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A DENSITY RESULT FOR GSBD AND ITS APPLICATION TO THE

APPROXIMATION OF BRITTLE FRACTURE ENERGIES

FLAVIANA IURLANO

Abstract. We present an approximation result for functions u : Ω→ Rn belonging to the space

GSBD(Ω) ∩ L2(Ω,Rn) with e(u) square integrable and Hn−1(Ju) finite. The approximating

functions uk are piecewise continuous functions such that uk → u in L2(Ω,Rn), e(uk) → e(u) in

L2(Ω,Mn×n
sym ), Hn−1(Juk4Ju) → 0, and

´
Juk∪Ju

|u±k − u±| ∧ 1dHn−1 → 0. As an application,

we provide the extension to the vector-valued case of the Γ-convergence result in SBV (Ω) proved

by Ambrosio and Tortorelli in [4, 5].

1. Introduction

A typical example of the minimum problems occurring in the mathematical formulation of some
variational models in Linearly Elastic Fracture Mechanics (see, e.g., [20, 21], [10]) is

min
u

(ˆ
Ω\Ju

Q(e(u))dx+Hn−1(Ju) +

ˆ
Ω

|u− g|2dx
)
, (1.1)

where Ω ⊂ Rn is a bounded open set, Q is a positive definite quadratic form on the space of
symmetric n×n matrices, Hn−1 is the (n− 1)-Hausdorff measure in Rn, g ∈ L2(Ω,Rn), e(u) is the
symmetric part of the gradient of u, and Ju is the jump set of u.

For a numerical treatment of these minimum problems, a standard approach is to approximate
(1.1) with functionals defined on a class of functions without jumps. Drawing inspiration from the
scalar-valued case, numerical computations concerning (1.1) and similar problems are performed,
e.g., in [9, 10], and [8] using a phase-field approximation, which leads to the minimization of
Ambrosio-Tortorelli type functionals [4, 5]

min
(u,v)

ˆ
Ω

(
vQ(e(u)) +

(1− v)2

εk
+ εk|∇v|2 + |u− g|2

)
dx, (1.2)

where ηk, εk belong to (0,+∞), ηk/εk → 0, and (u, v) runs in H1(Ω,Rn)×H1(Ω) with ηk ≤ v ≤ 1.
Nevertheless, the rigorous convergence of these minimum problems to the problem (1.1) has not

yet been proved in the vector-valued case. An important contribution in this direction has been
given by Chambolle in [12, 13], where the problem (1.1) is set in the space SBD(Ω) (we refer to [23]
for its definition) and the convergence result is proved under the assumption of an a priori bound
on the L∞-norm of the functions u. Actually, even the existence of solutions in SBD(Ω) to the
problem (1.1) is guaranteed only if an a priori L∞-bound for minimizing sequences is assumed (see
[7, Theorem 3.1]).

In the present paper we provide the first complete proof of the convergence of the solutions to (1.2)
toward a solution to (1.1), formulating these problems in a more convenient framework. Precisely, if
(uk, vk) is a sequence of minimizers of the problem (1.2), we prove (see Corollary 4.2) that vk → 1
in L1(Ω) and a subsequence of uk converges in L2(Ω,Rn) to a minimizer u of the problem (1.1) in
the space GSBD(Ω) of Generalized Special Functions of Bounded Deformation.
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This space has been recently introduced by Dal Maso in [17] to solve minimum problems of
the form (1.1) without L∞-bounds on the minimizing sequences. For every u ∈ GSBD(Ω) one
can define the approximate one-sided limits u± on regular submanifolds, the approximate jump
set Ju, which turns out to be (Hn−1, n − 1)-rectifiable, and the approximate symmetric gradient
e(u) ∈ L1(Ω,Mn×n

sym ) (see Section 2 for a summary of these fine properties of GSBD-functions).
Therefore the functional occurring in (1.1) makes sense in this more general context and a solution
in GSBD(Ω) to the minimum problem is ensured by the compactness and semicontinuity result
proved in [17, Theorem 11.3].

The proof of the convergence of (1.2) to (1.1) is obtained in three steps, following the approach
in [12, 13]. The first (and crucial) step allows us (see Density Theorem 3.1) to approximate a
function u ∈ GSBD(Ω)∩L2(Ω,Rn), for which e(u) is square integrable and Hn−1(Ju) is finite, with
a sequence (uk) ⊂ SBV (Ω,Rn) ∩ L∞(Ω,Rn) of piecewise continuous functions in a way that

||uk − u||L2(Ω,Rn) → 0,

||e(uk)− e(u)||L2(Ω,Mn×nsym ) → 0,

Hn−1(Juk4Ju)→ 0,ˆ
Juk∪Ju

|u±k − u
±| ∧ 1 dHn−1 → 0,

where 4 denotes the symmetric difference and a ∧ b := min{a, b}.
The second step concerns the Γ-convergence of the functionals occurring in (1.2) to the one

occurring in (1.1) (see Theorem 4.1). In particular the Density Theorem 3.1 is involved in the proof
of the Γ-lim sup inequality, allowing us to construct a recovery sequence starting from more regular
functions.

The third step is the proof of the compactness of the minimizing sequences of (1.2). This is
obtained in Proposition 4.5 using a characterization which relates L1-compactness of sequences with
L1-compactness of slices (see [1, Theorem 6.6] and [17, Lemma 10.7]). The convergence of minima
and minimizers eventually follows from well-known results in Γ-convergence theory.

The paper is organized as follows. In Section 2 we supply the essential notation and preliminaries.
Sections 3 is devoted to state and prove the Density Theorem 3.1. Finally in Section 4 we show the
application of the density theorem to the Ambrosio-Tortorelli approximation of (1.1).

2. Notation and Preliminaries

Let n ≥ 2 be a fixed integer. The Lebesgue measure and the k-dimensional Hausdorff measure
in Rn are denoted by Ln and Hk, respectively. For every set A the characteristic function χA is
defined by χA(x) := 1 if x ∈ A and by χA(x) := 0 if x /∈ A. Throughout the paper Ω is assumed
to be a bounded open subset of Rn. Moreover c will denote a constant which may vary from line to
line.

BV-functions. For the definitions and the main properties of BV (Ω,Rn), of SBV (Ω,Rn), of
the distributional derivative Du of a function u ∈ BV (Ω,Rn), of the approximate gradient ∇u, of
the approximate one-sided limits u± on regular submanifolds, of the jump function [u] := u+ − u−,
and of the approximate jump set Ju we refer to [3]. Here we only recall the definition of the space
SBV p(Ω,Rn), with 1 < p < +∞, used in the sequel:

SBV p(Ω,Rn) :=
{
u ∈ SBV (Ω,Rn) : ∇u ∈ Lp(Ω,Mn×n) and Hn−1(Ju) < +∞

}
,

being Mn×n the space of all n×n matrices.

BD-functions. For the definitions and the main properties of BD(Ω), of SBD(Ω), of the
symmetric distributional derivative Eu of a function u ∈ BD(Ω), of the approximate symmetric
gradient e(u), of the approximate one-sided limits u± on regular submanifolds, of the jump function
[u] := u+ − u−, of the approximate jump set Ju we refer to [24], [23], [6], and [2].
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We point out that if Ω has Lipschitz boundary and u ∈ L1(Ω,Rn) satisfies Eu ∈ L2(Ω,Mn×n
sym ),

where Mn×n
sym is the set of all n×n symmetric matrices, then u actually belongs to H1(Ω,Rn). This

can be obtained arguing as in the proof of [23, Proposition 1.1].
We define SBDp(Ω), 1 < p < +∞, by

SBDp(Ω) :=
{
u ∈ SBD(Ω,Rn) : e(u) ∈ Lp(Ω,Mn×n

sym ) and Hn−1(Ju) < +∞
}
. (2.1)

Slices. Fixed ξ ∈ Sn−1 := {ξ ∈ Rn : |ξ| = 1}, we set

Πξ :=
{
y ∈ Rn : y · ξ = 0

}
, Ωξy :=

{
t ∈ R : y + tξ ∈ Ω

}
for y ∈ Πξ, Ωξ :=

{
y ∈ Πξ : Ωξy 6= Ø

}
.

For u : Ω→ Rn and for e : Ω→Mn×n
sym we define the slices uξy, e

ξ
y : Ωξy → R by

uξy(t) := u(y + tξ) · ξ and eξy(t) := e(y + tξ)ξ · ξ. (2.2)

If uk, u ∈ L1(Ω,Rn) and uk → u in L1(Ω,Rn), then for every ξ ∈ Sn−1 there exists a subsequence
(ukj ) such that

(ukj )
ξ
y → uξy in L1(Ωξy) for Hn−1-a.e. y ∈ Ωξ.

GBD-functions. We now summarize the definition and the main properties of GBD-functions,
referring to [17] for more details.

Let us denote by Mb(Ω) the set of all bounded Radon measures in Ω and by M+
b (Ω) the set of

nonnegative ones.

Definition 2.1. An Ln-measurable function u : Ω → Rn belongs to GBD(Ω) if there exists λu ∈
M+

b (Ω) such that the following equivalent condition hold for every ξ ∈ Sn−1:

(a) for every τ ∈ C1(R) with − 1
2 ≤ τ ≤ 1

2 and 0 ≤ τ ′ ≤ 1, the partial derivative Dξ(τ(u · ξ))
belongs to Mb(Ω) and its total variation satisfies

|Dξ(τ(u · ξ))|(B) ≤ λu(B), (2.3)

for every Borel set B ⊂ Ω;
(b) for Hn−1-a.e. y ∈ Ωξ the function uξy belongs to BVloc(Ω

ξ
y) and for every Borel set B ⊂ Ω it

satisfies ˆ
Ωξ

(
|Duξy|(Bξy \ J1

uξy
) +H0(Bξy ∩ J1

uξy
)
)
dHn−1 ≤ λu(B), (2.4)

where we have set

J1
uξy

:= {t ∈ Juξy : |[uξy](t)| ≥ 1}.

The space GSBD(Ω) is the set of all functions u ∈ GBD(Ω) such that for every ξ ∈ Sn−1 and for
Hn−1-a.e. y ∈ Ωξ the function uξy belongs to SBVloc(Ω

ξ
y).

For every u ∈ GBD(Ω) one can define the approximate one-sided limits u± on regular subman-
ifolds, the jump function [u] := u+ − u−, and the approximate jump set Ju, which turns out to be
(Hn−1, n− 1)-rectifiable [17, Sections 5 and 6].

Let ξ ∈ Sn−1 and let

Jξu := {x ∈ Ju : u+(x) · ξ − u−(x) · ξ 6= 0} . (2.5)

Then for Hn−1-a.e. y ∈ Ωξ we have

(Jξu)ξy = Juξy , (2.6)

u±(y + tξ) · ξ = (uξy)±(t) for every t ∈ (Ju)ξy , (2.7)

where the normals to Ju and Juξy are oriented so that ξ · νu ≥ 0 and νuξy = 1.

For u ∈ GBD(Ω) the approximate symmetric gradient e(u) in the sense of [6, Definition 8.1]
exists and belongs to L1(Ω;Mn×n

sym ). Moreover for every ξ ∈ Rn \ {0} and for Hn−1-a.e. y ∈ Ωξ one
has

(e(u))ξy = ∇uξy L1-a.e. on Ωξy. (2.8)

Let us define GSBDp(Ω) for 1 < p < +∞ as in (2.1), with SBD(Ω) replaced by GSBD(Ω).
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Using the Fubini Theorem one can shows that

Hn−1(Ju \ Jξu) = 0, (2.9)

for Hn−1-a.e. ξ ∈ Sn−1. With the following lemma we deduce the existence of an orthonormal basis
(ei)

n
i=1 for which (2.9) holds for every ξ ∈ D := {ei for i = 1, . . . , n, ei ± ej for 1 ≤ i < j ≤ n}.

We denote by µ the invariant Radon measure on the rotation group SO(n) with µ(SO(n)) =
Hn−1(Sn−1).

Lemma 2.2. Let ξ1, . . . , ξk ∈ Sn−1. Then each ξ ∈ {Rξ1, . . . , Rξk} satisfies (2.9), for µ-a.e.
R ∈ SO(n).

Proof. Let N ⊂ Sn−1 be the set where (2.9) fails and let

Mj := {R ∈ SO(n) : Rξj ∈ N}.

For j = 1, . . . , k we have

µ(Mj) = Hn−1(N) = 0.

Therefore for every R /∈
⋃k
j=1Mj we find that Rξ1, . . . , Rξk /∈ N and this concludes the proof. �

The following remark is about the extension by zero of GBD-functions.

Remark 2.3. Assume that Ω has Lipschitz boundary and consider a bounded open set Ω̂ with Ω ⊂ Ω̂.
Let u ∈ GBD(Ω)∩L1(Ω,Rn) and let us define û : Ω̂→ Rn by û := u in Ω and by û := 0 outside of Ω.

Then the extension û belongs to GBD(Ω̂). Indeed, for every ξ ∈ Sn−1 and for Hn−1-a.e. y ∈ Ωξ the
slice uξy belongs to BV (Ωξy). Since Ω has Lipschitz boundary, for every ξ ∈ Sn−1 and for Hn−1-a.e.

y ∈ Ωξ the set Ωξy has finitely many connected components, so that ûξy ∈ BV (R). Moreover an easy
computation and the coarea formula show thatˆ

Ω̂ξ

(
|Dûξy|(Bξy \ J1

ûξy
) +H0(Bξy ∩ J1

ûξy
)
)
dHn−1 ≤ λu(B ∩ Ω) +Hn−1b∂Ω(B),

for every Borel set B ⊂ Ω̂ and for λu satisfying (2.4).

The next result provides an estimate for the trace tr(u) of a function u ∈ GSBD(Ω)∩L1(Ω,Rn)
(for the definition of tr(u) see [17, Section 5]).

Lemma 2.4. Assume that Ω has Lipschitz boundary and define τ(s) := 1
πarctg (s) for s ∈ R. Then

there exists a constant c(Ω) < +∞, depending on Ω, such thatˆ
∂Ω

τ(|tr(u)|)dHn−1 ≤ c(Ω)
(
||u||L1(Ω,Rn) + λu(Ω)

)
(2.10)

holds for every u ∈ GSBD(Ω) ∩ L1(Ω,Rn) and for λu ∈M+
b (Ω) satisfying (2.4).

Proof. It is not restrictive to assume that Ω has the form

{y + tη ∈ Rn : y ∈ Bη, 0 < t < a(y)} (2.11)

and that u has compact support in Ω∪ graph(a), where η ∈ Sn−1, Bη ⊂ Πη is a relatively open ball,
and a : Bη → R is a Lipschitz function. Indeed, let (Ai)

k
i=1 be an open covering of ∂Ω in a way

that Ai ∩ Ω has the form (2.11). Let A0 ⊂⊂ Ω be such that (Ai)
k
i=0 covers Ω. Let us consider also

a partition of unity (ϕi)
k
i=0, such that ϕi ∈ C∞c (Ai), 0 ≤ ϕi ≤ 1, and

∑k
i=0 ϕi = 1 on Ω. Then each

ϕiu belongs to GSBD(Ai ∩Ω)∩L1(Ai ∩Ω,Rn) and has compact support in Ai ∩Ω. Moreover ϕiu
satisfies (2.4) with λu(B) replaced by

||∇ϕi||L∞(Ai)

ˆ
B

|u|dx+ λu(B), (2.12)

for every Borel set B ⊂ Ai ∩ Ω. Note that the measure defined in (2.12) belongs to M+
b (Ai ∩ Ω).
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Using the triangle inequality for τ and inequality (2.10) for ϕiu with the measure (2.12), we
obtain

ˆ
∂Ω

τ(|tr(u)|)dHn−1 ≤
k∑
i=1

ˆ
Ai∩∂Ω

τ(|tr(ϕiu)|)dHn−1

≤ c
(
||u||L1(Ω,Rn) + λu(Ω)

)
,

where c < +∞ depends on Ω and (ϕi)
k
i=1.

Let us prove now (2.10) under the assumption that Ω has the form (2.11) and that u has compact
support on Ω ∪ graph(a). We may also assume that there exists a basis (ηi)

n
i=1 such that M :=

graph(a) is still a Lipschitz graph in the direction determined by each ηi and that ν(x) · ηi > δ > 0
for Hn−1-a.e. x ∈M , where δ is constant and ν is normal to M .

Therefore we obtainˆ
∂Ω

τ(|tr(u)|)dHn−1 =

ˆ
M

τ(|tr(u)|)dHn−1 ≤
ˆ
M

τ(c

n∑
i=1

|tr(u) · ηi|)dHn−1, (2.13)

where c < +∞ depends only on (ηi)
n
i=1. The very definition of τ implies that

ˆ
M

τ(c

n∑
i=1

|tr(u) · ηi|)dHn−1 ≤
ˆ
M

c

n∑
i=1

|τ(tr(u) · ηi)|dHn−1, (2.14)

where the constant c < +∞ can possibly change from the first to the second term.
Since τ(tr(u) ·ηi) = tr(τ(u ·ηi)) by the definition of trace in GSBD(Ω) (see [17, Proof of Theorem

5.2]), we deduce by (2.13) and (2.14) that

ˆ
∂Ω

τ(|tr(u)|)dHn−1 ≤ c
n∑
i=1

ˆ
M

|tr(τ(u · ηi))|dHn−1. (2.15)

We observe now that τ(u · ηi) belongs to L1(Ω) and its derivative Dηiτ(u · ηi) belongs toM+
b (Ω),

so that [24, Lemma 1.1] yields

c

n∑
i=1

ˆ
M

|tr(τ(u · ηi))|dHn−1 = c

n∑
i=1

ˆ
∂Ω

|tr(τ(u · ηi))|dHn−1

≤ c

n∑
i=1

c(Ω, ηi)
(
||τ(u · ηi)||L1(Ω) + |Dηiτ(u · ηi)|(Ω)

)
≤ c

(
||u||L1(Ω,Rn) + λu(Ω)

)
, (2.16)

where c < +∞ depends on Ω and λu ∈M+
b (Ω) satisfies (2.3). Inequality (2.10) follows from (2.15)

and (2.16). �

Remark 2.5. Let u ∈ GSBD(Ω) ∩ L1(Ω,Rn) with Hn−1(Ju) < +∞ and let us define

λ̃u(B) :=

ˆ
B

|e(u)|dx+Hn−1(Ju ∩B), (2.17)

for every B ⊂ Ω Borel set. Then (2.6), (2.8), and the coarea formula imply that λ̃u satisfies (2.4).

The following theorem concerns the continuity of the trace operator. For the proof we follow the
lines of [23, Section 3.2].

Theorem 2.6 (Continuity of the trace). Assume that Ω has Lipschitz boundary. Let uk, u belong
to GSBD(Ω) ∩ L1(Ω,Rn) with Hn−1(Juk),Hn−1(Ju) < +∞, and let

uk → u in L1(Ω,Rn) and λ̃uk ⇀ λ̃u weakly* in (C0
b )′, (2.18)
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where λ̃ has been introduced in (2.17) and the weakly* convergence in (C0
b )′ means, by definition,

that ˆ
Ω

ϕdλ̃uk →
ˆ

Ω

ϕdλ̃u,

for every bounded continuous function ϕ defined on Ω. Thenˆ
∂Ω

|tr(uk)− tr(u)| ∧ 1dHn−1 → 0. (2.19)

Proof. Let η > 0 and let Ω0 ⊂⊂ Ω be such that

λ̃u(Ω \ Ω0) ≤ η and λ̃u(∂Ω0) = 0. (2.20)

Let ϕ0 ∈ C∞c (Ω) be such that ϕ0 = 1 on Ω0 and 0 ≤ ϕ ≤ 1, and let ψ0 := 1− ϕ0.
By (2.18) and (2.20) we obtain for k largeˆ

Ω

|uk − u|dx ≤
η

1 + ||ψ0||L∞(Ω)
(2.21)

λ̃uk(Ω \ Ω0) ≤ λ̃u(Ω \ Ω0) + η ≤ 2η. (2.22)

Applying inequality (2.10) to the function (uk − u)ψ0 we findˆ
∂Ω

τ(|tr(uk)− tr(u)|)dHn−1 ≤

≤ c
(
||(uk − u)ψ0||L1(Ω,Rn) +

ˆ
Ω

|e((uk − u)ψ0)|dx+Hn−1(J(uk−u)ψ0
)
)

≤ c
(
||uk − u||L1(Ω,Rn) +

ˆ
Ω\Ω0

|e(uk)|dx+

ˆ
Ω\Ω0

|e(u)|dx+ ||uk − u||L1(Ω,Rn)||ψ0||L∞(Ω)

+Hn−1(Juk ∩ (Ω \ Ω0)) +Hn−1(Ju ∩ (Ω \ Ω0))
)

≤ c
(
||uk − u||L1(Ω,Rn)(1 + ||ψ0||L∞(Ω)) + λ̃uk(Ω \ Ω0) + λ̃u(Ω \ Ω0)

)
≤ 4cη,

where in last inequalities we have used (2.20)-(2.22). Since η > 0 is arbitrary we deduce that
τ(|tr(uk)− tr(u)|)→ 0 in L1

Hn−1(∂Ω). Finally using the dominated convergence theorem we obtain
(2.19). �

3. The Main Results

In this section we present the main result of the paper: the approximation theorem for GSBD
functions. The application to the Ambrosio-Tortorelli convergence will be given in Section 4.

Theorem 3.1 (Density). Assume that Ω has Lipschitz boundary. Let u ∈ GSBD2(Ω)∩L2(Ω,Rn).
Then there exists a sequence (uk) ⊂ SBV 2(Ω,Rn) ∩ L∞(Ω,Rn) such that each Juk is contained in
the union Sk of a finite number of closed connected pieces of C1-hypersurfaces, each uk belongs to
W 1,∞(Ω \ Sk,Rn), and the following properties hold:

(1) ||uk − u||L2(Ω,Rn) → 0,

(2) ||e(uk)− e(u)||L2(Ω,Mn×nsym ) → 0,

(3) Hn−1(Juk4Ju)→ 0,

(4)

ˆ
Juk∪Ju

|u±k − u
±| ∧ 1 dHn−1 → 0.

We remark that Theorem 3.1 can be combined with the following theorem by Cortesani and
Toader [15, Theorem 3.1] (see also [14]) to obtain better approximating functions.

We say that u ∈ SBV (Ω,Rn) is a piecewise smooth SBV -function if u ∈ Wm,∞(Ω \ Ju,Rn) for
every m, Hn−1((Ju ∩ Ω) \ Ju) = 0, and the set Ju ∩ Ω is a finite union of closed pairwise disjoint
(n− 1)-simplexes intersected with Ω.
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Theorem 3.2. Assume that Ω has Lipschitz boundary. Let u ∈ SBV 2(Ω,Rn) ∩ L∞(Ω,Rn). Then
there exists a sequence (uk) of piecewise smooth SBV -functions such that

(1) ||uk − u||L2(Ω,Rn) → 0,

(2) ||∇uk −∇u||L2(Ω,Mn×n) → 0,

(3) lim sup
k→+∞

ˆ
A∩Juk

ϕ(x, u+
k , u

−
k , νuk)dHn−1 ≤

ˆ
A∩Ju

ϕ(x, u+, u−, νu)dHn−1,

for every open set A ⊂ Ω and for every upper semicontinuous function
ϕ : Ω×Rn×Rn×Sn−1 → [0,+∞) such that

ϕ(x, a, b, ν) = ϕ(x, b, a,−ν) for x ∈ Ω,

lim sup
(y,a′,b′,µ)→(x,a,b,ν)

y∈Ω

ϕ(y, a′, b′, µ) < +∞ for x ∈ ∂Ω,

for every a, b ∈ Rn, and ν ∈ Sn−1.

Remark 3.3. If Ω ⊂ Rn is an open cube, the intersection Juk ∩ Ω is a polyhedron, so that the
arguments in [15, Remark 3.5] and [14, Corollary 3.11] could be adapted to construct a new ap-
proximating sequence (ũk) satisfying all requirements of Theorem 3.2 and for which the set Jũk is
compactly contained in Ω.

A useful tool for the proof of Theorem 3.1 is the following lemma, which allows us to substitute a
GSBD2-function with another function of the same type, defined in a larger set, in a way that the
norm of the function and of its approximate symmetric gradient, the measure of the jump set, and
the trace on ∂Ω do not increase too much.

Lemma 3.4. Assume that Ω has Lipschitz boundary. Let Q : Mn×n
sym → R be a positive definite

quadratic form and let u ∈ GSBD2(Ω) ∩ L2(Ω,Rn). Then for every ε > 0 we can find a Lipschitz

open set Ω̂ with Ω ⊂⊂ Ω̂, and a function û ∈ GSBD2(Ω̂) ∩ L2(Ω̂,Rn), such that

(1) ||û− u||L2(Ω,Rn) < ε,

(2)

ˆ
Ω̂

Q(e(û)) dx ≤
ˆ

Ω

Q(e(u)) dx+ ε,

(3) Hn−1(Jû) ≤ Hn−1(Ju) + ε,

(4) Hn−1(Jû ∩ ∂Ω) = 0,

(5)

ˆ
∂Ω

|û− tr(u)| ∧ 1 dHn−1 < ε.

Proof. For the first three properties of the lemma we follow the proof of [12, Lemma 3.2] and we
only summarize the essential lines. Property (4) will be an easy consequence of a well-known result
in Measure Theory. Eventually, property (5) will be obtained through Theorem 2.6.

Since Ω has Lipschitz boundary, we can cover ∂Ω with open sets (Ai)
k
i=1, in a way that each

Ai ∩ Ω is the subgraph of a Lipschitz function fi : Πξi → R, for a suitable ξi ∈ Sn−1. Then we

consider an open set A0 ⊂⊂ Ω, such that Ω ⊂
⋃k
i=0Ai.

We define

u0
t := u in A0

uit(x) := u(x− t ξi) for x ∈ Ai ∩ (Ω + [0, t)ξi),

for t small enough; we extend uit by 0 in the rest of Ai.
Clearly we are going to glue the functions uit together through a partition of unity, but the choice

of the partition has to be done properly in view of property (3).
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We choose a partition of unity (ϕi)
k
i=0 subordinate to (Ai)

k
i=1 such that

∑k
i=0 ϕi = 1 on Ω and

Hn−1(Ju ∩
k⋃
i=0

{0 < ϕi < 1}) ≤ ε

2(k + 1)
; (3.1)

this is possible through [12, Lemma 3.3] applied to the positive Borel measure Hn−1bJu, which is
finite on Rn.

We set

ut :=

k∑
i=0

uitiϕi and Ωt := A0 ∪
( k⋃
i=1

(Ai ∩ (Ω + [0, ti)ξi))
)
,

where we have set t = (t1, . . . , tk) and each ti is small. Arguing as in [12, Lemma 3.2] we prove that
the pair (ut,Ωt) satisfies properties (1)–(3) for t small enough.

Proof of (4). Let us fix i = 1, . . . , k, then for every t ∈ R we have

Hn−1(Juit ∩ ∂Ω) = Hn−1(Juit ∩Ai ∩ ∂Ω) = Hn−1(Ju ∩ ((Ai ∩ ∂Ω)− tξi)). (3.2)

Since the measure Hn−1bJu is finite, a classical result of measure theory implies that the pairwise
disjoint Borel sets ((Ai ∩ ∂Ω) − tξi)t are Hn−1bJu-negligible, except for a countable set of indices
t ∈ R. This proves that ut also satisfies property (4) for Lk-a.e. t ∈ Rk.

Proof of (5). First we note that

ˆ
∂Ω

τ(|tr(ut)− tr(u)|)dHn−1 ≤
k∑
i=1

ˆ
∂Ω∩{ϕi 6=0}

τ(|tr(uiti)− tr(u)|)dHn−1,

where τ(s) := 1
πarctg (s) for s ∈ R. Let us fix i = 1, . . . , k and let us define M := ∂Ω ∩ {ϕi 6= 0}.

Let Ω1 ⊂⊂ Ai be such that ∂Ω1 is smooth, M ⊂⊂ (Ω1 ∩ ∂Ω), and Hn−1(∂Ω1 ∩ Ju) = 0.
We aim to apply Theorem 2.6 to the functions uiti , u on the set Ω1 ∩Ω. Clearly we have uiti → u

in L1(Ω1 ∩ Ω,Rn) and e(uiti)→ e(u) in L1(Ω1 ∩ Ω,Rn) by the L1-continuity of the translations. It
remains to check that ˆ

J
uiti

∩Ω1∩Ω

ψdHn−1 →
ˆ
Ju∩Ω1∩Ω

ψdHn−1, (3.3)

for every ψ ∈ C0
b (Ω1 ∩ Ω). Fixed ψ ∈ C0

b (Ω1 ∩ Ω), one easily shows that

ψ(x+ tiξi)χΩ1∩Ω(x+ tiξi)→ ψ(x)χΩ1∩Ω(x)

when x ∈ Ju \ ∂Ω1. By our assumptions on Ω1 we find that Hn−1-a.e. x ∈ Ju is out of ∂Ω1. By
the dominated convergence theorem we eventually obtain (3.3) and finally Theorem 2.6 gives the
continuity of the trace. We conclude that there exists t small enough such that properties (1)–(5)
hold for the pair (ut,Ωt). �

The proof of Theorem 3.1 is quite technical, so we break it into three steps. The first step is the
following theorem, which will give a rough and unified approximation of the energies.

Theorem 3.5 (A first unified approximation of the energies with bad constants). Assume that Ω
has Lipschitz boundary and let u ∈ GSBD2(Ω) ∩ L2(Ω,Rn). Then there exists a sequence (uk) ⊂
SBV 2(Ω,Rn)∩L2(Ω,Rn) such that Juk is contained in the union Σk of a finite number of (n− 1)-
dimensional closed cubes, uk ∈W 1,∞(Ω \ Σk,Rn), and the following properties hold:

(1) ||uk − u||L2(Ω,Rn) → 0,

(2) lim sup
k→+∞

( ˆ
Ω

Qn(e(uk)) dx+Hn−1(Σk)
)
≤
ˆ

Ω

Qn(e(u)) dx+ c1Hn−1(Ju). Here c1 is a

positive constant depending only on the dimension n and Qn is the positive definite
quadratic form on Mn×n

sym defined by

Qn(A) :=
3(n− 2)

2

n∑
i=1

a2
i,i + Tr(AAt) +

1

2
(Tr(A))2, for A ∈Mn×n

sym , (3.4)
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where Tr(A) denotes the trace of the matrix A;

(3)

ˆ
∂Ω

|tr(uk)− tr(u)| ∧ 1 dHn−1 → 0,

(4) if (Γi)
+
i=1∞ is a fixed sequence of C1-manifolds contained in Ω, then (uk) can be chosen

such that also Hn−1(Σk ∩ Γi) = 0, for i = 1, . . . ,+∞.

Proof. We follow the lines of [12, Proof of Theorem 1]. We first substitute the function u with a

similar function û defined on a larger set Ω̂. Then we discretize û on a suitable lattice and interpolate
it with a continuous function. Finally the approximating function will be obtained redefining the
interpolating function on some cubes of the lattice which intersect Jû.

Let u ∈ GSBD2(Ω) ∩ L2(Ω,Rn), let ε > 0, and let û and Ω̂ as in Lemma 3.4. By Lemma 2.2 we
can find a basis e1, . . . , en of Rn such that, for every vector e in the set

D := {ei, i = 1, . . . , n, ei ± ej , 1 ≤ i < j ≤ n},
one has

Hn−1({x ∈ Jû : [û](x) · e = 0}) = 0.

For each small discretization step h > 0 and for each y ∈ [0, 1)n, we define the discretized function
of û

ûyh(ξ) := û(hy + ξ), for ξ ∈ hZn ∩ (Ω̂− hy).

We also define the continuous interpolation of ûyh

wyh(x) :=
∑

ξ∈hZn∩Ω̂

ûyh(ξ)∆
(x− (ξ + hy)

h

)
for x ∈ Ω,

where

∆(x) :=

n∏
i=1

(1− |xi|)+.

We note that wyh ∈W 1,∞(Ω,Rn). In view of the definition of the discrete energies we introduce

Jτ :=
⋃
x∈Jû

[x, x− τ ] for τ ∈ Rn,

lye,h(ξ) := χJhe(hy + ξ) for ξ ∈ hZn and e ∈ D.

In what follows ξ is intended to belong to hZn.
We are now in a position to define the discrete energies

Ey,h1 (Ω̂) := hn
∑
e∈D

∑
ξ∈Ω̂−hy

ξ∈Ω̂−hy−he

α(e)
((ûyh(ξ + he)− ûyh(ξ)) · e)2

h2

(
1− lye,h(ξ)

)
, (3.5)

Ey,h2 (Ω̂) := c̃1h
n
∑
e∈D

∑
ξ∈Ω̂−hy

ξ∈Ω̂−hy−he

lye,h(ξ)

|e|h
, (3.6)

where (α(e))e∈D are positive parameters, chosen in a way that we shall be able to keep the constant
1 for the bulk term in estimate (2). Precisely, we define α(e) := n− 1 if e = ei, for i = 1, . . . , n and
α(e) := 1/4 for 1 ≤ i < j ≤ n. Moreover c̃1 is a constant depending only on the dimension n which
will be chosen later. We also set ê := e/|e|.

The first part of the proof is devoted to the choice of a suitable y ∈ [0, 1)n, and a suitable
subsequence of h, not relabelled, such that the following properties hold:

(1′) ||wyh − û||L2(Ω,Rn) → 0,

(2′) lim
h→+∞

[
Ey,h1 (Ω̂) +Ey,h2 (Ω̂)

]
≤
ˆ

Ω̂

Qn(e(û))dx+ c1Hn−1(Jû), where c1 < +∞ depends on c̃1,
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(3′a)

ˆ
∂Ω

|wyh − û| ∧ 1 dHn−1 → 0,

(3′b) Ey,h2 ((∂Ω)nh) → 0. Here (∂Ω)nh := {x ∈ Rn : d(x, ∂Ω) < nh} and the expression

Ey,h2 ((∂Ω)nh) means that (∂Ω)nh replaces Ω̂ in the definition (3.6);

(4′) if (Γi)
+
i=1∞ is a fixed sequence of C1-manifold contained in Ω, then y and the subsequence

of h can be chosen such that also Hn−1((hy + hZn + [0, h)ej) ∩ Γi) = 0, for i = 1, . . . ,+∞
and j = 1, . . . , n.

The first part of the proof (properties (1′) and (2′)) is analogous to that in [12, Theorem 1]. We
summarize it for completeness and for future convenience.

Proof of (1′). By the very definition of wyh, the Fubini Theorem, and a change of variable we findˆ
[0,1)n

dy

ˆ
Ω

|wyh(x)− û(x)|2 dx ≤
ˆ

[0,1)n
dy

ˆ
Ω

∑
ξ∈hZn∩Ω̂

∆
(x− (ξ + hy)

h

)
|û(ξ + hy)− û(x)|2 dx

≤
∑

ξ∈hZn∩Ω̂

ˆ
Ω

dx

ˆ
x−ξ
h −[0,1)n

∆(z)|û(x− hz)− û(x)|2 dz

≤
ˆ

(−1,1)n
∆(z)dz

ˆ
Ω

|û(x− hz)− û(x)|2 dx

where to infer the last inequality we notice that the sets x−ξ
h − [0, 1)n are pairwise disjoint as ξ varies

in hZn ∩ Ω̂. The last term in the previous inequality converges to 0 by the dominated convergence
theorem. Then property (1′) is satisfied for a subsequence of h, not relabelled, and for y varying in
a subset of [0, 1)n with full measure.

Proof of (2′). Let us estimate ˆ
[0,1)n

Ey,hj (Ω̂)dy, (3.7)

for j = 1, 2. For convenience we introduce Iez := {s ∈ R : z + sê ∈ Ω̂} and Iez,h := {s ∈ R : z + sê ∈
Ω̂, z + (s+ h|e|)ê ∈ Ω̂}. First a change of variable givesˆ

[0,1)n
Ey,h1 (Ω̂) dy =

=
∑
e∈D

α(e)
∑
ξ∈hZn

ˆ
ξ+h[0,1)n

χΩ̂∩(Ω̂−he)(x)
|(û(x+ he)− û(x)) · e|2

h2
(1− χJhe(x)) dx

=
∑
e∈D

α(e)

ˆ
Πe
dz

ˆ
Iez,h

|ûez(s+ h|e|)− ûez(s)|2

h2
(1− χJhe(z + sê)) ds. (3.8)

As in the SBD-case [12], when û ∈ GSBD2(Ω̂) ∩ L2(Ω̂,Rn) the slice ûez(s) := û(z + sê) · ê belongs
to SBV 2(Iez ), for e ∈ D and for Hn−1-a.e. z ∈ Πe. Noticing that χJhe(z + sê) = 0 is equivalent to
Jûez ∩ [s, s+ h|e|] = 0, we deduce that (3.8) is less than or equal to∑

e∈D
α(e)

ˆ
Πe
dz

ˆ
Iez

∣∣∣∂ûez
∂s

(t)
∣∣∣2 dt ≤ ˆ

Ω̂

∑
e∈D

α(e)|e(û)e · e|2dx, (3.9)

where we have used (2.8). Eventually the very definitions of α(e) and Qn give∑
e∈D

α(e)|e(û)e · e|2 = Qn(e(û)),

so that ˆ
[0,1)n

Ey,h1 (Ω̂) dy ≤
ˆ

Ω̂

Qn(e(û)) dx. (3.10)
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The same argument applied to Ey,h2 givesˆ
[0,1)n

Ey,h2 (Ω̂) dy =
∑
e∈D

c̃1

ˆ
Πe
dz

ˆ
Iez,h

χJhe(z+sê)

|e|h
ds ≤

∑
e∈D

c̃1H0(Jûez ) ≤ c1H
n−1(Jû) (3.11)

where c1 := c̃1 max|ν|=1(
∑
e∈D |ν · e|/|e|) and we have used (2.6).

For technical reasons, which will be clear at the end of the proof, it is convenient to prove
properties (3′a)–(4′) before completing the proof of (2′).

Proof of (3′a). Using the very definition of wyh and defining z := (x− ξ)/h− y we obtainˆ
[0,1)n

dy

ˆ
∂Ω

|wyh(x)− û(x)| ∧ 1 dHn−1(x) ≤

≤
∑

ξ∈hZn∩Ω̂

ˆ
[0,1)n

dy

ˆ
∂Ω∩(ξ+hy+h(−1,1)n)

|û(ξ + hy)− û(x)| ∧ 1 dHn−1(x)

≤
∑

ξ∈hZn∩Ω̂

ˆ
∂Ω∩(ξ+h(−1,2)n)

dHn−1(x)

ˆ
x−ξ
h −[0,1)n

|û(x− hz)− û(x)| ∧ 1 dz

≤
∑

ξ∈hZn∩Ω̂

ˆ
∂Ω∩(ξ+h(−1,2)n)

dHn−1(x)

ˆ
(−2,2)n

|û(x− hz)− û(x)| ∧ 1 dz

≤ c

ˆ
∂Ω

dHn−1(x)

 
B(x,ch)

|û(x′)− û(x)| ∧ 1 dx′,

where c < +∞ depends only on the dimension n.
Now, for Hn−1-a.e. x ∈ ∂Ω we obtain 

B(x,ch)

|û(x′)− û(x)| ∧ 1 dx′ → 0,

by [17, Theorem 5.1] and property (4) of Lemma 3.4 applied to û. Eventually the dominated
convergence theorem implies

´
∂Ω
|wyh(x)− û(x)| ∧ 1 dHn−1(x)→ 0 in L1([0, 1)n).

Hence property (3′a) holds for a subsequence of h, not relabelled, and y in a subset of [0, 1)n with
full measure.

Proof of (3′b). This step requires a computation analogous to that in (3.11), which leads toˆ
[0,1)n

Ey,h2 ((∂Ω)nh) dy ≤ c1Hn−1(Jû ∩ (∂Ω)nh). (3.12)

Since û satisfies property (4) of Lemma 3.4, we find that Ey,h2 ((∂Ω)nh) converges to 0 in L1([0, 1)n)
and then a subsequence of h and a set of full measure of [0, 1)n satisfy (3′b).

Proof of (4′). Let us fix i = 1, . . . ,+∞, j = 1, . . . , n, and let us consider the set

Γi ∩
⋃

yj∈[0,1)
ξj∈hZ

{x ∈ Rn : xj = hyj + ξj}.

Since
⋃
ξj∈hZ{x ∈ Rn : xj = hyj + ξj} are disjoint sets as yj varies in [0, 1) and since the measure

Hn−1bΓi is finite, we infer for Hn−1-a.e. yj ∈ [0, 1) the following holds

Hn−1(
⋃

ξj∈hZ
(Γi ∩ {x ∈ Rn : xj = hyj + ξj})) = 0.

Taking the union as i = 1, . . . ,+∞ and j = 1, . . . , n we obtain (4′).

Continuation of the proof of (2′). Let us consider the subsequence of h given by the proofs of
(1′), (3′a), (3′b), and (4′) and write inequalities (3.10) and (3.11) for this subsequence. Now we are
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in the position to apply the Fatou Lemma, so thatˆ
[0,1)n

lim inf
h→0

[
Ey,h1 (Ω̂) + Ey,h2 (Ω̂)

]
dy ≤

ˆ
Ω̂

Qn(e(û)) dx+ c1Hn−1(Jû).

Eventually we can find y ∈ [0, 1)n and a further subsequence of h, not relabelled, such that properties
(1′)–(4′) hold. In what follows we shall omit y, writing, e.g., wh in place of wyh.

In this second part of the proof we redefine the function wh within some cubes. Precisely, we say
that a hypercube

C = ξ + hy + [0, h)n

is “bad” if either Jû crosses an edge of C

ξ + hy + hη + [0, hei], where i = 1, . . . , n and η ∈ {0, 1}n with ηi = 0 (3.13)

(namely if lei,h(ξ + hη) = χJhei (ξ + hy + hη) = 1), or Jû crosses a diagonal of a 2-dimensional face

ξ + hy + hη + [0, h(ei + ej)], where i < j and η ∈ {0, 1}n with ηi = ηj = 0 (3.14)

(namely if lei+ej ,h(ξ + hη) = χ
Jh(ei+ej)

(ξ + hy + hη) = 1), or

ξ + hy + hη + [hej , hej + h(ei − ej)], where i < j and η ∈ {0, 1}n with ηi = ηj = 0 (3.15)

(namely if lei−ej ,h(ξ + hη + hej) = χ
Jh(ei−ej)

(ξ + hy + hη + hej) = 1). We define vh := 0 in every
bad hypercube and vh := wh otherwise.

Thanks to the previous definition the following properties hold:

(1′′) ||wh − vh||L2(Ω,Rn) → 0,
(2′′) the constant c̃1(n) in (3.6) can be chosen in a way thatˆ

Ω

Qn(e(vh))dx+Hn−1(Jvh) ≤ Ey,h1 (Ω̂) + Ey,h2 (Ω̂),

(3′′)

ˆ
∂Ω

|wh − tr(vh)| ∧ 1 dHn−1 → 0, where tr(vh) is the trace from the interior of Ω.

The proof of (1′′) and of (2′′) work as in [12, 13] since the definition of vh and of the discrete energies
are the same. Let us prove now (3′′).

Proof of (3′′). First we note thatˆ
∂Ω

|wh − tr(vh)| ∧ 1 dHn−1 ≤ Hn−1({∂Ω ∩
⋃

C bad cube

C})

and that for each cube we have

Hn−1({∂Ω ∩ C}) ≤ chn−1, (3.16)

where c depends on Ω. Now the contribution of a bad cube C to Eh2 ((∂Ω)nh) is given by

hn−1

2n−1

n∑
i=1

∑
η∈{0,1}n
ηi=0

lei,h(ξ + hη) +
hn−1

2n−2

∑
1≤i<j≤n

∑
η∈{0,1}n
ηi=ηj=0

lei+ej ,h(ξ + hη) + lei−ej ,h(ξ + hη + hej)√
2

,

(3.17)
where the coefficients take into account the fact that each edge is common to 2n−1 hypercubes and
a diagonal of a 2-face is common to 2n−2 hypercubes. Since at least one of the le,h in the sum is

equal to 1, we find the term in (3.17) is greater than or equal to hn−1

2n−1 . Hence by this and (3.16) we
find ∑

C bad cube

Hn−1({∂Ω ∩ C}) ≤ cEh2 ((∂Ω)nh),

for a suitable constant c < +∞ depending on Ω. Thanks to property (3′b) we eventually obtain
(3′′).

Finally properties (1′)–(4′), (1′′)–(3′′), and (1)–(5) of Lemma 3.4 yield (1)–(4). �
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With the next theorem we provide a further approximation of the given function in a way that
the unified estimate for the bulk and the surface energies has now the right coefficients. The proof
follows the line of [12, Theorem 2].

Theorem 3.6 (A unified approximation of the energies with the right constants). Assume that
Ω has Lipschitz boundary. Let u ∈ GSBD2(Ω) ∩ L2(Ω,Rn). Then there exists a sequence (uk) ⊂
SBV 2(Ω,Rn) ∩ L2(Ω,Rn) such that Juk is contained in the union Sk of a finite number of closed
connected pieces of C1-hypersurfaces, uk ∈W 1,∞(Ω \ Sk,Rn), and the following properties hold:

(1) ||uk − u||L2(Ω,Rn) → 0,

(2) lim sup
k→+∞

( ˆ
Ω

Qn(e(uk)) dx+Hn−1(Sk)
)
≤
ˆ

Ω

Qn(e(u)) dx+Hn−1(Ju),

(3)

ˆ
Ju

|u±k − u
±| ∧ 1 dHn−1 → 0,

(4) Hn−1(Ju \ Juk)→ 0, where Qn is defined in (3.4).

Proof. Since Ju is (Hn−1, n − 1)-rectifiable, we can find a sequence (Γi) of C1-hypersurfaces such

that Hn−1(Ju \
⋃+
i=1∞Γi) = 0. We fix now ε > 0 and use a Besicovitch recovering argument, as in

[12, Theorem 2], to find a sequence of pairwise disjoint closed balls Bj ⊂ Ω and an index j0 such
that

(a) for every j there exists ij for which Γij divides Bj into two connected components,

(b) Hn−1(Ju ∩ ∂Bj) = 0,

(c) Hn−1(Ju \
⋃
j≥1

Bj) = 0,

(d)
∑
j>j0

Hn−1(Ju ∩Bj) < ε,

(e) Hn−1((Ju4Γij ) ∩Bj) ≤
ε

1− ε
Hn−1(Ju ∩Bj), for j = 1, . . . , j0.

Applying Theorem 3.5 in both of connected components of Bj \Γij , we find a sequence of functions

ujk defined Ln-a.e. on Bj for which property (1) of Theorem 3.5 holds in Bj , property (3) holds in
∂Bj and in Γij , property (4) holds for the sequence (Γi) introduced above, and

lim sup
k→+∞

ˆ
Bj

Qn(e(ujk))dx+Hn−1(Jujk
∩Bj) ≤

ˆ
Bj

Qn(e(u))dx+Hn−1(Ju ∩Bj)

+c
ε

1− ε
Hn−1(Ju ∩Bj), (3.18)

for a suitable universal constant c < +∞.
Defined

At :=
{
x ∈ Rn : dist

(
x,Ω \

j0⋃
j=1

Bj

)
< t
}
,

we observe that

Hn−1
(
Ju ∩

⋂
t>0

At

)
= Hn−1

(
Ju \

j0⋃
j=1

Bj

)
< ε and lim

t→0

ˆ
At∩

⋃j0
j=1 Bj

Qn(e(u))dx = 0,

therefore we can choose t > 0 such thatˆ
At∩

⋃j0
j=1 Bj

Qn(e(u))dx < ε and Hn−1(Ju ∩At) < ε. (3.19)

Let (u0
k) be the sequence obtained applying Theorem 3.5 in At ∩ Ω. Then using (3.19) we find

lim sup
k→+∞

ˆ
At∩Ω

Qn(e(u0
k))dx+Hn−1(Ju0

k
) ≤

ˆ
At∩Ω

Qn(e(u))dx+ cε. (3.20)
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Now we construct a suitable partition of unity to glue together the functions ujk. For j = 0, . . . , j0
we find a compact set Kj , with At

c ∩Bj ⊂⊂ Kj ⊂⊂ Bj , such that

Hn−1((Bj \Kj) ∩ Γij ) <
ε

j0
. (3.21)

Let ϕj ∈ C∞c (Bj) for j = 1, . . . , j0 such that ϕj = 1 in Kj and 0 ≤ ϕ ≤ 1. Let also ϕ0 ∈ C∞c (At) be

such that ϕ0 := 1− ϕj in Bj and ϕ0 := 1 in Ω \
⋃j0
j=1Bj .

We finally define

uk :=

j0∑
j=0

ϕju
j
k.

Then property (1) is satisfied by construction. As for property (2), inequalities (3.18), (3.19), and
(3.20) yield

lim sup
k→+∞

ˆ
Ω

Qn(e(uk))dx+Hn−1(Juk) ≤
ˆ

Ω

Qn(e(u))dx+Hn−1(Ju) + cε,

where c < +∞ is a universal constant.
Let us prove property (3). Using (c), (d), and (e) we findˆ

Ju

|u±k − u
±| ∧ 1 dHn−1 ≤

ˆ
Ju∩

⋃j0
j=1(Bj∩Γij )

|u±k − u
±| ∧ 1 dHn−1 + cε

≤
j0∑
j=1

ˆ
Bj∩Γij

|u±k − u
±| ∧ 1 dHn−1 + cε. (3.22)

The very definition of uk implies now that (3.22) is less than or equal to

j0∑
j=1

j0∑
l=0

ˆ
Bj∩Γij

ϕl|ulk
± − u±| ∧ 1 dHn−1 + cε

=

j0∑
j=1

(ˆ
Bj∩Γij

ϕ0|u0
k
± − u±| ∧ 1 dHn−1

+

ˆ
Bj∩Γij

ϕj |ujk
±
− u±| ∧ 1 dHn−1

)
+ cε

≤
j0∑
j=1

ˆ
Bj∩Γij

|ujk
±
− u±| ∧ 1 dHn−1 + cε,

where c < +∞ and the last two inequalities follow from the assumptions on ϕj and from (3.21). By

the definition of ujk, passing to the limit as k → +∞ we find

lim sup
k→+∞

ˆ
Ju

|u±k − u
±| ∧ 1 dHn−1 ≤ cε.

Eventually a diagonalization argument conclude the proof of properties (2) and (3).
Now property (4) easily follows from property (3). Indeed, the measure Hn−1bJu is absolutely

continuous with respect to the measure defined by

ν(B) :=

ˆ
B∩Ju

|[u]| ∧ 1dHn−1,

for every Borel set B ⊂ Ω. Moreoverˆ
Ju\Juk

|[u]| ∧ 1dHn−1 → 0 (3.23)

holds true by property (3); this yields property (4) and concludes the proof. �
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We are now in a position to prove the Density Theorem 3.1. The proof follows the lines of [12,
Theorem 3].

Proof of the Density Theorem 3.1. Let us consider the sequence (uk) given by Theorem 3.6. Using
the compactness result for GSBD [17, Theorem 11.3] we infer that a subsequence of (uk), not
relabelled, satisfies

e(uk) ⇀ e(u) weakly in L2(Ω,Mn×n
sym ), (3.24)ˆ

Ω

Qn(e(u))dx ≤ lim inf
k→+∞

ˆ
Ω

Qn(e(uk))dx, (3.25)

Hn−1(Ju) ≤ lim infk→+∞Hn−1(Juk). (3.26)

From property (2) of Theorem 3.6 and from (3.25) and (3.26) we deduceˆ
Ω

Qn(e(u))dx = lim
k→+∞

ˆ
Ω

Qn(e(uk))dx, (3.27)

Hn−1(Ju) = limk→+∞Hn−1(Juk). (3.28)

Now (3.24) and (3.27) yield property (2) of the thesis. Property (3) follows from property (4) of
Theorem 3.6 and from (3.28). To obtain property (4) it is sufficient to use property (3) of Theorem
3.6 and the already proved property (3) of the thesis. �

4. An Application: Approximation of Brittle Fracture Energies

In this section we compute the Γ-limit in L1(Ω,Rn)×L1(Ω) of the sequence of functionals

Gk(u, v) :=


ˆ

Ω

(
Q(v, e(u)) +

ψ(v)

εk
+ a εp−1

k |∇v|p + |u− g|2
)
dx if (u, v) ∈ H1(Ω,Rn)×Vηk ,

+∞ otherwise,

where

(a) Ω ⊂ Rn is a bounded open set and εk > 0, ηk ≥ 0 are infinitesimal sequences with ηk/εk → 0,
(b) Q : R×Mn×n

sym → R is lower semicontinuous,

(c) for every s ∈ R, the function Q(s, ·) is a positive definite quadratic form on Mn×n
sym ,

(d) there exist two constants 0 < c1, c2 < +∞, such that c1s|A|2 ≤ Q(s,A) ≤ c2s|A|2, for every
s ∈ R and A ∈Mn×n

sym ,

(e) ψ ∈ C([0, 1]) is strictly decreasing with ψ(1) = 0 and g ∈ L2(Ω,Rn),
(f) a, p ∈ R with a > 0 and p > 1,
(g) Vηk :=

{
v ∈W 1,p(Ω) : ηk ≤ v ≤ 1 Ln-a.e. in Ω

}
.

We also define the functional Ψ: L1(Ω,Rn)→ [0,+∞] by

Ψ(u) :=


ˆ

Ω

Q(e(u))dx+ αHn−1(Ju) +

ˆ
Ω

|u− g|2dx if u ∈ GSBD2(Ω) ∩ L2(Ω,Rn),

+∞ otherwise,

where Q(e(u)) := Q(1, e(u)) and

α := 2q
1
q (ap)

1
p

ˆ 1

0

ψ
1
q ds,

1

p
+

1

q
= 1. (4.1)

Then the following result holds.

Theorem 4.1. Assume (a)-(g) and assume that Ω has Lipschitz boundary. Then the Γ-limit of
(Gk) in L1(Ω,Rn)×L1(Ω) is given by

G(u, v) :=

{
Ψ(u) if v = 1 Ln-a.e. in Ω,

+∞ otherwise.

The previous theorem, together with a compactness result for the functionals Gk (Proposition
4.5), will give in turn the convergence of minima and minimizers in the space L2(Ω,Rn)×L1(Ω).
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Corollary 4.2. Assume (a)-(g) and assume that Ω has Lipschitz boundary. For every k, let (uk, vk)
be a minimizer of the problem

min
(u,v)∈H1(Ω,Rn)×Vηk

ˆ
Ω

(
Q(v, e(u)) +

ψ(v)

εk
+ a εp−1

k |∇v|p + |u− g|2
)
dx. (4.2)

Then vk → 1 in L1(Ω) and a subsequence of (uk) converges in L2(Ω,Rn) to a minimizer u of the
following problem

min
u∈GSBD(Ω)

( ˆ
Ω

Q(e(u))dx+ αHn−1(Ju) +

ˆ
Ω

|u− g|2dx
)
. (4.3)

Moreover the minimum values in (4.2) tend to the minimum value in (4.3).

As usual, we shall prove Theorem 4.1 giving a lower estimate for the Γ-lower limit of Gk and an
upper estimate for the Γ-upper limit of Gk. To simplify the notation we introduce the functionals
Fk : L1(Ω,Rn)×L1(Ω)→ [0,+∞] and Φ: L1(Ω,Rn)→ [0,+∞] defined by

Fk(u, v) :=


ˆ

Ω

(
Q(v, e(u)) +

ψ(v)

εk
+ a εp−1

k |∇v|p
)
dx if (u, v) ∈ H1(Ω,Rn)×Vηk ,

+∞ otherwise,

Φ(u) :=


ˆ

Ω

Q(e(u))dx+ αHn−1(Ju) if u ∈ GSBD2(Ω) ∩ L1(Ω,Rn),

+∞ otherwise.

For technical reasons which will be clear in the last part of the proof, we first study the Γ-lower limit
of Fk in the space L1(Ω,Rn)×L1(Ω) (Theorem 4.3) and the Γ-upper limit of (the restriction of) Fk
in the space L2(Ω,Rn)×L1(Ω) (Theorem 4.4).

Theorem 4.3. Assume (a)-(g). Let (u, v) ∈ L1(Ω,Rn)×L1(Ω) and let (uk, vk) be a sequence such
that

(uk, vk)→ (u, v) in L1(Ω,Rn)×L1(Ω), (4.4)

(Fk(uk, vk)) is bounded. (4.5)

Then u ∈ GSBD2(Ω) ∩ L1(Ω,Rn), v = 1 Ln-a.e. in Ω, andˆ
Ω

Q(e(u))dx ≤ lim inf
k→+∞

ˆ
Ω

Q(vk, e(uk))dx, (4.6)

αHn−1(Ju) ≤ lim inf
k→+∞

ˆ
Ω

(ψ(vk)

εk
+ a εp−1

k |∇vk|p
)
dx. (4.7)

Proof. The convergence vk → 1 in L1(Ω) is an immediate consequence of (4.4) and (4.5). In the
first part of the proof we argue by slicing following the lines of [18, Proposition 1].

Proof of (4.6). We fix ξ ∈ Rn, ξ 6= 0. We are going to prove that u ∈ GSBD(Ω) and that satisfiesˆ
Ω

(e(u)ξ · ξ)2dx ≤ lim inf
k→+∞

ˆ
Ω

vk(e(uk)ξ · ξ)2dx. (4.8)

To this aim we first extract a subsequence (ur, vr) of (uk, vk) such that

((ur)
ξ
y, (vr)

ξ
y)→ (uξy, 1) in L1(Ωξy)×L1(Ωξy) for Hn−1-a.e. y ∈ Ωξ (4.9)

and

lim
r→+∞

ˆ
Ω

vr(e(ur)ξ · ξ)2dx = lim inf
k→+∞

ˆ
Ω

vk(e(uk)ξ · ξ)2dx. (4.10)

Fixed 0 < κ < 1, the Fubini Theorem, [2, Structure Theorem 4.5], and (4.5) implyˆ
Ωξ

[ˆ
Ωξy

(
(vr)

ξ
y

∣∣∇((ur)
ξ
y)
∣∣2 + κ

(ψ(vr)
ξ
y

εr
+ a εp−1

r |∇(vr)
ξ
y|p
))

dt

]
dHn−1(y) ≤

≤
ˆ

Ω

(
vr(e(ur)ξ · ξ)2 + κ

(ψ(vr)

εr
+ a εp−1

r |∇(vr)|p
))

dx ≤ c, (4.11)
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where c < +∞ is constant. Using the previous inequality and the Fatou Lemma, for Hn−1-a.e.
y ∈ Ωξ we can find a subsequence (um, vm) of (ur, vr) such that

lim
m→+∞

ˆ
Ωξy

(
(vm)ξy

∣∣∇((um)ξy)
∣∣2 + κ

(ψ(vm)ξy
εm

+ a εp−1
m |∇(vm)ξy|p

))
dt =

= lim inf
r→+∞

ˆ
Ωξy

(
(vr)

ξ
y

∣∣∇((ur)
ξ
y)
∣∣2 + κ

(ψ(vr)
ξ
y

εr
+ a εp−1

r |∇(vr)
ξ
y|p
))

dt < +∞. (4.12)

Since (4.9) and (4.12) hold, we can apply the scalar result [22, Proposition 3.4] to ((um)ξy, (vm)ξy),

so that uξy ∈ SBV 2(Ωξy) andˆ
Ωξy

|∇(uξy)|2dt ≤ lim inf
m→+∞

ˆ
Ωξy

(vm)ξy|∇((um)ξy)|2dt, (4.13)

αHn−1(Juξy ) ≤ lim inf
m→+∞

ˆ
Ωξy

(ψ(vm)ξy
εm

+ a εp−1
m |∇((vm)ξy)|p

)
dt. (4.14)

To check that u ∈ GSBD(Ω), we observe the following inequalities holdˆ
Ωξ

(
|D(uξy)|(Ωξy \ Juξy ) +H0(Juξy )

)
dHn−1(y) ≤

≤
ˆ

Ωξ

(
L1(Ωξy) +

ˆ
Ωξy\J

u
ξ
y

|∇(uξy)|2dt+H0(Juξy )
)
dHn−1(y) ≤

≤
ˆ

Ωξ
c
[
1 + lim inf

r→+∞

ˆ
Ωξy

(
(vr)

ξ
y

∣∣∇((ur)
ξ
y)
∣∣2 + κ

(ψ(vr)

εr
+ a εp−1

r |∇(vr)|p
))

dt
]
,

where c := diam(Ω) + 1 + α and we have used (4.11)-(4.14). The last term in the previous estimate
is bounded by (4.11) and this gives u ∈ GSBD(Ω).

Now we integrate on Ωξ both sides of (4.13); by (4.10)-(4.12), (2.8), and the Fubini Theorem we
find (4.8) as κ→ 0.

Now we observe thatˆ
Ω

(e(u)ξ · ξ − w)2dx ≤ lim inf
k→+∞

ˆ
Ω

vk(e(uk)ξ · ξ − w)2dx (4.15)

follows from (4.8) for every w ∈ L2(Ω). Indeed, (4.15) trivially holds if w is piecewise constant on a
Lipschitz partition of Ω; then a density argument proves (4.15) for an arbitrary w ∈ L2(Ω).

The next step is to deduce by (4.15) that

e(uk)v
1
2

k ⇀ e(u) weakly in L2(Ω,Mn×n
sym ). (4.16)

To this aim, we first extract a subsequence (ul, vl) of (uk, vk) such that vl → 1 Ln-a.e. in Ω and

e(ul)v
1
2

l ⇀ A weakly in L2(Ω,Mn×n
sym ), for a suitable A ∈ L2(Ω,Mn×n

sym ). Now we apply (4.15) to

w = Aξ · ξ − tz, for t ∈ R and z ∈ L2(Ω). After an easy computation we findˆ
Ω

((e(u)−A)ξ · ξ)2dx+ 2t

ˆ
Ω

z(e(u)−A)ξ · ξdx ≤ lim inf
l→+∞

ˆ
Ω

vl((e(ul)−A)ξ · ξ)2dx.

As t → ±∞, the previous inequality leads to a contradiction unless
´

Ω
z(e(u) − A)ξ · ξdx = 0 for

every z ∈ L2(Ω) and every ξ ∈ Rn, namely unless e(u) = A Ln-a.e. in Ω. Therefore (4.16) holds
true.

We use now the Egorov Theorem to find, in correspondence of µ > 0, a Borel set Bµ ⊂ Ω such
that Ln(Ω \Bµ) < µ and vk > 1− µ on Bµ for k large. An easy computation then shows that

e(uk)χBµ ⇀ e(u)χBµ weakly in L2(Ω,Mn×n
sym ). (4.17)

We are now in a position to apply [11, Theorem 2.3.1], so thatˆ
Bµ

Q(e(u)) ≤ lim inf
k→+∞

ˆ
Ω

Q(vk, e(uk)χBµ)dx ≤
ˆ

Ω

Q(vk, e(uk))dx.
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By the absolute continuity of the Lebesgue integral the left-hand side of the previous inequality
tends to

´
Ω
Q(e(u))dx as µ→ 0, and this concludes the proof of (4.6).

Proof of (4.7). For this part we refer to [18, Proposition 1]. We only point out that arguing again
by slicing, using (2.6) and the coarea formula, we find

α

ˆ
Jξu

|νu · ξ|dHn−1 ≤ lim inf
k→+∞

ˆ
Ω

(ψ(vk)

εk
+ a εp−1

k |∇vk|p
)
dx, (4.18)

namely the set Jξu replaces the set Ju appearing in [18, Inequality (58)]. Nevertheless, inequality
(4.18) still holds true with Ju in place of Jξu by (2.9), being the set

{ξ ∈ Sn−1 : Hn−1(Ju \ Jξu) = 0}

dense in Sn−1. Eventually, inequality (4.7) follows from this and from a classical localization argu-
ment. �

Let us prove now the upper estimate. We denote by F ′′2 the Γ-lim sup of Fk in L2(Ω,Rn)×L1(Ω).

Theorem 4.4. Assume (a)-(g) and assume that Ω has Lipschitz boundary. Then

F ′′2 (u, 1) ≤ Φ(u), (4.19)

for every u ∈ GSBD2(Ω) ∩ L2(Ω,Rn).

Proof. The crucial point of this proof is the approximation of a function u ∈ GSBD2(Ω)∩L2(Ω,Rn)
with more regular functions, through the Density Theorem 3.1. Precisely, it provides a sequence
uk ∈ SBV 2(Ω,Rn) ∩ L∞(Ω,Rn) such that

uk → u in L2(Ω,Rn) and Φ(uk)→ Φ(u), (4.20)

so that if we prove that uk satisfies (4.19), then also u satisfies (4.19), being F ′′2 lower semicontinuous
in L2(Ω,Rn)×L1(Ω).

The proof of (4.20) for functions in SBV 2(Ω,Rn)∩L∞(Ω,Rn) is now standard (see, for instance,
[12, 13]). Let us give a brief description of the construction of the recovery sequence, following the
approach of [22, Theorem 3.3].

Using a local reflection argument we reduce to prove the statement for Ω open cube in Rn. Now
Theorem 3.2 and Remark 3.3 allow us to assume in addition that Ju is contained in Ω and that u
satisfies properties (1)–(3) of Theorem 3.2. Moreover, it is not restrictive to consider only the case
when Ju is a (n− 1)-simplex, which we denote by S.

Let us fix a sequence of constants σk such that ηk/σk → 0 and σk/εk → 0. We introduce now the
sets Ak, A′k, Bk, and B′k, defined precisely in [22, Theorem 3.3]. Here we just recall that Ak ∪A′k is
a neighborhood of S such that

Ln(Ak) ≤ cσk and Ln(A′k) ≤ cσ2
k (4.21)

and the set Bk ∪B′k is a layer which envelops Ak ∪A′k and satisfies

Ln(Bk) ≤ cεk and Ln(B′k) ≤ cε2
k, (4.22)

for a suitable constant c < +∞.
Also the definition of the recovery sequence (uk, vk) is given in analogy with [22, Theorem 3.3].

In particular uk is set equal to u out of Ak ∪ A′k and it is a linear link in Ak in the direction of en.
With this definition uk is a Lipschitz function in Ω \ A′k with constant c/σk, where c < +∞. To
check this it is sufficient to apply the arguments given in [18, Theorem 3.3, Inequalities (71)-(78)]
to each components uik of uk. Thanks to the Mc Shane Theorem we are now able to define uk also
in A′k in a way that

|Duk| ≤ c/σk Ln-a.e. in Ω. (4.23)

In addition, we define vk by ηk in Ak ∪ A′k, by 1 out of Ak ∪ A′k ∪ Bk ∪ B′k, and in a way that, in
terms of energy, the transition in Bk ∪B′k is optimal.
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As for the computation of Fk(uk, vk), we only observe thatˆ
Ak∪A′k

Q(ηk, e(uk))dx→ 0, (4.24)

by (4.21), (4.23), and by the convergence ηk/σk → 0. This concludes the proof, since the computation
for the other terms work as in [22, Theorem 3.3]. �

Let us prove the Γ-convergence Theorem 4.1 for (Gk).

Proof of Theorem 4.1. Let us introduce H : L1(Ω,Rn)×L1(Ω)→ [0,+∞], defined by

H(u, v) :=


ˆ

Ω

|u− g|2dx if u ∈ L2(Ω,Rn),

+∞ otherwise.
(4.25)

On the one hand we notice that

F ′ +H ≤ G′, (4.26)

where F ′, G′ represent the Γ-lower limits of Fk and Gk in L1(Ω,Rn)×L1(Ω) and we have used
the fact that H is lower semicontinuous in L1(Ω,Rn)×L1(Ω). Then if (u, v) ∈ L1(Ω,Rn)×L1(Ω)
satisfies G′(u, v) < +∞, one deduces by Theorem 4.3 that u belongs to GSBD2(Ω) ∩ L2(Ω,Rn),
v = 1 Ln-a.e., and

Ψ(u) = Φ(u) +H(u, 1) ≤ G′(u, 1).

On the other hand if u ∈ GSBD2(Ω)∩L2(Ω,Rn), then the continuity of H in L2(Ω,Rn)×L1(Ω)
and Theorem 4.4 yield

G′′(u, 1) ≤ G′′2(u, 1) = F ′′2 (u, 1) +H(u, 1) ≤ Φ(u) +H(u, 1) = Ψ(u), (4.27)

where G′′, G′′2 represent the Γ-upper limits of Gk in L1(Ω,Rn)×L1(Ω) and in L2(Ω,Rn)×L1(Ω). The
thesis follows from (4.26) and (4.27). �

A key point for the proof of Corollary 4.2 is the compactness of a minimizing sequence. This
is obtained in the following proposition, through a characterization which relates compactness of
sequences to compactness of slices (see [1, Theorem 6.6] and [17, Theorem 10.7]).

Proposition 4.5. Let (uk, vk) ∈ L1(Ω,Rn)×L1(Ω) be such that (Gk(uk, vk)) is bounded. Then
vj → 1 in L1(Ω) and a subsequence (uj) of (uk) converges in L1(Ω,Rn) to a function u ∈ L2(Ω,Rn).

Proof. The proof follows the lines of [17, Theorem 11.1]. It is sufficient to prove the statement for
any open set which is relatively compact in Ω. Furthermore we assume that Ω is a finite union
of open rectangles and we extend each function by zero out of Ω. Let M < +∞ be such that
Gk(uk, vk) ≤M .

Since (Fk(uk, vk)) is bounded, the sequence vk converges to 1 in L1(Ω) and Ln-a.e. in Ω, up to
subsequences. We fix now k ∈ N and ξ ∈ Sn−1. For y ∈ Ωξ we introduce the one-dimensional
functional Fy,k : L1(Ωξy)×L1(Ωξy)→ R defined by

Fy,k(w, z) :=


ˆ

Ωξy

(
z |∇w|2 +

ψ(z)

εk
+ a εp−1

k |∇(z)|p
)
dt if (w, z) ∈ H1(Ωξy)×Vy,ηk ,

+∞ otherwise,

where Vy,ηk :=
{
z ∈W 1,p(Ωξy) : ηk ≤ z ≤ 1 H1-a.e. in Ωξy

}
. We also define for λ > 0

Âξ,λk :=
{
y ∈ Ωξ : (uk)ξy ∈ H1(Ωξy), Fy,k((uk)ξy, (vk)ξy) ≤ λ

}
, B̂ξ,λk := Ωξ \ Âξ,λk ,

Aξ,λk :=
{
x ∈ Ω : Πξ(x) ∈ Âξ,λk

}
, Bξ,λk :=

{
x ∈ Ω : Πξ(x) ∈ B̂ξ,λk

}
,

being Πξ(x) the projection of x on the plane Πξ. Since (Fk(uk, vk)) is bounded, the Chebychev
Inequality and the Fubini Theorem yield

Ln(Bξ,λk ) ≤ diam(Ω)
c

λ
. (4.28)
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Here and henceforth c represents a finite constant; in particular c(δ) will denote its possible depen-
dence on δ. For µ > 0 and t ∈ R, we introduce the truncation function τµ(t) := −µ ∨ t ∧ µ and we
set

wξ,λk,µ :=

{
τµ(uk · ξ) in Aξ,λk ,

0 in Bξ,λk .

Let

φ(t) :=

ˆ t

0

ψ
1
q ds for t ∈ [0, 1]

and let c̃ be a constant which uniformly bounds φ(vk). For δ > 0 we are able to find λδ and µδ large
enough to guarantee

c̃||uk · ξ − wξ,λδk,µδ
||L1(Rn) < δ (4.29)

uniformly with respect to k. Indeed, let µδ > 0 be such that s ≤ δ
4M s2 for s ≥ µδ and let λδ be such

that µδLn(Bξ,λδk ) ≤ δ/2, (this is possible by (4.28)). Therefore we findˆ
Ω

|u · ξ − wξ,λδk,µδ
|dx =

ˆ
{|u·ξ|>µδ}

|u · ξ − wξ,λδk,µδ
|dx+

ˆ
B
ξ,λδ
k ∩{|u·ξ|≤µδ}

|u · ξ|dx

≤ 2

ˆ
{|u·ξ|>µδ}

|u|dx+ µδLn(Bξ,λδk )

≤ δ

2M

ˆ
Ω

|u|2dx+
δ

2
= δ.

For simplicity in what follows we write wk in place of wξ,λδk,µδ
.

In order to apply [17, Lemma 10.7], we set

U := (φ(vk)uk), V ξδ := (φ(vk)wk),

and we show that for every k and for Hn−1-a.e. y ∈ Ωξ we haveˆ
R
|(φ(vk)wk)ξy(t+ h)− (φ(vk)wk)ξy(t)|dt ≤ ωδ(h) for h ∈ (0, 1), (4.30)

for a suitable modulus of continuity ωδ independent on k, y, and ξ. To this aim we check that for
every k and for Hn−1-a.e. y ∈ Ωξ the function (φ(vk)wk)ξy satisfies all requirements of [17, Lemma
10.8], uniformly with respect to k and y.

First note that for every k and forHn−1-a.e. y ∈ Ωξ the function (φ(vk)wk)ξy belongs to SBV 2(R)∩
L∞(R), that H0((Jwk)ξy) ≤ c, and that ||(φ(vk)wk)ξy||L∞(R) ≤ c(δ). Moreover the Young Inequality,
the estimate φ(t) ≤ ct, and the Hölder Inequality yieldˆ

Ωξy

|∇((φ(vk)wk)ξy)|dt ≤

c(δ)

ˆ
Ωξy

(ψ((vk)ξy)

εk
+ εp−1

k |∇((vk)ξy)|p
)
dt+ c(diam(Ω))

1
2

(ˆ
Ωξy

(vk)ξy
∣∣∇(wk)ξy

∣∣2 dt) 1
2 ≤ c(δ).

We are now in a position to apply [17, Lemma 10.8], so that (4.30) holds with ωδ(h) := c(δ)h.
Through [17, Lemma 10.7], inequalities (4.29) and (4.30) imply the existence of a subsequence
(φ(vj)uj) of (φ(vk)uk) and of a function ũ ∈ L1(Ω,Rn) such that φ(vj)uj → ũ in L1(Ω,Rn). The
Fatou Lemma also gives ũ ∈ L2(Ω,Rn). Eventually the thesis follows for u := ũ/φ(1). �

We conclude proving Corollary 4.2.

Proof of Corollary 4.2. Let us fix k and check that the functional Gk achieves its infimum. If (uj , vj)
is a minimizing sequence for Gk, the sequence (uj) belongs to H1(Ω,Rn), is bounded in L2(Ω,Rn),
and the sequence of symmetric gradients e(uj) is bounded in L2(Ω,Mn×n

sym ). By Korn’s inequality this

implies that (uj) is bounded in H1(Ω,Rn), so that there exist a subsequence of (uj), not relabelled,
and a function u ∈ H1(Ω,Rn) such that uj ⇀ u weakly in H1(Ω,Rn).
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Being (vj) bounded in W 1,p(Ω) we also infer that there exists a further subsequence of (vj), not
relabelled, and a function v ∈ Vηk such that

vj ⇀ v weakly in W 1,p(Ω) and Ln-a.e. in Ω.

By the Ioffe-Olech semicontinuity theorem (see, for instance, [11, Theorem 2.3.1.]) and the Fatou
lemma we deduce thatˆ

Ω

Q(v, e(u))dx ≤ lim inf
j→+∞

ˆ
Ω

Q(vj , e(uj))dx and

ˆ
Ω

|u− g|2dx ≤ lim inf
j→+∞

ˆ
Ω

|uj − g|2dx (4.31)

hold, therefore (u, v) minimizes Gk.
Now a sequence (uk, vk) of minimizers of Gk is compact in L1(Ω,Rn)×L1(Ω) by Proposition 4.5.

Let (u, 1) be the limit point of a subsequence, not relabelled, of (uk, vk). By Theorem 4.1 and by a
general result of Γ-convergence, we infer that (u, 1) is a minimizer for G and that the convergence
of minimum values holds.

To conclude the proof it remains to show that uk → u in L2(Ω,Rn). To this aim it is sufficient
to prove that ˆ

Ω

|uk − g|2dx→
ˆ

Ω

|u− g|2dx. (4.32)

By the convergence of the minimum values Gk(uk, vk)→ G(u, v), the following inequalities

Φ(u) ≤ lim inf
k→+∞

Fk(uk, vk) and

ˆ
Ω

|u− g|2dx ≤ lim inf
k→+∞

ˆ
Ω

|uk − g|2dx

(holding true by Theorem 4.3 and the lower semicontinuity of H) are actually equalities. This gives
(4.32) and concludes the proof. �
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[1] G. Alberti, G. Bouchitté, P. Seppecher, Phase transition with the line-tension effect, Arch. Rational Mech. Anal.
144 (1998), 1–46.

[2] L. Ambrosio, A. Coscia, G. Dal Maso, Fine properties of functions with bounded deformation, Arch. Rational

Mech. Anal. 139 (1997), 201–238.
[3] L. Ambrosio, N. Fusco, and D. Pallara, “Functions of Bounded Variation and Free Discontinuity Problems”, The

Clarendon Press, Oxford University Press, New York, 2000.

[4] L. Ambrosio, V. M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via
Γ-convergence, Comm. Pure Appl. Math. 43 (1990), 999–1036.

[5] L. Ambrosio, V. M. Tortorelli, On the approximation of free discontinuity problems, Boll. Un. Mat. Ital. B (7) 6

(1992), 105–123.
[6] G. Bellettini, A. Coscia, G. Dal Maso, Special Functions of Bounded Deformation, Preprint SISSA, Trieste, 1995.

[7] G. Bellettini, A. Coscia, G. Dal Maso, Compactness and lower semicontinuity properties in SBD(Ω), Math. Z.

228 (1998), 337–351.
[8] B. Bourdin, Numerical implementation of the variational formulation for quasi-static brittle fracture, Interfaces

Free Bound. 9 (2007), 411–430.
[9] B. Bourdin, G. A. Francfort, J.-J. Marigo, Numerical experiments in revisited brittle fracture, J. Mech. Phys.

Solids 48 (2000), 797–826.

[10] B. Bourdin, G. A. Francfort, J.-J. Marigo, The variational approach to fracture, J. Elasticity 91 (2008), 5–148.
[11] G. Buttazzo, “Semicontinuity, Relaxation and Integral Representation in the Calculus of Variation”, Pitman

Research Notes in Mathematics Series 203, Longman Scientific & Technical, Harlow, 1989.

[12] A. Chambolle, An approximation result for special functions with bounded deformation, J. Math. Pures Appl.
(9) 83 (2004), 929–954.

[13] A. Chambolle, Addendum to: “An approximation result for special functions with bounded deformation” [J.

Math. Pures Appl. (9) 83 (2004), no. 7, 929–954; MR2074682], J. Math. Pures Appl. (9) 84 (2005), 137–145.
[14] G. Cortesani, Strong approximation of GSBV functions by piecewise smooth functions, Ann. Univ. Ferrara Sez.

VII (N.S.) 43 (1997), 27–49.

[15] G. Cortesani, R. Toader, A density result in SBV with respect to non-isotropic energies, Nonlinear Anal. 38
(1999), 585–604.



22 FLAVIANA IURLANO

[16] G. Dal Maso, “An Introduction to Γ-Convergence”, Progress in Nonlinear Differential Equations and their Ap-
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