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ASYMPTOTIC ANALYSIS OF AMBROSIO-TORTORELLI ENERGIES IN

LINEARIZED ELASTICITY

M. FOCARDI – F. IURLANO

Abstract. We provide an approximation result in the sense of Γ-convergence for energies of the
form ˆ

Ω
Q1(e(u)) dx+ aHn−1(Ju) + b

ˆ
Ju

Q
1/2
0 ([u]� νu) dHn−1,

where Ω ⊂ Rn is a bounded open set with Lipschitz boundary, Q0 and Q1 are coercive quadratic

forms on Mn×n
sym , a, b are positive constants, and u runs in the space of fields SBD2(Ω) , i.e., it’s a

special field with bounded deformation such that its symmetric gradient e(u) is square integrable,
and its jump set Ju has finite (n− 1)-Hausdorff measure in Rn.

The approximation is performed by means of Ambrosio-Tortorelli type elliptic regularizations,

the prototype example beingˆ
Ω

(
v|e(u)|2 +

(1− v)2

ε
+ γ ε|∇v|2

)
dx,

where (u, v) ∈ H1(Ω,Rn)×H1(Ω), ε ≤ v ≤ 1 and γ > 0.

1. Introduction

The variational approximation of free discontinuity energies via families of elliptic functionals
has turned out to be an efficient analytical tool and numerical strategy to analyze the behaviour of
those energies and of their minimizers (see the book [14] for more detailed references). The prototype
result is the approximation by means of Γ-convergence in the strong L1 topology of the Mumford
and Shah energy defined as ˆ

Ω

|∇u|2 dx+ aHn−1(Ju),

a any positive constant and u in the space of (generalised) special functions with bounded variation,
i.e. u ∈ (G)SBV (Ω) (we refer to Section 2 for all the notations and the functional spaces introduced
throughout this section). The two-fields functionals introduced by Ambrosio and Tortorelli [8] for
this purpose are of the type

Ek(u, v) :=

ˆ
Ω

(
(v + ηk)|∇u|2 +

(1− v)2

εk
+ εk|∇v|2

)
dx, (1.1)

if (u, v) ∈ H1(Ω,Rn)×H1(Ω, [0, 1]) and ∞ otherwise in L1(Ω,Rn)× L1(Ω), with ηk = o(εk) ≥ 0.
The quoted result has been later extended into several directions with different aims: for the

purpose of approximating either energies arising in the theory of nematic liquid crystals [9], or
general free discontinuity functionals defined over vector-valued fields [24, 25], or the Blake and
Zisserman second order model in computer vision [5], or fracture models for brittle linearly elastic
materials [16, 17, 29], to provide a common framework for curve evolution and image segmentation
[31, 1, 2], to study the asymptotic behaviour of gradient damage models under different regimes
[22, 28], and to give a regularization of variational models for plastic slip [7].

The condition ηk = o(εk) is instrumental for the quoted Γ-convergence statement, this can be
easily checked by a simple calculation in 1d. In addition, choosing the infinitesimal ηk to be strictly
positive makes each functional Ek in (1.1) coercive, thus ensuring the existence of a minimizer
by adding suitable boundary conditions or lower order terms. The convergence of the sequence of
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2 M. FOCARDI AND F. IURLANO

minimizers of the Ek’s to the counterparts of the Mumford and Shah functional is then a consequence
of classical Γ-convergence theory (see [20]).

Instead, the regime ηk ∼ εk has been investigated only recently in the papers [22, 28] to study the
asymptotics of some mechanical models proposed by Pham, Marigo, and Maurini [30] in the gradient
theory of incomplete damage in the isotropic and homogeneous antiplane case. To investigate those
models the functionals above are equivalently redefined as

Ek(u, v) =

ˆ
Ω

(
v|∇u|2 +

(1− v)2

εk
+ εk|∇v|2

)
dx (1.2)

if (u, v) ∈ H1(Ω,Rn)×Vεk , where Vεk :=
{
v ∈ H1(Ω) : εk ≤ v ≤ 1 Ln-a.e. in Ω

}
, ∞ otherwise in

L1(Ω,Rn)× L1(Ω). The constraint on the auxiliary variable v has the interpretation that complete
damage is forbidden (we refer to the paper [30] for more insight on the mechanical model, see also
[22, 28]). In this new regime an additional term in the limit energy appears in a way that not only
the measure of the jump set of the corresponding deformation is taken into account, but also a term
depending on the opening of the crack is present. More in details, from the variational point of view
of Γ-convergence, the asymptotic behaviour of the sequence (Ek) is described by the energyˆ

Ω

|∇u|2 dx+ aHn−1(Ju) + b

ˆ
Ju

|[u]|dHn−1,

for some positive constants a and b, and for all deformations u ∈ SBV (Ω).
In this paper we are concerned with studying the complete case of linearized elasticity, for which

several additional difficulties arise. Let us stress that we carry out our analysis for a broad class
of families of quadratic forms rather than the perturbation of the euclidean one in (1.2) (see the
definition of the energy Fk in formula (3.1) and the successive assumptions (H1)-(H4)). Though, in
this introduction we stick to the simple case analogous to (1.2) for the sake of clarity:

Fk(u, v) :=

ˆ
Ω

(
v|e(u)|2 +

(1− v)2

εk
+ εk|∇v|2

)
dx (1.3)

if (u, v) ∈ H1(Ω,Rn)×Vεk , where Vεk =
{
v ∈ H1(Ω) : εk ≤ v ≤ 1 Ln-a.e. in Ω

}
, ∞ otherwise in

L1(Ω,Rn) × L1(Ω). Recall that e(u) denotes the symmetric part of the gradient field of u, i.e.,
e(u) = (∇u+∇Tu)/2.

In what follows we shall prove that the asymptotic behaviour of the sequence (Fk) is described,
in the sense of Γ-convergence, by the energy

F (u) :=

ˆ
Ω

|e(u)|2 dx+ aHn−1(Ju) + b

ˆ
Ju

|[u]� νu|dHn−1, (1.4)

for suitable positive constants a and b and for all fields u in SBD(Ω), the space of special functions
with bounded deformation, and F is ∞ otherwise in L1(Ω,Rn). The symbol � in (1.4) denotes the
symmetrized tensor product between vectors.

A first interpretation for the last integral in (1.4) can be given using the terminology of fracture
mechanics. A constant force acts between the lips of the crack Ju, whose displacements are u+ and
u−; therefore the energy per unit area spent to create the crack is proportional to |[u] � νu|. This
interpretation is not properly covered by the classical Barenblatt’s cohesive crack model [10], due to
the presence of an activation energy Hn−1(Ju) and to the fact that the cohesive force bridging the
crack lips is not decreasing with respect to the crack opening and does not vanish for large values
of the opening itself.

The functional in (1.4) and its regularization via Γ-convergence have been recently investigated
in [7] in connection with a variational model for plastic slip in the antiplane case. The differ-
ent approximations of the energy (1.4) introduced in that paper are obtained by perturbing the
Ambrosio-Tortorelli’s elliptic functionals in (1.1) as follows

ˆ
Ω

(
(v + ηk)|∇u|2 +

(1− v)2

εk
+ εk|∇v|2

)
dx+

ˆ
Ω

(v − 1)2|∇u|dx,
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with u, v ∈ H1(Ω), 0 ≤ v ≤ 1, and ηk = o(εk) ≥ 0. The unpinned surfaces Ju, after the overcoming
of the energy barrier, are now seen in terms of sliding surfaces in a strain localization plastic process.
Therefore |[u]| here represents the surface plastic energy, that is the work per unit area that must be
expended in order to produce plastic slip, supposed to occur at constant yielding shear stress. The
model neglects the final failure stage eventually leading to fracture, so that infinite energy would be
necessary to produce a complete separation of the body.

Going back to the discussion of the contents of our paper, we note that the natural compactness
for the problem and the identification of the domain of the possible limits are two main issues. To
deal with the former, one is naturally led to fix the strong L1 topology, actually any strong Lp

topology would work for p ∈ [1, 1∗); while the latter is given by the space SBD2(Ω), an appropriate
subset of SBD(Ω). To prove such assertions we establish first the equi-coercivity in the space BD of
the energies Fk in (1.3) (see (4.7)). Given this, we use a global technique introduced by Ambrosio in
[3] (see also [24, 25]) to gain coercivity in the space SBD. To this aim we construct a new sequence
of displacements, with SBV regularity, by cutting around suitable sublevel sets of v in order to
decrease the elastic contribution of the energy at the expense of introducing a surface term that
can be kept controlled (see (4.14)). Thus, the SBD compactness result leads to the identification
of the domain of the Γ-limit, and it provides the necessary convergences to prove the lower bound
inequality for the volume term in (1.4) simply by applying a classical lower semicontinuity result
due to De Giorgi and Ioffe (see estimate (4.4)).

From a technical point of view, the preliminary BD-compactness step is instrumental for two
main reasons. On one hand, it allows us to fulfill the assumptions of the compactness theorem in
SBD without imposing L∞ bounds on the relevant sequences as it typically happens in problems of
this kind (see for instance [16, 17] and the related comments in [21]); on the other hand it enables
us to develop our proof completely within the theory of the space SBD, without making use of its
extension GSBD, i.e. the space of generalised special functions with bounded deformation. Recently,
the latter space has been introduced in [21] as the natural functional framework for weak formulations
of variational problems arising in fracture mechanics in the setting of linearized elasticity. Roughly
speaking, it provides the natural completion of SBD when no uniform bounds in L∞ can be assumed
for the problem at hand, analogously to SBV and its counterpart GSBV .

The two (n − 1)-dimensional terms in the target functional in (1.4) are the result of different
contributions: the Hn−1 measure of the jump set is detected as in the standard case by the Modica-
Mortola type term in (1.3) and it quantifies the energy paid by the function v, being forced to make a
transition from values close to 1 to values close to εk (see (4.5)); the term depending on the opening
of the crack, instead, is associated to the size of the zone where v takes the minimal value εk, and,
in the general case, it is related to the behaviour close to 0 of the family of quadratic forms in (3.1)
(see assumption (H4)). A refinement of the arguments developed in establishing the compactness
properties referred to above and the blow-up technique by Fonseca and Müller are then used to infer
the needed estimate (cp. with (4.6)). All these issues are dealt with in the proof of Theorem 3.3
below.

Technical problems of different nature arise when we want to show that the lower bound that we
have established is matched. Recovery sequences in Γ-convergence problems are built typically for
classes of fields that are dense in energy and having more regular members. Recently, this issue has
been investigated for linearly elastic brittle materials in the paper [29] in the functional framework
of GSBD fields. Such a result allows the proof of the full Γ-convergence statement in the regime
ηk = o(εk), thus completing the conclusions obtained in the papers [16, 17] under the usual L∞

restriction. In our setting the density result established in [29] enables us to prove the sharpness of
the estimate from below only for bounded fields in SBD2(Ω) (see Theorem 3.4). Actually, we can
extend it also to all fields in SBV 2(Ω,Rn) by means of classical density theorems (see Remark 4.5
for more details). Clearly, these are strong hints that the lower bound we have derived is optimal,
and that we cannot draw the conclusion in the general case for difficulties probably only of technical
nature.

Eventually, let us resume briefly the structure of the paper: Section 2 is devoted to fixing the
notations and recalling some of the prerequisites needed in what follows; the main result of the
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paper, Theorem 3.2, is stated in Section 3, where some comments on the imposed hypotheses are
also discussed; finally, in Section 4 the proofs of Theorems 3.3 and 3.4 are presented, from which
that of Theorem 3.2 eventually follows.

2. Notation and Preliminaries

Let n ≥ 2 be a fixed integer. The Lebesgue measure and the k-dimensional Hausdorff measure
in Rn are denoted by Ln and Hk, respectively. For every set A the characteristic function χA is
defined by χA(x) := 1 if x ∈ A and by χA(x) := 0 if x /∈ A.

Throughout the paper Ω is a bounded open subset of Rn, and c denotes a generic positive constant
that can vary from line to line. We shall always indicate the parameters on which each constant c
depends in the related estimate.

Let us denote by Mb(Ω) the set of all bounded Radon measures in Ω and by M+
b (Ω) the set of

nonnegative ones. Given µk, µ ∈Mb(Ω), we say that µk ⇀ µ weakly∗ in Mb(Ω) ifˆ
Ω

ϕdµk →
ˆ

Ω

ϕdµ for every ϕ ∈ C0
0 (Ω),

where C0
0 (Ω) is the completion of continuous and compactly supported functions in Ω with respect

to the supremum norm.
For the definitions, the notations and the main properties of the spaces BV and SBV we refer

to the book [6]. Here, we only recall the definition of the space SBV 2(Ω,Rn) used in the sequel:

SBV 2(Ω,Rn) :=
{
u ∈ SBV (Ω,Rn) : ∇u ∈ L2(Ω,Mn×n) and Hn−1(Ju) < +∞

}
,

being Mn×n the space of all n×n matrices.
Instead, we recall briefly some notions related to the spaces BD(Ω) and to its subspace SBD(Ω).

For complete results we refer to [33], [32], [11], [4], [12], and [23].
The symmetrized distributional derivative Eu of a function u ∈ BD(Ω) is by definition a finite

Radon measure on Ω. Its density with respect to the Lebesgue measure on Ω is represented by the
approximate symmetric gradient e(u), the approximate jump set Ju is a (Hn−1, n−1) rectifiable set
on which a measure theoretic normal and approximate one-sided limits u± can be defined Hn−1-a.e..
Furthermore, we denote by [u] := u+ − u− the related jump function.

For uk, u ∈ BD(Ω), we say that uk ⇀ u weakly∗ in BD(Ω) if uk → u in L1(Ω,Rn) and Euk ⇀ Eu
weakly∗ in Mb(Ω,Mn×n

sym ), where Mn×n
sym is the space of all n×n symmetric matrices.

We define SBD2(Ω) by

SBD2(Ω) :=
{
u ∈ SBD(Ω) : e(u) ∈ L2(Ω,Mn×n

sym ) and Hn−1(Ju) < +∞
}
. (2.1)

Fixed ξ ∈ Sn−1 := {ξ ∈ Rn : |ξ| = 1}, let πξ be the orthogonal projection onto the hyperplane
Πξ :=

{
y ∈ Rn : y · ξ = 0

}
, and for every subset A ⊂ Rn set

Aξy :=
{
t ∈ R : y + tξ ∈ A

}
for y ∈ Πξ.

Let v : Ω→ R and u : Ω→ Rn, then define the slices vξy, u
ξ
y : Ωξy → R by

vξy(t) := v(y + tξ) and uξy(t) := u(y + tξ) · ξ. (2.2)

We recall next the slicing theorem in SBD (see [4]).

Theorem 2.1. Let u ∈ L1(Ω,Rn) and let {ξ1, ..., ξn} be an orthonormal basis of Rn. Then the
following two conditions are equivalent:

(i) For every ξ = ξi + ξj, 1 ≤ i, j ≤ n, uξy ∈ SBV (Ωξy) for Hn−1-a.e. y ∈ Πξ andˆ
Πξ

∣∣Duξy∣∣ (Ωξy) dHn−1(y) <∞;

(ii) u ∈ SBD(Ω).

Moreover, if u ∈ SBD(Ω) and ξ ∈ Rn \ {0} the following properties hold:

(a) ∇(uξy)(t) = e(u) (y + tξ) ξ · ξ for L1-a.e. t ∈ Ωξy and for Hn−1-a.e. y ∈ Πξ;
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(b) Juξy =
(
Jξu
)ξ
y

for Hn−1-a.e. y ∈ Πξ, where

Jξu := {x ∈ Ju : [u](x) · ξ 6= 0};
(c) for Hn−1-a.e. ξ ∈ Sn−1

Hn−1(Ju \ Jξu) = 0. (2.3)

Note that, if uk, u ∈ L1(Ω,Rn) and uk → u in L1(Ω,Rn), then for every ξ ∈ Sn−1 there exists a
subsequence (ukj ) such that

(ukj )
ξ
y → uξy in L1(Ωξy) for Hn−1-a.e. y ∈ πξ(Ω).

Finally, for the definitions and the main properties of Γ-convergence we refer to [20].

3. Statement of the Main Results

Let Ω ⊂ Rn be a bounded open set, let 1 < p < ∞, q := p
p−1 and let εk > 0 be an infinitesimal

sequence.
Consider the sequence of functionals Fk : L1(Ω,Rn)×L1(Ω)→ [0,+∞] defined by

Fk(u, v) :=


ˆ

Ω

(
Q(v, e(u)) +

ψ(v)

εk
+ γ εp−1

k |∇v|p
)
dx if (u, v) ∈ H1(Ω,Rn)×Vεk ,

+∞ otherwise,
(3.1)

where 0 < γ <∞ and

ψ ∈ C0([0, 1]) is strictly decreasing with ψ(1) = 0, (3.2)

Vεk :=
{
v ∈W 1,p(Ω) : εk ≤ v ≤ 1 Ln-a.e. in Ω

}
. (3.3)

Moreover, the function Q : (0, 1]×Mn×n
sym → R+ satisfies

(H1) Q is lower semicontinuous and for every A ∈ Mn×n
sym the function Q(·,A) is continuous at

s = 1;
(H2) for every s ∈ (0, 1], the function Q(s, ·) is a positive definite quadratic form;
(H3) for every s ∈ (0, 1] and A ∈Mn×n

sym , the following inequalities hold

c1s|A|2 ≤ Q(s,A) ≤ c2s|A|2, (3.4)

for suitable positive constants c1 and c2;
(H4) the quadratic forms s−1Q(s, ·) converge uniformly on compact sets of Mn×n

sym to some function

Q0 as s ↓ 0+.

Note that by items (H3) and (H4) above Q0 is a quadratic form satisfying

c1|A|2 ≤ Q0(A) ≤ c2|A|2 for every A ∈Mn×n
sym .

In particular, Q
1/2
0 is a norm on Mn×n

sym , and

c−1
3 sQ0(A) ≤ Q(s,A) ≤ c3 sQ0(A) for all (s,A) ∈ (0, 1]×Mn×n

sym , (3.5)

with c3 := c2 c
−1
1 ≥ 1.

Remark 3.1. Let us stress that thanks to (H2) and (H3), assumption (H4) is rather natural as it
is satisfied by families ε−1

k Q(εk, ·), εk ↓ 0+, up to the extraction of subsequences.
For instance, given Q0 and Q1 two coercive quadratic forms on Mn×n

sym , the family Q(s,A) :=
s(sQ1(A) + (1− s)Q0(A)) satisfies all the assumptions (H1)-(H4) above.

The asymptotic behaviour of the family (Fk) is described in terms of the functional Φ: L1(Ω,Rn)→
[0,+∞] given by

Φ(u) :=


ˆ

Ω

Q1(e(u))dx+ aHn−1(Ju) + b

ˆ
Ju

Q
1/2
0 ([u]� νu)dHn−1 if u ∈ SBD2(Ω),

+∞ otherwise,

(3.6)
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where we have set Q1(A) := Q(1,A) for all A ∈Mn×n
sym , and

a := 2q1/q(γp)1/p

ˆ 1

0

ψ1/q(s) ds, b := 2ψ1/2(0). (3.7)

The Γ-limit of the sequence Fk is identified in suitable subspaces of L1(Ω,Rn)×L1(Ω) (cp. with
Theorem 3.2 and Remark 4.5 below).

Theorem 3.2. Assume the conditions in (3.1)-(3.7) are satisfied, and let Ω be a bounded open set
with Lipschitz boundary. The Γ-limit of (Fk) in the strong L1(Ω,Rn)×L1(Ω) topology is given on
the subspace L∞(Ω,Rn)×L1(Ω) by

F (u, v) :=

{
Φ(u) if v = 1 Ln-a.e. in Ω,

+∞ otherwise.
(3.8)

As usual, we shall prove the previous result by showing separately a lower bound inequality and
an upper bound inequality. To this aim we define

F ′ := Γ- lim inf
k→∞

Fk and F ′′ := Γ- lim sup
k→∞

Fk. (3.9)

Then, Theorem 3.2 follows from the ensuing two statements. In the first we establish the lower
bound inequality in full generality and identify the domain of the (inferior) Γ-limit; in the second
instead we prove the upper bound inequality on L∞ due to a difficulty probably of technical nature.
In addition, in Remark 4.5 we extend the upper bound inequality to all maps in the space SBV .

Theorem 3.3. Assume (3.1)-(3.7). Let (u, v) ∈ L1(Ω,Rn)×L1(Ω) be such that F ′(u, v) is finite.
Then, v = 1 Ln-a.e. in Ω and

Φ(u) ≤ F ′(u, 1). (3.10)

Theorem 3.4. Assume (3.1)-(3.7) and assume that Ω is a bounded open set with Lipschitz boundary.
Then, for every u ∈ L∞(Ω,Rn) we have

F ′′(u, 1) ≤ Φ(u). (3.11)

4. Proof of the Main Results

We start off by establishing the lower bound estimate. We need to introduce further notation:
we consider the strictly increasing map φ : [0, 1]→ [0,∞) defined by

φ(t) :=

ˆ t

0

ψ1/q(s) ds for every t ∈ [0, 1]. (4.1)

Proof of Theorem 3.3. By the definition of Γ-lim inf it is enough to prove that if (u, v) belongs to
L1(Ω,Rn)×L1(Ω) and if (uk, vk) ∈ L1(Ω,Rn)×L1(Ω) is a sequence such that

(uk, vk)→ (u, v) in L1(Ω,Rn)×L1(Ω), (4.2)

sup
k
Fk(uk, vk) ≤ L <∞, (4.3)

then u ∈ SBD2(Ω), v = 1 Ln-a.e. in Ω, and the ensuing estimates hold true with λ ∈ (0, 1)

lim inf
k→∞

ˆ
Ω\Ωλk

Q(vk, e(uk))dx ≥
ˆ

Ω

Q1(e(u))dx, (4.4)

lim inf
k→∞

ˆ
Ω\Ωλk

(ψ(vk)

εk
+ γ εp−1

k |∇vk|p
)
dx ≥ 2q1/q(γ p)1/p(φ(1)− φ(λ))Hn−1(Ju), (4.5)

and with fixed δ > 0 there is λδ > 0 such that for all λ ∈ (0, λδ)

lim inf
k→∞

ˆ
Ωλk

(
Q(vk, e(uk)) +

ψ(vk)

εk

)
dx ≥ 2ψ1/2(λ)

ˆ
Ju

Q
1/2
0 ([u]� νu)dHn−1 +O(δ), (4.6)

where we have set Ωλk := {vk ≤ λ}. Given (4.4)-(4.6) for granted, we conclude (3.10) by letting first
λ ↓ 0 and then δ ↓ 0.



ASYMPTOTIC ANALYSIS OF AMBROSIO-TORTORELLI ENERGIES 7

In order to simplify the notation, we set

I1
k :=

ˆ
Ω\Ωλk

Q(vk, e(uk)) dx,

I2
k :=

ˆ
Ω\Ωλk

(
ψ(vk)

εk
+ γ εp−1

k |∇vk|p
)
dx,

I3
k :=

ˆ
Ωλk

(
Q(vk, e(uk)) +

ψ(vk)

εk

)
dx.

Clearly, if (uk, vk) satisfies (4.2) and (4.3), then vk → v = 1 in L1(Ω). The fact that u belongs to
SBD2(Ω) and inequalities (4.4) and (4.5) can be obtained as a by-product of a slicing argument,
following the lines of [29, Theorem 4.3]. Here, we pursue a global approach, arguing as in [25, Lemma
3.2.1] (see also [24]).

We first notice that (uk) is pre-compact in the weak∗ topology of BD(Ω). To verify this it is
sufficient to prove that

sup
k

ˆ
Ω

|e(uk)|dx <∞. (4.7)

More precisely we show that

Fk(uk, vk) ≥ κ1

ˆ
Ω

|e(uk)| dx− κ2, (4.8)

with κ1 := maxλ∈[0,1]

(
2(c1 ψ(λ))1/2 ∧ c1 λ

Ln(Ω)

)
and κ2 := 2(c1 ψ(0))1/2. Indeed, on one hand by (3.4)

and the Jensen inequality we have

I1
k =

ˆ
Ω\Ωλk

Q(vk, e(uk))dx ≥ c1 λ
ˆ

Ω\Ωλk
|e(uk)|2dx ≥ c1 λ

Ln(Ω)

(ˆ
Ω\Ωλk

|e(uk)|dx
)2

, (4.9)

and on the other hand by the Cauchy-Schwartz inequality we find

I3
k =

ˆ
Ωλk

(
Q(vk, e(uk)) +

ψ(vk)

εk

)
dx ≥ c1 εk

ˆ
Ωλk

|e(uk)|2dx+
ψ(λ)

εk
Ln(Ωλk)

≥ 2(c1 ψ(λ))1/2

ˆ
Ωλk

|e(uk)|dx. (4.10)

Adding up estimates (4.9) and (4.10) eventually we get

Fk(uk, vk) ≥ c1 λ

Ln(Ω)

(ˆ
Ω\Ωλk

|e(uk)| dx

)2

+ 2(c1ψ(λ))1/2

ˆ
Ωλk

|e(uk)| dx,

from which it is then easy to obtain inequality (4.8). In conclusion, (4.7) follows directly from (4.3)
and (4.8).

Therefore, from (4.7), as uk converges to u in L1(Ω,Rn), we deduce that u ∈ BD(Ω) and that
actually uk ⇀ u weakly∗-BD(Ω).

Proof of estimate (4.4) and that u ∈ SBD2(Ω). We construct a function ũk in a way that it is
null near the jump set Ju of u and coincides with uk elsewhere.

Recalling the very definition of φ in (4.1) we have that φ(vk) ∈ W 1,p(Ω), and moreover, Young
inequality and the BV Coarea Formula yield

I2
k ≥ q1/q(γ p)1/p

ˆ
Ω\Ωλk

ψ1/q(vk)|∇vk|dx

= q1/q(γ p)1/p

ˆ
Ω\Ωλk

|∇(φ(vk))|dx = q1/q(γ p)1/p

ˆ φ(1)

φ(λ)

Per ({φ(vk) > t},Ω)dt. (4.11)
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Fix λ′ ∈ (λ, 1), the Mean Value theorem ensures for every k ∈ N the existence of tk ∈ (φ(λ), φ(λ′))
such that ˆ φ(1)

φ(λ)

Per ({φ(vk) > t},Ω)dt ≥ (φ(λ′)− φ(λ))Per ({φ(vk) > tk},Ω). (4.12)

Set λk := φ−1(tk), then note that Ω \ Ωλkk = {φ(vk) > tk} is a set of finite perimeter satisfying by
the latter inequality and (4.3)

Per (Ω \ Ωλkk ,Ω) ≤ c (4.13)

for some c = c(λ, λ′, φ, L). Let now ũk := χ
Ω\Ωλkk

uk, then the Chain Rule Formula in BV [6,

Theorem 3.96] yields that ũk ∈ SBV (Ω,Rn) with

Dũk = χ
Ω\Ωλkk

∇ukLn Ω + uk ⊗ ν∂∗Ωλkk H
n−1 ∂∗Ωλkk .

In particular, Hn−1(Jũk \ ∂∗Ω
λk
k ) = 0, then by (4.9), (4.11) and (4.13) the functions ũk satisfyˆ

Ω

|e(ũk)|2dx+Hn−1(Jũk) ≤ c (4.14)

for some c = c(λ, λ′, φ, L, c1) <∞, and in addition

‖ũk − u‖L1(Ω,Rn) ≤ ‖uk − u‖L1(Ω,Rn) +

ˆ
Ωλk

|u|dx. (4.15)

As vk → 1 in L1(Ω) we find Ln(Ωλk) ↓ 0, thus (4.15) implies that ũk → u in L1(Ω,Rn). Since we
have established that u ∈ BD(Ω), it is easy to deduce from the SBD Compactness Theorem [12,
Theorem 1.1] (see also [16, Lemma 5.1]) and from inequality (4.14) that actually u ∈ SBD2(Ω),
with

e(ũk) ⇀ e(u) weakly in L2(Ω,Mn×n
sym ), (4.16)

and

Hn−1(Ju) ≤ lim inf
k→∞

Hn−1(Jũk). (4.17)

Eventually, by taking into account that

lim inf
k→∞

ˆ
Ω\Ωλk

Q(vk, e(uk))dx = lim inf
k→∞

ˆ
Ω

Q(vk, e(ũk))dx,

(4.4) follows from (4.16), from the convergence vk → 1 in L1(Ω), and from [15, Theorem 2.3.1].

Proof of estimate (4.5). Regrettably, inequality (4.5) is not a straightforward consequence of the

previous arguments. Indeed, (4.11), (4.12), (4.17) and Hn−1(Jũk \ ∂∗Ω
λk
k ) = 0 lead to an estimate

differing from (4.5) by a multiplicative factor 2 on the left-hand side. Therefore, we need a more
accurate argument. To this aim, we note that by (4.11) and the Fatou Lemma we have

lim inf
k→∞

I2
k ≥ q1/q(γ p)1/p

ˆ φ(1)

φ(λ)

lim inf
k→∞

Per ({φ(vk) > t},Ω) dt,

then in order to conclude (4.5) it suffices to prove that

lim inf
k

Per ({φ(vk) > t},Ω) ≥ 2Hn−1(Ju) for all t ∈ (φ(λ), φ(1)). (4.18)

This follows via a slicing argument as established in [25, Lemma 3.2.1] (see also [13, Lemma 2] where
the proof is given in a slightly less general setting). We report in what follows the proof of estimate
(4.18) for the sake of completeness.

Fixed t ∈ (φ(λ), φ(1)) for which the right-hand side of (4.18) is finite, we define τ := φ−1(t) and
Uτk := Ω \ Ωτk. For every open subset A ⊂ Ω and vector ξ ∈ Sn−1, we claim that

lim inf
k
Hn−1(JχUτ

k
∩A) ≥ 2

ˆ
πξ(A)

H0(Juξy ∩A)dHn−1, (4.19)
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for Hn−1-a.e. y ∈ πξ(A) (recall the notations and the results in Theorem 2.1). Given (4.19) for
granted, the Coarea Formula for rectifiable sets and the Fatou lemma yield the following lower
semicontinuity estimate

lim inf
k

Per ({φ(vk) > φ(τ)}, A)

= lim inf
k
Hn−1(JχUτ

k
∩A) ≥ 2

ˆ
πξ(A)

H0(Juξy ∩A)dHn−1 = 2

ˆ
Jξu∩A

|νu · ξ|dHn−1. (4.20)

Since Hn−1(Ju \ Jξu) = 0 for Hn−1-a.e. ξ ∈ Sn−1 (see (2.3)), we infer from (4.20)

lim inf
k

Per ({φ(vk) > φ(τ)}, A) ≥ 2

ˆ
Ju∩A

|νu · ξ|dHn−1. (4.21)

In conclusion, inequality (4.18) follows from (4.21) by passing to the supremum on a sequence (ξr)
dense in Sn−1 and applying [6, Lemma 2.35], since the function

A→ lim inf
k

Per ({φ(vk) > φ(τ)}, A)

is superadditive on disjoint open subsets of Ω.
Let us finally prove (4.19). Note that there exists a subsequence (ur, vr) of (uk, vk) such that

lim inf
k
Hn−1(JχUτ

k
∩A) = lim

r
Hn−1(JχUτr ∩A), (4.22)(

(ur)
ξ
y, (vr)

ξ
y

)
→
(
uξy, 1

)
in L1(Ωξy)×L1(Ωξy), for Hn−1-a.e. y ∈ πξ(Ω), (4.23)

and with fixed η > 0, for Hn−1-a.e. y ∈ πξ(Ω) we find

lim inf
r

(
η

ˆ
Aξy

(
(vr)

ξ
y

∣∣∇((ur)
ξ
y)
∣∣2 +

ψ
(
(vr)

ξ
y

)
εr

+ γ εp−1
r

∣∣∇((vr)
ξ
y)
∣∣p) dt+H0(Jχ

(Uτr )
ξ
y

∩A)

)
<∞,

(4.24)
by (3.4), (4.3), our choice of τ , and the Fatou lemma.

Fix y ∈ πξ(Ω) be satisfying (4.23), (4.24), and assume also that H0
(
Juξy ∩A

)
> 0. Moreover,

up to extracting a further subsequence (depending on y and not relabeled for convenience), we may
suppose that the lower limit in (4.24) is actually a limit.

Let {t1, ..., tl} be an arbitrary subset of Juξy ∩A, and let (Ii)1≤i≤l be a family of pairwise disjoint

open intervals such that ti ∈ Ii, Ii ⊂⊂ Aξy. Then, for every 1 ≤ i ≤ l, we claim that

si := lim sup
r

inf
Ii

(vr)
ξ
y = 0.

Indeed, if sh was strictly positive for some h ∈ {1, ..., l}, then

inf
Ih

(vj)
ξ
y ≥

sh
2

for a suitable subsequence (vj) of (vr), and thus (4.24) would giveˆ
Ih

∣∣∇((uj)
ξ
y)
∣∣2 dt ≤ c,

for some constant c. Hence, Rellich-Kondrakov’s theorem and (4.23) would imply the slice uξy to be

in W 1,1(Ih,Rn), which is a contradiction since by assumption H0
(
Juξy ∩ Ih

)
> 0. So let tir ∈ Ii be

such that

lim
r

(vr)
ξ
y(tir) = 0,

and αi, βi ∈ Ii, with αi < tir < βi, be such that

lim
r

(vr)
ξ
y (αi) = lim

r
(vr)

ξ
y (βi) = 1.

Then, there follows

lim inf
r
H0(Jχ

(Uτr )
ξ
y

∩ Ii) ≥ 2.
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Hence, the subadditivity of the inferior limit and the arbitrariness of l yield

lim inf
r
H0(Jχ

(Uτr )
ξ
y

∩A) ≥ 2H0(Juξy ∩A).

Therefore, we obtain

lim inf
r

(
η

ˆ
Aξy

(
(vr)

ξ
y

∣∣∇((ur)
ξ
y)
∣∣2+

ψ
(
(vr)

ξ
y

)
εr

+γ εp−1
r

∣∣∇((vr)
ξ
y)
∣∣p) dt+H0(Jχ

(Uτr )
ξ
y

∩A)

)
≥ 2H0(Juξy∩A),

which integrated on πξ(A) gives

lim inf
k
Hn−1(JχUτ

k
∩A) ≥ 2

ˆ
πξ(A)

H0(Juξy ∩A)dHn−1 − ηc

for some positive constant c = c(L). As η ↓ 0 we find (4.19).

Proof of estimate (4.6). We employ the blow-up technique introduced by Fonseca and Müller in
[27]. First, we observe that by the Cauchy-Schwartz inequality we have

I3
k ≥ εk

ˆ
Ωλk

Q(vk, e(uk))

vk
dx+

ψ(λ)

εk
Ln(Ωλk) ≥ 2ψ1/2(λ)

ˆ
Ωλk

(
Q(vk, e(uk))

vk

)1/2

dx, (4.25)

thus in order to get (4.6) it suffices to show that for all δ > 0 there is λδ > 0 such that for λ ∈ (0, λδ)
we have

lim inf
k

ˆ
Ωλk

(
Q(vk, e(uk))

vk

)1/2

dx ≥
ˆ
Ju

Q
1/2
0 ([u]� ν)dHn−1 +O(δ). (4.26)

Actually the uniform convergence on compact sets of Mn×n
sym assumed in (H4) above implies that,

with fixed δ > 0, for some λδ > 0 and all λ ∈ (0, λδ) we have

ˆ
Ωλk

(
Q(vk, e(uk))

vk

)1/2

dx =

ˆ
Ωλk

Q
1/2
vk(x)

( e(uk)

|e(uk)|

)
|e(uk)|dx

≥
ˆ

Ωλk

(
Q

1/2
0

( e(uk)

|e(uk)|

)
− δ
)
|e(uk)|dx ≥

ˆ
Ωλk

Q
1/2
0 (e(uk))dx− δ |Euk|(Ω),

where we have set Qs(A) := s−1Q(s,A). Thus, inequality (4.26) is reduced to prove

lim inf
k

ˆ
Ωλk

Q
1/2
0 (e(uk))dx ≥

ˆ
Ju

Q
1/2
0 ([u]� ν)dHn−1, (4.27)

being δ > 0 arbitrary and (|Euk|(Ω)) being bounded as shown in (4.7).
Let (ur) be a subsequence of (uk) such that

lim inf
k

ˆ
Ωλk

Q
1/2
0 (e(uk))dx = lim

r

ˆ
Ωλr

Q
1/2
0 (e(ur))dx.

In order to prove (4.27), for every Borel set A ⊆ Ω we introduce

µr(A) :=

ˆ
Ωλr∩A

Q
1/2
0 (e(ur))dx,

θr(A) :=

ˆ
A

Q
1/2
0 (e(ur))dx,

and
ζr(A) := Fr(ur, vr, A),

where Fr(·, ·, A) denotes the functional defined in (3.1) with the set of integration Ω replaced by A.
It is evident that the former set functions are finite Borel measures, with (µr), (θr) and (ζr)

actually equi-bounded in mass thanks to inequalities (4.3) and (4.7). Hence, up to subsequences not
relabelled for convenience, we may suppose that

µr ⇀ µ, θr ⇀ θ, and ζr ⇀ ζ weakly∗ in M+
b (Ω), (4.28)

for some µ, θ and ζ ∈M+
b (Ω), respectively.
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Being
lim
r
µr(Ω) ≥ µ(Ω),

to infer (4.27) we need only to show that

dµ

dHn−1 Ju
≥ Q

1/2
0 ([u]� νu) Hn−1-a.e. in Ju, (4.29)

where dµ

dHn−1 Ju
is the Radon-Nikodým derivative of µ with respect to Hn−1 Ju.

We shall prove the latter inequality for the subset of points x0 in Ju for which the Radon-Nikodým
derivatives

dµ

dHn−1 Ju
(x0),

dθ

dHn−1 Ju
(x0),

dζ

dHn−1 Ju
(x0), (4.30)

exist finite,

dQ
1/2
0 ( dEu

d|Eu| )|Eu|
dHn−1 Ju

(x0) = Q
1/2
0 ([u]� νu)(x0) (4.31)

and

lim
ρ→0

Hn−1(Ju ∩Qν(x0, ρ))

ρn−1
= 1, (4.32)

where ν := νu(x0), Qν is any unitary cube centred in the origin with one face orthogonal to ν, and
Qν(x0, ρ) := x0 + ρQν . Formula (4.32) is a consequence of the (Hn−1, n− 1) rectifiability of Ju (see
[6, Theorem 2.83]). Note that all the conditions above define a set of full measure in Ju.

By selecting one of such points x0 ∈ Ju, we get

dµ

dHn−1 Ju
(x0) = lim

ρ→0

µ(Qν(x0, ρ))

ρn−1
= lim

ρ∈I
ρ→0

lim
r→∞

µr(Qν(x0, ρ))

ρn−1

= lim
ρ∈I
ρ→0

lim
r→∞

1

ρn−1

(
θr(Qν(x0, ρ))− θr(Qν(x0, ρ) \ Ωλr )

)
, (4.33)

where

I :=
{
ρ ∈ (0,

2√
n

dist(x0, ∂Ω)) : µ(∂Qν(x0, ρ)) = θ(∂Qν(x0, ρ)) = ζ(∂Qν(x0, ρ)) = 0
}
.

Note that I is a subset of radii of full measure in (0, 2√
n

dist(x0, ∂Ω)), and that the second equality

in (4.33) easily follows from the convergence µr ⇀ µ weakly∗ in M+
b (Ω).

Further, we claim that

lim
ρ∈I
ρ→0

lim
r→∞

θr(Qν(x0, ρ) \ Ωλr )

ρn−1
= 0. (4.34)

Indeed, the Hölder inequality, the very definition of Fk in (3.1), and (3.5) imply

θr(Qν(x0, ρ) \ Ωλr )

ρn−1
=

1

ρn−1

ˆ
Qν(x0,ρ)\Ωλr

Q
1/2
0 (e(ur))dx ≤

c
1/2
3

ρn−1

ˆ
Qν(x0,ρ)\Ωλk

Q
1/2
vr(x)(e(ur))dx

≤
(
c3
Ln(Qν(x0, ρ) \ Ωλr )

ρn−1

)1/2( 1

ρn−1

ˆ
Qν(x0,ρ)\Ωλr

Qvr(x)(e(ur))dx
)1/2

≤ (c3ρ)1/2λ−1/2
(Fr(ur, vr, Qν(x0, ρ))

ρn−1

)1/2

= (c3ρ)1/2λ−1/2
(ζr(Qν(x0, ρ))

ρn−1

)1/2

.

Finally, equality (4.34) is a consequence of the latter estimate and condition (4.30).
By taking (4.34) into account, (4.33) rewrites as

dµ

dHn−1 Ju
(x0) =

dθ

dHn−1 Ju
(x0). (4.35)

The convergence of the symmetrized distributional derivatives, i.e.

Eur ⇀ Eu weakly∗ in Mb(Ω,Mn×n
sym )
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is a result of (4.2) and (4.7), in turn implying that

θ(Qν(x0, ρ)) ≥
ˆ
Qν(x0,ρ)

Q
1/2
0

( dEu
d|Eu|

)
d|Eu| (4.36)

by the convexity of Q
1/2
0 and the stated convergence. Thus, by (4.31) and (4.36) we get

dθ

dHn−1 Ju
(x0) ≥ lim inf

ρ→0

1

ρn−1

ˆ
Qν(x0,ρ)

Q
1/2
0

( dEu
d|Eu|

)
d|Eu| = Q

1/2
0 ([u]� νu)(x0). (4.37)

Eventually, (4.35) and (4.37) conclude the proof of (4.29), and then of (4.27). �

The proof of the Γ-lim sup inequality in Theorem 3.4 takes advantage of the density theorems for
GSBD(Ω) [28, Theorem 3.1] and for SBV (Ω,Rn) [19, Theorem 3.1] stated below for convenience
of the reader.

Theorem 4.1. Assume that Ω has Lipschitz boundary, and let u ∈ GSBD2(Ω) ∩ L2(Ω,Rn). Then
there exists a sequence (uk) ⊂ SBV 2∩L∞(Ω,Rn) such that each Juk is contained in the union Sk of
a finite number of closed connected pieces of C1-hypersurfaces, each uk belongs to W 1,∞(Ω\Sk,Rn),
and the following properties hold:

(1) ||uk − u||L2(Ω,Rn) → 0,

(2) ||e(uk)− e(u)||L2(Ω,Mn×nsym ) → 0,

(3) Hn−1(Juk4Ju)→ 0,

(4)

ˆ
Juk∪Ju

|u±k − u
±| ∧M dHn−1 → 0, for every M > 0.

Remark 4.2. Note that the expression in (4) makes sense by [21, Theorem 5.2], since one can
define the traces u± of a function u ∈ GBD(Ω) on any C1 submanifold of dimension n− 1.

We recall next a density result in SBV , for which we need to introduce further terminology.
We say that u ∈ SBV (Ω,Rn) is a piecewise smooth SBV -function if u ∈ Wm,∞(Ω \ Ju,Rn) for
every m, Hn−1((Ju ∩ Ω) \ Ju) = 0, and the set Ju ∩ Ω is a finite union of closed pairwise disjoint
(n− 1)-simplexes intersected with Ω.

Theorem 4.3. Assume that Ω has Lipschitz boundary. Let u ∈ SBV 2 ∩ L∞(Ω,Rn). Then there
exists a sequence (uk) of piecewise smooth SBV -functions such that

(1) ||uk − u||L2(Ω,Rn) → 0,

(2) ||∇uk −∇u||L2(Ω,Mn×n) → 0,

(3) lim sup
k

ˆ
A∩Juk

ϕ(x, u+
k , u

−
k , νuk)dHn−1 ≤

ˆ
A∩Ju

ϕ(x, u+, u−, νu)dHn−1,

for every open set A ⊂ Ω and for every function ϕ : Ω×Rn×Rn×Sn−1 → [0,+∞) upper
semicontinuous and such that

ϕ(x, a, b, ν) = ϕ(x, b, a,−ν) for x ∈ Ω,

lim sup
(y,a′,b′,µ)→(x,a,b,ν)

y∈Ω

ϕ(y, a′, b′, µ) < +∞ for x ∈ ∂Ω,

for every a, b ∈ Rn, and ν ∈ Sn−1.

Remark 4.4. Note that if Ω ⊂ Rn is an open cube, then the intersection Juk ∩ Ω is a polyhedron.
Therefore, adapting the arguments in [19, Remark 3.5] and [18, Corollary 3.11] we can construct a
new approximating sequence (ũk) satisfying all requirements of Theorem 4.3 and such that Jũk ⊂⊂ Ω.
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Remark 4.5. The Γ-lim sup inequality in Theorem 3.4 is stated only for fields in the subspace
L∞(Ω,Rn)×L1(Ω) of L1(Ω,Rn)×L1(Ω) since Theorem 4.1 does not guarantee the convergenceˆ

Juk∪Ju
|[uk]− [u]| dHn−1 → 0 (4.38)

for every u in SBD2(Ω) ∩ L2(Ω,Rn). If (4.38) was true, then Theorem 4.1 combined with Theo-
rem 4.3 would allow us to prove the Γ-lim sup inequality for those fields u that are piecewise smooth.
In such a case, the construction of recovery sequences follows quite classical lines, and by density
the Γ-lim sup inequality in L2(Ω,Rn)×L1(Ω) would be completely proved.

Nevertheless, this argument applies to fields in L∞(Ω,Rn) since the approximating sequence (uk)
in Theorem 4.1 is constructed in a way that ‖uk‖L∞(Ω,Rn) ≤ ‖u‖L∞(Ω,Rn).

The same conclusion of Theorem 3.4 can be drawn for all fields in SBV 2(Ω,Rn). Indeed,
the functional in (3.6) is continuous on sequences of truncations, therefore the conclusion fol-
lows by Theorem 4.3 and a diagonal argument. In this respect, take also into account the equality
GSBV 2(Ω,Rn) ∩BD(Ω) = SBV 2(Ω,Rn).

Finally let us prove the upper bound estimate.

Proof of Theorem 3.4. Let u ∈ SBD2(Ω) ∩ L∞(Ω,Rn), then by the lower semicontinuity of F ′′

and Theorem 4.1 it is not restrictive to assume that u belongs to SBV 2 ∩ L∞(Ω,Rn). By a local
reflection argument we can also assume that Ω ⊂ Rn is a open cube and again by the lower semi-
continuity of F ′′, by Theorem 4.3, and by Remark 4.4 we can reduce ourselves to prove (3.11) for
a piecewise smooth SBV -function u with Ju ⊂ Ω. Finally, up to a truncation argument, condition
u ∈ L∞(Ω,Rn) is preserved.

For the construction of the recovery sequence we shall follow the lines of [28, Theorem 3.3] (see
also [22, Theorem 3.3]).

Since Ju is a finite union of closed pairwise disjoint (n − 1)-simplexes well-contained in Ω, we
reduce to study the case when S := Ju is a (n − 1)-simplex. In order to simplify the computation
we also assume S ⊂ {xn = 0}, we denote the generic point x ∈ Rn by x = (x, xn) ∈ Rn−1 × R, and
we orient Ju so that νu = (0, 1).

Let

Ω± :=
{
x ∈ Ω : ±xn > 0

}
and let L be the maximum between the Lipschitz constants of u in Ω+ and Ω−. Let also

σk(x) :=
εk

2ψ(0)1/2
Q

1/2
0 ([u(x, 0)]� en), for every x ∈ S. (4.39)

Being u+ and u− Lipschitz functions, we deduce that σk is in turn a Lipschitz function and that

|∇σk(x)| ≤ c εk, (4.40)

for Hn−1-a.e. x ∈ S and for a suitable constant c = c(ψ,L,Q0) > 0. Moreover, σk = 0 on ∂S, where
∂S is the boundary of S in the relative topology of Rn−1×{0}.

We set for ρ ∈ (0, 1)

f(ρ) := ψ(1− ρ), g(ρ) :=
(ˆ 1−ρ

0

ψ−1/p(s) ds
)−1

, and h(ρ) := (f · g)1/2(ρ),

and we introduce the infinitesimal sequence ρk := h−1(εk) having the property that

f(ρk)

εk
=

εk
g(ρk)

→ 0 as k ↑ ∞. (4.41)

Denote by wk the only solution of the following Cauchy problem in the interval [0, Tk) (uniqueness
on such an interval follows from (3.2))w′k =

( q

γp

)1/p

ε−1
k ψ1/p(wk)

wk(0) = εk,
(4.42)
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where Tk ∈ (0,∞] is given by

Tk :=
(γp
q

)1/p

εk

ˆ 1

εk

ψ−1/p(s) ds.

Furthermore, define µk ∈ (0, Tk)

µk :=
(γp
q

)1/p

εk

ˆ 1−ρk

εk

ψ−1/p(s) ds, (4.43)

thus µk is infinitesimal by (4.41).
We are now in a position to introduce the sets

Ak :=

{
x ∈ Rn : (x, 0) ∈ S, |xn| < σk(x)

}
,

Bk :=

{
x ∈ Rn : (x, 0) ∈ S, 0 ≤ |xn| − σk(x) ≤ µk

}
,

Ck :=

{
x ∈ Rn : (x, 0) /∈ S, d(x, ∂S) ≤ µk

}
,

where d(x, ∂S) is the distance of the point x from the set ∂S.
Consider the sequence (uk, vk) defined by

uk(x, xn) :=


xn + σk(x)

2σk(x)
(u(x, σk(x))− u(x,−σk(x))) + u(x,−σk(x)) if x ∈ Ak,

u(x) if x ∈ Ω \Ak,
and

vk(x) :=


εk if x ∈ Ak,
wk(|xn| − σk(x)) if x ∈ Bk,

wk(d(x, ∂S)) if x ∈ Ck,
1− ρk otherwise.

Then, (uk, vk) → (u, 1) in L1(Ω,Rn)×L1(Ω), moreover we shall show that it provides a recovery
sequence following the arguments used in [22, Theorem 3.3, inequalities (71)-(78)]. First note that,
for every component uik of uk for Ln-a.e. (x, xn) ∈ Ak we have that

|Dju
i
k(x, xn)|

≤
∣∣∣∣ xn
σk(x)

Djσk(x)
ui(x, σk(x))− ui(x,−σk(x))

2σk(x)

∣∣∣∣+

∣∣∣∣Dju
i(x,−σk(x))−Dnu

i(x,−σk(x))Djσk(x)

∣∣∣∣
+

∣∣∣∣Dju
i(x, σk(x)) +Dnu

i(x, σk(x))Djσk(x)−Dju
i(x,−σk(x)) +Dnu

i(x,−σk(x))Djσk(x)

∣∣∣∣
≤ |Djσk(x)|

( |[ui(x, 0)]|
2σk(x)

+ 4L
)

+ 3L ≤ c, (4.44)

where j = 1, . . . , n− 1, and

|Dnu
i
k(x, xn)| =

∣∣∣∣ui(x, σk(x))− ui(x,−σk(x))

2σk(x)

∣∣∣∣
=

∣∣∣∣ui(x, σk(x))− ui+(x, 0)

2σk(x)
+
ui

+
(x, 0)− ui−(x, 0)

2σk(x)
+
ui
−

(x, 0)− ui(x,−σk(x))

2σk(x)

∣∣∣∣
≤ L+

|[ui(x, 0)]|
2σk(x)

≤ c

εk
; (4.45)

in the previous estimates c = c(L) and we have used (4.40). In particular, we deduce that uk is a
Lipschitz function.
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As far as the computation of the energy Fk(uk, vk) is concerned we shall mainly focus on the termˆ
Ak

Q(vk, e(uk))dx.

The others are estimated in an elementary way following [28, Theorem 3.3]. More precisely, we have

lim sup
k

ˆ
Ω\Ak

Q(vk, e(uk))dx = lim sup
k

ˆ
Ω\Ak

Q(vk, e(u))dx ≤
ˆ

Ω

Q1(e(u))dx (4.46)

by dominated convergence thanks to assumptions (H1) and (H3); then as a result of a straightforward
calculation we infer

lim sup
k

ˆ
Ak

ψ(vk)

εk
dx

≤ lim
k

ψ(εk)

ψ(0)1/2

ˆ
Ju

Q
1/2
0 ([u]� en) dHn−1 =

b

2

ˆ
Ju

Q
1/2
0 ([u]� en) dHn−1; (4.47)

furthermore from the very definition of wk and (4.43) we find
ˆ
Bk

(ψ(vk)

εk
+ γ εp−1

k |∇vk|p
)
dx ≤ 2(1 +O(εk))(γp)1/pq1/q

(ˆ 1−ρk

εk

ψ1/q(s) ds
)
Hn−1(Ju); (4.48)

finally by the Coarea formula and again by the definition of wk it follows thatˆ
Ck

(ψ(vk)

εk
+ γ εp−1

k |∇vk|p
)
dx ≤ c µk

ˆ 1−ρk

εk

ψ1/q(s) ds ≤ c µk, (4.49)

where c <∞. Therefore, by collecting (4.46)-(4.49), to conclude we need only to verify that

lim
k

ˆ
Ak

Q(vk, e(uk))dx =
b

2

ˆ
Ju

Q
1/2
0 ([u]� en)dHn−1.

To this aim, observe first that assumption (H3), the very definition of uk, vk and estimates (4.44),
(4.45) implyˆ

Ak

Q(vk, e(uk))dx =

ˆ
Ak

Q
(
εk,

1

2
Λ(Dnu

1
k, . . . , Dnu

n−1
k , 2Dnu

n
k )
)
dx+ o(1), as k ↑ ∞,

where Λ : Rn →Mn×n
sym is defined by

(Λ(x1, . . . , xn))i j := 0 if i, j < n, (Λ(x1, . . . , xn))i n := xi if i ≤ n. (4.50)

In addition, the definitions of uk, of σk in (4.39), of Ak, and the 2-homogeneity of Q yieldˆ
Ak

Q
(
εk,

1

2
Λ(Dnu

1
k, . . . , Dnu

n−1
k , 2Dnu

n
k )
)
dx =

b

2

ˆ
Ju

Qεk(ζk(x)) ·Q−1/2
0 ([u](x, 0)� en)dHn−1,

where

ζk(x) :=
1

2
Λ
(
u1(x, σk(x))− u1(x,−σk(x)), . . . , un−1(x, σk(x))− un−1(x,−σk(x)),

2(un(x, σk(x))− un(x,−σk(x)))
)
.

Eventually, the conclusion follows by (4.50), by (H4), and by the dominated convergence theorem
as (ζk) converges uniformly to [u](·, 0)� en on S as k ↑ ∞. �
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