is organised as follows. In Sec. 2, we define the Langevin dynamics and reformulate it in
a path-integral framework, to be able to bias the dynamics by a given value of the integrated additive
observable considered. We also introduce the large deviation form of the action at large time, leading to the
definition of the scaled cumulant generating function. In Sec. 3, we show how the scaled cumulant generating
function can be evaluated explicitly, in the small noise limit, using a saddle-node calculation. Finally, in
Sec. 4, we use the knowledge of the scaled cumulant generating function to derive an effective physically
driven dynamics that leads to the same statistics of trajectories, and discuss its interpretation.

‡ During the preparation of this manuscript, we became aware that works parallel to ours were completed using similar
approaches [22, 23].
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2. Rare trajectories: conditioning or biasing the dynamics

We present in this section the Langevin dynamics we focus on, and the type of the observables whose
distribution we are interested in. We refer the reader to existing reviews [8, 32] for generalisations for
instance to mixed Langevin and Markov jump processes.

2.1. Langevin dynamics and additive observables

Consider a particle of position x(t) at time t subjected to a force F (x) and a thermal noise η(t). In the
overdamped limit, the evolution of its position is described by the Langevin equation

ẋ(t) = F (x(t)) +
√
ε η(t) , (1)

where η(t) is a Gaussian white noise of average 〈η(t)〉 = 0 and correlation function 〈η(t)η(t′)〉 = δ(t − t′).
Our interest goes to observables depending on the trajectory on a time window [0, tf ] and taking the form§

A(tf) =

∫ tf

0

h(x(t)) dt+

∫ tf

0

g(x(t)) ẋ(t) dt . (2)

Examples of such an additive observable encompass time-integrated current, work, entropy production, or
activity for specific choices of the functions h(x) and g(x) (see [32] for examples). One is interested in
the distribution P (A, tf) of the observable A at time tf , in the weak-noise and/or the large-time limit. In
these asymptotics, the scaling form of P (A, tf) is described within the framework of the large-deviation
theory, which has witnessed a tremendous development in the last decades both in mathematics (within the
Donsker–Varadhan [33, 34, 35, 36], the Gärtner–Ellis [37, 38] and the Freidlin–Wentzell approaches [39]) and
in statistical physics in the study of many example systems (see for instance [13, 40, 41, 42, 43, 29]). While
we refer the reader to many existing reviews for a general presentation of this approach [4, 5, 6, 8, 44, 32],
we provide here for completeness a self-contained presentation of the tools used in our context.

The Langevin equation (1) is equivalently described by the Onsager–Machlup weight of a trajectory
[x(t)]0≤t≤tf of duration tf

P[x(t), tf ] ∝ e−
1
2ε

∫ tf
0 (ẋ−F )2 dt (3)

(valid in the weak-noise asymptotics ε → 0, since we are working with the Stratonovich convention) or by
the Fokker–Planck equation for the evolution of the probability P (x, t) of finding the particle at a position
x at time t, which takes the form

∂tP (x, t) = WP (x, t) . (4)

The Fokker–Planck operator W reads:

W· = −∂x(F (x)·) +
1

2
ε∂2
x · . (5)

Note that the conservation of probability reads 〈−|W = 0 where 〈−| is the flat vector with all components
equal to 1 (i.e. 〈−|x〉 = 1 for all x)‖. In other words, |−〉 is a left eigenvector of W of eigenvalue 0. Our aim
is to use and extend these descriptions in order to understand the distribution of the observable A.

§ The stochastic integral in (2) is taken in the Stratonovich convention.
‖ Here we use a bra-ket notation to describe the vector space on which operators such as W act, with |x〉 the state representing
the particle at position x and 〈x| its transpose. These define the canonical scalar product 〈x|x′〉 = δ(x− x′).
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2.2. Path-integral and Fokker–Planck representations

We aim at characterising the physical features of trajectories [x(t)]0≤t≤tf presenting an arbitrary (for instance,
atypical) value of the observable, A. One way to proceed is to determine the probability P (x,A, tf) of the
particle to be in position x at time tf , while having observed a value A of the additive observable (2) on the
time window [0, tf ]. It reads as follows

P (x,A, tf) =

〈∫ x(tf )=x

x(0)

Dx δ(A−A(tf)) e−
1
2ε

∫ tf
0 (ẋ−F )2 dt

〉
x(0)

(6)

where the notation 〈. . .〉x(0) indicates an average over the initial position x(0) with a distribution Pi(x). We
implicitly assume that this is the case in the following, except otherwise indicated.

It is difficult in general to determine P (x,A, tf) or even to write a closed equation for this ‘microcanonical’
probability. Following Varadhan [45], one performs a Laplace transform and introduces the biased
distribution

P̂ (x, λ, tf) =

∫
e−

λ
εA P (x,A, tf) dA (7)

=

〈∫ x(tf )=x

x(0)

Dx e−
1
ε

[
λA(tf )+

1
2

∫ tf
0 (ẋ−F )2 dt

]〉
x(0)

≡

〈∫ x(tf )=x

x(0)

Dx e−
1
εSλ[x(t),tf ]

〉
x(0)

(8)

where Sλ[x(t), tf ] is defined as

Sλ[x(t), tf ] = λA(tf) +
1

2

∫ tf

0

(ẋ− F )2 dt =

∫ tf

0

{
1

2
(ẋ− F )2 + λ

(
h+ ẋg

)}
dt (9)

with F ≡ F
(
x(t)

)
, g ≡ g

(
x(t)

)
and h ≡ h

(
x(t)

)
to lighten notations. This defines a ‘canonical’ version

of the problem, where trajectories are biased by an exponential factor e−
λ
εA(tf ) on the time window

[0, tf ]. In the large tf limit, as detailed below, the conditioned distribution corresponding to (6) and
the biased distribution (7) become asymptotically equivalent (as studied in great depth by Chétrite and
Touchette [46, 47]), provided that the value of λ is well chosen as a function of A, as in any change of
ensemble¶. It is known that the evolution in time of P̂ (x, λ, tf) reads ∂tP̂ = WλP̂ with a biased Fokker–
Planck operator

Wλ· = −∂x
(
(F − λg) ·

)
+

1

2
ε∂2
x ·+

λ

ε

(
λ

2
g2 − gF − h

)
1 . (10)

This result can be derived by using a generalised Feynman–Kac formula [46, 47], or by remarking that the
action Sλ[x(t), tf ] in (9) is equivalently written as:

Sλ[x(t), tf ] =

∫ tf

0

{
1

2
(ẋ− F + λg)2 − λ

(λ
2
g2 − gF − h

)}
dt . (11)

This rewriting (11) of the action (9) is the only factorisation of the λẋg contribution into the square term of
the action. Using the classical Feynman–Kac formula, the form of the biased operator (10) is then directly
read from (11), since this action describes the trajectorial probability of a process x(t) obeying a Langevin
equation

ẋ = F (x)− λg(x) +
√
ε η (12)

which is biased by a trajectorial weight

exp
{∫ tf

0

λ

ε

[λ
2
g(x(t))2 − g(x(t))F (x(t))− h(x(t))

]
dt
}
. (13)

This shows that even if the biasing resulting from the parameter λ can be partly reabsorbed into a non-
equilibrium force by changing F (x) into F (x) − λg(x), the non-equilibrium Langevin dynamics defined by

¶ This implies some requirement on the convexity of a large deviation function, as we explain below.
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Eq. (12) is not equivalent to the biased dynamics defined by the action Eq. (9), because of the remaining
exponential reweighting given in Eq. (13). This remains true even in the simpler case when A is the integrated
current (or position of the particle), corresponding to h(x) = 0 and g(x) = 1. We will explain in the next
sections how an effective non-equilibrium dynamics, equivalent to the biased dynamics defined by the action
Eq. (9), can however be defined using a transformation of the operator Wλ.

2.3. Large-deviation principle at large time

We now turn to the study of the large-time and weak-noise scaling behaviour of the distributions at hand.
One first remarks from (10) that the biased operator Wλ does not preserve probability (at odds with W,
〈−| is not a left eigenvector of Wλ of eigenvalue 0). In fact, the Perron–Frobenius theorem ensures that the
maximal eigenvalue ϕε(λ) of Wλ is real and unique. We now assume that this operator has a gap (this is the
case in general if the force is confining or if the space is compact); this ensures that at large time one has

etWλ ∼
t→∞

et ϕε(λ) |R〉〈L| with ϕε(λ) = max Sp Wλ (14)

where |L〉 and |R〉 are the corresponding left and right eigenvectors of Wλ, normalised as 〈L|R〉 = 1 and
〈−|R〉 = 1. Then, the formal solution |P̂ (t)〉 = etWλ |Pi〉 of the evolution equation ∂tP̂ = WλP̂ implies that

P̂ (x, λ, t) �
t→∞

et ϕε(λ) R(x) . (15)

Integrating (7) over x, this implies that, at large time, the moment generating function behaves as〈
e−

λ
εA(t)

〉
�

t→∞
et ϕε(λ) . (16)

This result is an instance of a Donsker–Varadhan [33] large deviation function (LDF) scaling: it indicates
that the scaled cumulant generating function (sCGF) Φε(λ, t) defined as〈

e−
λ
εA(t)

〉
= etΦε(λ,t) (17)

goes to a constant at large t: limt→∞Φε(λ, t) = ϕε(λ). In other words, all cumulants of the observable A(t)
behave linearly in t at large t.

Such LDF scaling can be translated into a large-time behaviour of the distribution of A: integrating (7)
over x one gets from (17) that

etΦε(λ,t) =

∫
e−

λ
εA P (A, t) dA . (18)

Since the l.h.s. behaves exponentially in t at large t, this indicates that the distribution P (A ' at, t) obeys
the following scaling

P (A ' at, t) �
t→∞

et πε(a) with ϕε(λ) = sup
a

{
πε(a)− λ

ε a
}
. (19)

This is an example of Gärtner–Ellis [37, 38] LDF principle, obtained here through a saddle-point analysis of
the integral in (18). It indicates that, in the scaling A ' at, the distribution of A concentrates exponentially
around the most probable value(s) of a, located at the maxima of the function πε(a). If πε(a) is a concave
function of a, then one can invert the Legendre–Fenchel transformation appearing in (19) and obtain

πε(a) = inf
λ

{
ϕε(λ)− λ

ε a
}
. (20)

These two Legendre–Fenchel transformations describe the change of ensemble between the microcanonical
(fixed a) and canonical (fixed λ) descriptions, at fixed ε. The correspondence (20) can be extended at the
level of trajectories: under the same convexity hypothesis, the conditioned distribution (6) and the biased
distribution (7) are asymptotically equivalent [46, 47] as tf → ∞, provided that the value of λ is the one
which realises the infimum in (20).
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2.4. Large-deviation principle in the weak-noise asymptotics ε→ 0

We now consider the opposite order of limits, by keeping the duration tf finite and sending first the noise
amplitude to 0. One can use the path-integral representation (8) in order to study the weak-noise asymptotics
of the distributions. By a saddle-point evaluation in the ε→ 0 limit, one sees from the definition (17) that,
integrating (8) over x, the scaled CGF behaves as

Φε(λ, tf) ∼
ε→0

1

ε
φ(λ, tf) with φ(λ, tf) = − 1

tf
inf
x(t)

Sλ[x(t), tf ] (21)

where the action Sλ[x(t), tf ] is defined in (9). The optimisation is performed over trajectories [x(t)]0≤t≤tf
of duration tf , whose initial position x(0) is sampled according to the initial distribution Pi (the simplest
case is when x(0) takes a fixed value), and whose final position x(tf) is optimised over in the inf of (21).
The function φ(λ, tf) is a scaled CGF. Since Φε(λ, tf) converges to ϕε(λ) as tf →∞ for all ε (see (16)), one
expects that

lim
tf→∞

φ(λ, tf) = φ(λ) with ϕε(λ) ∼
ε→0

1

ε
φ(λ) . (22)

In all, the saddle-point asymptotics provides the following optimisation principle for the sCGF φ(λ) as:

φ(λ) = − lim
tf→∞

{ 1

tf
inf
x(t)

Sλ[x(t), tf ]
}
. (23)

Hence, the determination of φ(λ) requires the knowledge of the optimal trajectories in the weak-noise limit.
This is the topic of the next section.

It is not obvious that the large-time and the weak-noise commute, i.e. that the sCGF φ(λ) given in (23)
by first taking ε→ 0 and then tf →∞ is the same as the ε→ 0 asymptotics φ(λ) = limε→0[εϕε(λ)] (see (22))
of the CGF ϕε(λ) obtained from spectral considerations by first taking the tf → ∞ limit, as done in (16).
We will show in Sections 3 and 4 that these two definitions coincide for periodic systems, i.e. that one can
take the large-time and the weak-noise limits in whichever order one prefers.

3. Determination of the sCGF φ(λ) for spatially periodic systems

3.1. Optimal trajectories in the weak-noise limit

We now aim at computing the scaled cumulant generating function φ(λ) by minimising the action Sλ[x(t), tf ]
according to Eq. (23). The saddle-point equation for the optimal path sustaining a given fluctuation is
obtained from the optimisation principle (21) and reads

ẍ− F (x)F ′(x)− λh′(x) = 0 , (24)

where the prime denotes a derivative with respect to x. We note that it does not depend on the function
g(x) since the term ẋ(t) g(x(t)) in the integrand of the action (9) is a total derivative. It represents the
conservative dynamics of a particle of unit mass in a potential

V(x) = −1

2
F (x)2 − λh(x) . (25)

As a result, the energy

E(ẋ, x) =
1

2
ẋ2 + V(x) (26)

is conserved along an optimal trajectory. Let us recall, however, that while optimal trajectories obey a
deterministic conservative dynamics in the potential V(x) given by Eq. (25), the original dynamics of the
problem obeys an overdamped Langevin dynamics, with a deterministic force F (x) that may derive or not
from a potential — see Eq. (1). Note that since x(t) satisfies the second-order differential equation (24), it
is uniquely specified in general only when one specifies a set of two parameters. It is convenient to choose
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for these two parameters the energy E and the initial position xi (and the sign of the initial velocity, as we
explain later).

Importantly, the initial position xi for the optimal trajectory (solution of Eq. (24)) differs from the
‘physical’ initial condition x(0) considered in the path integral (6) and sampled with Pi. Indeed, the
underlying Langevin dynamics is dissipative, so that the biased distribution P̂ (x, λ, tf) converges to a steady
state at large finite time tf ; then, the optimal trajectory that obeys the non-dissipative evolution (24)
describes the most probable loci of P̂ (x, λ, tf)

+. In other words, there is a transient regime for the ‘physical’
initial distribution Pi(x) to reach a distribution P̂ (x, λ, tf) that falls into a consistent weak-noise description.
As a result, the initial distribution Pi(x) becomes irrelevant after this transient regime and can thus be
forgotten in the weak-noise evaluation of the path-integral (6).

On the other hand, Eq. (24) has an infinite number of solutions, only one of them being the actual
optimal trajectory that minimises the action Sλ[x(t), tf ]. To determine this optimal trajectory, one has to
parametrise each solution of Eq. (24) by the initial position xi and the energy E , but again, xi differs from
the ‘physical’ initial condition x(0).

In the following, we consider finite-size spatially periodic systems, for which F (x + 1) = F (x),
h(x + 1) = h(x) and g(x + 1) = g(x) (we took the spatial period as the unit length, without loss of
generality). For such systems, the optimal trajectory minimising the action Sλ[x(t), tf ] becomes independent
of x(0) for large enough time tf , so that the only relevant parameter to characterise the trajectories in this
limit is their energy. To determine the sCGF φ(λ), one has to evaluate the action Sλ[x(t), tf ] for any of
the optimal trajectories given by Eq. (24), and to find the optimal trajectory that minimises the action. In
practice, this last step consists in minimising the action over the energy of the trajectories. Using Eqs. (9)
and (25), the action Sλ[x(t), tf ] can be written as

Sλ[x(t), tf ] =

∫ tf

0

dtL(ẋ(t), x(t)) (27)

with a Lagrangian

L(ẋ, x) =
1

2
ẋ2 − V(x) + ẋ

(
λg(x)− F (x)

)
. (28)

Note that the last term, proportional to ẋ, in Eq. (28) plays no role in Eq. (24) since it is a total derivative,
but it has to be included in the Lagrangian to correctly evaluate (and minimise) the action.

Assuming that the force field F (x) and the function h(x) are bounded, the potential V(x) is also bounded.
We denote as Vmax the maximum value of the potential:

Vmax = max
x
V(x) . (29)

The value Vmax allows one to classify the optimal trajectories x?(t) into periodic and propagative solutions,
according to their energy E (for convenience, we include constant trajectories as a special case of the periodic
ones). For E < Vmax, optimal trajectories are confined by the potential V(x), and are periodic in time.
For E > Vmax, the potential no longer confines the optimal trajectories, which are then propagative, with a
constant sign of the velocity ẋ. As a result, the sCGF φ(λ) is obtained by minimising the action over both
sets of periodic and propagative optimal trajectories. One can thus write, taking into account the minus
sign in Eq. (23),

φ(λ) = max {φper(λ), φprop(λ)} (30)

where φper(λ), φprop(λ) are defined by minimising the action over the sets of periodic and propagative
trajectories respectively:

φper(λ) = − lim
tf→∞

{ 1

tf
inf

E<Vmax

Sλ[x?(t), tf ]
}
, (31)

φprop(λ) = − lim
tf→∞

{ 1

tf
inf

E>Vmax

Sλ[x?(t), tf ]
}
. (32)

+ For instance, if P̂ (x, λ, tf) becomes peaked around a single point, the optimal trajectory solution of (24) is equal to that

point, while if P̂ (x, λ, tf) becomes peaked around a contour, this optimal trajectory follows that contour — as usual in the
WKB description.
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In the following, we successively evaluate φper(λ) and φprop(λ).

3.2. Time-periodic trajectories

We start by evaluating φper(λ). A particular type of periodic trajectories are the time-independent ones,
for which ẋ? = 0 and x? = x0, implying V ′(x0) = 0 from Eq. (24). For such trajectories, one has
L(ẋ?, x?) = −V(x0), so that minimising the action over time-independent trajectories selects points x0

that are at the location(s) of the maximum of the potential V(x); hence:

lim
tf→∞

{ 1

tf
inf

x(t)=x0

Sλ[x?(t), tf ]
}

= −Vmax. (33)

Considering now a generic time-periodic optimal trajectory, the action reads, with x? ≡ x?(t)
1

tf
Sλ[x?(t), tf ] =

1

2tf

∫ tf

0

dt (ẋ?)2︸ ︷︷ ︸
≥0

− 1

tf

∫ tf

0

dtV
(
x?
)

︸ ︷︷ ︸
≥−Vmax

+
1

tf

∫ tf

0

dt ẋ?
(
λg
(
x?
)
− F

(
x?
))

︸ ︷︷ ︸
→ 0 when tf→∞

. (34)

The proof that the last integral in (34) goes to 0 when tf →∞ comes from a change of variable from t to x:

1

tf

∫ tf

0

dt ẋ?
(
λg(x?)− F (x?)

)
=

1

tf

∫ x?(tf )

x?(0)

dx
(
λg(x)− F (x)

)
(35)

which goes to 0 when tf → ∞ because [λg(x) − F (x)] is bounded on the finite interval [x?(0), x?(tf)]. It is
tempting to take the tf →∞ limit and to conclude from (31) that φper(λ) ≤ Vmax but this would require to
exchange the inf and the tf →∞ limit in (31), which enters in conflict with our goal since we are interested
in how the small-noise and large-time limits commute. To avoid this exchange, one writes from (34) that for
any time-periodic optimal trajectory,

1

tf
inf

E<Vmax

Sλ[x?(t), tf ] ≥ −Vmax −
1

tf
inf

E<Vmax

∫ x?(tf )

x?(0)

dx
(
λg(x)− F (x)

)
(36)

so that taking the tf →∞ limit one finds

lim
tf→∞

{ 1

tf
inf

E<Vmax

Sλ[x?(t), tf ]
}
≥ −Vmax , (37)

because the integrand on the r.h.s. of (36) is a bounded function on an interval of fixed finite length. From
the definition (31), we obtain φper(λ) ≤ Vmax. Remarking now from (27-28) that this bound is realised for
time-independent trajectories x? = x0 we conclude that

φper(λ) = Vmax(λ) (38)

where the λ-dependence of Vmax has been made explicit. Therefore, for E < Vmax, the optimal trajectories
sustaining a given fluctuations are time-independent of the form x? = x0, where x0 are the points maximising
the potential V(x0) = Vmax.

3.3. Propagative trajectories

To evaluate φprop(λ), one now has to compute the minimum of the action over all propagative optimal
trajectories, i.e., trajectories for which E > Vmax. Then, from energy conservation, one has

ẋ? = σ
√

2
(
E − V(x?)

)
(39)

where σ = ±1 is the sign of ẋ? (we recall that the sign of ẋ? is constant all along propagative trajectories).
Propagative trajectories are pseudo-periodic, in the sense that x?(t+T ) = x?(t)+σ, which may be identified
with x?(t) due to the spatial periodicity of the system; T = T (E) is the pseudo-period T (E), determined as

T =

∫ T

0

dt =

∫ 1

0

dx√
2
(
E − V(x)

) , (40)
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where we have used Eq. (39) to change the integration variable from t to x. Using the relation

L(ẋ?, x?) = E − 2V(x?) + ẋ?
(
λg(x?)− F (x?)

)
, (41)

the action of a propagative optimal trajectory on the time interval [0, T (E)] is, expanding the Lagrangian (28),

Sλ[x?(t), T (E)] = σ

∫ 1

0

(
λg(x)− F (x)

)
dx+ T (E)E −

∫ 1

0

2V(x)√
2
(
E − V(x)

) dx . (42)

To lighten notations, we define

B =

∫ 1

0

(
λg(x)− F (x)

)
dx , R(E) =

∫ 1

0

2V(x)√
2
(
E − V(x)

) dx . (43)

Note that the term F (x) in the integral defining B gives no contribution when the force F (x) derives from
a potential.

In the large-time limit, the value of the action over every interval [nT (E), (n+ 1)T (E)] is the same (by
periodicity of the optimal trajectory). Furthermore, the optimal trajectory dependence on the initial value
x0 is now replaced by a pseudo-periodic boundary condition of the form x(1) = x(0)+σ. Hence the φprop(λ)
defined in Eq. (32) is equal to:

φprop(λ) = − lim
n→∞

inf
E>Vmax, σ=±1

{
1

nT (E)

∫ nT (E)

0

L(ẋ?, x?) dt

}
(44)

= − inf
E>Vmax, σ=±1

{ 1

T (E)

∫ T (E)

0

L(ẋ?, x?) dt
}

(45)

= − inf
E>Vmax, σ=±1

{
E +

σB −R(E)

T (E)

}
(46)

where in (44)-(45) the optimal trajectory x?(t) is the propagative solution of the saddle-point equation, with
an energy E and a pseudo-period T (E) that depends on E , as inferred from (40). Determining φprop(λ) thus
amounts to finding, for both σ = ±1, the infimum of the function

Ψσ(E) = E +
σB −R(E)

T (E)
. (47)

The function Ψσ(E) is defined over the interval (Vmax,+∞). When E → Vmax, both R(E) and T (E)
diverge to infinity (assuming V(x) is regular close to Vmax), but their ratio R(E)/T (E) → 2Vmax, so that
Ψσ(E)→ −Vmax. In the opposite limit E → ∞, T (E) ∼ R(E) ∼ 1/

√
E , yielding Ψσ(E)→ +∞. Consequently,

if Ψσ(E) has no minimum for E ∈ (Vmax,+∞), one has:

inf
E>Vmax

Ψσ(E) = −Vmax . (48)

We now proceed to determine if Ψσ(E) has a minimum E∗σ , satisfying Ψ′σ(E∗σ) = 0. The derivative Ψ′σ(E)
reads

Ψ′σ(E) =
1

T (E)2

[
T (E)2 −R′(E)T (E) +R(E)T ′(E)− σBT ′(E)

]
. (49)

From the definition (43) of R(E), one finds that

R′(E) = T (E) + 2ET ′(E) (50)

so that Ψ′σ(E) can be rewritten as

Ψ′σ(E) =
T ′(E)

T (E)2

[
R(E)− 2ET (E)− σB

]
. (51)

Since T ′(E) 6= 0 for all E , the condition Ψ′σ(E∗σ) = 0 is equivalent to

R(E∗σ)− 2E∗σT (E∗σ)− σB = 0 (52)
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which determines E∗σ . If a solution E∗σ exists, one has from Eqs. (47) and (52)

Ψσ(E∗σ) = E∗σ +
σB −R(E∗σ)

T (E∗σ)
= −E∗σ . (53)

Using Eqs. (50) and (52), one can show that the second derivative Ψ′′σ(E∗σ) takes the simple form

Ψ′′σ(E∗σ) = −T
′(E∗σ)

T (E∗σ)
=

∫ 1

0

(
E∗σ − V(x)

)−3/2
dx

2
∫ 1

0

(
E∗σ − V(x)

)−1/2
dx

> 0 , (54)

so that E∗σ is a local minimum. The fact that it is a global minimum comes from a unicity argument, which
goes as follows. Eq. (52) can be rewritten using Eqs. (40) and (43) as∫ 1

0

√
2
(
E∗σ − V(x)

)
dx = −σB . (55)

The integral on the l.h.s. of Eq. (55) spans the interval (
∫ 1

0

√
2(Vmax − V(x)) dx,+∞) as a function of E∗σ .

Hence a solution E∗σ exists if

−σB >

∫ 1

0

√
2
(
Vmax − V(x)

)
dx (56)

where we recall that B is defined in Eq. (43). Since
∫ 1

0

√
2(E − V(x)) dx is an increasing function of E , the

solution E∗σ is unique if it exists. Hence the function Ψσ(E) has at most one stationary point, so that its
local minimum E∗σ is, if it exists, a global minimum. In addition, if E∗σ exists, then E∗−σ does not exist, since
Eq. (56) cannot be simultaneously satisfied for σ and −σ. This implies that E∗σ can exist only for

σ = −sign(B) , (57)

and Eq. (56) can be rewritten as

|B| >
∫ 1

0

√
2
(
Vmax − V(x)

)
dx . (58)

If Eq. (58) is satisfied, one has for σ = −sign(B) that

inf
E>Vmax

Ψσ(E) = −E∗σ , and inf
E>Vmax

Ψ−σ(E) = −Vmax . (59)

As a result, Eq. (46) implies

φprop(λ) = −min{−E∗σ ,−Vmax} = max{E∗σ ,Vmax} = E∗σ (60)

(with σ = −sign(B)) if Eq. (58) holds.

In the opposite case, if Eq. (58) is not satisfied,

inf
E>Vmax

Ψσ(E) = inf
E>Vmax

Ψ−σ(E) = −Vmax , (61)

so that

φprop(λ) = Vmax . (62)

Since from Eq. (38) φper(λ) = Vmax ≤ φprop(λ), Eq. (30) implies that for all λ

φ(λ) = φprop(λ) . (63)

To summarise, we have shown that when a propagative optimal solution exists, it is unique and the
value of the corresponding sCGF is given by the energy E∗σ of such trajectory; otherwise, the value of the
sCGF is given by the maximum value Vmax of the effective potential V(x). Note that the criterion given by
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Figure 1. The different classes of optimal trajectories of interest: On the left, stationary ones, with x0

the location of the maximum of V(x), defined in Eq. (25); On the right, propagative ones, either increasing
or decreasing in time. Periodic trajectories which oscillate around x0 without being propagative have a
larger action than the stationary one in x0, as shown in Subsection 3.2. The criterion for the existence of
propagative trajectories is given by Eq. (64).

Eq. (58) for the existence of an optimal propagative solution can be interpreted as a condition on λ; using
explicit notations, one has:∣∣∣∣λ ∫ 1

0

g(x) dx−
∫ 1

0

F (x) dx

∣∣∣∣ > ∫ 1

0

√
2Vmax(λ) + F (x)2 + 2λh(x) dx ⇒ optimal traj.

is propagative
. (64)

In conclusion, the evaluation of φ(λ) generically goes as follows. For each value of λ, one checks whether
Eq. (64) is satisfied. If it holds, one determines E∗σ by solving Eq. (52) with σ = −sign(B), i.e.,

R(E∗σ)− 2E∗σT (E∗σ) + |B| = 0 , (65)

leading to φ(λ) = E∗σ(λ). If Eq. (64) is not satisfied, then φ(λ) = Vmax(λ). This result allows one to determine
the existence of possible dynamical phase transitions in the fluctuations of the additive observable A(tf).
When varying λ, one can indeed jump from a situation where the optimal trajectory is time-independent
(when Eq. (64) is not satisfied) to a situation where the optimal trajectory is time-dependent. Such a
transition between two classes of optimal trajectories is illustrated in Fig. 1 and corresponds to a breaking
of the ‘additivity principle’ [41]).

For an activity-type observable A(tf) (g(x) = 0) in the presence of a conservative force F (x) = −U ′(x),
the l.h.s. of Eq. (64) is equal to 0, so that Eq. (64) is never satisfied. It follows that φ(λ) = Vmax(λ) for
all λ, meaning that the optimal trajectory is always time-independent in this case (in other words, there is no
breaking of the additivity principle). This however does not forbid dynamical phase transitions since, as seen
from the expression (25) of V(x) the ‘tilting’ contribution −λh(x) can make the location of the maximum of
V(x) switch from one position to another, if for instance F (x) presents more than one equilibrium point. Such
a situation occurs for instance in the large deviation of additive observables in driven diffusive systems [48].

We discuss below the determination of φ(λ) in the case of current-type additive observable, which
generically leads to a phase transition between stationary and non-stationary trajectories.

3.4. Determination of φ(λ) for current-type additive observable (h(x) = 0) and conservative force F (x)

Considering a current-type additive observable (corresponding to h(x) = 0) as well as a conservative force
F (x) = −U ′(x), Eq. (64) simplifies to

|λ| > λc ≡
∫ 1

0
|F (x)| dx∫ 1

0
g(x) dx

(66)
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Figure 2. An example sCGF φ(λ), for F (x) = sin(2πx) and h(x) = 0 and g(x) = 1. Comparison of the
evaluation of the scaled CGF φ(λ) between the weak-noise approach (deduced from (70)-(72), dashed red line)
and the maximal eigenvalue of the deformed operator (10) of a lattice version of the dynamics (translucent
blue line; 128 sites, ε = 0.075). In the negative regime of λ, the transition occurs at λ = −λc = − 2

π
' −0.637.

where we have assumed that
∫ 1

0
g(x) dx > 0 (the case

∫ 1

0
g(x) dx < 0 is treated in the same way), and used

the fact that Vmax = 0 when h(x) = 0 (as inferred from (25) and (29)). For |λ| > λc, φ(λ) is solution of the
equation ∫ 1

0

√
2φ(λ) + F (x)2 dx = |λ|

∫ 1

0

g(x) dx (67)

while for |λ| < λc, φ(λ) = Vmax = 0. Consequently, λc is the critical value at which the dynamical phase
transition takes place. Note that φ(λ) is an even function of λ for current-type additive observable in a
system with a conservative force, due to time-reversal invariance.

The singular behaviour of the sCGF close to the transition depends both on local and global properties
of the force F (x). If one naively expands for small φ(λ)√

F (x)2 + 2φ(λ) = |F (x)|+ φ(λ)

|F (x)|
+O

(
φ(λ)2

)
(68)

and integrates over 0 < x < 1 in order to obtain an expansion of Eq. (67) for φ(λ), one finds a divergent

integral
∫ 1

0
dx/|F (x)| (if there is a fixed point F (x0) = 0 with F ′(x0) 6= 0, which is the case in general). The

expansion at small φ(λ) is thus ill-defined. The logarithmic divergence of
∫ 1

0
dx/|F (x)| suggests a behaviour

φ(λ) ∼ (λ− λc)/| log(λ− λc)| but the situation is better understood on a specific example first.

As an explicit example, we consider the case F (x) = sin(2πx) , h(x) = 0 and g(x) = 1, where the force
F (x) is conservative, and the observable A(t) is the integrated current (or the position at time t, counted
with the number of turns). Eq. (66) straightforwardly leads to

λc =
2

π
. (69)
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For |λ| > λc, the scaled CGF φ(λ) is solution in Eλ of the equation

λ =

{
−Λ(Eλ) forλ < −λc

Λ(Eλ) forλ > λc ,
(70)

with

Λ(E) ≡ 2

π

√
2E E

(
− 1

2E

)
, (71)

where E(·) is the complete elliptic integral of the second kind (taking the definition used by Abramowitz &
Stegun [49]). One thus obtains

φ(λ) =

{
0 |λ| ≤ λc ,

Λ−1(|λ|) |λ| ≥ λc .
(72)

For |λ| < λc, the scaled CGF φ(λ) and its associated optimal profiles are flat: one needs to consider large
enough deviations of the current in order to actually observe a travelling trajectory. In order to check the
existence of the transition and the form of the scaled CGF, we evaluated φ(λ) from the maximal eigenvalue
of the deformed operator (10) of a lattice version of the dynamics (at small temperature and for a large
number of sites). Results are in good agreement with the present weak-noise approach (see Fig. 2).

For the expansion close to the transition points, one finds for λ = λc + δλ with δλ > 0

φ(λc + δλ) =
π δλ

| ln δλ|
+ o

(
δλ

| ln δλ|

)
. (73)

This leads for the average velocity v of the particle (or, equivalently, the average current),

v(λc + δλ) = −φ′(λc + δλ) = − π

| ln δλ|
+ o

(
1

| ln δλ|

)
. (74)

As a result, the dynamical phase transition at λc is formally continuous since v(λ) → 0 when λ → λc.
However, for all practical purposes, the transition appears discontinuous as the convergence to zero is
extremely slow. This result is to be contrasted with the standard depinning transition of a particle in a
‘tilted’ potential (i.e., a particle subjected to a conservative force plus a uniform non-conservative driving
force). For a regular potential, the depinning transition is continuous with a critical exponent 1/2 [50].
The fact that the transition observed in the λ-biased dynamics is of a different nature shows that biasing
the dynamics with λ does not only add a non-conservative uniform driving force to the original dynamics,
but rather modifies the original dynamics in a more complex way. We describe in the next section how
the λ-biased dynamics can be mapped onto a non-trivial effective driven process, which will allow us to
better understand why the standard behaviour of the depinning transition of a particle in a potential is not
recovered.

4. Effective nonequilibrium dynamics of the conditioned equilibrium system

As we discussed in paragraph 2.3, the biased dynamics is governed by the deformed Fokker–Planck operator
Wλ defined in (10), which does not preserve probability. This observation is at the basis of population
dynamics algorithms [51, 52, 53] that allow one to study rare trajectories and to evaluate numerically the
CGF by representing the probability loss or gain through selection rules between copies of the system, in the
spirit of Quantum Monte Carlo algorithms [54, 55] (see e.g. [56] for a review).

In fact, as shown recently in [17, 18] and in [19] (inspired by [57, 58]), there exists a change of basis, based
on the explicit knowledge of the left eigenvector of Wλ, that allows one to render the dynamics described
by Wλ probability-preserving. This defines an ‘auxiliary’ or ‘effective’ dynamics Weff

λ which is asymptotically
equivalent to the biased dynamics described by Wλ, as studied in great depth in Refs. [46, 47, 59]. From a
mathematical point of view, it is based on Doob’s h-transform [16]. The interest of this effective dynamics
is that it provides a physical (probability-preserving) dynamics whose typical trajectories are equivalent
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to the rare trajectories of the original dynamics (1). Such effective dynamics can be defined for Langevin
processes or for jump processes. Explicit examples of such dynamics have been determined in exclusion
processes [17, 18, 60, 61], in zero-range processes [62, 63, 64], in the current large deviation of Langevin
dynamics [21] or in open quantum systems [65]. They illustrate in general that the effective forces governing
the dynamics described by Weff

λ modify the original dynamics (1) on a global scale.
In this section, we recall how to identify the effective process as a Langevin dynamics with a force F eff

λ (x)
that defines a λ-modified probability-preserving dynamics [46, 47]. We then show that the determination of
F eff
λ (x) can be done in a rather explicit way in the weak-noise limit, without having to determine explicitly

the left eigenvector. We also explain how the determination of the effective process allows one to show that
the small-noise and large-time limits can be exchanged in periodic systems for our LDF problem.

4.1. Derivation of the effective force

One defines |L〉 as the left eigenvector of Wλ associated to the maximal eigenvalue ϕε(λ). Following
Refs. [17, 18, 19], one introduces a diagonal operator L̂ whose elements are the components of |L〉. Then,
the definition 〈L|W = ϕε(λ)〈L| of the left eigenvector implies that

〈−|Weff
λ = 0 with Weff

λ = L̂WλL̂
−1 − ϕε(λ)1 . (75)

One reads from this relation that the operator Weff
λ , which is equivalent to Wλ up to a shift and a change

of basis, is probability-preserving. It thus provides a bona fide dynamics whose properties are equivalent to
the biased dynamics of the operator Wλ (see paragraph 4.4 for details on this equivalence).

Let us now fix ε > 0 (not necessarily small) and send tf to infinity before taking the weak-noise limit.
The Perron–Frobenius theorem ensures that the components of the eigenvectors associated to the large
eigenvalue can be taken to be strictly positive, which allows one to introduce a function Ũ(x) such that

the left eigenvector reads L(x) = e−
1
ε Ũ(x). Note that this relation is simply a definition of Ũ(x), which

may depend on ε at this stage. However, one expects∗ that in the weak-noise limit ε → 0, Ũ(x) becomes
independent of ε.

One finds by direct computation that

Weff
λ P (x) =

1

2
εP ′′(x) +

[
− F (x) + λg(x) + Ũ ′(x)

]
P ′(x)

+
1

2ε

[
λ2g(x)2 − 2λh(x)− 2ε

(
ϕε(λ) + F ′(x)− λg′(x)

)
− 2F (x)Ũ ′(x) + Ũ ′(x)2 + 2λg(x)(Ũ ′(x)− F (x)) + εŨ ′′(x)

]
P (x) . (76)

Using the eigenvector equation for L(x)

1

2
εL′′(x) +

[
F (x)− λg(x)

]
L′(x) +

λ

ε

[
1

2
λg(x)2 − h(x)− F (x)g(x)

]
L(x) = ϕε(λ)L(x) (77)

which can be rewritten in terms of Ũ(x) as

−1

2
Ũ ′′(x) +

1

ε

[
1

2

(
λg(x) + Ũ ′(x)

)(
λg(x) + Ũ ′(x)− 2F (x)

)
− λh(x)

]
= ϕε(λ) , (78)

one eliminates ϕε(λ) in (76) and one finds that Weff
λ indeed takes the form of a probability-preserving

Fokker–Planck evolution operator [46, 47]:

Weff
λ · = −∂x

[(
F (x)− λg(x)− Ũ ′(x)

)
·
]

+
1

2
ε∂2
x · . (79)

It describes the evolution of a particle subjected to a force F eff(x) = F (x) − λg(x) − Ũ ′(x). We note that
the contribution h(x) to the additive observable A defined in (2) does not appear explicitly in (79) but is
still present implicitly through the potential Ũ(x) defined from the left eigenvector L(x).

∗ This can be formally shown for instance by expanding Ũ(x) in a power series as Ũ(x) = Ũ0(x) + εŨ1(x) + . . . following the
standard WKB procedure [20].
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4.2. Effective dynamics in the weak-noise limit

Noting that ϕε(λ) ∼ 1
εφ(λ) in the weak-noise limit ε → 0, and assuming that Ũ becomes independent of

ε in this limit (as is usually the case in this WKB procedure [20]), the differential equation (78) for Ũ(x)
becomes an ordinary, quadratic equation for Ũ ′(x),

1

2

(
λg(x) + Ũ ′(x)

)(
λg(x) + Ũ ′(x)− 2F (x)

)
− λh(x) = φ(λ) , (80)

whose solution reads

Ũ ′(x) = F (x)− λg(x)− σ
√
F (x)2 + 2λh(x) + 2φ(λ) , (81)

where σ = ±1 is an unknown sign that will be determined later on. Hence, the knowledge of φ(λ) allows
for the determination of Ũ ′(x), provided one is able to select the correct sign in Eq. (81). This can be done
by evaluating the effective force F eff(x). Inserting Eq. (81) in the generic expression (79) of the effective
Fokker–Planck operator, one finds

Weff
λ · = −∂x

[
σ
√
F (x)2 + 2λh(x) + 2φ(λ) ·

]
+

1

2
ε∂2
x · . (82)

It corresponds to the evolution of a particle subjected to an effective force

F eff(x) = σ
√
F (x)2 + 2λh(x) + 2φ(λ) . (83)

The two possible signs correspond to the two possible cases of paragraphs 3.3 and 3.4 when the optimal
trajectory is either increasing or decreasing in time. We will see below that σ is given by σ = −sign(B),
consistently with the results of paragraph 3.3.

We have thus shown that in the weak-noise asymptotics, the explicit knowledge of the complete left
eigenvector |L〉 is not required in order to determine the effective force F eff(x): one only needs to know the
scaled CGF φ(λ). Interestingly, for periodic systems, Eq. (81) also provides a way to determine φ(λ), without
using the optimisation procedure described in Sec. 3. In a periodic system, Ũ(x) is a periodic function of

period 1, so that
∫ 1

0
Ũ ′(x) dx = 0. From Eq. (81), we thus have∫ 1

0

dx
(
F (x)− λg(x)− σ

√
F (x)2 + 2λh(x) + 2φ(λ)

)
= 0 (84)

and one recovers Eq. (52), given the definitions (43) and (25) of the parameter B, the function R and the
potential V(x), as well as the identification of φ(λ) with E∗σ when Eq. (52) has a solution — see Eqs. (60)
and (63). Following the same reasoning as the one that leads to Eq. (57), we recover that σ = −sign(B).

Note that recovering the same result as in Sec. 3 is non-trivial, because here we have made no optimisation
of the action at finite time tf , but rather taken the infinite-time limit from the outset, by using first a spectral
analysis (which yielded the eigenvector equation (77)) and then a weak-noise expansion to go from (78)
to (80). In other words, we have exchanged the order of the large-time and the weak-noise limit. It is
interesting to see, as we previously mentioned, that both orders of limits yield the same result. Let us
emphasise that this result strongly relies on the Perron–Frobenius theorem, which states that the eigenvector
|L〉 associated to the largest eigenvalue of Wλ only has strictly positive components (up to a sign convention)

so that it can be written in an exponential form L(x) = e−
1
ε Ũ(x) (with real Ũ(x)), while other eigenvectors do

not have all components of the same sign, and can thus not be written in such an exponential form. Looking
for an eigenvector in an exponential form thus automatically selects the eigenvector associated to the largest
eigenvalue thanks to the Perron–Frobenius theorem, without any explicit optimisation procedure.

For a conservative force F (x) and current-type additive observables (i.e., h(x) = 0), the condition
σ = −sign(B) boils down (if g(x) > 0) to σ = −sign(λ), leading to an effective force

F eff(x) = −sign(λ)
√
F (x)2 + 2φ(λ) (|λ| > λc) , (85)

F eff(x) = −sign(λ) |F (x)| (|λ| ≤ λc) . (86)
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Note that F eff(x) can be decomposed into a uniform non-conservative part

feff =

∫ 1

0

F eff(x) dx =

∫ 1

0

F (x) dx− λ
∫ 1

0

g(x) dx (87)

(where the last equality results from Eq. (84)) and a space-dependent conservative part

−U ′eff = F eff(x)− feff . (88)

Note that the integrals in Eq. (87) should be understood as spatial averages (we recall that the length of
the system is chosen as L = 1). In the specific case when the observable A is the current (i.e., g(x) = 1
and h(x) = 0) and F (x) is a conservative force, one recovers that feff = −λ. Yet, the conservative part
−U ′eff does not reduce to the original force F (x). This can be seen explicitly by computing perturbatively
the effective force F eff(x) in the large λ limit, yielding

F eff(x) =
λ→∞

−λ− 1

2λ

(
F (x)2 −

∫ 1

0

F (x′)2 dx′
)

+ o

(
1

λ

)
(89)

From this last equation, the decomposition of the effective force F eff(x) into a uniform non-conservative force
feff = −λ and a conservative force becomes

−U ′eff = − 1

2λ

(
F (x)2 −

∫ 1

0

F (x′)2 dx′
)

+ o

(
1

λ

)
. (90)

The associated periodic potential Ueff reads

Ueff(x) =
1

2λ

(∫ x

0

F (x′)2 dx′ − x
∫ 1

0

F (x′)2 dx′
)

+ o

(
1

λ

)
. (91)

On the other side, it is instructive to determine how the effective force F eff(x) is modified as the dynamical
transition is approached: we illustrate in Fig. 3 how a cusp singularity appears in F eff(x) as δλ → 0+ for
λ = λc + δλ in the example system studied at the end of Sec. 3.3. One sees from Eq. (85) that F eff(x) is a
regular function of x as long as δλ > 0 but develops a cusp singularity at its stationary points as δλ→ 0+,
explaining why the transition is not of the same nature as that of the standard depinning transition [50].

To understand on a more general ground the relation between such depinning transition and the
dynamical phase transition, we now consider the more generic case of an observable A with arbitrary g,
h ≡ 0 and a force F (x) presenting a stationary point x0. We assume that F can be expanded around x0 as
F (x) = (x− x0)F0 + o(x− x0). In the effective dynamics, optimal trajectories are subjected to the effective
force defined in Eq. (83) which reads as follows close to the stationary point]:

F eff(x) '
√

[(x− x0)F0]2 + 2φ(λ). (92)

As the dynamical phase transition is approached (φ(λ) → 0 as λ → λ+
c ), this implies that the trajectories

of the effective dynamics spend a longer and longer time close to x0, meaning that the dynamics is mainly
governed by the approximate form (92) of the effective force.

Effective trajectories are governed by the equation ẋ(t) = F eff(x(t)), whose solution reads

x(t) = x0 ±
√

2φ(λ)
sinh(F0t)

F0
, (93)

(up to an arbitrary translation in time) in the regime where the approximation (92) holds. As usual for
the depinning transition in 0d problems [50], the average velocity of the trajectory (counted positively) is
|v̄| ∼ L/T , with L the spatial period (L = 1 in our settings) and T the period in time. Close to the transition,
the time period T is for instance estimated from

x(T/2)− x(−T/2) = L = 1 (94)

] We assume here that σ = +1 without loss of generality.
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Figure 3. Comparison, on an example, of the criticality of the dynamical phase transition and of standard
depinning transitions in 0d. (Top) The effective force F eff(x) at λ = λc + δλ deforms and becomes a cuspy
function of x close to the stationary points that develop as δλ → 0+, for the example model studied at
the end of Sec. 3.3. (Bottom left) In the standard depinning transition in 0d, the depinning transition
occurs when a regular force F̃ (x) possesses no stationary point any more when driven by a uniform force
δf > 0. In this case, the force F̃ (x) + δf is a regular function of x and this implies that the transition is
second-order [50], in contrast to our dynamical phase transition of interest. (Bottom right) If instead the
force presents a cusp at all values of δf ≥ 0 close to the δf = 0 stationary point, the transition becomes
first-order [50], which is also different from our dynamical phase transition.

(since x(0) = x0 with our choice of the origin of time, so that x(t) − x0 is an odd function of time). In
the large-time limit, one finds from (94) that at dominant order in φ(λ) → 0, one has T ∼ 1

F0
| lnφ(λ)|.

Consequently, the average velocity of the trajectory behaves as:

|v̄| ∼ F0

|lnφ(λ)|
, (95)

in good agreement with the result (74) for the example of the sin(2πx) force. In all, we have shown that
the behaviour (92) of the effective force close to the stationary point of the effective depinning problem
governs the logarithmic form of the velocity close to the transition for an arbitrary current-type additive
observable A.

Furthermore, if the additive observable A is the velocity of the particle, the relation v(λ) = −φ′(λ)
together with (95) leads to:

φ′(λ) ∼ 1

| lnφ(λ)|
for λ→ λ+

c . (96)
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Close the transition point, writing λ = λc + δλ, one can integrate this equation and get:

φ(λ) ln δλ− φ(λ) = −δλ. (97)

so that at dominant order for δλ→ 0+

φ(λ) ∼ δλ

| ln δλ|
. (98)

which is compatible with the result (73) obtained for the example model F (x) = sin(2πx).
In conclusion, the effective depinning transition problem fully describes the behaviour of the expansion

of φ(λ) near the transition (73), with an effective force of the form (92).

4.3. Interpretation of the effective process in the path-integral formulation

It is now interesting to come back to the path integral formulation introduced in Sec. 2 to discuss the
relationship between the effective nonequilibrium process and the original process biased by λ. To simplify
the discussion, we specialise here to a conservative force F (x) = −U ′(x), so that we compare the effective
nonequilibrium process with a λ-biased equilibrium process. The generalisation to a non-conservative force
field F (x) is straightforward.

A Langevin process with the effective nonequilibrium force F eff(x),

ẋ(t) = F eff(x(t)) +
√
ε η(t) , (99)

leads to an Onsager–Machlup action which, in the small-noise limit, takes the form

Seff[x(t), tf ] =

∫ tf

0

1

2

(
ẋ− F eff(x)

)2
dt . (100)

Expanding the square in the action and using the expression (83) of the effective force F eff(x), we end up
with

Seff[x(t), tf ] =

∫ tf

0

{
1

2
ẋ2 +

1

2
F (x)2 + λh(x) + φ(λ)− ẋF eff(x)

}
dt . (101)

Then, Eqs. (83) and (84) imply that∫ tf

0

ẋF eff(x) dt = −
∫ tf

0

λẋg(x) dt (102)

so that the action of the nonequilibrium process reads

Seff[x(t), tf ] =

∫ tf

0

{
1

2
ẋ2 +

1

2
F (x)2 + λ

(
h(x) + ẋg(x)

)
+ φ(λ)

}
dt . (103)

Hence,

Seff[x(t), tf ] = Sλ[x(t), tf ] + φ(λ)tf (104)

and the action Seff[x(t), tf ] of the effective nonequilibrium process identifies, up to a constant which is
irrelevant to the statistics of x(t), with the action Sλ[x(t), tf ] of the biased process given in Eq. (9). This
confirms that the effective nonequilibrium process defined by the force field F eff(x) describes the same
statistics of trajectories as the original dynamics biased by λ.

Let us emphasise that in Eq. (104), the actions Seff[x(t), tf ] and Sλ[x(t), tf ] compare the nonequilibrium
dynamics characterised by a force F eff(x) = −U ′eff−λ, with a λ-biased dynamics in the original conservative
force field F (x) = −U ′(x). Since the non-conservative force feff = −λ generates a current, one may also
wonder how the driven dynamics defined by F eff(x) compares with the λ-biased dynamics in the same
potential Ueff(x) (which, we recall, differs from the original potential U(x)). In other words, does the driven
dynamics sample uniformly all the rare equilibrium trajectories exhibiting the same value of the average
current? The action Seff

λ [x(t), tf ] of the λ-biased dynamics in the potential Ueff(x) reads

Seff
λ [x(t), tf ] =

∫ tf

0

{
1

2

(
ẋ+ U ′eff(x)

)2

+ λẋ

}
dt (105)
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while the action Seff[x(t), tf ] of the driven process defined in Eq. (101) can be rewritten as

Seff[x(t), tf ] =

∫ tf

0

{
1

2

(
ẋ+ U ′eff(x)

)2

+ λẋ+ λU ′eff(x) + λ2

}
dt . (106)

The difference Seff[x(t), tf ]− Seff
λ [x(t), tf ] then reads

Seff[x(t), tf ]− Seff
λ [x(t), tf ] =

∫ tf

0

(
λU ′eff(x) + λ2

)
dt . (107)

Trajectories in the driven process are thus not sampled uniformly among the rare equilibrium configurations
with the same current, but are reweighted with an exponential prefactor

exp

{
−λ
ε

∫ tf

0

U ′eff(x) dt

}
(108)

(the λ2 term has been discarded since it is independent of x). Only in the trivial case when the conservative
force vanishes do the two statistics coincide.

4.4. Equivalence between the effective driven process and the λ-biased process

We have shown above, using the path-integral formalism in the specific case of a conservative force field F (x),
that the effective driven process described by Weff

λ is equivalent to the original λ-biased process described by
Wλ. We provide here for completeness a more general and formal proof of this equivalence in an operatorial
formalism, following Refs. [19, 52, 66]. The force field F (x) is here no longer assumed to be conservative.

We start by defining a ‘λ-ensemble’ as a normalised average 〈 · 〉[0,tf ]λ in the biased dynamics, namely

〈O[x(t)]〉[0,tf ]λ =

〈
O[x(t)] e−

λ
εA(tf )

〉〈
e−

λ
εA(tf )

〉 , (109)

where the observable O depends on the trajectory. We made explicit the time interval on the l.h.s. because
the statistical properties of the λ-ensemble at times close to tf are different from those in the “bulk” of the
time interval [0, tf ].

Let us now focus on an observable O[x(t)] = O(x(t1)) which depends only on the position of the particle
at a time t1 ∈ [0, tf ]. Denoting by Ô the diagonal operator whose components are the values of O(x), one
has by definition〈

O(x(t1))
〉[0,tf ]
λ

=
〈−|e(tf−t1)Wλ Ô et1Wλ |Pi〉

〈−|etfWλ |Pi〉
. (110)

Then, if both t1 and tf − t1 are large compared to the inverse of the gap of Wλ, that is to say, if t1 is in the
bulk of the time interval [0, tf ], one can use the asymptotic behaviour (14) of etWλ , leading to〈

O(x(t1))
〉[0,tf ]
λ

−→
tf→∞

〈L|Ô|R〉 =

∫
O(x)L(x)R(x) dx . (111)

In other words, as well known [52, 66], the intermediate-times λ-ensemble statistics is governed by the product
of the left- and right-eigenvectors of Wλ.

Consider now the effective dynamics described by the operator Weff
λ . From its definition (75), one sees

that the left- and right-eigenvectors associated to its largest eigenvalue 0 are respectively equal to |−〉 and

|LR〉. In analogy with (14), the large-time behaviour of the propagator etf W
eff
λ is thus given by

etf W
eff
λ ∼

tf→∞
|LR〉〈−| , (112)

where |LR〉 ≡ L̂|R〉. Hence, similarly to (111), one finds that the average 〈 · 〉[0,tf ]eff of an observable for the
effective dynamics is given in the steady state by〈

O(x(t1))
〉[0,tf ]

eff
−→
tf→∞

〈−|Ô|LR〉 =

∫
O(x)L(x)R(x) dx , (113)
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which is equal to the corresponding λ-ensemble average (111). The statistical properties of the biased
dynamics, described by (109), are thus equal to those of the effective dynamics at any time t1 in the bulk of
[0, tf ].

Using the identity etW
eff
λ = e−t ϕε(λ) L̂ etWλL̂−1 inferred from the definition (75) of the effective operator,

the previous reasoning can be readily extended to observables of the form O[x(t)] = O(x(t1), x(t2), . . .)
depending on the position of the particle at different times t1, t2, . . . which are all in the bulk of the interval
[0, tf ] (but which can be arbitrarily close to each other). This corresponds to the notion of trajectorial
equivalence of the biased and the effective measure developed by Chetrite and Touchette [46, 47].

5. Conclusion and outlook

In this work we have identified an effective probability-conserving dynamics turning the rare trajectories of a
stochastic process into the typical histories of an explicit modified dynamics, in the case of a particle diffusing
in a periodic one-dimensional generic force under a weak thermal noise. In this way, by using large-deviation
techniques, we have determined the form of the force that a particle effectively withstands when conditioned
to bear an atypical fluctuation for a long duration. Interestingly, the resulting effective nonequilibrium
process does not only differ from the original λ-biased dynamics by the addition of a (λ-dependent) uniform
driving force, but the conservative part of the force is also “renormalised” by the presence of λ, even in
the simple case when the observable A(tf) is the average current. Considering this result from a reversed
perspective, we have also argued that a particle in a potential driven by a uniform non-conservative force
does not sample in a uniform way the set of all trajectories having the same current — perhaps at odds with
naive expectations.

Along the way, we have analysed the fluctuations of time-integrated current-type observables in a
periodic system. These display a rich phenomenology associated to the existence of dynamical phase
transitions between a static fluctuating phase, characterised by a flat sCGF, and a phase with time-periodic
travelling trajectories, associated to a sCGF being equal to the energy of a natural optimisation problem —
which takes the form of a conservative Hamiltonian dynamics. Furthermore, we have described an alternative
way to compute the sCGF without using the variational techniques derived from the weak-noise analysis
of the path-integral representation, that allowed us to show how the large-time and the weak-noise limits
commute.

The obtained results also open a direction of research to characterise fluctuations in a given system by
engineering a new system subjected to an additional external force. Such an approach has been used in
recent studies on adaptive algorithms, based for instance on a feedback procedure to evaluate the effective
force [66, 67, 68, 69], improving the computational efficiency. The weak-noise regime has been seldom studied
(it is in fact know to present specific difficulties [66]), and the results we present in this paper could help to
understand large-time fluctuations and their associated phenomenology both in experiments and simulations.
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[56] Cristian Giardinà, Jorge Kurchan, Vivien Lecomte, and Julien Tailleur. Simulating Rare Events in Dynamical Processes.
J. Stat. Phys. 145, 787 (2011).

[57] R. M. L. Evans. Rules for Transition Rates in Nonequilibrium Steady States. Phys. Rev. Lett. 92, 150601 (2004).
[58] A. Baule and R. M. L. Evans. Invariant Quantities in Shear Flow. Phys. Rev. Lett. 101, 240601 (2008).
[59] R. L. Jack and P. Sollich. Effective interactions and large deviations in stochastic processes. Eur. Phys. J. Spec. Top.

224, 2351 (2015).
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