The expected signature of Brownian motion stopped on the boundary of a circle has finite radius of convergence - Archive ouverte HAL
Article Dans Une Revue Bull. London Math Soc Année : 2021

The expected signature of Brownian motion stopped on the boundary of a circle has finite radius of convergence

Horatio Boedihardjo
  • Fonction : Auteur
Joscha Diehl
  • Fonction : Auteur
Hao Ni
  • Fonction : Auteur
  • PersonId : 895502

Résumé

The expected signature is an analogue of the Laplace transform for rough paths. Chevyrev and Lyons showed that, under certain moment conditions, the expected signature determines the laws of signatures. Lyons and Ni posed the question of whether the expected signature of Brownian motion up to the exit time of a domain satisfies Chevyrev and Lyons' moment condition. We provide the first example where the answer is negative.
Fichier principal
Vignette du fichier
The_expected_signature_of_Brownian_motion_stopped_on_the_boundary_of_a_circle.pdf (269.61 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02145359 , version 1 (31-10-2020)

Identifiants

Citer

Horatio Boedihardjo, Joscha Diehl, Marc Mezzarobba, Hao Ni. The expected signature of Brownian motion stopped on the boundary of a circle has finite radius of convergence. Bull. London Math Soc, 2021, 53 (1), pp.285-299. ⟨10.1112/blms.12420⟩. ⟨hal-02145359⟩
145 Consultations
104 Téléchargements

Altmetric

Partager

More