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Abstract

Discovery of the chronological or geographical distribution of collections of historical text can be more 
reliable when based on multivariate rather than on univariate data because multivariate data provide a 
more complete description. Where the data are high-dimensional, however, their complexity can defy 
analyis using traditional philological methods. The first step in dealing with such data is to visualize it 
using graphical methods in order to identify any latent structure. If found, such structure facilitates 
formulation of hypotheses which can be tested using a range of mathematical and statistical methods. 
Where, however, the dimensionality is greater than 3, direct graphical investigation is impossible. The 
present discussion presents a roadmap of how this obstacle can be overcome, and is in three main 
parts: the first part presents some fundamental data concepts, the second describes an example 
corpus and a data set derived from it, and the third outlines two approaches to visualization of high-
dimensional data: dimensionality reduction and cluster analysis.
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INTRODUCTION

Discovery of the chronological or geographical distribution of collections of historical 
text can be more reliable when based on multivariate rather than on univariate data 
because, assuming that the variables describe different aspects of the texts in 
question, multivariate data provide a more complete description. Where the 
multivariate data are high-dimensional, however, their complexity can defy analyis 
using traditional philological methods.  The first step in dealing with such data is to 
visualize it using graphical methods in order to identify any latent structure. If found, 
such structure facilitates formulation of hypotheses which can be tested using a range
of mathematical and statistical methods. Where, however, the dimensionality is 
greater than 3, direct graphical investigation is impossible. The present discussion 
presents a roadmap of how this obstacle can be overcome. Exemplification is based 
on data abstracted from a corpus of English historical texts with a known temporal 
distribution, allowing the efficacy of the methods covered in the discussion to be 
demonstrated.

The discussion is in three main parts: 

1. The first part presents some fundamental data concepts: its nature, its 
representation using vectors and matrices, and its interpretation in terms of concepts 
of vector space and manifold.

2. The second part describes the corpus and the data abstracted from it.

3. The third part outlines approaches to visualization of high-dimensional data using 
the concepts from (1) applied to (2). These approaches are of two types.

• The first, dimensionality reduction, reduces high-dimensional data to 
dimensionality 3 or less to enable graphical representation; the methods 
presented are (i) variable selection based on variance and (ii) principal 
component analysis. 

• The second, cluster analysis, represents the structure of data in high-
dimensional space directly without dimensionality reduction



1.FUNDAMENTAL DATA CONCEPTS

1.1 Data 

‘Data’ is the plural of ‘datum’, the past participle of Latin ‘dare’, to give, and means 
things that are given. A datum is therefore something to be accepted at face value, a 
true statement about the world. What is a true statement about the world? That 
question has been debated in philosophical metaphysics and epistemology since 
Antiquity and probably before, and, in our own time, has been intensively studied by 
the disciplines that comprise cognitive science [Audi, 2010]. The issues are complex, 
controversy abounds, and the associated academic literatures are vast – saying what 
a true statement about the world might be is anything but straightforward. We can’t go
into all this, and so will adopt the attitude prevalent in most areas of science: data are 
abstractions of what we perceive using our senses, often with the aid of instruments.

Data are ontologically different from the world. The world is as it is; data are an 
interpretation of it for the purpose of scientific study. The weather is not the 
meteorologist’s data – measurements of such things as air temperature are. A text 
corpus is not the linguist’s data – measurements of such things as lexical frequency 
are. Data are constructed from observation of things in the world, and the process of 
construction raises a range of issues that determine the amenability of the data to 
analysis and the interpretability of the analytical results. The importance of 
understanding such data issues to visualization and numerical analysis can hardly be 
overstated [Jain, 2010]. On the one hand, nothing can be discovered that is beyond 
the limits of what the data say about the world. On the other, failure to understand and
where necessary to emend relevant characteristics of data can lead to results and 
interpretations that are distorted or even worthless; for general discussions of data 
and data transformation see [Tan et al., 2006; Izenman, 2008; Moisl, 2015].

Given that data are an interpretation of some domain of interest, what does such an 
interpretation look like? It is a description of objects in the domain in terms of 
variables. A variable is a symbol, that is, a physical entity to which a meaning is 
assigned by human interpreters. The variables chosen to describe a domain 
constitute the conceptual template in terms of which the domain is interpreted and on 
which the proposed analysis is based. If the analysis is to be valid with respect to the 
domain, therefore, it is crucial that the set of selected variables be adequate in 
relation to the research question, where adequacy is understood as follows: 

• The variables should represent all and only those aspects of the domain which 
are relevant to the research question, that is, relevant aspects of the domain 
should not be unrepresented in the set of variables, and irrelevant aspects 
should not be represented. Failure to include relevant aspects in the data 
renders the description of the domain incomplete and thereby self-evidently 
compromises the validity of analysis based on it; inclusion of irrelevant aspects
is less serious but introduces potentially confounding factors into an analysis. 

• Each variable should be independent of all the others in terms of what it 
represents in the domain, that is, the variables should not overlap with one 
another in what they describe in the domain because such overlap describes 
the same thing multiple times and can thereby skew the analysis by 
overemphasizing the importance of some aspects of the domain over others. 

In general, adequacy so defined cannot be guaranteed in any given research 
application because neither relevance nor independence is always obvious. Any 
domain can be described by an essentially arbitrary number of finite sets of variables; 
selection of one particular set can only be done on the basis of personal knowledge of
the domain and of the body of scientific theory associated with it, tempered by 



personal discretion. In other words, there is no algorithm for choosing an adequate 
set of variables.

Once variables have been selected, a value is assigned to each of them for each of 
the objects of interest in the domain. This value assignment is what makes the link 
between the researcher’s conceptualization of the domain in terms of the variables 
s/he has chosen and the actual state of the world, and allows the resulting data to be 
taken as a valid representation of the domain based on empirical observation. The 
type of value assigned to any given variable depends on its meaning. The 
fundamental distinction of types is between quantitative, that is, numerical values, and
qualitative ones such as binary ‘yes / no’ or categorial ‘poor / adequate / good / 
excellent’ [ Kaufman and Rousseeuw, 1990; Jain and Dubes, 1988; Jain et al., 1999; 
Gan et al., 2007; Xu and Wunsch 2009]. This discussion concentrates on quantitative 
variables because the majority of analytical applications are defined relative to them. 

1.2 Data representation

A standard way of representing data for numerical analysis is via the mathematical 
concepts of vector and matrix [Strang, 2016]. 

• Vector

If they are to be analyzed using computational methods, the descriptions of the 
entities in the domain of interest must be mathematically represented. A 
standard way of doing this is the vector. A vector is a sequence of n numbers 
each of which is indexed by its position in the sequence. 

Figure 1. Vector

Figure 1 shows n = 6 real-valued numbers, where the first number v(1) is 2.1, 
the second v(2) is 5.1, and so on.

• Matrix

Given some number m of objects, each of which is described by an n-
component vector, the set of vectors is organized as an m x n matrix.



Table 1. Matrix

Table 1 shows a data matrix in which each of m = 24 rows, labelled tlsg 01 - 
tlsn07, is a speaker in a sociolinguistic study, and each speaker is described by
his or her frequency of usage of  n = 12 phonetic segments which label the 
columns.

1.3 Data interpretation

• Vector spaces

In colloquial usage, the word ‘space’ denotes a fundamental aspect of how 
humans understand their world: that we live our lives in a three-dimensional 
space, that there are directions in that space, that distances along those 
directions can be measured, that relative distances between and among 
objects in the space can be compared, that objects in the space themselves 
have size and shape which can be measured and described. The earliest 
geometries were attempts to define these intuitive notions of space, direction, 
distance, size, and shape in terms of abstract principles which could, on the 
one hand, be applied to scientific understanding of physical reality, and on the 
other to practical problems like construction and navigation. Basing their ideas 
on the first attempts in ancient Mesopotamia and Egypt, Greek philosophers 
from the sixth century BCE onwards developed such abstract principles 
systematically, and their work culminated in the geometrical system attributed 
to Euclid (floruit ca. 300 BCE), which remained the standard for more than two 
millennia thereafter [Tabak, 2011].

In the nineteenth century CE the validity of Euclidean geometry was questioned
for the first time both intrinsically and as a description of physical reality. It was 
realized that the Euclidean was not the only possible geometry, and alternative 
ones were proposed in which, for example, there are no parallel lines and the 
angles inside a triangle always sum to less than 180 degrees. Since the 
nineteenth century these alternative geometries have continued to be 
developed without reference to their utility as descriptions of physical reality, 
and as part of this development ‘space’ has come to have an entirely abstract 
meaning which has nothing obvious to do with the one rooted in our intuitions 
about physical reality. A space under this construal is a mathematical set on 
which one or more mathematical structures are defined, and is thus a 
mathematical object rather than a humanly-perceived physical phenomenon 
[Lee, 2010]. The present discussion uses ‘space’ in the abstract sense; the 
physical meaning is often useful as a metaphor for conceptualizing the abstract
one, though it can easily lead one astray.

Vectors have a geometrical interpretation [Strang, 2016]. 

◦ The dimensionality n of a vector defines an abstract vector space: two-
component vectors define a two-dimensional space, three-component 
vectors a three-dimensional space, and so on.

◦ The values in the vector components are coordinates in the space.

◦ The vector itself is a point at those coordinates

This is exemplified in Figure 2.



Figure 2. Two and three dimensional vector spaces

• Manifolds

It is possible to have more than one vector in a vector space. For a matrix with 
m rows, there will be m points in the space, and those m points define a shape 
in the space. That shape is a manifold. For example, Figure 3 shows a 
manifold in 2-dimensional space:

Figure 3. Data manifold in 2-dimensional space

The shape in the case of Figure 3 is a plane, but many other shapes are 
possible; an example is given in Figure 4.

Figure 4. Nonlinear manifold in 3-dimensional space

Figures 3 and 4 exemplify a fundamental distinction between two types of 
manifold shape, linear and nonlinear, which reflects a corresponding distinction 
in the characteristics of natural processes and the data that describe them. As 
their names indicate, linear manifolds are straight lines and flat planes, and 
nonlinear ones are curved lines and surfaces. In the nonlinear case the 



complexity of curvature can range from simple curved lines and planes to 
highly convoluted fractal shapes. 

What has been said about manifolds in two and three-dimensional spaces 
applies straightforwardly to arbitrary dimensionality n; for n > 3 manifolds are 
referred to as hypercurves, hyperplanes, and hypersurfaces, as appropriate. 
Hyper-object shapes cannot be directly visualized or even conceptualized 
except by analogy with two and three dimensional ones, but as mathematical 
objects they are unproblematical.

The concepts of vector, matrix, vector space, and manifold are standardly used 
across the sciences to represent and interpret data. For a domain of interest 
containing m objects such as historical texts, each vector represents a single text. 
Each text is described in terms of one or more variables, and every variable is 
represented by a different vector component. The collection of n-dimensional text-
vectors constitutes the data. Geometrically, those data exist in an n-dimensional 
vector space and constitute a data manifold. The manifold is the shape of the data.

2. CORPUS AND DATA

The corpus used for exemplification here is a collection of Old English, Middle English,
and Early Modern English texts, listed in Table 2, which were chosen because their 
chronological distribution is well known. The aim is to show how the methods for 
visualization of high-dimensional data presented later on can identify that distribution.

Figure 6: The example corpus

Figure 6: The corpus

Table 2. Corpus

Spelling is used as the basis for inference of the relative chronology of the above texts
on the grounds that it reflects the phonetic, phonological, and morphological 
development of English over time. The variables used to represent spelling in the texts
are letter pairs: for 'the cat sat', the first letter pair is (t,h), the second (h,e), the third (e,
[space]), and so on. All distinct pairs across the entire text collection were identified, 
and the number of times each occurs in each text was counted and assembled in a 
matrix, henceforth M. A fragment of M is shown in Table 3, where the rows are the 
texts and the columns the letter-pair variables. Note that it is very high-dimensional, 
and cannot be graphically represented directly.



Table 3. Frequency matrix M abstracted from the corpus

3. VISUALIZATION OF HIGH-DIMENSIONAL DATA

3.1 Dimensionality reduction

One approach to visualization of high-dimensional data is to reduce its dimensionality 
to 3 or less so that the distribution of data objects can be graphically displayed directly
by plotting. There are various ways to do this. What follows describes two of the most 
intuitively accessible.

3.1.1 Variable selection

The simplest way of reducing dimensionality is to select the two or three most 
important variables in the data, discarding the rest. This involves throwing away the 
information contained in the discarded variables, which may or may not be justifiable 
since it may be that the two or three retained variables are not sufficient adequately to
describe the domain of interest. 

To select the most important variables, a criterion of importance is required. A useful 
criterion is variability. Consider two limiting cases: (i)  All the objects in the domain of interest
are the same, and (ii)  All the objects in the domain of interest are completely different. In 
neither case is the domain structured, and there is nothing further to say about it. There is 
interesting structure when there is some sort of pattern of similarities and differences 
between and among its constituent objects. The limiting cases rarely obtain in real-
world domains, that is, there is usually some structure, and the similarities and 
differences are reflected in the variables that describe the domain. Variables whose 
values show little or no variability do little or nothing to distinguish similarities and 
differences among objects. Variables with large variability do. The most important 
variables are therefore those with the greatest variability. So:

• Calculate the variance of each column in the data matrix  

• Sort the columns on decreasing order of variance magnitude.

• Select the two or three columns with the largest variances. 

• Plot them.

Applying this to M, Figure 5 is a plot of sorted variances.



Figure 5. Variances of the columns of M, sorted in descending order of magnitude

Most of the variance is concentrated in the relatively few variables on the left. For a 
clearer view, a plot of the column variances of the 200 highest-variance columns of M 
in descending order is given in Figure 6.

Figure 9: The 200 highest-magnitude variances in Figure 8

Figure 6.  200 highest-variance columns of M

A  fragment of M with its columns sorted by variance in Table 4 shows the highest-
variance variables.



Table 4. The columns of M sorted in decreasing order of variance

The two highest-variance variables are selected for scatter plotting. That plot is based 
on 21% of the variability in the data; this percentage is calculated as follows:

1. Calculate the total variance in the data by adding the variances of all 841 
columns of M.

2.  Calculate the variance of the selected variables by adding them.

3. Selected variable variance / total data variance = 21%

Using just two selected variables representing only 21% of the variability in the data, 
scatter-plot them, as in Figure 7.

Figure 7. Plot of the two highest-variance variables in M, with corresponding text labels

This plot gives a good indication of the known chronological structure of the text 
corpus. There is, however, no guarantee that so low a percentage of the total data 



variance will always give accurate results. In the present case one could extend to a 
3-dimensional scatter plot, based on a higher percentage of the variance, but with that
the scope of variable selection is exhausted. What's required is a way of using more 
of the data variability while retaining the graphability of two or three dimensions. A 
method for doing this follows.

3.1.2 Variable redefinition

The foregoing discussion of data creation noted that, because selection of variables is
at the discretion of the researcher, it is possible that the selection in any given 
application will be suboptimal in the sense that there is redundancy among them, that 
is, that they overlap with one another to greater or lesser degrees in terms of what 
they represent in the research domain. Where there is such redundancy, 
dimensionality reduction can be achieved by eliminating the repetition of information 
which redundancy implies, and more specifically by replacing the researcher-selected 
variables with a smaller set of new, non-redundant variables. Slightly more formally, 
given an n-dimensional data matrix, dimensionality reduction by variable redefinition 
assumes that the data can be described, with tolerable loss of information, by a 
manifold in a vector space whose dimensionality is lower than that of the data, and 
proposes ways of identifying that manifold. 

For example, data for a study of student performance at university might include 
variables like personality type, degree of motivation, score on intelligence tests, 
scholastic record, family background, class, ethnicity, age, and health. For some of 
these there is self-evident redundancy: between personality type and motivation, say, 
or between scholastic record and family background, where support for learning at 
home is reflected in performance in school. For others the redundancy is less obvious
or controversial, as between class, ethnicity, and score on intelligence tests.  The 
researcher-defined variables personality type, motivation, scholastic record, and score
on intelligence tests might be replaced by a ‘general intelligence’ variable based on 
similarity of variability among these variables in the data, and family background, 
class, ethnicity, age, and health with a ‘social profile’ one, thereby reducing data 
dimensionality from nine to two. 

Clearly, if there is little or no redundancy in the user-defined variables then there is 
little or no point to variable redefinition. The first step must, therefore, be to determine 
the level of redundancy in the data of interest to see whether variable extraction is 
worth undertaking; for details on how to do this see [Moisl, 2015, ch. 3]. 

The standard method for variable redefinition is principal component analysis (PCA). 
The global variance of a data matrix is the sum of the variances of all the variable 
columns. Dimensionality reduction using PCA is based on the idea that most of the 
global variance of data with n variables can be expressed by a smaller number k < n 
of newly-defined variables. These k new variables are found using the shape of the 
manifold in the original n-dimensional space.  The mathematics of how PCA works are
too complex for detailed exposition here; for the technicalities see the standard 
accounts by [Jolliffe, 2002] and [Jackson, 2003] and, more briefly, [Bishop, 1995, 310 
ff.], [Everitt and Dunn, 2001, 48 ff.], [Tabachnick and Fidell, 2007, Ch.13], [Izenman, 
2008, Ch. 7], [Moisl, 2015, ch. 3]. Instead, an intuitive graphical explanation is given.

Figure 8a shows a manifold of data points plotted in a 2-dimensional space defined by
the researcher-specified variables v1 and v2. 



Figure 8. Manifold and two principal components

The main direction of variability in 8a can be visually identified; the line of  best fit 
drawn through the manifold in that direction, as in 8b, is the first new variable w1: it 
captures most of the variance in the manifold, and its length is the  amount of 
variance that it represents. A second line of best fit is now drawn at right angles to the 
first, as in 8c, to  capture the remaining variance. This is the second new variable w2, 
and its length is again the amount of variance  it represents. We now have two new 
variables in addition to the two original ones. What about dimensionality reduction? 
Note the disparity in the lengths of w1 and w2. It's clear that w1 captures almost all 
the variance in the manifold and w2 very little, and  one might conclude that w2 can 
simply be omitted with minimal loss of information. Doing so reduces the 
dimensionality of the original data from 2 to 1.  

This idea extends to any dimensionality. Using it, PCA is a general method for  
dimensionality reduction of n-dimensional data, where n is any integer. The first 
variable represents the largest direction of variability in the data manifold, the second 
variable represents the second-largest direction of variability in the manifold, the third 
represents the third-largest direction, and so on; the first two or three variables can be
visualized by scatter plotting, and that visualization will represent the most important 
directions of variability in the original data.

PCA was applied to the full 841-dimensional data matrix M, yielding a new matrix M' 
containing 841 new variables. The variances of these new variables are plotted in 
descending order of magnitude in Figure 9.
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Figure 9. Variances of 841 variables of M' in descending order of magnitude

To see this distribution more clearly, the 12 highest-variance variables are shown in 
Figure 10.

Figure 10. The 12 highest-variance variables in M'

Almost all the variability is in the first 4 variables. In fact, the first two variables contain
69% of the variability, as compared to 21% using variable selection. Figure 11 is a 
scatter plot of these two, with associated text names.

Figure 11: Scatter plot of the two highest-variance variables derived via PCA, with associated text 
names

As with variable selection, the spatial distribution of the texts is consonant with their 
independently-known chronological structure, but, because it is based on PCA-
transformed data which has preserved a substantially greater amount of the variance 
in the original data, its reliability is enhanced.
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3.2 Cluster analysis 

The alternative to dimensionality reduction of high-dimensional data for visualization is
cluster analysis.  The following account is in three main parts: the first attempts to 
define the notion of 'cluster', the second briefly surveys the varieties of cluster 
analysis, and the third describes the most frequently used variety. The clustering 
literature is extensive. The more important references include [Jain and Dubes, 1988], 
[Kaufman and Rousseeuw, 1990], [Arabie and Hubert, 1996], [Gordon, 1999], [Gan et 
al., 2007], [Xu and Wunsch, 2009], [Everitt et al., 2011], [Mirkin, 2013]; for further 
references see [Moisl, 2015, ch. 4].

3.2.1 Cluster definition

In cluster analytical terms, identification and visualization of structure in data is 
identification of clusters. To undertake such identification it is necessary to have a 
clear idea of what a cluster is, and this is provided by an innate human cognitive 
capability. Human perception is optimized to detect patterning in the environment 
[Köppen, 2000; Peissig and Tarr, 2007], and clusters are a kind of pattern. 
Contemplation of a rural scene, for example, reveals clusters of trees, of  farm 
buildings, of sheep. Looking up at the night sky reveals clusters of stars. And, closer to
present concerns, anyone looking at the data plot in Figure 12 immediately sees the 
clusters. A casual observer looking at the scatterplots would say that 12a shows a few 
small concentrations of points but is essentially random, that 12b has three clearly 
identifiable clusters of roughly equal size, that 12c has two clusters of unequal size the
smaller of which is in the lower-left corner of the plot and the larger elongated one in 
the upper right, and that 12d has two intertwined, roughly semi-circular clusters, all 
embedded in a random scatter of points. That casual observer would, moreover, have 
been able to make these identifications solely on the basis of innate pattern 
recognition capability and without recourse to any explicit definition of the concept 
‘cluster’.

Figure 12. A selection of clusters in 2-dimensional space

Direct perception of pattern is the intuitive basis for understanding what a cluster is, 
and is fundamental in identifying the cluster structure of data, but it has two main 
limitations. One limitation is subjectivity and consequent unreliability. Apart from the 
obvious effect of perceptual malfunction in the observer, this subjectivity stems from 
the cognitive context in which a given data distribution is interpreted: the casual 



observer brings nothing to the observation but innate capability, whereas the 
researcher who compiled the data and knows what the distribution represents brings 
prior knowledge which potentially and perhaps inevitably affects interpretation. In 
Figure 12c, for example, does the larger cluster on the upper right contain two 
subclusters or not? What would the answer be if it were known that the points 
represent cats in the upper part of the cluster and dogs in the lower? The other 
limitation is that reliance on innate perceptual capability for cluster identification is 
confined to what can be perceived, and in the case of data this means dimensionality 
of 3 or less for graphical representation; there is no way of perceiving clusters in data 
with dimensionality higher than that directly. The obvious way to address these 
limitations is by formal and unambiguous definition of what a cluster is, relative to 
which criteria for cluster membership can be stated and used to test perceptually-
based intuition on the one hand and to identify non-visualizable clusters in higher-
dimensional data spaces on the other. Textbook and tutorial discussions of cluster 
analysis uniformly agree, however, that it is difficult and perhaps impossible to give 
such a definition, and, if it is possible, that no one has thus far succeeded in 
formulating it. In principle, this lack deprives cluster analysis of a secure theoretical 
foundation. In practice, the consensus is that there are intuitions which, when 
implemented in clustering methods, give conceptually useful results, and it is on these 
intuitions and implementations that contemporary cluster analysis is built. The 
fundamental intuition underlying cluster analysis is that data distributions contain 
clusters when the data objects can be partitioned into groups on the basis of their 
relative similarity such that the objects in any group are more similar to one another 
than they are to objects in other groups, given some definition of similarity. 

3.2.2 Varieties of cluster analysis

Given an m x n data matrix D, cluster analysis works by partitioning the m row vectors 
into disjoint subsets in accordance with their relative similarity in n-dimensional space. 
Numerous methods are available, and they are standardly divided into two categories 
in accordance with the kind of output they generate: hierarchical and nonhierarchical. 
Nonhierarchical methods partition the m row vectors of D into a set of clusters C = 
c(1), c(2)...c(k) such that the members of cluster c(i), for i = 1...k, are more similar to 
one another than they are to any member of any other cluster, on the basis of some 
definition of similarity. Hierarchical methods regard the m row vectors of D as a single 
cluster C and recursively divide each cluster into two subclusters each of whose 
members are more similar to one another than they are to members of the other on 
the basis, again, of some definition of similarity, until no further subdivision is possible: 
at the first step C is divided into subclusters c1 and c2, at the second step c1 is 
divided into two subclusters c1.1, c1.2, and c2 into c2.1, c2.2, at the third step each of 
c1.1, c1.2, c2.1, c2.2 is again subdivided, and so on. The succession of subdivisions 
can be and typically is represented as a binary tree, and this gives the hierarchical 
methods their name. Both hierarchical and nonhierarchical methods partition the data; 
the difference is that the nonhierarchical ones give only a single partition into k 
clusters, where k is either pre-specified by the user or inferred from the data by the 
method, whereas the hierarchical ones offer a succession of possible partitions and 
leave it to the user to select one of  them. These two categories therefore offer 
complementary information about the cluster structure of data.

3.2.3 Hierarchical cluster analysis

Hierarchical analysis is the most frequently used variety, and is described in what 
follows. Construction of a hierarchical cluster tree is a two-step process: given an m x 
n data matrix, the first step abstracts a table of proximities of each possible pairing of 
the m rows in the n-dimensional space, and the second then constructs the tree by 
successive transformations of the proximity table.

Numerous distance metrics exist [Deza and Deza, 2009, chs. 17, 19]. For present 



purposes these are divided into two types: (i) linear metrics, where the distance 
between two points in a manifold is taken to be the length of the straight line joining 
the points, or some approximation to it, without reference to the shape of the manifold,
and (ii) nonlinear metrics, where the distance between the two points is the length of 
the shortest line joining them along the surface of the manifold and where this line can
but need not be straight. This categorization is motivated by the earlier observation 
that manifolds can have shapes which range from perfectly flat to various degrees of 
curvature. Where the manifold is flat, as in Figure 13a, linear and nonlinear measures 
are identical. Where it is curved, however, linear and nonlinear measurements can 
differ to varying degrees depending on the nature of the curvature, as shown in 
Figures 13b and 13c.

Figure 13. Linear and nonlinear distances on flat and curved manifolds

The usual metric used for hierarchical cluster analysis is Euclidean distance, which is 
linear, but where a data manifold is known to be curved, more accurate results can be 
expected from a nonlinear metric. Euclidean distance is the shortest distance between
two points i and j calculated by the formula in Formula 1.

Formula 1. Euclidean distance

This is just the Pythagorean rule known, one hopes, to all schoolchildren, that the 
length of the hypotenuse of a right-angled triangle is the square root of the sum of the 
squares of the lengths of the other two sides. For n = 2, M(i) = [6,8] and M(j) = [2,4], 
the Euclidean distance d(M(i), M(j)) is calculated as in Figure 14, and it is the shortest 
distance between the two points.

Figure 14. Calculation of Euclidean distance

A Euclidean distance matrix is abstracted from an m x n matrix by applying Formula 1 
to each possible pairing of the m rows. Applied to M, repeated as Table 5 for 



convenience, the formula generates the matrix in Table 6.

Table 5. Data matrix M

Table 6. Proximity matrix for M

The distance from Exodus to Sawles Warde is 1680.2, from Exodus to King James is 
2447.6, from Sawles Warde to King James 2159.4, and so on. Note that the distance 
from a text to itself is 0, which accounts for the zero-diagonal, and that the matrix is 
symmetrical about that diagonal, since the distance from any text A  to any text B is 
the same as the distance from text B to A. The absolute values of the distances do not
matter. What matters is their relative magnitude: in terms of spelling, one expects the 
distance from the Old English Exodus to the Middle English Sawles Warde to be 
smaller than to the Early Modern English King James Bible.

The proximity matrix is now used to construct a cluster tree that describes the relative 
distances of all the row vectors / data objects from one another. The construction 
algorithm is too complicated to describe here; for details see [Moisl, 2015, ch. 4]. The 
result for the proximity matrix in Table 6 is shown in Figure 15.

Figure 23:

Figure 23: XX



Figure 15. Hierarchical analysis based on proximity matrix in Table 6

As with the foregoing methods, the cluster tree gives a visual representation 
consistent with what is independently known of the chronological structure of the 
corpus.

The main and considerable advantage of hierarchical clustering is that it provides an 
exhaustive and intuitively accessible description of the proximity relations among data 
objects, and thereby provides more information than a simple partitioning of the data 
generated by the non-hierarchical methods covered thus far. It has also been 
extensively and successfully used in numerous applications, and is widely available in 
software implementations. There are, however, associated problems. Two of the most 
important are:

• Tree selection: There are various definitions of cluster membership which, in 
the literature, go by names like 'single linkage', 'complete linkage', 'average 
linkage', and 'Ward's method', among others. When used for tree construction, 
these definitions can and often do generate different structures with respect to 
the same data. Where this is found to be the case, the obvious questions are: 
which tree should be preferred, and why? The traditional answer is that an 
expert in the domain from which the data was taken should select the analysis 
which seems most reasonable in terms of what s/he knows about the research 
area. The problem with this is that it is subjective. It runs the risk of reinforcing 
preconceptions and discounting the unexpected and potentially productive 
insights which are the prime motivation for use of cluster analysis in hypothesis 
generation. The alternative is to resort to cluster validation methods, for details 
of which see [Moisl, 2015, ch. 4].

• How many clusters? Given that a hierarchical cluster tree provides an 
exhaustive description of the proximity relations among data objects,how many 
clusters do the data ‘really’ contain? As already noted, it is up to the user to 
decide. Looking at the tree in Figure 23 the answer seems obvious: there are 
two main clusters, one containing the Old and Early Middle English texts, and 
the other the Later Middle English and Early Modern English ones, with further 
subdivision in each. What about a structure like the one in Figure 16, however? 

Figure 16. Different 'cuts' of the same tree

There are no obvious main clusters, and depending on where one 'cuts' the tree,
two, three, four or more clusters can be identified. In 16a the cut is placed so that
subclusters below a threshold of 100 are not distinguished, yielding two clusters. 



In 16b the cut is at 90, yielding three clusters, in 16c there are four clusters for a 
threshold of 73, and in 16d there are five. Which is the best cut, that is, the one 
that best captures the cluster structure of the data? There have been attempts to
formalize selection of a best cut, but the results have been mixed, and the 
current position is that the best cut is the one that makes most sense to experts 
in the subject from which the data comes.

CONCLUSION

The foregoing discussion hardly scratches the surface of graphical representation of 
high dimensional data. There are numerous other dimensionality reduction and 
clustering methods, and an important topic that was briefly mentioned but whose 
implications have hardly been addressed in corpus-based linguistics is the possibility 
that the data manifold is nonlinear.
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