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True contact between randomly rough solids consists of myriad individual micro-junctions. While
their total area controls the adhesive friction force of the interface, other macroscopic features,
including viscoelastic friction, wear, stiffness and electric resistance, also strongly depend on the
size and shape of individual micro-junctions. Here we show that, in rough elastomer contacts, the
shape of micro-junctions significantly varies as a function of the shear force applied to the interface.
This process leads to a growth of anisotropy of the overall contact interface, which saturates in
macroscopic sliding regime. We show that smooth sphere/plane contacts have the same shear-
induced anisotropic behaviour as individual micro-junctions, with a common scaling law over four
orders of magnitude in initial area. We discuss the physical origin of the observations in the light
of a fracture-based adhesive contact mechanics model, described in the companion article, which
captures the smooth sphere/plane measurements. Our results shed light on a generic, overlooked
source of anisotropy in rough elastic contacts, not taken into account in current rough contact
mechanics models.

Real contact between rough solids only occurs in ran-
domly distributed small regions of the interface (micro-
junctions) [1, 2]. The adhesion component of the fric-
tion force is proportional to the total area of all micro-
junctions [3–8]. In contrast, many other macroscopic con-
tact properties (e.g. electric and heat resistance [9, 10],
normal and shear stiffnesses [11], wear [12] and viscoelas-
tic friction [13]) also depend on the details of the real
contact morphology, including the number, size, spatial
distribution and shape of individual micro-junctions. In
this context, it is clear that any phenomenon affecting the
real contact morphology of an interface will also affect all
of its above-mentioned physical properties.

The real contact morphology of rough interfaces de-
pends both on loading (e.g. pressure and contact
time [14] and sliding velocity [15]) and system param-
eters (e.g. adhesion between the solids [16] and the spec-
tral contents of the surface roughness [13, 17, 18]) [19].
One of the important descriptors of morphology is the
degree of anisotropy of the interface. Rough contact
anisotropy may occur for various reasons: anisotropic
roughness [20], anisotropic bulk material behaviour or
viscoelasticity in gross sliding regime [15]. The very same
reasons also yield anisotropic contact shapes at the inter-
face between smooth axisymmetric bodies, for instance in
sphere/plane geometry [21–24], thus suggesting common
physical origins.

Interestingly, in such smooth sphere/plane contacts,
another source of anisotropy has been observed: an ini-
tially circular contact becomes less and less axisymmetric

as it is increasingly sheared [7, 25–29]. It is thus natural
to hypothesize that a similar growth of anisotropy may
also occur in multi-contact interfaces under shear. Such
a behaviour would imply that many transport, mechan-
ical or tribological properties of a rough contact are not
intrinsic features of the interface but are actually dynam-
ical quantities that evolve with the amount of shear ap-
plied. In order to test this hypothesis, we further analyze
an extensive series of experiments performed on various
elastomeric multi-contacts, in which the evolution of the
morphology of the real contact is monitored optically as
the shear force is increased from pure normal contact to
gross sliding. All experimental details can be found in [7],
while the main points are summarized here.

We make centimeter-sized contact (Fig. 1a) between a
flat smooth bare glass slider and a flat rough crosslinked
polydimethylsiloxane (PDMS) block (rms roughness
26µm, see a typical Power Spectrum Density in [30]),
under constant normal force P in the range 0.98-6.40 N
(i.e. a ratio p/E∗ in the range 0.0006-0.0043, with p
the average pressure applied, E∗ = E/(1 − ν2), and E
and ν the Young’s modulus and Poisson’s ratio of the
PDMS, respectively). We optionally coat the glass sur-
face, either with grafted PDMS chains or with a layer
of cross-linked PDMS, to change its adhesive and fric-
tional properties. We drive the slider horizontally to-
wards macrosopic sliding, at constant velocity V in the
range 0.05-1 mm/s, while we monitor the tangential
force Q. Simultaneously, we image in situ the con-
tact and access highly contrasted pictures, which we ef-
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FIG. 1. (a) Sketch of the experimental setup. (b) Typical bi-
narized image of a multicontact. P=6.40N. Inset: normalized
autocorrelation function of the image shown in main panel.
The correlation lengths L‖ and L⊥ are obtained through

fitting with e−
√

x2/L‖2+y2/L⊥2
[30]. (c) Concurrent time-

evolutions of Q, L‖ and L⊥ for the interface of (b). ◦: static
friction peak Qs. Error bar: 95% confidence interval. (d)
Evolution of L‖/L⊥ vs Q, for various normal forces.

ficiently binarize using automatic thresholding [30], en-
abling identification of each micro-junction (white spots
in Fig. 1b). In the following, we only present data for
PDMS/glass interfaces: PDMS/crosslinked-PDMS inter-
faces behave similarly, despite a slight initial anisotropy,
while PDMS/grafted-PDMS interfaces show negligible
evolution under shear due to low frictional strength [7].
Also, we observed only a weak effect of V , so we will only
show results for V=0.1mm/s.

To assess whether the degree of anisotropy of our rough
contacts changes under shear, we compute, for each bi-
narized image, its normalized autocorrelation function, a
typical example of which is shown on Fig. 1b (inset). We
then fit this function (caption of Fig. 1) to extract two
correlation lengths, L‖ and L⊥, in the directions paral-
lel and orthogonal to shear loading, respectively. Fig-
ure 1c shows a typical concurrent evolution of the cor-
relation lengths and the tangential force Q, as the inter-
face is driven from its initial state (pure normal force)
to macroscopic sliding. We find that, for Q = 0, L‖
and L⊥ are roughly equal (less than 5% difference), for
all normal forces, showing that the contact is initially
isotropic. As soon as Q increases, L‖ is found to sig-
nificantly decrease, by typically 10-15%, while L⊥ varies
much less. Both correlation lengths stabilize after Q has
reached the static friction peak value, Qs, and the in-
terface has entered a macroscopic sliding regime. We
quantify contact anisotropy by the ratio L‖/L⊥, shown
as a function of the tangential force Q in Fig. 1d. We
find that L‖/L⊥ decreases by ∼7-12%, with larger de-

cays for smaller normal forces. Those results validate
our initial hypothesis (rough contacts undergo a growing
anisotropy under increasing shear) with, at the onset of
sliding, a significantly reduced characteristic length scale
of the real contact along the loading direction.

What is the microscopic origin of this growing
anisotropy? To answer this question, we track the in-
dividual micro-junctions along the shearing experiments
(tracking performed as in [7]) and extract the time-
evolution of their area and shape and the location of their
center of mass. For each tracked micro-junction i, we de-
fine its mean size ai from its area Ai: ai =

√
Ai/π. We

first find that, for all experiments, the values of L‖ and
L⊥ match the mean size of individual micro-junctions
at the interface (Fig. 2a). This suggests that the ob-
served growth of macroscopic anisotropy reflects a change
in shape of each individual micro-junction, rather than
an anisotropic modification of their spatial organisation
along the contact plane. Indeed, in the latter case, the
characteristic length scales measured would have been
larger, reflecting the size of possible clusters of micro-
junctions.

(a)

θi

200 μm

l i

=l i

(c)

(b)

(d)

FIG. 2. (a) Macroscopic correlation lengths along the direc-
tions parallel (◦) and orthogonal (4) to shear, for Q = 0
(blue) and Q = Qs (red), vs average micro-junction size, for
various P . Error bar: 95% confidence interval. (b) •: Micro-
junction size vs norm of its excursion from the initial real
contact pattern, for the experiments of (a). �: data barycen-
ter for each P . Solid line: equality line. (c) Typical micro-
junction image. Solid red (dashed blue) line: contour for Q=0
(Q=Qs). Red ellipse: equivalent ellipse, showing `‖i, `⊥i and
θi. (d) Relative change of `‖i vs relative change of `⊥i, for
individual micro-junctions in the experiments of (a) and (b).
�: data barycenter, as in (b). Solid line: equality line.

To check this hypothesis, we measure
∣∣δi − δ̄∣∣, the dis-

placement of micro-junction i with respect to the av-
erage motion of all micro-junctions, δ̄, at the onset of
sliding (when Q = Qs). Note that δ̄ varies from about
50 to 150µm when the normal force is increased from
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about 1 to 6.4N.
∣∣δi − δ̄∣∣ quantifies how much the ini-

tial pattern of micro-junctions along the interface has
been modified upon shearing. Figure 2b represents ai
as a function of

∣∣δi − δ̄∣∣, for all tracked micro-junctions
in all experiments. The large majority of the points are
above the equality line, meaning that the micro-junctions
move with respect to their initial neighbourhood by less
than their own size. Such an observation indicates that
the micro-junction pattern forming the real contact is
virtually unaffected by shear. Hence, we conclude that
the evolution of the correlation length of the real con-
tact does not originate from the relative displacement of
micro-junctions. This is in contrast with the anisotropy
observed in simulations of frictionless rough viscoelastic
contacts [31].

To demonstrate that the anisotropic changes in macro-
scopic correlation lengths originate from an anisotropic
change in the shape of the individual micro-junctions,
we extract the time evolution of their equivalent ellipse
(the ellipse having the same central second-moments as
the micro-junction, see Fig. 2c and [30]). We define their
characteristic dimensions `‖i and `⊥i as the lengths of
the cords passing through the ellipse center along the
directions parallel and orthogonal to shear, respectively
(note that, due to the angle θi between the major axis of
the ellipse and the shear direction, `‖i and `⊥i are differ-
ent from the major and minor axis length of the ellipse).
Figure 2d shows, for all experiments, the average rela-
tive variation in `‖i, (`‖0i − `‖si)/`‖0i, as a function of
the average relative variation in `⊥i, (`⊥0i − `⊥si)/`⊥0i,
between the initial state (subscript 0) and that reached
when Q = Qs (subscript s). The positive values of both
average relative changes show that, under shear, micro-
junctions tend to shrink in both directions. The fact that
those average points actually lie well above the equality
line (by a typical factor of 2-3), indicates that most of the
micro-junctions have a larger change along than orthogo-
nal to the shear direction. Those results are fully consis-
tent with the observed differential changes in L‖ and L⊥,
indicating that the macroscopic growth of anisotropy es-
sentially originates from a gradual shear-induced shape-
change of all the individual micro-junctions.

Understanding the shear-induced anisotropy of rough
contacts thus amounts to understanding the shape-
changing behaviour of individual micro-junctions. While
this shape change is expected to be related to the lo-
cal tangential force that applies on a micro-junction, the
latter force is not a measurable quantity, which impairs
direct investigation of the local relationship between as-
pect ratio and shear force. In order to get some insight
about this relationship, we analyze complementary ex-
periments on smooth PDMS-sphere/glass-plane contacts
(see [7] for experimental details). The assumption is
that those contacts are good proxies for individual micro-
junctions, with the advantage that the tangential force
applied on them can be accurately measured. Figure 3a

shows the evolution of the contact morphology of such
a smooth sphere/plane contact under shear. The con-
tact initially has a circular shape, which progressively
changes, as the shear force grows, to an ellipse-like shape
oriented orthogonal to the shear direction. This is in
qualitative agreement with our observations on individ-
ual micro-junctions.

1mm

Loading direction

Q=0 Q=Qs
l

l =

(a)
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FIG. 3. (a) Segmented images of a smooth sphere/plane con-
tact (P=1.10N, radius of curvature R=9.42mm), for Q=0
and Qs. Right: definition of `‖ and `⊥. (b) Evolution of
`‖ (◦) and `⊥ (4) vs Q, for smooth sphere/plane contacts,
for various normal forces. Dotted lines: fits of the form of
Eq. (1). (c) Size-reduction parameter ξ vs A0. Disks: smooth
sphere/plane contacts. R=7.0, 9.42 or 24.0mm. Gray crosses:
raw data for micro-junctions within multi-contacts. Squares:
average of raw data divided into 21 classes. Error bars: stan-
dard deviation within each class. Solid line: guide for eyes,
slope -2.

Figure 3b further shows the evolution of the contact
sizes along (resp. orthogonal to) the loading direction, `‖
and `⊥ respectively, as functions of the tangential force
Q. For all normal forces, `⊥ only shows small variations,
while the larger variations of `‖ are well captured by an
empirical quadratic function of the form (dotted lines)

`‖(Q) = `‖0 − ξQ2, (1)

with the fitting parameter ξ being a priori dependent
on all system parameters other than Q. One of the pa-
rameters that we could both change and monitor system-
atically is the initial area of the contact, A0. Figure 3c
(disks) shows the evolution of ξ as a function of A0 for all
experiments on smooth sphere/plane contacts. We find
that ξ(A0) is well captured by a power law ξ ∼ A0

δ, with
δ '-2.
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We now come back to rough contacts and assume
that each micro-junction behaves according to Eq. (1):
`‖i(qi) = `‖0i − ξiq

2
i , with qi the tangential force on

micro-junction i. Following [7], we further assume that,
at the onset of macroscopic sliding (index s), i.e. when
Ai = Asi, then qi = qsi = σAsi, with σ=0.23MPa the
frictional shear strength of the rough PDMS/glass inter-

face. We can thus estimate ξi as: ξi =
`‖0i−`‖si
σ2Asi

2 . In

practice, `‖0i and `‖si (resp. A0i and Asi) are estimated
as the initial and final values of a sigmoid fitted onto
the time evolution of `i (resp. Ai). The resulting val-
ues of ξi are plotted as a function of A0i, as squares in
Fig. 3c. Strikingly, the micro-junction data align with the
smooth sphere/plane contact data (disks). This suggests
a common behaviour, for the growth rate of anisotropy
under shear, over about four orders of magnitude in A0,
from micrometer-scaled micro-junctions within multicon-
tacts to millimeter-scaled sphere/plane contacts. We
thus expect the same physical origin for the behaviours
observed at both ends of the scale range. In this context,
understanding the shear-induced anisotropy of smooth
sphere/plane contacts appears as the first step to unravel
the anisotropy of sheared rough contacts.

From an empirical standpoint, let us compare the law
identified here for the growth of anisotropy of smooth
sphere/plane contacts (Eq. (1)) and that found for the
concurrent reduction of the contact area, A. In [7], we
found that A = A0 − αQ2, with α ∼ A0

γ and γ ' −3/2.
Both laws are reminiscent of the ones found above for `‖
and ξ, respectively. In order to relate the two sets of ob-
servations, we first note that for sphere/plane contacts,
`⊥ remains roughly unchanged under shear, thus suggest-
ing that `⊥ ' `⊥0 at all times. Further assuming that the
contact takes an elliptic shape, the contact area can thus
be written as A = π

4 `‖`⊥ '
π
4 `‖`⊥0. Replacing A in the

area reduction law, dividing by π
4 `⊥0 and remembering

that `‖0 = `⊥0 = 2
√
A0/π, we obtain `‖ = `‖0− 2α√

πA0
Q2.

The latter expression both shows that (i) the area reduc-
tion law and the anisotropy growth law (Eq. (1)) are fully
compatible and that (ii) ξ = 2α√

πA0
, thus explaining why

the exponents δ ' −2 and γ ' −3/2 are found to be re-
lated by δ = γ − 1/2. In this respect, the present results
on shear-induced anisotropy are in good agreement with
previous results on contact area reduction under shear in
the same systems [7]. They further suggest that the evo-
lution of the area of real contact, A, and thus the value
of the static friction force (which is proportional to A),
are actually collateral effects of the shear-induced growth
of anisotropy described here.

A physics-based model of our experiments on smooth
sphere/plane contacts can be found in the companion
article [32], which introduces the first fracture-based
contact mechanics model accounting for shear-induced
anisotropy in adhesive contacts. Once calibrated on one
among the present experiments, that model allows to

quantitatively capture the evolution of the contact shape
in all other experiments without anymore adjustable pa-
rameter. In the model of [32], a vanishing work of adhe-
sion between the contacting surfaces corresponds to an
absence of evolution of the contact shape under shear,
which suggests that adhesion is likely responsible for the
experimentally observed shear-induced anisotropy.

One interesting aspect of the model of [32] is that it can
not only be used on initially circular contacts, like those
relevant for the present sphere/plane experiments, but
also on initially elliptic contacts with a major axis either
parallel or perpendicular to the shear loading direction.
The model predicts that when shear is applied along the
major axis, the ellipse’s eccentricity tends to decrease,
while it increases when shear is orthogonal to the ma-
jor axis [32]. Those observations are consistent with the
fact that `‖ decreases more than `⊥ varies under shear.
Are those results relevant to rough interfaces, in which
micro-junctions have a broad distribution of shapes? To
test this, we come back to the equivalent ellipse for each
micro-junction, already used in Fig. 2. We consider all
514 tracked micro-junctions with an initial area larger
than 2.10−9m2 in the contact under P=6.40N. We then
calculate Spearman rank correlation coefficient [33] be-
tween (i) the set of absolute values of the initial angles,
|θi| (Fig. 3c), between the shear direction and the ma-
jor axis of all micro-junctions and (ii) the corresponding
set of relative changes in eccentricities between Q=0 and
Q=Qs. We find a correlation coefficient of -0.36 with a
p-value of less than 10−16, which indicates a significant
anticorrelation between both quantities. In other words,
angles θi close to 0◦ (resp. ±90◦) statistically correspond
to decreasing (resp. increasing) eccentricity under shear,
in agreement with the theoretical results.

Overall, our results demonstrate that macroscopic
rough elastic contacts can develop significant anisotropy
under shear, although the topographies and material
properties are isotropic. Such anisotropy develops as
soon as shear is applied, well before macroscopic slid-
ing. It originates from a shape change of each micro-
junction within the interface, presumably due to the ex-
istence of adhesive stresses at the interface. Note that, as
already discussed in [7], viscoelasticity is not a likely can-
didate mechanism, because it cannot be responsible for
the sustained anisotropy observed in steady sliding, when
strains in the elastomer are no longer time-dependent.
We emphasize that the anisotropy that we describe is
essentially reversible, in the sense that separating the
two solids and performing again a shear experiment will
lead to the exact same behaviour. This is in strong con-
trast with the persistent contact anisotropy induced ei-
ther by wear (e.g. asymmetric scars left in the contact
zone [34]) or by shear-driven structural changes in the
materials (e.g. in fault rocks [35] and in metals [36]),
which would act as anisotropy sources in a subsequent
sheared contact. Our results pave the way for a possible
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control of the many physical properties affected by con-
tact anisotropy (see introduction), through application
of controlled shear forces on the interface.

SUPPLEMENTAL MATERIAL

Power Spectrum Density (PSD) of the rough
surfaces used

We measured the topography of the rough stainless
steel surfaces used to mold the rough PDMS surfaces.
The measurement was performed using a stylus pro-
filometer (Surfascan Somicronic) with a 2µm radius dia-
mond tip, over a 2mm × 2mm part of the mold. The to-
pography measurement contains 2048×2048 points with
a spatial discretization of 2µm in both the X and Y di-
rections. The PSD was obtained using the online Sur-
face topography Analyzer (http://contact.engineering/).
It corresponds to the Ciso-type of PSD, as defined in
[37]. The PSD (Fig. 4) features a power-law-like part, of
slope about -4.7, limited by two cutoff wavenumbers. The
small wavenumber cutoff, q0, corresponds to about 10−2

µm−1. Below q0, the PSD is essentially flat. The large
wavenumber cutoff is close to the maximum wavenumber
accessible (qmax '2 µm−1) given the spatial resolution
of the measurement (∆x=2µm). 2µm is also the radius
of curvature of the tip used to probe the topography,
so that the large wavenumber cutoff most probably cor-
responds to the geometrical filtering by the finite-sized
probe [38, 39].

FIG. 4. Typical PSD (Ciso-type) of the topography of the
rough surfaces used, obtained using the Surface Topography
Analyzer (http://contact.engineering/).

Image analysis

Threshold determination

In the raw images of our multicontact interfaces, true
contact regions have low grey levels while out-of-contact
regions have higher grey levels. Pixels are thus classified
based on a threshold whose value is determined automat-
ically, as fully explained in the Supporting Information
of [7], and summarized here.

A typical grey level histogram of a raw image is shown
on Fig. 5. This is a bimodal histogram, with a week mode
located at small grey levels corresponding to in-contact
pixels and a large mode corresponding to out-of-contact
ones. This histogram can be considered as a weighted
sum of two component densities modeling the grey level
distribution of respectively in-contact and out-of-contact
pixels. Each component is represented by a parametric
model, namely a distorted Gaussian inspired by the his-
togram of images in absence of contact for out-of-contact
pixels (red curve) and a Gaussian for in-contact pixels
(grey curve). According to Bayes’ rule and the maximum
a posteriori criterion, the optimal threshold is obtained
at the intersection between the two component densities.
In practice, it is obtained by (i) identifying the parame-
ters of the mixture model through a least square fitting
of the histogram and (ii) analytically solving the inter-
section equation.

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

Histogram
Contact
Background

Threshold

FIG. 5. Typical image histogram and its fitting with two
contributions. Inset: definition of the optimal threshold.

For each normal load, the applied threshold was taken
as the mean value of the individual thresholds, deter-
mined as above, of all images along the shearing exper-
iment. This average threshold allowed to obtain seg-
mented images like Fig.1b in the main text.
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FIG. 6. Autocorrelation function of the segmented image cor-
responding to P=0.98N and Q=1.32N. Blue (red) triangles:
cut of the autocorrelation function, through its center, along
the direction parallel (perpendicular) to the shear direction.
Red (purple) solid line: corresponding cut of the exponential
fit of the 2D autocorrelation function (see formula in the cap-
tion of Fig.1b) along the direction parallel (perpendicular) to
the shear direction, used to estimate L‖ (L⊥). Inset: semilog
representation of the same data.

Extraction of individual microjunctions’ properties

Individual microjunctions are identified as the con-
nected components of the segmented images using the
regionprops function in Matlab. The connected compo-
nents are sets of pixels which are connected by at least
one neighbor. We used the 8-connectivity which consid-
ers as connected two pixels having at least one common
edge or corner.

The term ”equivalent ellipse” used in the main text
corresponds, for each individual microjunction, to the el-
lipse having the same central second order moments as
the microjunction. In particular, it has the same centroid
and area as the microjunction. The eccentricity, angle
and axis-lengths used were obtained using the Eccentric-
ity, Orientation, MajorAxisLength and MinorAxisLength
properties of the regionprops function in Matlab.

Fit of the autocorrelation function

Figure 6 shows the cuts of a typical autocorrelation
function of a segmented image along the directions par-
allel (line y=0) and orthogonal to shear (line x=0). The
linear trend observable in semilog representation (inset)
justifies the relevance of the choice of an exponential fit
(solid lines) to extract the correlation lengths L‖ and
L⊥.
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