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Starting from the mean-field solution of a spin-orbital model of LiNiO2, we derive an effective quantum
dimer model �QDM� that lives on the triangular lattice and contains kinetic terms acting on four-site plaquettes
and six-site loops. Using exact diagonalizations and Green’s function Monte Carlo simulations, we show that
the competition between these kinetic terms leads to a resonating valence bond �RVB� state for a finite range
of parameters. We also show that this RVB phase is connected to the RVB phase identified in the Rokhsar-
Kivelson model on the same lattice in the context of a generalized model that contains both the six-site loops
and a nearest-neighbor dimer repulsion. These results suggest that the occurrence of an RVB phase is a generic
feature of QDM with competing interactions.
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I. INTRODUCTION

After their first derivation by Rokhsar and Kivelson in
1988 in the context of cuprates,1 the hard-core quantum
dimer models �QDM� have attracted significant attention.
The phase diagrams of the QDM on the square and triangular
lattices have been investigated in great details,2,3 and, follow-
ing the pioneering work of Moessner and Sondhi on the tri-
angular lattice,4 the very existence of a stable resonating va-
lence bond �RVB� phase has been unambiguously
demonstrated.5 The presence of a liquid phase with decon-
fined vision excitations6 has also been established for a toy
model living on the Kagome lattice.7

However, the relationship between QDMs and Mott insu-
lators, the physical systems for which they were proposed in
the first place, is not straightforward. It is well established by
now that the ground state of the S= 1

2 Heisenberg model on
the square and triangular lattices exhibits long-range mag-
netic order of Néel and 120 degree type, respectively, and
this type of order cannot be reached within the variational
basis of Rokhsar and Kivelson, which consists of short-range
singlet dimers. For a QDM to be a good effective model, one
should thus identify models for which the subspace of short-
range dimer coverings on a certain lattice is a good varia-
tional basis.

The first example of such a case was provided by the S
= 1

2 Heisenberg model on the trimerized Kagome lattice.8 In-
deed, an effective spin-chirality model living on a triangular
lattice can be derived, and, at the level of a mean field de-
coupling between spin and chirality, the ground state mani-
fold consists of all dimer coverings on the triangular lattice.
Going beyond mean field is thus expected to lead to a rel-
evant effective QDM. Using Rokhsar and Kivelson’s pre-
scription, which consists in truncating the Hamiltonian and
inverting the overlap matrix within the basis of dimer cover-
ings, Zhitomirsky has derived such an effective Hamiltonian9

and shown that the main competition is between kinetic
terms involving loops of length 4 and 6, respectively, and not
a competition between a kinetic and a potential term, as for
the QDM derived by Rokhsar and Kivelson. The next logical

step would be to study the properties of this effective QDM.
This is far from easy however. We know from the experience
with the standard QDM model on the triangular lattice that
the clusters reachable with exact diagonalizations are much
too small to allow any significant conclusion regarding the
presence of an RVB phase, and since there is no convention
leading only to negative off-diagonal matrix elements, it is
impossible to perform quantum Monte Carlo simulations.

Recently, two of us came across another model, for which
the low energy sector consists of almost degenerate singlet
coverings on the triangular lattice. This model is a
Kugel-Khomskii10 model that was derived in the context of
LiNiO2, and the mean-field equations that describe the de-
coupling of the spin and orbital degrees of freedom possess
an infinite number of locally stable solutions. These solutions
are almost degenerate and correspond to spin singlet �and
orbital triplet� dimers on the triangular lattice.11 Following
Rokhsar and Kivelson’s prescription, an effective QDM can
also be derived �see the Appendix�. As for the S= 1

2 Heisen-
berg model on the trimerized Kagome lattice, it consists of a
competition between kinetic terms, with two important dif-
ferences however. The main term of length 6 lives on loops
that have a shape of large triangles, a term absent in the other
case. But more importantly, the off-diagonal matrix elements
are all negative.

Since the competition between kinetic processes was
never investigated before, we have decided to concentrate on
the minimal model obtained by keeping only the dominant
term of length 6 for clarity. We have checked that the prop-
erties of the complete effective model are similar. This mini-
mal model is described by the Hamiltonian

H = − t � ��//�� —
—� + H.c.�

− t� ���/
\

—
	
 /

—
\ � + H.c.

0

0
�

+ V � ��//��//� + � —
—�� —

—�� , �1�

where the sums run over the four-site and six-site loops with
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all possible orientations. Although the repulsion is a higher
order process, we have included a repulsion term in the
Hamiltonian, and we will treat its amplitude V as a free pa-
rameter to be able to make contact with the Rokhsar-
Kivelson model on the triangular lattice. The hopping ampli-
tudes t and t� are negative, and although the ratio t� / t is in
principle fixed by their expression in the perturbative expan-
sion, we will also treat it as a free parameter.

Our central goal in this paper is to determine the nature of
the ground state as a function of t� / t. With respect to what
we already know about QDMs, the main question is whether
a competition between kinetic terms can also lead to a liquid
phase. As we shall see, the answer to that question is posi-
tive, a liquid phase being present in a finite region of the
phase diagram in the t�-V plane.

The paper is organized as follows. In Sec II, we briefly
review the basic preliminaries used in the rest of the paper.
The results obtained with exact diagonalizations are pre-
sented in Sec. III, those obtained with quantum Monte Carlo
in Sec. IV, and the conclusions in Sec. V. The perturbation
calculation which has motivated the investigation of this
QDM is finally presented in the Appendix.

II. THE METHOD

In this section, we present a brief introduction to the nu-
merical methods, to the clusters used in the analysis, and to
the physical concepts underlying the determination of the
phase diagram. More details can be found in Ref. 5.

Let us first discuss the shape of the finite-size clusters. In
general, a finite cluster is defined by two vectors T1 and T2
and, in order to have the symmetries for rotations by 2� /3,
they must satisfy12

T1 = lu1 + mu2,

T2 = − mu1 + �l + m�u2,

where l and m are integers and u1= �1,0� and u2

= �1/2 ,�3/2� are the unitary vectors defining the triangular
lattice. The number of sites in the cluster is N= l2+m2+ lm. In
order to have also the axial symmetry, and therefore all the
symmetries of the infinite lattice, we must take either lm=0
or l=m. The first possibility corresponds to type-A clusters
�with the notation of Ref. 5�, with N= l2 sites; the second one
gives rise to type-B clusters, with N=3� l� l �for examples,
of both cases, see Fig. 1�. Since for t� / t=0 and V / t=0 the
ground state belongs to a crystalline phase with a 12-site unit

cell,4,5 we will restrict in this work to clusters with a number
of sites multiple of 12, in order not to frustrate this order. To
limit the finite size effects related to the geometry of the
clusters, we will concentrate on type-B clusters, which are
always compatible with this order. Note that the six-dimer
loop kinetic term does not introduce further restrictions since
all it requires is to be able to accommodate six-site unit cells.

A very important concept in the QDM is the existence of
topological sectors. Indeed, in the triangular lattice, the Hil-
bert space is split into four disconnected topological sectors
on a torus defined by the parity of the number of dimers
cutting two lines that go around the two axes of the torus and
denoted by �p ,q� with p ,q=0 �respectively, 1� if this number
is even �respectively, odd�. One can convince oneself, by a
direct inspection of the effect of the four-site and six-site
terms, that these numbers are conserved quantities under the
action of the Hamiltonian of Eq. �1�. More generally, this is
a consequence of the fact that the topological sectors are not
coupled by any local perturbation. These topological sectors
are extremely useful to distinguish between valence bond
solids and spin liquids. Indeed, valence bond solids are only
consistent with some topological sectors, whereas RVB spin-
liquid phases are characterized by topological degeneracy.
Therefore, the main goal will be to investigate whether, in
the thermodynamic limit, the topological sectors are degen-
erate or not. In that respect, it is useful to remember that the
�0,1� and �1,0� sectors are always degenerate with either �0,0�
or �1,1� �depending on the cluster geometry� since they con-
tain the same configurations rotated by an angle � /3.5 One
can thus, without any loss of generality, restrict oneself to the
analysis of the �0,0� and �1,1� sectors. Therefore, we define
the absolute value of the topological gap as

�E = �E00 − E11� , �2�

where E00 and E11 are the total ground-state energies for the
topological sectors with p=q=0 and p=q=1, respectively.
This gap is expected to scale to zero with the cluster size in
the RVB phase.

Finally, in order to detect a possible dimer order, we also
consider the static dimer-dimer correlations

Di,j�r − r�� = �Di�r�Dj�r��� , �3�

where Di�r� is the dimer operator defined as follows: It is
a diagonal operator in the configuration space that equals 1
if there is a dimer from the site r to the site r+ai, with
a1= �1,0�, a2= �1/2 ,�3/2�, or a3= �−1/2 ,�3/2� and van-
ishes otherwise.

The method used is the same one as that used by Ralko
and collaborators5 to determine the phase diagram of the
Rokhsar-Kivelson QDM on the triangular lattice and our in-
vestigations are Lanczos diagonalizations and Green’s func-
tion Monte Carlo �GFMC� simulations. In particular, the
GFMC is a zero-temperature stochastic technique based on
the power method: Starting from a given wave function and
by applying powers of the Hamiltonian, the ground state is
statistically sampled to extract its energy and equal-time cor-
relation functions. In principle, as in other Monte Carlo al-
gorithms, in order to reduce the statistical fluctuations, it is
very useful to consider the importance sampling, through the

FIG. 1. Example of type-A �left� and type-B �right� clusters with
16 and 12 sites, respectively.
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definition of a suitable guiding function. Unfortunately, when
dealing with dimer models, it is very hard to implement an
accurate and, at the same time, efficient guiding function for
the crystalline phases. This problem is particularly relevant
when the six-site term becomes dominant. In this case, our
simulations suffer from wild statistical fluctuations, deterio-
rating the convergence of the GFMC. As a consequence, we
are not able to reach the largest available size, 432-site clus-
ter, for all parameters t� / t and V / t. By contrast, given the
simple form of the spin-liquid ground state �that reduces to a
superposition of all the configurations with the same weight
at the Rokshar-Kivelson point�, in the disordered region we
can use the guiding function with all equal weights and ob-
tain very small fluctuations �no fluctuation at the Rokshar-
Kivelson point� and, therefore, excellent results with zero
computational effort. Combining these facts, the loss of the
GFMC convergence can be interpreted as a signal for the
appearance of a crystalline phase. Of course, this is not a
quantitative criterion, but, as it will be shown in the follow-
ing, it gives reasonable insight into the emergence of a dimer
order.

Finally it should be mentioned that, since the different
topological sectors are completely decoupled �each dimer
configuration belonging to one and only one of them� and
cannot be connected by the terms contained in the Hamil-
tonian, within the GFMC it is possible to work in a given
topological sector, making it possible to extract the ground-
state properties of each of them.

III. EXACT DIAGONALIZATIONS

To get a first idea of the properties of the model, we start
with the results we have obtained with exact diagonalizations
of finite clusters for the model of Eq. �1� with V / t=0. Let us
first begin with the ground-state energy for the 12- and 36-
site clusters for both the topological sectors �0,0� and �1,1�
�see Fig. 2�. Note that the 12-site cluster is of type B,
whereas the 36-site one is of type A. We have that, for both
sizes, a level crossing occurs for t� / t2. Below that value,
the ground state is in �1,1� topological sector, in agreement

with the earlier results of Ref. 5 for V / t=0. The main differ-
ence between the 12-site and the 36-site clusters is that, for
the 36-site cluster, the topological ground-state energies stay
very close in a large parameter range for t� / t2. This could
suggest that, upon increasing the size, this level crossing
might evolve into a phase where these energies are rigor-
ously degenerate, giving rise to a liquid phase without any
crystalline order.

In order to give an idea of the various phases, we report in
Fig. 3 the dimer-dimer correlations of Eq. �3� for the 36-site
cluster below, at, and above the level crossing, which takes
place at t� / t=2.2 for this size. For small t� / t, the correlations
show a pattern similar to that of the intermediate �12��12
phase of the standard QDM model, already shown in Ref. 5.
It should be stressed that, since in these calculations the
Hamiltonian has the translational symmetry, the 12-site unit
cell is not directly visible from Fig. 3, and in order to have a
clearer evidence one should break the symmetry by hand.
Nonetheless, as it has been shown in Ref. 5, these results are
in perfect agreement with the existence of a �12��12 phase
with a crystalline ground state in the thermodynamic limit.
When t� / t is large, another pattern arises, which has never
been observed in the standard QDM, and which presents a
kind of six-site triangle ordering. In this case, the dominant
kinetic term involving six sites �see the second term of the
Hamiltonian �1�� induces a dimer pattern with the same sym-
metry, possibly inducing a ground state with a six-site unit
cell in the thermodynamic limit. Also in this case the trans-
lational symmetry of the ground state partially masks the
existence of a regular dimer pattern. Unfortunately, we will
not be able to confirm this prediction since, as stated before,
the GFMC algorithm has serious problems of convergence
inside this phase and for large clusters.

In any case, for intermediate values of t� / t, the correla-
tions decay very rapidly with the distance and are close to
those obtained in the liquid phase of the standard QDM with
V / t�1 and t� / t=0.5 This fact gives another evidence of the
possible existence of an RVB phase between two ordered
phases in the model with competing kinetic terms and with-
out the dimer repulsion. Of course by considering the exact
diagonalization results only it is impossible to give definite
statements on the stabilization of this liquid phase and, there-
fore, in the following section, we will consider a more sys-
tematic study of the topological gap, in order to unveil the
existence of a wide disordered region that develops from the
Rokshar-Kivelson point V / t=1 of the standard QDM and
survives up to V / t=0 and finite t� / t.

FIG. 2. �Color online� Difference between E00 and E11, the total
ground-state energies of the topological sectors with p=q=0 and
p=q=1, respectively. The results are found by exact diagonaliza-
tions for clusters with 12 and 36 sites.

FIG. 3. �Color online� Dimer-dimer correlations on the 36-site
cluster. The dimer of reference is the thickest one in the up-right
corner. The thicker the line, the farther the value of the correlation
from the uniform distribution equal value 1/36. Solid lines are used
when the correlation is higher than 1/36, and dashed lines when it
is lower.
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IV. GREEN’S FUNCTION MONTE CARLO

In this section, we use the GFMC method to extend the
results of the preceding section to larger clusters, with up to
432 sites, and to map out the phase diagram in the t�-V plane.

A. The case of V / t=0

Let us first describe the results we have obtained for
V / t=0 and consider the behavior of the topological gap
given in Eq. �2�. In Fig. 4, for clarity, we divided the results
in two sets for 0� t� / t�0.6 and t� / t�1. The first remark-
able feature is that, for most parameters, the gap decreases
between 12 and 48 sites, regardless of its behavior for larger
sizes. Therefore, the possibility to study much larger clusters
is crucial for this analysis. Indeed, there is a clear change of
behavior for t� / t1.6, a value beyond which our extrapola-
tions give solid evidences in favor of a vanishing gap in the
thermodynamic limit. On the other hand, for smaller t� / t
ratios, we have a clear evidence that �E increases for large
sizes. Therefore, we come to the important conclusion that,
the crystalline �12��12 phase is destroyed by increasing
the amplitude of the six-site term and the system is eventu-
ally driven into a liquid RVB phase.

To have a further confirmation of the existence of this
disordered phase, we have calculated the dimer-dimer corre-
lations. The results obtained on the 108-site cluster for t� / t
=2 are reported in Fig. 5, where the correlation functions for
parallel dimers along the same row are plotted as a function
of the distance. Given the small number of clusters available,
a precise size scaling of the order parameter is not possible
and also a meaningful estimation of the correlation length is
very hard. Nevertheless, the behavior is definitely consistent
with an exponential decay and the uncorrelated value of

1 /36 is approached very rapidly, as expected in a liquid
phase without any crystalline order.

Unfortunately, the larger t� / t region is numerically far
more difficult to access. Indeed, as stated above, although the
GFMC is in principle numerically exact, we have not been
able to find an efficient guiding function to perform the im-
portance sampling and wild statistical fluctuations prevent us
to reach a safe convergence for large clusters. In practice, we
have access to clusters up to 108 sites, that are still too small
to predict the thermodynamic behavior. For instance, for
V / t=0, the convergence stops before one can observe any
increase of the topological gap, and the criterion used for the
phase transition on the other side of the RVB phase cannot
be used any more. However, the lack of convergence is a
clear sign that one enters a new �crystalline� phase. So, if the
change of behavior of the topological gap with the size can-
not be observed, we take as a definition of the boundary for
the phase transition the parameters for which the conver-
gence is not good any more. This is expected to be semi-
quantitative, and indeed, as we shall see in the next section
when studying the full diagram, the points obtained with this
criterion agree reasonably well with those obtained with the
reopening of the topological gap.

In summary, although the region where the six-site term
dominates over the usual four-site dimer flip is not accessible
by using GFMC, based on our numerical results for small
t� / t, we can safely argue that the crystalline �12��12 phase
is destabilized by increasing the six-site kinetic term, leading
to a true disordered ground state with topological degen-
eracy.

B. Phase diagram in the t�-V plane

In this section we prove that the RVB phase found in the
preceding paragraph for V / t=0 is connected to the one ob-
tained for the standard QDM, i.e., close to the Rokshar-
Kivelson point and t� / t=0. In order to do that, we have
investigated a generalization of the previous model that also
includes a repulsion V between dimers facing each other, see
Eq. �1�. For t� / t=0, this model reduces to the standard

FIG. 4. �Color online� Topological gaps for V / t=0 as a function
of 1/�N, where N is the number of sites and for different values of
t� / t. Upper panel: Small values of t� / t, where the gap opens for
large clusters. Lower panel: Larger values of t� / t. For t� / t	1.6, the
finite-size gap closes upon increasing the cluster size, signaling a
liquid phase.

FIG. 5. �Color online� Dimer-dimer correlation function for a
108-site cluster along a horizontal line as a function of the distance
for t� / t=2 and V / t=0. The dashed line corresponds to 1/36, the
value in the absence of correlations.
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QDM, which has an RVB phase for 0.75�V / t�1.4,5 To
map out the complete phase diagram of this model, we have
done the same analysis of the preceding paragraph for differ-
ent values of V / t between 0 and 1. As an example, we show
in Fig. 6 the finite-size scaling of the topological gap for
t� / t=1 and several values of V / t. The global behavior is the
same as before and we have clear evidence that the topologi-
cal gap present at V / t=0 persists up to V / t0.25, and that it
opens again for V / t0.8. In that case, as in many other
cases, it turned out to be possible to actually observe the
opening of the gap upon leaving again the RVB phase before
the convergence problems were too strong.

The resulting phase diagram is depicted in Fig. 7, where
different symbols have been used depending on whether the
boundary was determined from the increase of the correla-
tion length with the size or from the loss of convergence:
Solid circles when the closing of the topological gap was
observable and solid diamonds when the convergence of the
GFMC was lost for large systems. Interestingly enough,

these different criteria build a relatively smooth line, a good
indication that it can be interpreted as a phase boundary.
Note that we did not perform simulations for V / t
1 where,
for a vanishing t� / t, a crystalline phase with staggered dimer
order is stabilized. So we cannot exclude that the boundary
extends beyond V / t
1 for small t� / t. Remarkably, the RVB
phase we found for V / t=0 is connected to the RVB phase
reported before for the standard QDM, i.e., t� / t=0, the total
RVB phase building up a large stripe that encompasses a
significant portion of the phase diagram. We have also cal-
culated static correlation function for several values of the
parameter, but they merely confirm the identification of the
phases and are not reported for brevity.

V. CONCLUSIONS

Coming back to our long-term motivation, namely to find
an RVB phase in a realistic model of Mott insulators, this
paper contains significant results of two sorts. First of all, we
have shown �see the Appendix� that, starting from the
quasidegenerate mean-field ground state of a Kugel-
Khomskii spin-orbital model, one can construct a QDM with
two remarkable properties: It describes a competition be-
tween two kinetic terms of comparable magnitude, and all
off-diagonal matrix elements in the dimer basis are negative.
This has allowed us to implement the GFMC and to investi-
gate the results of the competition between these terms. It
turns out that the competition between these kinetic terms
leads to the disappearance of the �12��12 crystalline order
when t� / t1.6. This transition is similar to the transition
into the RVB phase that happens in the standard QDM upon
approaching the Rokhsar-Kivelson point. Indeed, the two
phases can be connected into a single RVB phase in the
context of a generalized QDM. As far as the numerical in-
vestigation of the model is concerned, the main open issue is
to pin down the nature of the phase that occurs when the
six-dimer kinetic term dominates. Unfortunately, the GFMC
suffers from severe statistical fluctuations whenever the
guiding function is not accurate, i.e., for clusters larger that
108 sites and large t� / t. Therefore, we cannot make any defi-
nite statements on the phase where the six-site term domi-
nates. Another interesting question is of course the nature of
the quantum phase transitions between these phases �con-
tinuous or first order�. We are currently working on that
rather subtle issue in the context of the standard QDM.

The general features of the RVB phase are consistent with
the phenomenology of LiNiO2, which exhibits neither orbital
nor magnetic long-range order. A number of points deserve
further investigation however. The precise form of the QDM
does not seem to be an issue: The actual model that can be
derived along the Rokhsar-Kivelson lines has more terms
�see the Appendix�, but preliminary results show that the
RVB phase is present in that model as well. The fact that the
RVB phase does not contain the point t� / t=1.34 derived in
the Appendix is not really an issue either. First of all, this
ratio was determined for vanishing Hund’s rule coupling and
one vanishing hopping integral, and its precise value in that
case should at best be taken as an indication of its order of
magnitude in the actual system. Besides, the other six-site

FIG. 6. �Color online� Topological gap for t� / t=1 and for vari-
ous V / t as a function of 1/�N, where N is the number of sites.
Small and large values of V / t have been shown separately in the
upper and lower panels for clarity.

FIG. 7. �Color online� Phase diagram in the t�-V plane. A wide
disordered region extends all the way from the standard QDM
�t� / t=0 axis� to the purely kinetic QDM �V / t=0 axis�. The descrip-
tion of the symbols is given in the text.
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terms pull the RVB region down to smaller values of the
relative ratio of the six-dimer term to the four-dimer term.
What would deserve more attention is the validity of the
expansion that leads to the effective QDM. The small param-
eter of the expansion is not that small ��=1/�2, see the
Appendix�, and it would be very useful to better understand
to which extent such an expansion can be controlled. Never-
theless, the present results strongly suggest that the presence
of an RVB liquid phase between competing ordered phases is
a generic feature of QDM, and that to identify such a phase
in a realistic Mott insulator via an effective QDM is very
promising.
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APPENDIX: DERIVATION OF THE MODEL

LiNiO2 is a layered compound in which the Ni3+ ions are
in a low spin S= 1

2 state with a twofold orbital degeneracy. A
fairly general description of this system is given by a Kugel-
Khomskii Hamiltonian defined in terms of two hopping in-

tegrals th and th�, the on-site Coulomb repulsion Ũ and the
Hund’s coupling J which, on a given bond, takes the form11

Hij = −
2

Ũ + J
�2thth�TiT j − 4thth�Ti

yTj
y + �th − th��

2�nij
z Ti��nij

z T j�

+
1

2
�th

2 − th�
2��nij

z Ti + nij
z T j� +

1

4
�th

2 + th�
2��Pij

S=0

−
2

Ũ − J
�4thth�Ti

yTj
y +

1

2
�th

2 + th�
2� +

1

2
�th

2 − th�
2��nij

z Ti

+ nij
z T j��Pij

S=0 −
2

Ũ − 3J
�− 2thth�TiT j − �th − th��

2�nij
z Ti�

��nij
z T j� +

1

4
�th

2 + th�
2��Pij

S=1 �A1�

with the usual definitions for the projectors on the singlet and
triplet states of a pair of spins,

Pij
S=0 = 1

4 − SiS j and Pij
S=1 = SiS j + 3

4 . �A2�

The vector nij
z depends on the type of bond. With the con-

vention of Fig. 8, they are given by

n12
z = �0,0,1� ,

n13
z = ��3

2
,0,−

1

2
� ,

n23
z = �−

�3

2
,0,−

1

2
� . �A3�

The operators Ti are pseudospin operators acting on the or-
bitals.

On a given bond �see Fig. 8�, a dimer is defined by the
following wave function:

��ij� = �ij
�� � �ij

� � , �A4�

where �ij
�� and �ij

� � are, respectively, the spin and orbital
components. The spin component is the usual singlet given
by

�ij
�� = ���↑i↓ j� − �↓i↑ j�� , �A5�

regardless of the orientation of the bond. We have denoted by
� the normalization coefficient, whose explicit value is of
course given by 1/�2, to be able to keep track of the order in
� of various overlaps. The orbital part depends on the bond
and is given by

�12
� � = �a1��a2� , �A6�

�13
� � = �−

1

2
a1 −

�3

2
b1	�−

1

2
a3 −

�3

2
b3	 , �A7�

�23
� � = �−

1

2
a2 +

�3

2
b2	�−

1

2
a3 +

�3

2
b3	 , �A8�

with the convention of Fig. 8, and with �a�= �d3z2−r2� and
�b�= �dx2−y2�. We also use the convention that the wave func-
tion has a plus sign if the two sites are in the order defined by
the arrows of Fig. 8, and a minus sign otherwise.

With these definitions, the matrix element of the Hamil-
tonian on each bond is given by

FIG. 8. Sign convention for a triangle.

FIG. 9. A four-dimer loop.

FIG. 10. The three types of six-dimer loops.
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��ij�Hij��ij� = �2�2 = ���ij��ij� , �A9�

where � is defined by

� =
− 4Ũth

2

Ũ2 − J2
� 0. �A10�

According to the mean-field analysis of Ref. 11, the wave
functions obtained as tensor products of these wave func-
tions on all dimer coverings on the triangular lattice should

constitute a good variational basis if th�� th and J� Ũ. In the
following, we consider for simplicity the case th�=0 and
J=0.

Following Rokhsar and Kivelson,1 the idea is now to per-
form a unitary transformation to derive the effective QDM. If
one defines the overlap matrix by Smn= ��m ��n�, where
��m� and ��n� are dimer coverings, the states defined by

�m� = �
n

�S−1/2�m,n��n� �A11�

constitute an orthonormal basis and the matrix elements of
the Hamiltonian in this basis are given by

Hmn
eff � �m�H�n� = �

kl

�S−1/2�mk��k�H��l��S−1/2�ln.

�A12�

The inverse of the square root of the overlap matrix cannot
be calculated exactly, but this can be done approximately in

the context of an expansion in powers of �. Indeed, the over-
lap matrix can be expanded as

S = I + 2A�4 + 2B�6 + O��8� , �A13�

which leads to

�S�−1/2 = I − A�4 − B�6 + O��8� . �A14�

In these expressions, the matrices A and B only have nonva-
nishing matrix elements, equal to 1, between configurations
that are the same except on a four-dimer loop �see Fig. 9� or
on one of the three types of six-dimer loops �see Fig. 10�,
respectively.

Similarly, the Hamiltonian matrix H̃ defined by H̃mn
= ��m�H��n�−�Nd�mn, where Nd is the number of dimers,
has an expansion in powers of � that reads

H̃ = C�4 + D�6 + O��8� , �A15�

where the matrices C and D have nonvanishing matrix ele-
ments under the same conditions as matrices A and B.

Since all these expansions start with �4, it is clear that the
first contribution to the diagonal part of Heff will be of order
�8. So, to order �6, the effective Hamiltonian will only have
off-diagonal matrix elements. Moreover, to this order, these

matrix elements are simply given by �m�H̃�n�= ��m�H̃��n�.
They are tabulated in Table I for configurations that are the
same except on a four-dimer loop �Fig. 9� or on one of the
three types of six-dimer loops �Fig. 10�. All these matrix
elements are negative. Among the six-dimer loop terms, the
matrix element of type �3� is the largest, and its ratio to the
four-dimer loop term is 1.34.
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loop-4 loop-6 �1� loop-6 �2� loop-6 �3�

�m�H�n�
−

66��4

162 −
103��6

162 −
24��6

162 −
177��6

162

�−0.0644� �−0.0503� �−0.0012� �−0.0864�
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