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Abstract

This paper considers the problem of inference in a linear regression model with outliers

where the number of outliers can grow with sample size but their proportion goes to 0.

We apply the square-root lasso estimator penalizing the ℓ1-norm of a random vector which

is non-zero for outliers. We derive rates of convergence and asymptotic normality. Our

estimator has the same asymptotic variance as the OLS estimator in the standard linear

model. This enables to build tests and confidence sets in the usual and simple manner.

The proposed procedure is also computationally advantageous as it amounts to solving

a convex optimization program. Overall, the suggested approach constitutes a practical

robust alternative to the ordinary least squares estimator.
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1 Introduction

This paper considers a linear regression model with outliers. The statistican observes

a dataset of n i.i.d. realizations of an outcome scalar random variables yi and a random

vector of covariates xi with support in R
K , such that Σ = E[xix

⊤
i ] is positive definite. We

place ourselves in the Huber’s contamination framework, that is the distribution of (yi, xi)

is a mixture between two distributions. With probability 1/2 < 1 − p ≤ 1, it corresponds

to a linear regression model with conditionally homoscedastic errors, that is there exists

β ∈ R
K and scalar i.i.d. random variables ǫi such that yi = x′

iβ + ǫi, E[xiǫi] = E[ǫi] = 0 and

0 < var[ǫ2i |xi] = σ2 < ∞. With probability p, the distribution is unspecified. An observation

(yi, xi) is called an outlier when it was generated according to this unspecified distribution G.

The goal of the statistician is to estimate the parameter β. This model can be rewritten as

yi = x⊤
i β + αi + ǫi ∀i = 1, . . . , n, (1)

where αi is scalar random variable which is equal to 0 when an observation is not an outlier

and which dependence with xi and ǫi is left unrestricted. The probability that αi is different

from 0 is hence, p = P (αi 6= 0) = E [||α||0 /n]. We derive estimation results in an asymptotic

where p goes to 0 as a function of the sample size n.

This model can represent various situations of practical interest. First, the statistician

could be interested in β because it corresponds to the slope of the best linear predictor of

yi given xi for the observations for which αi = 0. These coefficients are of interest because,

in the presence of outliers, the slope of the best linear predictor of yi given xi for the whole

population may differ greatly from β and hence a statistical analysis based on the whole

population may lead to a poor prediction accuracy for the large part of the population that

are not outliers.

Second, if β is given a causal interpretation, then it represents the causal effect of the

regressors for the population of "standard" individuals. That is, for instance, if the aim is

evaluate a program, it could be that the treatment effect is negative for most of the population

but strongly positive for a small fraction of the individuals, the outliers. The policy maker

may not be willing to implement a policy that has a negative effect on most of the population,

giving interest to a statistical procedure that estimates the treatment effect of the majority

of the population robustly.

Finally, β could represent the true coefficient of the best linear predictor of yi given xi in a

measurement errors model. Indeed, assume that our population follows the model ỹi = x̃iβ+ǫ̃i

with E[x̃iǫ̃i] = 0 but that we do not observe (ỹi, x̃i) but (yi, xi), this fits in our framework
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with ǫi = ǫ̃i and

αi = yi − ỹi + (x̃i − xi)β.

Hence, αi allows for both measurement errors in xi - called outliers in the x-direction - and in

yi, the outliers in the y-direction, for a small fraction of the population, see Rousseeuw and Leroy

(2005) for a precise discussion.

This paper develop results on the estimation of β when the vector α = (α1, . . . , αn)⊤

is sparse in the sense that p goes to 0 with n. We rely on a variant of the square-root

lasso estimator of Belloni et al. (2011a) which penalizes the ℓ1-norm of the vector α. The

advantages of our estimator are that the penalty parameter does not depend on the variance

of the error term and is computationally tractable. If the vector α is sparse enough, we show

that our estimator is
√
n-consistent and asymptotically normal. It has the same asymptotic

variance as the OLS estimator in the standard linear model without outliers.

Related literature. This paper is connected to at least two different research fields.

First, it draws on the literature on inference in the high-dimensional linear regression model

and closely related variants of this model. A series of papers from Belloni et al. (2011b, 2012,

2014a,b, 2016, 2017) study a variety of models ranging from panel data models to quantile

regression in an high-dimensional setting. Gautier et al. (2011) proposes inference procedures

in an high-dimensional IV model with a large number of both regressors and instrumental

variables. Javanmard and Montanari (2014); Van de Geer et al. (2014); Zhang and Zhang

(2014) suggest debiasing strategies of the lasso estimator to obtain confidence intervals in

a high-dimensional linear regression model. We borrow from this literature by using an ℓ1-

penalized estimator and complete existing research by deriving inference results for the linear

regression model with outliers.

Next, our work is related to the literature on robust regression. For detailed accounts of

this field, see Rousseeuw and Leroy (2005); Hampel et al. (2011); Maronna et al. (2018). The

literature identifies a trade-off between efficiency and robustness, as explicited below. Indeed,

M -estimators (such as the Ordinary Least-Squares (OLS) estimator) are efficient when data

is generated by the standard linear model without outliers and Gaussian errors but this

comes at the price of a breakdown point - the maximum proportion of the data that can

be contaminated without the estimator performing arbitrarily poorly - of 0. By contrast, S-

estimators such as the Least Median of Squares (LMS) and the Least Trimmed Squares (LTS)

have a strictly positive and fixed breakdown point. They are also asymptotically normal in

the model without outliers but are not efficient and have computational issues because of the

non-convexity of their objective functions (see Rousseeuw and Leroy (2005)). Our estimator

is efficient under certain conditions, because it attains the same asymptotic variance as the

OLS estimator in the standard linear model. Unlike this literature, our procedure relies on

a convex program and is computationally tractable, see Belloni et al. (2011a) for a detailed
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analysis. The proposed approach therefore provides a simple efficient alternative to the rest

of the literature.

Within the robust regression literature some authors have considered the application of

ℓ1-norm penalization to robust estimation. In particular, our model nests the Huber’s con-

tamination model for location estimation introduced in Huber et al. (1964). Indeed, if there

is a single constant regressor, our model nests the following framework:

yi = β + αi + ǫi,

where ǫi ∼ N (0, 1) i.i.d., β ∈ R is the mean of yi for non-outlying coefficients while E[yi|αi 6= 0]

is left unrestricted. Chen et al. (2018) show that the minimax lower bound for the squared

ℓ2-norm estimation error is of order greater than max(1/n, p2) under gaussian errors, where

||α||0 is the number of outliers in the sample. When p
√

log(n) → 0, we attain this lower

bound up to a factor log(n)2. Several strategies have been proposed to tackle this location

estimation problem. The one which is the closest to ours is soft-thresholding using a lasso

estimator, that is use

β̂ ∈ arg min
β∈RK

n∑

i=1

(yi − β − αi)
2 + λ

n∑

i=1

|αi|, λ > 0,

see for instance Collier and Dalalyan (2017). We substitute this estimator with a square-root

lasso that has the advantage to provide guidance on the choice of the penalty level that is

independent from the variance of the noise (see Belloni et al. (2011a)). We extend the analysis

of this type of estimators to the linear regression model and add inference results to the litera-

ture. Other ℓ1-norm penalized estimators for robust linear regression have been studied in the

literature such as in Lambert-Lacroix et al. (2011); Dalalyan (2012); Li (2012); Alfons et al.

(2013), but the authors do not provide inference results. Fan et al. (2017) considers robust

estimation in the case where β is a high-dimensional parameter. Its estimator penalizes the

Huber loss function by a term proportional to the ℓ1-norm of β.

Notations. We use the following notations. For a matrix M , M⊤ is its transpose, ||M ||2
is its ℓ2-norm, ||M ||1 is the ℓ1-norm, ||M ||∞ is its sup-norm, ||M ||op is its operator norm and

||M ||0 is the number of non-zero coefficients in M , that is its ℓ0-norm. For a probabilistic

event E , the fact that it happens w.p.a. 1 (with probability approaching 1) signifies that

P (E) −−−→
n→∞

1. Then, for k = 1, . . . ,K, xk is the vector ((x1)k, . . . , (xn)k)⊤ and X is the

matrix (x1, . . . , xn)⊤. PX is the projector on the vector space spanned by the columns of

the matrix X and MX = In − PX , where In is the identity matrix of size n. We introduce

y = (y1, . . . , yn)⊤ and ǫ = (ǫ1, . . . , ǫn)⊤.
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2 Low-dimensional linear regression

2.1 Framework

The probabilistic framework consists of a sequence of data generating processes (hence-

forth, DGPs) that depend on the sample size n. The joint distribution of (xi, ǫi) is indepen-

dent from the sample size. We consider an asymptotic where n goes to ∞ and where p, the

contamination level, depends on n while the number of regressors remains fixed.

Our estimation strategy is able to handle models where α is sparse, that is ||α||0 /n = oP (1)

or, in other words, p → 0. Potentially, every individual’s yi can be generated by a distribution

that does not follow a linear model but the difference between the distribution of yi and the

one yielded by a linear model can only be important for a negligible proportion of individuals.

Our subsequent theorems will help to quantify these previous statements.

2.2 Estimation procedure

We consider an estimation procedure that estimates both the coefficients αi and the effects

of the regressors β by a square-root lasso that penalizes only the coefficients αi, that is

(β̂, α̂) ∈ arg min
β∈RK , α∈Rn

1√
n

||y −Xβ − α||2 +
λ

n
||α||1,

where λ is a penalty level whose choice is discussed later. The advantage of the square-

root lasso over the lasso estimator is that the penalty level does not depend on an estimate

of the variance of ǫi. Hence, our procedure is simple in that it does not make use of any

tuning parameter unlike the least median of quares and least trimmed squares estimators. An

important remark is that if β is such that Xβ = PX(y − α̂), then

1√
n

||y −Xβ − α̂||2 +
λ

n
||α̂||1 ≤ 1√

n
||y −Xb− α̂||2 +

λ

n
||α̂||1,

for any b ∈ R
K . Therefore, if X⊤X is positive definite, β̂ is the OLS estimator of the regression

of y − α̂ on X, that is

β̂ =
(
X⊤X

)−1
X⊤(y − α̂). (2)

Then, notice also that for all α ∈ R
n and b ∈ R

K , we have

1√
n

||MX(y − α)||2 +
λ

n
||α||1 ≤ 1√

n
||y −Xb− α||2 +

λ

n
||α||1.
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Hence, because 1√
n

||MX(y − α)||2 + λ
n

||α||1 is feasible, it holds that

α̂ ∈ arg min
α∈RN

1√
n

||MX(y − α)||2 +
λ

n
||α||1. (3)

Under assumptions developed below, this procedure yields consistent estimation and asymp-

totic normality for β̂. Remark that model (1) can be seen as a standard linear model with

the coefficient αi corresponding to the slope parameter of a dummy variable which value is 1

for the individual i and 0 otherwise. Hence, our analysis of the square-root lasso fits in the

framework of Belloni et al. (2011a). However, our approach is met with additional technical

difficulties because we penalize only a subset of the variables and there is no hope to estimate

α consistently as each of its entries is indirectly observed only once. As a result, we develop

new assumptions and theorems that are better suited for the purposes of this paper.

2.3 Assumptions and results

The main assumption concerns the choice of the penalty level:

Assumption 2.1 We have lim
n→∞

P

(
λ ≥ 2

√
n

||MX ǫ||∞
||MX ǫ||2

)
= 1.

The tuning of λ prescribed by this penalty level depends on the distributional assumptions

made on ǫ, in particular on the tails. The next lemma provides guidance on how to choose

the regularization parameter according to assumptions on ǫ:

Lemma 2.1 It holds that 2
√
n

||MX ǫ||∞
||MX ǫ||2

= 2
||ǫ||∞

σ
+ oP (||ǫ||∞) + OP (1). Additionally, if ψ is

such that lim
n→∞

P

(
ψ ≥ 2

||ǫ||∞
σ

)
= 1 and ϕ → ∞, then for any c > 1, λ = cψ + ϕ satisfies

Assumption 2.1.

The proof is given in Appendix A. This lemma suppresses the role of the matrixX in the choice

of the penalty and simplifies the decision procedure. It leads to the subsequent corollary:

Corollary 2.1 The following hold:

(i) If ǫi are gaussian random variables, then λ = 2c
√

2 log(n) satisfies Assumption 2.1 for

any c > 1;

(ii) If ǫi are sub-gaussian random variables, then there exists a constant c > 0 such that

λ = c
√

log(n) satisfies Assumption 2.1;

(iii) If ǫi are sub-exponential random variables, then then there exists a constant c > 0 such

that λ = c log(n) satisfies Assumption 2.1.
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The proof is given in Appendix A. The statistician can use Corollary 2.1 to decide on the

penalization parameter given how heavy she expects the tails of the error term to be in her

data. In practice, it is advised to choose the smallest penalty verifying Assumption 2.1. This

can be done by Monte-Carlo simulations. Notice that our approach allows for heavy-tailed

distributions such as sub-exponential random variables.

To derive the convergence rate of our estimator, we first bound the estimation error on α

and obtain the following result:

Lemma 2.2 Under Assumption 2.1 and if pmax
(
λ,
√

|X|∞
)

= oP (1) (and , it holds that

1

n
||α̂− α||1 = OP (pλ) .

The proof is given in Appendix B. The rate of convergence of ||α̂ − α||1/n therefore is

lower than p
√

log(n) if the errors are gaussian or sub-gaussian and we choose the penalty

level as in Lemma 2.1. Note that, as standard in works related to the lasso estimator (see

Bühlmann and Van De Geer (2011)), in our proof we make use of a compatibility condition

that states that a compatibility constant is bounded from below with probability approaching

one. The condition that p||X||∞ = oP (1) is enough to show that this property holds as shown

in Lemma B.1 in Appendix B. It is possible to find other sufficient conditions but it is outside

the scope of this paper. Remark that if {xi}i are i.i.d. sub-Gaussian random variables then

||X||∞ = OP

(√
log(n)

)
allowing for the sparsity level p = oP (1/

√
log(n)).

Here, we show how to derive the rate of convergence of β̂ from Lemma 2.2. Assume that

pmax (λ, |X|∞) = oP (1). Substituting y by Xβ + α+ ǫ in (2), we obtain

β̂ − β =
(
X⊤X

)−1
X⊤ǫ+ (X⊤X)−1X⊤(α− α̂). (4)

Now, notice that
(
X⊤X

)−1
X⊤(α − α̂) = (X⊤X/n)−1X⊤(α − α̂)/n. By the law of large

numbers,
(
X⊤X/n

)−1
= OP (1), which implies that

∣∣∣∣
∣∣∣∣
(
X⊤X

)−1
X⊤(α− α̂)

∣∣∣∣
∣∣∣∣
2

≤
∣∣∣∣∣

∣∣∣∣∣

(
1

n
X⊤X

)−1
∣∣∣∣∣

∣∣∣∣∣
op

1

n

∣∣∣
∣∣∣X⊤(α− α̂)

∣∣∣
∣∣∣
2

= OP

(
1

n
||X||∞||α− α̂||1

)
(By Hölder’s inequality). (5)

By Lemma 2.2, this implies that

||(X⊤X)−1X⊤(α− α̂)||2 = OP (pλ||X||∞) .
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Finally, by the central limit theorem and Slutsky’s lemma, we have that
√
n(X⊤X)−1X⊤ǫ

d−→
N (0, σΣ−1). This leads to Theorem 2.2.

Theorem 2.2 Under Assumption 2.1 and if pmax
(
λ,
√

|X|∞
)

= oP (1), it holds that

β̂ − β

max
(

1√
n
, pλ||X||∞

) = OP (1) .

This result allows to derive the rates of convergence under different assumptions on the

tails of the distributions of the regressors and the error term. For instance, if {xi}i and {ǫi}i

are i.i.d. sub-Gaussian random variables, then β̂ is consistent as long as p log(n) → 0 for the

choice of λ proposed in Lemma 2.1. In this case, this implies that our estimator reaches (up to

a logarithmic factor) the minimax lower bound for the Huber’s contamination location model

under gaussian errors, which is max(1/n, p2) in ℓ2-norm according to Chen et al. (2018). We

attain the rate max(1/n, p2 log(n)). Remark also that equation (5) explains the role of ||X||∞
in the convergence rate of β̂. For an individual i, if xi is large then an error in the estimation

of αi can contribute to an error in the estimation of β via the term (X⊤X)−1X⊤(α − α̂) in

(4). ||X||∞ measures the maximum influence that an observation can have.

To show that our estimator is asymptotically normal, it suffices to assume that the bias

term (X⊤X)−1X⊤(α− α̂) in (4) vanishes asymptotically:

Theorem 2.3 Under Assumption 2.1, assuming that pλ||X||∞
√
n = oP (1) (and pmax

(
λ,
√

|X|∞
)

=

oP (1)), we have √
n(β̂ − β)

d−→ N (0, σ2Σ−1).

Moreover, σ̂2 = 1
n

∑n
i=1(yi − x⊤

i β̂ − α̂)2 and Σ̂ = 1
n

∑n
i=1 xix

⊤
i are consistent estimators of,

respectively, σ2 and Σ.

The proof that σ̂2 P−→ σ2 is given in Appendix C.When the entries of X and ǫ are sub-

Gaussian, for the choice of the penalty prescribed in Lemma 2.1, the contamination level

needs to satisfy p log(n)
√
n → 0 to be able to use 2.3 to prove asymptotic normality. Notice

that the asymptotic variance of our estimator corresponds to the one of the OLS estimator

in the standard linear model under homoscedasticity. Hence, confidence sets and tests can be

built in the same manner as in the theory of the OLS estimator.

An important last remark concerns the meaning of confidence intervals developed using

Theorem 2.3. Note that they are obtained under an asymptotic with triangular array data

under which the number of outliers is allowed to go to infinity while the proportion of outliers

goes to 0. The interpretation of a 95% confidence interval I built with Theorem 2.3 is as

follows: if the number of outliers in our data is low enough and the sample size is large
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enough, then there is a probability of approximatively 0.95 that β belongs to I.

3 Computation and simulations

3.1 Iterative algorithm

We propose the following algorithm to compute our estimator. Because u = minσ>0

{
σ
2 + 1

2σ
u2
}

,

as long as
∣∣∣
∣∣∣y −Xβ̂ − α̂

∣∣∣
∣∣∣
2

2
> 0, we have that

(β̂, α̂, σ̂) ∈ arg min
β∈RK ,α∈Rn,σ∈R+

σ

2
+

1

2σ
||y −Xβ − α||22 +

λ

2
√
n

||α||1 . (6)

This is a convex objective and we propose to iteratively minimize over β, α, and σ. Let us

start from
(
β(0), α(0), σ(0)

)
and compute the following sequence for t ∈ N

∗ until convergence:

1. β(t+1) ∈ arg minβ∈RK

∣∣∣
∣∣∣y −Xβ − α(t)

∣∣∣
∣∣∣
2

2
;

2. α(t+1) ∈ arg minα∈Rn

∣∣∣
∣∣∣y −Xβ(t+1) − α

∣∣∣
∣∣∣
2

2
+ λσ(t)√

n
||α||1 ;

3. σ(t+1) =
∣∣∣
∣∣∣y −Xβ(t+1) − α(t+1)

∣∣∣
∣∣∣
2
.

The following lemma explains how to perform step 2:

Lemma 3.1 For i = 1, . . . , n, if
∣∣∣yi − (Xβ(t+1))i

∣∣∣ ≤ λσ(t)√
n

then α
(t+1)
i = 0. If

∣∣∣yi − (Xβ(t+1))i

∣∣∣ >
λσ(t)√

n
then α

(t+1)
i = yi −

(
Xβ(t+1)

)
i
− sign

(
yi −

(
Xβ(t+1)

)
i

)
λσ(t)√

n
.

The proof is given in Appendix D.

3.2 Simulations

We apply this computation approach in a small simulation exercise. The data generating

process is as follows: there are two regressors x1i and x2i, with x1i = 1 for all i and x2i are

i.i.d. N (0, 1) random variables. ǫi are i.i.d. N (0, 1) random variables. Then, we set

αi =





0 if x2i < q1−p

5x2i if x2i ≥ q1−p,

where q1−p is such that P(x2i ≥ q1−p) = p. In table 1, we present the bias, the variance, the

mean squared error (MSE) and the coverage of 95% confidence intervals for our estimator
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β̂ computed using the algorithm of Section 3.1, where we use 100 iterations and with λ =

2.01
√

2 log(n). This choice corresponds to the one outlined in Corollary 2.1. The bias, the

variance and the coverage of 95% confidence intervals for the naive OLS estimator:

β̃OLS ∈ arg min
β∈RK

||y −Xβ − α||22

are also reported. For the OLS estimator, the confidence intervals correspond to the ones

of the standard linear model. The presented results are averages among 8000 replications.

We observe that our estimator brings a substantial improvement in estimation precision with

respect to the OLS estimator.

value p n β̂1 β̃OLS
1 β̂2 β̃OLS

2

bias 0.025 100 0.127 0.301 0.278 0.671

variance 0.025 100 0.060 0.130 0.097 0.221

MSE 0.025 100 0.076 0.221 0.174 0.671

coverage 0.025 100 0.82 0.47 0.75 0.20

bias 0.01 1000 0.045 0.120 0.133 0.361

variance 0.01 1000 0.002 0.004 0.007 0.018

MSE 0.001 1000 0.004 0.018 0.025 0.148

coverage 0.001 1000 0.74 0.16 0.24 0.00

bias 0.001 10000 0.005 0.015 0.017 0.057

variance 0.001 10000 1.08 ×10−4 1.28 ×10−4 2.21 ×10−4 5.23 ×10−4

MSE 0.001 10000 1.33 ×10−4 3.53 ×10−4 5.10 ×10−4 3.772 ×10−3

coverage 0.001 10000 0.93 0.66 0.68 0.03

Table 1. bias, variance, mean squared error (MSE) and coverage of 95% confidence intervals
for λ = 2.01

√
2 log(n).
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Appendices

A Choice of the penalization parameter

A.1 Proof of Lemma 2.1

We start by proving the next two technical lemmas:

Lemma A.1 It holds that ||PXǫ||∞ = OP (1).

Proof. Because of the assumptions on the joint distribution of (xi, ǫi), we have that
√
n(X⊤X)−1X⊤ǫ

d−→
N (0, σΣ−1), therefore

√
n||(X⊤X)−1X⊤ǫ||2 = OP (1). Because X(X⊤X)−1X⊤ǫ = X√

n

√
n(X⊤X)−1X⊤ǫ,

we obtain that ||PXǫ||2 ≤ ||X||2√
n

√
n||(X⊤X)−1X⊤ǫ||2 = OP

( ||X||2√
n

)
= OP (1), by the law of

large numbers. �

Lemma A.2 It holds that
√

n
||MXǫ||2

− 1
σ

= oP (1).

Proof. First, remark that, by the theorem of Pythagore,

||MXǫ||22 =
〈
ǫ−X(X⊤X)−1X⊤ǫ, ǫ−X(X⊤X)−1X⊤ǫ

〉

= ||ǫ||22 − ǫ⊤X(X⊤X)−1X⊤ǫ.

Now, this leads to 1
n

||MXǫ||22 = 1
n

||ǫ||22 − 1
n
ǫ⊤X(X⊤X)−1X⊤ǫ. Because {xi}i and {ǫi}i are

i.i.d. and E[xiǫi] = 0, we have that
√
n(X⊤X)−1X⊤ǫ

d−→ N (0, σΣ−1) and 1√
n
X⊤ǫ

d−→ N (0, σΣ).

This implies that ǫ⊤X(X⊤X)−1X⊤ǫ = OP (1/n). We also have that 1
n

||ǫ||22
P−→ σ2, which leads

to 1
n

||MXǫ||22
P−→ σ2. We conclude by the continuous mapping theorem. �

Now, we proceed with the proof of Lemma 2.1. Notice that

2
√
n

||MX(ǫ)||∞
||MXǫ||2

≤ 2
√
n

||MXǫ||2
(||ǫ||∞ + ||PXǫ||∞)

≤ 1

σ
||ǫ||∞ +

∣∣∣∣∣

√
n

||MXǫ||2
− 1

σ

∣∣∣∣∣ ||ǫ||∞ +
1

σ
||PXǫ||∞ +

∣∣∣∣∣

√
n

||MXǫ||2
− 1

σ

∣∣∣∣∣ ||PXǫ||∞

Using lemmas A.1 and A.2, we obtain

2
√
n

||MXǫ||∞
||MXǫ||2

= 2
||ǫ||∞
σ

+ oP (||ǫ||∞) +OP (1) (7)
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The rest of the lemma is a direct consequence of (7) and the pigeonhole principle.

A.2 Proof of Corollary 2.1

Proof of (i) By Lemma 2.1 it is sufficient to show that for c > 1,

lim
n→∞P

(
2c
√

2 log(n) ≥ 2
||ǫ||∞
σ

)
= 1.

Let us remember the gaussian bound (see Lemma B.1 in Giraud (2014)): for t ≥ 0, we have

P

( |ǫi|
σ

≥ t

)
≤ 2e− t

2

2 .

Then, we have

P

(
2c
√

2 log(n) ≥ 2
||ǫ||∞
σ

)
≤

n∑

i=1

P

(
c
√

2 log(n) ≥ |ǫi|
σ

)

≤ ne−c log(n) → 0.

Proof of (ii) By Lemma 2.1 it is sufficient to show that there exists c > 0 such that

lim
n→∞P

(
c
√

log(n) ≥ 2
||ǫ||∞
σ

)
= 1.

Let us remember the sub-gaussian bound (see Proposition 2.5.2 in Vershynin (2018)): for

t ≥ 0, there exists b > 0 such that

P

( |ǫi|
σ

≥ t

)
≤ 2e− t

2

2b .

Then, we have

P

(
4
√
b
√

log(n) ≥ 2
||ǫ||∞
σ

)
≤

n∑

i=1

P

(
2
√
b
√

log(n) ≥ |ǫi|
σ

)

≤ 2ne−2 log(n) → 0.

Proof of (iii) By Lemma 2.1 it is sufficient to show that there exists c > 0 such that

lim
n→∞

P

(
c log(n) ≥ 2

||ǫ||∞
σ

)
= 1.
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Let us remember the sub-exponential bound (see Proposition 2.7.1 in Vershynin (2018)): for

t ≥ 0, there exists b > 0 such that

P

( |ǫi|
σ

≥ t

)
≤ 2e− t

2b .

Then, we have, for n large enough,

P

(
8b
√

log(n) ≥ 2
||ǫ||∞
σ

)
≤

n∑

i=1

P

(
4b
√

log(n) ≥ |ǫi|
σ

)

≤ 2ne−2 log(n) → 0.

B Proof of lemma 2.2

B.1 Compatibility constant

For δ ∈ R
n, we denote by δJ ∈ R

n the vector for which (δJ )i = δi if αi 6= 0 and (δJ )i = 0

otherwise. Let us also define δJc = δ − δJ . We introduce the following cone:

C = {δ ∈ R
n s.t. ||δJc ||1 ≤ 3 ||δJ ||1} .

We work with the following compatibility constant (see Bühlmann and Van De Geer (2011)

for a discussion of the role of compatibility conditions in the lasso literature) corresponding

to

κ = min
δ∈C,δ 6=0

√
2||α||0||MXδ||2

||δJ ||1
.

We use the following lemma:

Lemma B.1 If p2||X||∞ = oP (1), there exists κ∗ > 0 such that κ > κ∗ w.p.a. 1.

Proof. Take δ ∈ C, to show this result, notice that

MXδ = δ −X(X⊤X)−1X⊤δ.

14



Therefore, we have

||MXδ||2 ≥ ||δ||2 − ||X(X⊤X)−1X⊤δ||2

= ||δ||2 −
∣∣∣∣∣

∣∣∣∣∣

K∑

k=1

Xk

(
(X⊤X)−1X⊤δ

)
k

∣∣∣∣∣

∣∣∣∣∣
2

≥ ||δ||2 −
K∑

k=1

∣∣∣
∣∣∣Xk

(
(X⊤X)−1X⊤δ

)
k

∣∣∣
∣∣∣
2

≥ ||δ||2 −
K∑

k=1

||Xk||2
∣∣∣
∣∣∣(X⊤X)−1X⊤δ

∣∣∣
∣∣∣
∞

≥ ||δ||2 −
K∑

k=1

||Xk||2
∣∣∣
∣∣∣(X⊤X)−1X⊤δ

∣∣∣
∣∣∣
2

≥ ||δ||2 −
K∑

k=1

||Xk||2
∣∣∣∣∣

∣∣∣∣∣

(
1

n
X⊤X

)−1
∣∣∣∣∣

∣∣∣∣∣
op

1

n
||X⊤δ||2

≥ ||δ||2 −
K∑

k=1

||Xk||2
∣∣∣∣∣

∣∣∣∣∣

(
1

n
X⊤X

)−1
∣∣∣∣∣

∣∣∣∣∣
op

√
K

n
||X||∞||δ||1 (By Hölder’s inequality)

≥ ||δ||2 −
K∑

k=1

||Xk||2
∣∣∣∣∣

∣∣∣∣∣

(
1

n
X⊤X

)−1
∣∣∣∣∣

∣∣∣∣∣
op

√
K

n
||X||∞4||δJ ||1 (Because δ ∈ C)

≥ ||δ||2 −
K∑

k=1

||Xk||2
∣∣∣∣∣

∣∣∣∣∣

(
1

n
X⊤X

)−1
∣∣∣∣∣

∣∣∣∣∣
op

√
K

n
||X||∞4

√
||α||0||δJ ||2 (Because ||δJ ||0 ≤ ||α||0)

≥ ||δ||2 −
K∑

k=1

||Xk||2√
n

∣∣∣∣∣

∣∣∣∣∣

(
1

n
X⊤X

)−1
∣∣∣∣∣

∣∣∣∣∣
op

4
√
K

√
||α||0
n

||X||∞||δ||2, (8)

where Xk = (x1k, ..., xnK)⊤. Next, we have that

κ ≥ min
δ∈C,δ 6=0

√
2||α||0||MXδ||2

||δJ ||1

≥ min
δ∈C,δ 6=0

√
2||α||0||MXδ||2√

||α||0 ||δJ ||2
≥

√
2 min

δ∈C,δ 6=0

||MXδ||2
||δ||2

≥
√

2


1 −

K∑

k=1

||Xk||2√
n

∣∣∣∣∣

∣∣∣∣∣

(
1

n
X⊤X

)−1
∣∣∣∣∣

∣∣∣∣∣
op

4
√
K

√
||α||0
n

||X||∞




Now, because we have 1
n

∑n
i=1 xix

⊤
i

P−→ Σ by the law of large numbers, we obtain that∣∣∣∣
∣∣∣∣
(
X⊤X/n

)−1
∣∣∣∣
∣∣∣∣
op

= OP (1) and that
∑K

k=1||Xk||2/
√
n =

∑K
k=1

√
(X⊤X/n)kk = OP (1), both
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implying that 1√
n

∑K
k=1||Xk||2

∣∣∣∣
∣∣∣∣
(
X⊤X/n

)−1
∣∣∣∣
∣∣∣∣
op

= OP (1). We conclude the proof using that

p2||X||∞ = oP (1). �

B.2 End of the proof of Lemma 2.2

Throughout this proof, we work on the event

{
λ ≥ 2

√
n||MXǫ||2∞
||MXǫ||2

}
∩ {κ > κ∗} ∩





(
2
√

2pλ

κ

)2

< 1



 ,

which has probability approaching 1 according to Assumption 2.1, Lemma B.1, and the con-

dition that pλ → 0. Let us define ∆ = α̂− α. Now, remark that

||α̂||1 = ||α+ ∆||1
= ||α+ ∆J + ∆Jc ||1
≥ ||α+ ∆Jc ||1 − ||∆J ||1 . (9)

Next, we use the fact that ||α+ ∆Jc ||1 = ||α||1 + ||∆Jc ||1. Combining this and (9), we get

||α̂||1 ≥ ||α||1 + ||∆Jc||1 − ||∆J ||1 . (10)

By definition of α̂ and concentrating our objective function in β, we have

1√
n

||MX(y − α̂)||2 +
λ

n
||α̂||1 ≤ 1√

n
||MX(y − α)||2 +

λ

n
||α||1. (11)

By convexity, if MXǫ 6= 0, it holds that

1√
n

||MX(y − α̂)||2 − 1√
n

||MX(y − α)||2 ≥ − 1√
n||MXǫ||2

〈MX(ǫ),∆〉

≥ − λ

2n
||∆||1, (12)

where (12) comes from λ ≥ 2
√
n||MXǫ||2/||MXǫ||∞. This last inequality is also straightfor-

wardly true when MXǫ = 0. This and (11) imply

||α̂||1 ≤ 1

2
||∆||1 + ||α||1. (13)

Using (10), we get

||α||1 + ||∆Jc||1 − ||∆J ||1 ≤ 1

2
||∆||1 + ||α||1.
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Then, as ||∆||1 = ||∆Jc ||1 + ||∆J ||1, we obtain

||∆Jc ||1 ≤ 3 ||∆J ||1 , (14)

which implies that ∆ ∈ C. Using y = Xβ + α+ ǫ, we get

1

n
||MX(y − α̂)||22 − 1

n
||MX(y − α)||22 =

1

n
||MX(α̂− α)||22 − 2

n
〈MXǫ, α̂− α〉 .

By Hölder’s inequality, this results in

1

n
||MX(y − α̂)||22 − 1

n
||MX(y − α)||22 ≤ 1

n
||MX(α̂− α)||22 − 2

n
||MXǫ||∞||∆||1.

Because λ ≥ 2
√
n

||MXǫ||∞
||MXǫ||2

, we obtain

1

n
||MX(α̂− α)||22 ≤ 1

n
||MX(y − α̂)||22 − 1

n
||MX(y − α)||22 +

λ||MXǫ||2
n

3
2

||∆||1.

This implies that

1

n
||MX(α̂− α)||22

≤ 1

n
||MX(y − α̂)||22 − 1

n
||MX(y − α)||22 +

λ||MXǫ||2
n

3
2

||∆||1

=
1

n
||MX(y − α̂)||22 − 1

n
||MX(y − α)||22 +

λ||MXǫ||2
n

3
2

(||∆J ||1 + ||∆Jc ||1)

≤ 1

n
||MX(y − α̂)||22 − 1

n
||MX(y − α)||22 +

4λ||MXǫ||2
n

3
2

||∆J ||1 (Because ∆ ∈ C). (15)

By equations (10) and (11), we have 1√
n

||MX(y−α̂)||2− 1√
n

||MX(y−α)||2 ≤ λ
n

(||∆J ||1 − ||∆Jc||1).

Using the fact that ∆ ∈ C and (12), this yields

∣∣∣∣
1√
n

||MX(y − α̂)||2 − 1√
n

||MX(y − α)||2
∣∣∣∣ ≤ 2λ

n
||∆J ||1 .

Next, notice that

1

n
||MX(y − α̂)||22 − 1

n
||MX(y − α)||22

=

(
1√
n

||MX(y − α̂)||2 − 1√
n

||MX(y − α)||2
)(

1√
n

||MX(y − α̂)||2 +
1√
n

||MX(y − α)||2
)
.
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This implies

∣∣∣∣
1

n
||MX(y − α̂)||22 − 1

n
||MX(y − α)||22

∣∣∣∣

≤ 2λ

n
||∆J ||1

(
2√
n

||MX(y − α)||2 +
2λ

n
||∆J ||1

)

≤
(

2λ

n

)2

||∆J ||21 +
4√
n

||MX(y − α)||2
λ

n
||∆J ||1 . (16)

Combining (15) and (16) and remarking that ||MXǫ||2 = ||MX(y − α)||2, we obtain

1

n
||MX(α̂ − α)||22 ≤

(
2λ

n

)2

||∆J ||21 +
4||MXǫ||2√

n

λ

n
||∆J ||1 +

4λ||MXǫ||2
n

3
2

||∆J ||1 .

Now, as ∆ ∈ C, this implies that

1

n
||MX∆||22 ≤

(
2λ

n

)2



√
2||α||0||MX∆||2

κ




2

+
8λ||MXǫ||2

n
3
2

√
2||α||0||MX∆||2

κ
.

From now on assume that ||MX∆||2 6= 0, we get

1

n
||MX∆||2 ≤


1 −


2
√

2
||α||0

n
λ

κ




2


−1

8||MXǫ||2
√

2
||α||0

n
λ

nκ
,

which implies again that

1

n
||∆J ||1 ≤


1 −


2
√

2
||α||0

n
λ

κ




2


−1

16||MXǫ||2
||α||0

n
λ√

nκ2
.

Finally, as ∆ ∈ C, we have

1

n
||∆||1 =

1

n
(||∆J ||1 + ||∆Jc||1)

≤ 1

n
4 ||∆J ||1

≤


1 −


2
√

2
||α||0

n
λ

κ∗




2


−1

64||MXǫ||2
||α||0

n
λ√

nκ∗
. (17)

The last inequality also holds if MX∆ = 0 because, as κ > κ∗, this implies that ∆J = 0

and hence ∆ = 0 using the fact that ∆ belongs to C. To conclude the proof, use (17), the

fact that ||MXǫ||2/
√
n ≤ ||ǫ||2/

√
n = oP (1) by the law of large numbers and the condition
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pmax (λ, ||X||∞) = oP (1).

C Proof that σ̂
2 P−→ σ

2 in Theorem 2.3

We have

σ̂2 =

∣∣∣
∣∣∣y −Xβ̂ − α̂

∣∣∣
∣∣∣
2

2

n

=

∣∣∣
∣∣∣X
(
β − β̂

)
+ (α− α̂) + ǫ

∣∣∣
∣∣∣
2

2

n

=

∣∣∣
∣∣∣X
(
β − β̂

)
+ (α− α̂)

∣∣∣
∣∣∣
2

2

n
+ 2

〈
X
(
β − β̂

)
+ (α− α̂) , ǫ

〉

n
+ 2

||ǫ||22
n

=

∣∣∣
∣∣∣X
(
β − β̂

)∣∣∣
∣∣∣
2

2

n
+

||α− α̂||22
n

+ 2

〈
X
(
β − β̂

)
, α − α̂

〉

n

+ 2

〈
X
(
β − β̂

)
, ǫ
〉

n
+ 2

〈α− α̂, ǫ〉
n

+ 2
||ǫ||22
n

.

Next, remark that there exists c, η > 0 such that P (|X|∞ ≥ c) ≥ δ for n large enough. Indeed

otherwise, this would imply that the law of large numbers cannot hold for xi. This yields that√
npλ = o(1). Then, because of Lemma 2.2, Theorem 2.3 and pλ |X|∞ = oP (1) it holds that

||α̂− α||1 = oP

(√
n
)

;
∣∣∣
∣∣∣β̂ − β

∣∣∣
∣∣∣
2

= oP

(
1√
n

)
.

Next, we have

∣∣∣
∣∣∣X
(
β − β̂

)∣∣∣
∣∣∣
2

2

n
≤

||X||22
∣∣∣
∣∣∣β̂ − β

∣∣∣
∣∣∣
2

2

n

= oP (1),

by the law of large numbers. Then, by Hölder’s inequality, we obtain that

||α− α̂||22
n

≤ ||α− α̂||1 ||α− α̂||∞
n

≤ ||α− α̂||21
n

= oP (1).
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By the inequality of Cauchy-Schwartz, this also leads to

〈
X
(

β−β̂
)

,α−α̂
〉

n
= oP (1). Then, the

law of large numbers implies that

〈
X
(

β−β̂
)

,ǫ
〉

n
= oP (1) and

〈α−α̂,ǫ〉
n

= oP (1), which concludes

the proof.

D Proof of Lemma 3.1

By Lemma D.5 in Giraud (2014), there exists ẑ, a random vector in R
n, such that the

first-order conditions of step 2 are

−
(
y −Xβ(t) − α(t+1)

)
+
λσ(t)

√
n
ẑ = 0, (18)

where, for i = 1, . . . , n, ẑi ∈ [−1, 1] if α
(t+1)
i = 0 and ẑi = sign

(
α

(t+1)
i

)
if α

(t+1)
i 6= 0. This

yields that, if α
(t+1)
i 6= 0,

α
(t+1)
i = yi −

(
Xβ(t+1)

)
i
− sign

(
α

(t+1)
i

) λσ(t)

√
n
.

Hence, if α
(t+1)
i > 0, we obtain

α
(t+1)
i = yi −

(
Xβ(t+1)

)
i
− λσ(t)

√
n

and, therefore, yi −
(
Xβ(t+1)

)
i
> λσ(t)√

n
≥ 0. Similarly, if α

(t+1)
i < 0, we have

α
(t+1)
i = yi −

(
Xβ(t+1)

)
i
+
λσ(t)

√
n

and, therefore, yi −
(
Xβ(t+1)

)
i
< −λσ(t)√

n
≤ 0. This shows that, if α

(t+1)
i 6= 0, we have

α
(t+1)
i = yi −

(
Xβ(t+1)

)
i
− sign

(
yi −

(
Xβ(t+1)

)
i

) λσ(t)

√
n

and ∣∣∣yi − (Xβ(t+1))i

∣∣∣ >
λσ(t)

√
n
.

Next, if α
(t+1)
i = 0, (18) implies that

∣∣∣yi − (Xβ(t+1))i

∣∣∣ ≤ λσ(t)

√
n
.
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This concludes the proof.
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