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Introduction

The variational approximation of free discontinuity energies via families of elliptic functionals has turned out to be an efficient analytical tool and numerical strategy to analyze the behaviour of those energies and of their minimizers (see the book [START_REF] Bourdin | The variational approach to fracture[END_REF] for more detailed references). The prototype result is the approximation by means of Γ-convergence in the strong L 1 topology of the Mumford and Shah energy defined as ˆΩ |∇u| 2 dx + a H n-1 (J u ), a any positive constant and u in the space of (generalised) special functions with bounded variation, i.e. u ∈ (G)SBV (Ω) (we refer to Section 2 for all the notations and the functional spaces introduced throughout this section). The two-fields functionals introduced by Ambrosio and Tortorelli [START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via Γconvergence[END_REF] for this purpose are of the type

E k (u, v) := ˆΩ (v + η k )|∇u| 2 + (1 -v) 2 ε k + ε k |∇v| 2 dx, (1.1) if (u, v) ∈ H 1 (Ω, R n )×H 1 (Ω, [0, 1]) and ∞ otherwise in L 1 (Ω, R n ) × L 1 (Ω), with η k = o(ε k ) ≥ 0.
The quoted result has been later extended into several directions with different aims: for the purpose of approximating either energies arising in the theory of nematic liquid crystals [START_REF] Ambrosio | On the approximation of free discontinuity problems[END_REF], or general free discontinuity functionals defined over vector-valued fields [START_REF] Focardi | On the variational approximation of free-discontinuity problems in the vectorial case[END_REF][START_REF] Focardi | Variational Approximation of Vectorial Free Discontinuity Problems: the Discrete and Continuous Case[END_REF], or the Blake and Zisserman second order model in computer vision [START_REF] Ambrosio | Variational approximation of a second order free discontinuity problem in computer vision[END_REF], or fracture models for brittle linearly elastic materials [START_REF] Chambolle | An approximation result for special functions with bounded deformation[END_REF]17,[START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF], to provide a common framework for curve evolution and image segmentation [START_REF] Shah | Curve evolution and segmentation functionals: application to color images[END_REF][START_REF] Alicandro | Free-discontinuity problems via functionals involving the L 1 -norm of the gradient and their approximations[END_REF][START_REF] Alicandro | Variational approximation of free-discontinuity energies with linear growth[END_REF], to study the asymptotic behaviour of gradient damage models under different regimes [START_REF] Maso | Fracture models as Γ-limits of damage models[END_REF][START_REF] Iurlano | Fracture and plastic models as Γ-limits of damage models under different regimes[END_REF], and to give a regularization of variational models for plastic slip [START_REF] Ambrosio | A variational model for plastic slip and its regularization via Γ-convergence[END_REF].

The condition η k = o(ε k ) is instrumental for the quoted Γ-convergence statement, this can be easily checked by a simple calculation in 1d. In addition, choosing the infinitesimal η k to be strictly positive makes each functional E k in (1.1) coercive, thus ensuring the existence of a minimizer by adding suitable boundary conditions or lower order terms. The convergence of the sequence of minimizers of the E k 's to the counterparts of the Mumford and Shah functional is then a consequence of classical Γ-convergence theory (see [START_REF] Maso | An Introduction to Γ-Convergence[END_REF]).

Instead, the regime η k ∼ ε k has been investigated only recently in the papers [START_REF] Maso | Fracture models as Γ-limits of damage models[END_REF][START_REF] Iurlano | Fracture and plastic models as Γ-limits of damage models under different regimes[END_REF] to study the asymptotics of some mechanical models proposed by Pham, Marigo, and Maurini [START_REF] Pham | The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models[END_REF] in the gradient theory of incomplete damage in the isotropic and homogeneous antiplane case. To investigate those models the functionals above are equivalently redefined as

E k (u, v) = ˆΩ v|∇u| 2 + (1 -v) 2 ε k + ε k |∇v| 2 dx (1.2) if (u, v) ∈ H 1 (Ω, R n )×V ε k , where V ε k := v ∈ H 1 (Ω) : ε k ≤ v ≤ 1 L n -a.e. in Ω , ∞ otherwise in L 1 (Ω, R n ) × L 1 (Ω).
The constraint on the auxiliary variable v has the interpretation that complete damage is forbidden (we refer to the paper [START_REF] Pham | The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models[END_REF] for more insight on the mechanical model, see also [START_REF] Maso | Fracture models as Γ-limits of damage models[END_REF][START_REF] Iurlano | Fracture and plastic models as Γ-limits of damage models under different regimes[END_REF]). In this new regime an additional term in the limit energy appears in a way that not only the measure of the jump set of the corresponding deformation is taken into account, but also a term depending on the opening of the crack is present. More in details, from the variational point of view of Γ-convergence, the asymptotic behaviour of the sequence (E k ) is described by the energy

ˆΩ |∇u| 2 dx + a H n-1 (J u ) + b ˆJu |[u]|dH n-1 ,
for some positive constants a and b, and for all deformations u ∈ SBV (Ω).

In this paper we are concerned with studying the complete case of linearized elasticity, for which several additional difficulties arise. Let us stress that we carry out our analysis for a broad class of families of quadratic forms rather than the perturbation of the euclidean one in (1.2) (see the definition of the energy F k in formula (3.1) and the successive assumptions (H1)-(H4)). Though, in this introduction we stick to the simple case analogous to (1.2) for the sake of clarity:

F k (u, v) := ˆΩ v|e(u)| 2 + (1 -v) 2 ε k + ε k |∇v| 2 dx (1.3) if (u, v) ∈ H 1 (Ω, R n )×V ε k , where V ε k = v ∈ H 1 (Ω) : ε k ≤ v ≤ 1 L n -a.e. in Ω , ∞ otherwise in L 1 (Ω, R n ) × L 1 (Ω).
Recall that e(u) denotes the symmetric part of the gradient field of u, i.e., e(u) = (∇u

+ ∇ T u)/2.
In what follows we shall prove that the asymptotic behaviour of the sequence (F k ) is described, in the sense of Γ-convergence, by the energy

F (u) := ˆΩ |e(u)| 2 dx + a H n-1 (J u ) + b ˆJu |[u] ν u |dH n-1 , (1.4) 
for suitable positive constants a and b and for all fields u in SBD(Ω), the space of special functions with bounded deformation, and

F is ∞ otherwise in L 1 (Ω, R n ).
The symbol in (1.4) denotes the symmetrized tensor product between vectors.

A first interpretation for the last integral in (1.4) can be given using the terminology of fracture mechanics. A constant force acts between the lips of the crack J u , whose displacements are u + and u -; therefore the energy per unit area spent to create the crack is proportional to |[u] ν u |. This interpretation is not properly covered by the classical Barenblatt's cohesive crack model [START_REF] Barenblatt | The mathematical theory of equilibrium cracks in brittle fracture[END_REF], due to the presence of an activation energy H n-1 (J u ) and to the fact that the cohesive force bridging the crack lips is not decreasing with respect to the crack opening and does not vanish for large values of the opening itself.

The functional in (1.4) and its regularization via Γ-convergence have been recently investigated in [START_REF] Ambrosio | A variational model for plastic slip and its regularization via Γ-convergence[END_REF] in connection with a variational model for plastic slip in the antiplane case. The different approximations of the energy (1.4) introduced in that paper are obtained by perturbing the Ambrosio-Tortorelli's elliptic functionals in (1.1) as follows

ˆΩ (v + η k )|∇u| 2 + (1 -v) 2 ε k + ε k |∇v| 2 dx + ˆΩ(v -1) 2 |∇u|dx, with u, v ∈ H 1 (Ω), 0 ≤ v ≤ 1, and η k = o( k ) ≥ 0.
The unpinned surfaces J u , after the overcoming of the energy barrier, are now seen in terms of sliding surfaces in a strain localization plastic process.

Therefore |[u]| here represents the surface plastic energy, that is the work per unit area that must be expended in order to produce plastic slip, supposed to occur at constant yielding shear stress. The model neglects the final failure stage eventually leading to fracture, so that infinite energy would be necessary to produce a complete separation of the body. Going back to the discussion of the contents of our paper, we note that the natural compactness for the problem and the identification of the domain of the possible limits are two main issues. To deal with the former, one is naturally led to fix the strong L 1 topology, actually any strong L p topology would work for p ∈ [1, 1 * ); while the latter is given by the space SBD 2 (Ω), an appropriate subset of SBD(Ω). To prove such assertions we establish first the equi-coercivity in the space BD of the energies F k in (1.3) (see (4.7)). Given this, we use a global technique introduced by Ambrosio in [START_REF] Ambrosio | The space SBV(Ω) and free-discontinuity problems[END_REF] (see also [START_REF] Focardi | On the variational approximation of free-discontinuity problems in the vectorial case[END_REF][START_REF] Focardi | Variational Approximation of Vectorial Free Discontinuity Problems: the Discrete and Continuous Case[END_REF]) to gain coercivity in the space SBD. To this aim we construct a new sequence of displacements, with SBV regularity, by cutting around suitable sublevel sets of v in order to decrease the elastic contribution of the energy at the expense of introducing a surface term that can be kept controlled (see (4.14)). Thus, the SBD compactness result leads to the identification of the domain of the Γ-limit, and it provides the necessary convergences to prove the lower bound inequality for the volume term in (1.4) simply by applying a classical lower semicontinuity result due to De Giorgi and Ioffe (see estimate (4.4)).

From a technical point of view, the preliminary BD-compactness step is instrumental for two main reasons. On one hand, it allows us to fulfill the assumptions of the compactness theorem in SBD without imposing L ∞ bounds on the relevant sequences as it typically happens in problems of this kind (see for instance [START_REF] Chambolle | An approximation result for special functions with bounded deformation[END_REF]17] and the related comments in [START_REF] Maso | Generalised functions of bounded deformation[END_REF]); on the other hand it enables us to develop our proof completely within the theory of the space SBD, without making use of its extension GSBD, i.e. the space of generalised special functions with bounded deformation. Recently, the latter space has been introduced in [START_REF] Maso | Generalised functions of bounded deformation[END_REF] as the natural functional framework for weak formulations of variational problems arising in fracture mechanics in the setting of linearized elasticity. Roughly speaking, it provides the natural completion of SBD when no uniform bounds in L ∞ can be assumed for the problem at hand, analogously to SBV and its counterpart GSBV .

The two (n -1)-dimensional terms in the target functional in (1.4) are the result of different contributions: the H n-1 measure of the jump set is detected as in the standard case by the Modica-Mortola type term in (1.3) and it quantifies the energy paid by the function v, being forced to make a transition from values close to 1 to values close to ε k (see (4.5)); the term depending on the opening of the crack, instead, is associated to the size of the zone where v takes the minimal value ε k , and, in the general case, it is related to the behaviour close to 0 of the family of quadratic forms in (3.1) (see assumption (H4)). A refinement of the arguments developed in establishing the compactness properties referred to above and the blow-up technique by Fonseca and Müller are then used to infer the needed estimate (cp. with (4.6)). All these issues are dealt with in the proof of Theorem 3.3 below.

Technical problems of different nature arise when we want to show that the lower bound that we have established is matched. Recovery sequences in Γ-convergence problems are built typically for classes of fields that are dense in energy and having more regular members. Recently, this issue has been investigated for linearly elastic brittle materials in the paper [START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF] in the functional framework of GSBD fields. Such a result allows the proof of the full Γ-convergence statement in the regime η k = o(ε k ), thus completing the conclusions obtained in the papers [START_REF] Chambolle | An approximation result for special functions with bounded deformation[END_REF]17] under the usual L ∞ restriction. In our setting the density result established in [START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF] enables us to prove the sharpness of the estimate from below only for bounded fields in SBD 2 (Ω) (see Theorem 3.4). Actually, we can extend it also to all fields in SBV 2 (Ω, R n ) by means of classical density theorems (see Remark 4.5 for more details). Clearly, these are strong hints that the lower bound we have derived is optimal, and that we cannot draw the conclusion in the general case for difficulties probably only of technical nature.

Eventually, let us resume briefly the structure of the paper: Section 2 is devoted to fixing the notations and recalling some of the prerequisites needed in what follows; the main result of the paper, Theorem 3.2, is stated in Section 3, where some comments on the imposed hypotheses are also discussed; finally, in Section 4 the proofs of Theorems 3.3 and 3.4 are presented, from which that of Theorem 3.2 eventually follows.

Notation and Preliminaries

Let n ≥ 2 be a fixed integer. The Lebesgue measure and the k-dimensional Hausdorff measure in R n are denoted by L n and H k , respectively. For every set A the characteristic function χ A is defined by χ A (x) := 1 if x ∈ A and by χ A (x) := 0 if x / ∈ A. Throughout the paper Ω is a bounded open subset of R n , and c denotes a generic positive constant that can vary from line to line. We shall always indicate the parameters on which each constant c depends in the related estimate.

Let us denote by M b (Ω) the set of all bounded Radon measures in Ω and by

M + b (Ω) the set of nonnegative ones. Given µ k , µ ∈ M b (Ω), we say that µ k µ weakly * in M b (Ω) if ˆΩ ϕ dµ k → ˆΩ ϕ dµ for every ϕ ∈ C 0 0 (Ω),
where C 0 0 (Ω) is the completion of continuous and compactly supported functions in Ω with respect to the supremum norm.

For the definitions, the notations and the main properties of the spaces BV and SBV we refer to the book [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF]. Here, we only recall the definition of the space SBV 2 (Ω, R n ) used in the sequel:

SBV 2 (Ω, R n ) := u ∈ SBV (Ω, R n ) : ∇u ∈ L 2 (Ω, M n×n ) and H n-1 (J u ) < +∞ ,
being M n×n the space of all n×n matrices.

Instead, we recall briefly some notions related to the spaces BD(Ω) and to its subspace SBD(Ω). For complete results we refer to [START_REF] Temam | Functions of bounded deformation[END_REF], [START_REF] Temam | Problèmes mathématiques en plasticité[END_REF], [START_REF] Bellettini | Special Functions of Bounded Deformation[END_REF], [START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF], [START_REF] Bellettini | Compactness and lower semicontinuity properties in SBD(Ω)[END_REF], and [START_REF] Ebobisse | Fine properties of functions with bounded deformation and applications in variational problems[END_REF].

The symmetrized distributional derivative Eu of a function u ∈ BD(Ω) is by definition a finite Radon measure on Ω. Its density with respect to the Lebesgue measure on Ω is represented by the approximate symmetric gradient e(u), the approximate jump set J u is a (H n-1 , n -1) rectifiable set on which a measure theoretic normal and approximate one-sided limits u ± can be defined H n-1 -a.e.. Furthermore, we denote by [u] := u + -u -the related jump function.

For u k , u ∈ BD(Ω), we say that

u k u weakly * in BD(Ω) if u k → u in L 1 (Ω, R n ) and Eu k Eu weakly * in M b (Ω, M n×n sym )
, where M n×n sym is the space of all n×n symmetric matrices. We define SBD 2 (Ω) by

SBD 2 (Ω) := u ∈ SBD(Ω) : e(u) ∈ L 2 (Ω, M n×n sym ) and H n-1 (J u ) < +∞ . (2.1) Fixed ξ ∈ S n-1 := {ξ ∈ R n : |ξ| = 1}
, let π ξ be the orthogonal projection onto the hyperplane Π ξ := y ∈ R n : y • ξ = 0 , and for every subset

A ⊂ R n set A ξ y := t ∈ R : y + tξ ∈ A for y ∈ Π ξ . Let v : Ω → R and u : Ω → R n , then define the slices v ξ y , u ξ y : Ω ξ y → R by v ξ y (t) := v(y + tξ) and u ξ y (t) := u(y + tξ) • ξ. (2.2)
We recall next the slicing theorem in SBD (see [START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF]).

Theorem 2.1. Let u ∈ L 1 (Ω, R n ) and let {ξ 1 , ..., ξ n } be an orthonormal basis of R n . Then the following two conditions are equivalent:

(i) For every ξ = ξ i + ξ j , 1 ≤ i, j ≤ n, u ξ y ∈ SBV (Ω ξ y ) for H n-1 -a.e. y ∈ Π ξ and ˆΠξ Du ξ y (Ω ξ y ) dH n-1 (y) < ∞; (ii) u ∈ SBD(Ω). Moreover, if u ∈ SBD(Ω) and ξ ∈ R n \ {0} the following properties hold: (a) ∇(u ξ y )(t) = e(u) (y + tξ) ξ • ξ for L 1 -a.e. t ∈ Ω ξ y and for H n-1 -a.e. y ∈ Π ξ ; (b) J u ξ y = J ξ u ξ y for H n-1 -a.e. y ∈ Π ξ , where J ξ u := {x ∈ J u : [u](x) • ξ = 0}; (c) for H n-1 -a.e. ξ ∈ S n-1 H n-1 (J u \ J ξ u ) = 0. (2.3) Note that, if u k , u ∈ L 1 (Ω, R n ) and u k → u in L 1 (Ω, R n )
, then for every ξ ∈ S n-1 there exists a subsequence (u kj ) such that

(u kj ) ξ y → u ξ y in L 1 (Ω ξ y ) for H n-1 -a.e. y ∈ π ξ (Ω).
Finally, for the definitions and the main properties of Γ-convergence we refer to [START_REF] Maso | An Introduction to Γ-Convergence[END_REF].

Statement of the Main Results

Let Ω ⊂ R n be a bounded open set, let 1 < p < ∞, q := p p-1 and let ε k > 0 be an infinitesimal sequence.

Consider the sequence of functionals

F k : L 1 (Ω, R n )×L 1 (Ω) → [0, +∞] defined by F k (u, v) :=    ˆΩ Q(v, e(u)) + ψ(v) ε k + γ ε p-1 k |∇v| p dx if (u, v) ∈ H 1 (Ω, R n )×V ε k , +∞ otherwise, (3.1) 
where 0 < γ < ∞ and

ψ ∈ C 0 ([0, 1]) is strictly decreasing with ψ(1) = 0, (3.2) 
V ε k := v ∈ W 1,p (Ω) : ε k ≤ v ≤ 1 L n -a.e. in Ω . (3.3) 
Moreover, the function Q : (0, 1]×M n×n sym → R + satisfies (H1) Q is lower semicontinuous and for every A ∈ M n×n sym the function Q(•, A) is continuous at s = 1; (H2) for every s ∈ (0, 1], the function Q(s, •) is a positive definite quadratic form; (H3) for every s ∈ (0, 1] and A ∈ M n×n sym , the following inequalities hold

c 1 s|A| 2 ≤ Q(s, A) ≤ c 2 s|A| 2 , (3.4) 
for suitable positive constants c 1 and c 2 ; (H4) the quadratic forms s -1 Q(s, •) converge uniformly on compact sets of M n×n sym to some function Q 0 as s ↓ 0 + . Note that by items (H3) and (H4) above Q 0 is a quadratic form satisfying

c 1 |A| 2 ≤ Q 0 (A) ≤ c 2 |A| 2 for every A ∈ M n×n sym .
In particular, Q

1/2 0
is a norm on M n×n sym , and

c -1 3 s Q 0 (A) ≤ Q(s, A) ≤ c 3 s Q 0 (A) for all (s, A) ∈ (0, 1] × M n×n sym , (3.5) 
with

c 3 := c 2 c -1 1 ≥ 1. Remark 3.1.
Let us stress that thanks to (H2) and (H3), assumption (H4) is rather natural as it is satisfied by families ε

-1 k Q(ε k , •), ε k ↓ 0 + , up
to the extraction of subsequences. For instance, given Q 0 and Q 1 two coercive quadratic forms on M n×n sym , the family Q(s, A) := s(sQ 1 (A) + (1 -s)Q 0 (A)) satisfies all the assumptions (H1)-(H4) above.

The asymptotic behaviour of the family (F k ) is described in terms of the functional Φ :

L 1 (Ω, R n ) → [0, +∞] given by Φ(u) :=        ˆΩ Q 1 (e(u))dx + aH n-1 (J u ) + b ˆJu Q 1/2 0 ([u] ν u )dH n-1 if u ∈ SBD 2 (Ω), +∞ otherwise, (3.6) 
where we have set Q 1 (A) := Q(1, A) for all A ∈ M n×n sym , and

a := 2q 1/q (γp) 1/p ˆ1 0 ψ 1/q (s) ds, b := 2ψ 1/2 (0). (3.7)
The Γ-limit of the sequence F k is identified in suitable subspaces of L 1 (Ω, R n )×L 

(F k ) in the strong L 1 (Ω, R n )×L 1 (Ω) topology is given on the subspace L ∞ (Ω, R n )×L 1 (Ω) by F (u, v) := Φ(u) if v = 1 L n -a.e. in Ω, +∞ otherwise. (3.8)
As usual, we shall prove the previous result by showing separately a lower bound inequality and an upper bound inequality. To this aim we define

F := Γ-lim inf k→∞ F k and F := Γ-lim sup k→∞ F k . (3.9) 
Then, Theorem 3.2 follows from the ensuing two statements. In the first we establish the lower bound inequality in full generality and identify the domain of the (inferior) Γ-limit; in the second instead we prove the upper bound inequality on L ∞ due to a difficulty probably of technical nature. In addition, in Remark 4.5 we extend the upper bound inequality to all maps in the space SBV . 

Theorem 3.3. Assume (3.1)-(3.7). Let (u, v) ∈ L 1 (Ω, R n )×L 1 (Ω) be such that F (u, v) is finite. Then, v = 1 L n -a.e. in Ω and Φ(u) ≤ F (u, 1). ( 3 

Proof of the Main Results

We start off by establishing the lower bound estimate. We need to introduce further notation: we consider the strictly increasing map φ :

[0, 1] → [0, ∞) defined by φ(t) := ˆt 0 ψ 1/q (s) ds for every t ∈ [0, 1]. (4.1)
Proof of Theorem 3.3. By the definition of Γ-lim inf it is enough to prove that if (u, v) belongs to

L 1 (Ω, R n )×L 1 (Ω) and if (u k , v k ) ∈ L 1 (Ω, R n )×L 1 (Ω) is a sequence such that (u k , v k ) → (u, v) in L 1 (Ω, R n )×L 1 (Ω), (4.2) 
sup k F k (u k , v k ) ≤ L < ∞, (4.3) 
then u ∈ SBD 2 (Ω), v = 1 L n -a.e.
in Ω, and the ensuing estimates hold true with λ ∈ (0, 1)

lim inf k→∞ ˆΩ\Ω λ k Q(v k , e(u k ))dx ≥ ˆΩ Q 1 (e(u))dx, (4.4) lim inf k→∞ ˆΩ\Ω λ k ψ(v k ) ε k + γ ε p-1 k |∇v k | p dx ≥ 2q 1/q (γ p) 1/p (φ(1) -φ(λ))H n-1 (J u ), (4.5) 
and with fixed δ > 0 there is λ δ > 0 such that for all λ ∈ (0, λ δ )

lim inf k→∞ ˆΩλ k Q(v k , e(u k )) + ψ(v k ) ε k dx ≥ 2ψ 1/2 (λ) ˆJu Q 1/2 0 ([u] ν u )dH n-1 + O(δ), (4.6) 
where we have set Ω λ k := {v k ≤ λ}. Given (4.4)-(4.6) for granted, we conclude (3.10) by letting first λ ↓ 0 and then δ ↓ 0.

In order to simplify the notation, we set

I 1 k := ˆΩ\Ω λ k Q(v k , e(u k )) dx, I 2 k := ˆΩ\Ω λ k ψ(v k ) ε k + γ ε p-1 k |∇v k | p dx, I 3 k := ˆΩλ k Q(v k , e(u k )) + ψ(v k ) ε k dx. Clearly, if (u k , v k ) satisfies (4.2) and (4.3), then v k → v = 1 in L 1 (Ω).
The fact that u belongs to SBD 2 (Ω) and inequalities (4.4) and (4.5) can be obtained as a by-product of a slicing argument, following the lines of [START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF]Theorem 4.3]. Here, we pursue a global approach, arguing as in [25, Lemma 3.2.1] (see also [START_REF] Focardi | On the variational approximation of free-discontinuity problems in the vectorial case[END_REF]). We first notice that (u k ) is pre-compact in the weak * topology of BD(Ω). To verify this it is sufficient to prove that

sup k ˆΩ |e(u k )|dx < ∞. (4.7) 
More precisely we show that

F k (u k , v k ) ≥ κ 1 ˆΩ |e(u k )| dx -κ 2 , (4.8) 
with

κ 1 := max λ∈[0,1] 2(c 1 ψ(λ)) 1/2 ∧ c1 λ L n (Ω) and κ 2 := 2(c 1 ψ(0)) 1/2
. Indeed, on one hand by (3.4) and the Jensen inequality we have

I 1 k = ˆΩ\Ω λ k Q(v k , e(u k ))dx ≥ c 1 λ ˆΩ\Ω λ k |e(u k )| 2 dx ≥ c 1 λ L n (Ω) ˆΩ\Ω λ k |e(u k )|dx 2 , (4.9) 
and on the other hand by the Cauchy-Schwartz inequality we find

I 3 k = ˆΩλ k Q(v k , e(u k )) + ψ(v k ) ε k dx ≥ c 1 ε k ˆΩλ k |e(u k )| 2 dx + ψ(λ) ε k L n (Ω λ k ) ≥ 2(c 1 ψ(λ)) 1/2 ˆΩλ k |e(u k )|dx. (4.10)
Adding up estimates (4.9) and (4.10) eventually we get

F k (u k , v k ) ≥ c 1 λ L n (Ω) ˆΩ\Ω λ k |e(u k )| dx 2 + 2(c 1 ψ(λ)) 1/2 ˆΩλ k |e(u k )| dx,
from which it is then easy to obtain inequality (4.8). In conclusion, (4.7) follows directly from (4.3) and (4.8). Therefore, from (4.7), as u k converges to u in L 1 (Ω, R n ), we deduce that u ∈ BD(Ω) and that actually u k u weakly * -BD(Ω).

Proof of estimate (4.4) and that u ∈ SBD 2 (Ω). We construct a function ũk in a way that it is null near the jump set J u of u and coincides with u k elsewhere.

Recalling the very definition of φ in (4.1) we have that φ(v k ) ∈ W 1,p (Ω), and moreover, Young inequality and the BV Coarea Formula yield

I 2 k ≥ q 1/q (γ p) 1/p ˆΩ\Ω λ k ψ 1/q (v k )|∇v k |dx = q 1/q (γ p) 1/p ˆΩ\Ω λ k |∇(φ(v k ))|dx = q 1/q (γ p) 1/p ˆφ(1) φ(λ) Per ({φ(v k ) > t}, Ω)dt. (4.11)
Fix λ ∈ (λ, 1), the Mean Value theorem ensures for every k ∈ N the existence of t k ∈ (φ(λ), φ(λ )) such that ˆφ(1) 

φ(λ) Per ({φ(v k ) > t}, Ω)dt ≥ (φ(λ ) -φ(λ))Per ({φ(v k ) > t k }, Ω). (4.12) Set λ k := φ -1 (t k ), then note that Ω \ Ω λ k k = {φ(v k ) > t k } is
Dũ k = χ Ω\Ω λ k k ∇u k L n Ω + u k ⊗ ν ∂ * Ω λ k k H n-1 ∂ * Ω λ k k .
In particular, H n-1 (J ũk \ ∂ * Ω λ k k ) = 0, then by (4.9), (4.11) and (4.13) the functions ũk satisfy

ˆΩ |e(ũ k )| 2 dx + H n-1 (J ũk ) ≤ c (4.14)
for some c = c(λ, λ , φ, L, c 1 ) < ∞, and in addition

ũk -u L 1 (Ω,R n ) ≤ u k -u L 1 (Ω,R n ) + ˆΩλ k |u|dx. (4.15) As v k → 1 in L 1 (Ω) we find L n (Ω λ k ) ↓ 0, thus (4.15) implies that ũk → u in L 1 (Ω, R n ).
Since we have established that u ∈ BD(Ω), it is easy to deduce from the SBD Compactness Theorem [12, Theorem 1.1] (see also [16, Proof of estimate (4.5). Regrettably, inequality (4.5) is not a straightforward consequence of the previous arguments. Indeed, (4.11), (4.12), (4.17) and H n-1 (J ũk \ ∂ * Ω λ k k ) = 0 lead to an estimate differing from (4.5) by a multiplicative factor 2 on the left-hand side. Therefore, we need a more accurate argument. To this aim, we note that by (4.11) and the Fatou Lemma we have

lim inf k→∞ I 2 k ≥ q 1/q (γ p) 1/p ˆφ(1) φ(λ) lim inf k→∞ Per ({φ(v k ) > t}, Ω) dt,
then in order to conclude (4.5) it suffices to prove that

lim inf k Per ({φ(v k ) > t}, Ω) ≥ 2H n-1 (J u ) for all t ∈ (φ(λ), φ(1)). (4.18)
This follows via a slicing argument as established in [25, Lemma 3.2.1] (see also [START_REF] Bourdin | Implementation of an adaptive finite-element approximation of the Mumford-Shah functional[END_REF]Lemma 2] where the proof is given in a slightly less general setting). We report in what follows the proof of estimate (4.18) for the sake of completeness. Fixed t ∈ (φ(λ), φ(1)) for which the right-hand side of (4.18) is finite, we define τ := φ -1 (t) and

U τ k := Ω \ Ω τ k .
For every open subset A ⊂ Ω and vector ξ ∈ S n-1 , we claim that

lim inf k H n-1 (J χ U τ k ∩ A) ≥ 2 ˆπξ (A) H 0 (J u ξ y ∩ A)dH n-1 , (4.19) 
for H n-1 -a.e. y ∈ π ξ (A) (recall the notations and the results in Theorem 2.1). Given (4.19) for granted, the Coarea Formula for rectifiable sets and the Fatou lemma yield the following lower semicontinuity estimate

lim inf k Per ({φ(v k ) > φ(τ )}, A) = lim inf k H n-1 (J χ U τ k ∩ A) ≥ 2 ˆπξ (A) H 0 (J u ξ y ∩ A)dH n-1 = 2 ˆJξ u ∩A |ν u • ξ|dH n-1 . (4.20) Since H n-1 (J u \ J ξ u ) = 0 for H n-1 -a.e. ξ ∈ S n-1 (see (2.
3)), we infer from (4.20)

lim inf k Per ({φ(v k ) > φ(τ )}, A) ≥ 2 ˆJu∩A |ν u • ξ|dH n-1 . (4.21)
In conclusion, inequality (4.18) follows from (4.21) by passing to the supremum on a sequence (ξ r ) dense in S n-1 and applying [6, Lemma 2.35], since the function

A → lim inf k Per ({φ(v k ) > φ(τ )}, A)
is superadditive on disjoint open subsets of Ω. Let us finally prove (4.19). Note that there exists a subsequence (u r , v r ) of (u k , v k ) such that

lim inf k H n-1 (J χ U τ k ∩ A) = lim r H n-1 (J χ U τ r ∩ A), (4.22) (u r ) ξ y , (v r ) ξ y → u ξ y , 1 in L 1 (Ω ξ y )×L 1 (Ω ξ y ), for H n-1 -a.e. y ∈ π ξ (Ω), (4.23) 
and with fixed η > 0, for H n-1 -a.e. y ∈ π ξ (Ω) we find lim inf

r η ˆAξ y (v r ) ξ y ∇((u r ) ξ y ) 2 + ψ (v r ) ξ y ε r + γ ε p-1 r ∇((v r ) ξ y ) p dt + H 0 (J χ (U τ r ) ξ y ∩ A) < ∞, (4.24 
) by (3.4), (4.3), our choice of τ , and the Fatou lemma.

Fix y ∈ π ξ (Ω) be satisfying (4.23), (4.24), and assume also that H 0 J u ξ y ∩ A > 0. Moreover, up to extracting a further subsequence (depending on y and not relabeled for convenience), we may suppose that the lower limit in (4.24) is actually a limit.

Let {t 1 , ..., t l } be an arbitrary subset of J u ξ y ∩ A, and let (I i ) 1≤i≤l be a family of pairwise disjoint open intervals such that t i ∈ I i , I i ⊂⊂ A ξ y . Then, for every 1 ≤ i ≤ l, we claim that

s i := lim sup r inf Ii (v r ) ξ y = 0.
Indeed, if s h was strictly positive for some h ∈ {1, ..., l}, then inf

I h (v j ) ξ y ≥
s h 2 for a suitable subsequence (v j ) of (v r ), and thus (4.24) would give ˆIh ∇((u j ) ξ y )

2 dt ≤ c,
for some constant c. Hence, Rellich-Kondrakov's theorem and (4.23) would imply the slice u ξ y to be in W 1,1 (I h , R n ), which is a contradiction since by assumption H 0 J u ξ y ∩ I h > 0. So let t i r ∈ I i be such that lim r (v r ) ξ y (t i r ) = 0, and α i , β i ∈ I i , with α i < t i r < β i , be such that lim

r (v r ) ξ y (α i ) = lim r (v r ) ξ y (β i ) = 1.
Then, there follows lim inf

r H 0 (J χ (U τ r ) ξ y ∩ I i ) ≥ 2.
Hence, the subadditivity of the inferior limit and the arbitrariness of l yield lim inf r H 0 (J χ

(U τ r ) ξ y ∩ A) ≥ 2H 0 (J u ξ y ∩ A). Therefore, we obtain lim inf r η ˆAξ y (v r ) ξ y ∇((u r ) ξ y ) 2 + ψ (v r ) ξ y ε r +γ ε p-1 r ∇((v r ) ξ y ) p dt+H 0 (J χ (U τ r ) ξ y ∩A) ≥ 2H 0 (J u ξ y ∩A), which integrated on π ξ (A) gives lim inf k H n-1 (J χ U τ k ∩ A) ≥ 2 ˆπξ (A) H 0 (J u ξ y ∩ A)dH n-1 -ηc
for some positive constant c = c(L). As η ↓ 0 we find (4.19).

Proof of estimate (4.6). We employ the blow-up technique introduced by Fonseca and Müller in [START_REF] Fonseca | Quasi-convex integrands and lower semicontinuity in L 1[END_REF]. First, we observe that by the Cauchy-Schwartz inequality we have

I 3 k ≥ ε k ˆΩλ k Q(v k , e(u k )) v k dx + ψ(λ) ε k L n (Ω λ k ) ≥ 2ψ 1/2 (λ) ˆΩλ k Q(v k , e(u k )) v k 1/2 dx, (4.25) 
thus in order to get (4.6) it suffices to show that for all δ > 0 there is λ δ > 0 such that for λ ∈ (0, λ δ ) we have lim inf

k ˆΩλ k Q(v k , e(u k )) v k 1/2 dx ≥ ˆJu Q 1/2 0 ([u] ν)dH n-1 + O(δ). (4.26) 
Actually the uniform convergence on compact sets of M n×n sym assumed in (H4) above implies that, with fixed δ > 0, for some λ δ > 0 and all λ ∈ (0, λ δ ) we have

ˆΩλ k Q(v k , e(u k )) v k 1/2 dx = ˆΩλ k Q 1/2 v k (x) e(u k ) |e(u k )| |e(u k )|dx ≥ ˆΩλ k Q 1/2 0 e(u k ) |e(u k )| -δ |e(u k )|dx ≥ ˆΩλ k Q 1/2 0 (e(u k ))dx -δ |Eu k |(Ω),
where we have set Q s (A) := s -1 Q(s, A). Thus, inequality (4.26) is reduced to prove lim inf

k ˆΩλ k Q 1/2 0 (e(u k ))dx ≥ ˆJu Q 1/2 0 ([u] ν)dH n-1 , (4.27) 
being δ > 0 arbitrary and (|Eu k |(Ω)) being bounded as shown in (4.7). Let (u r ) be a subsequence of (u k ) such that lim inf

k ˆΩλ k Q 1/2 0 (e(u k ))dx = lim r ˆΩλ r Q 1/2
0 (e(u r ))dx.

In order to prove (4.27), for every Borel set A ⊆ Ω we introduce

µ r (A) := ˆΩλ r ∩A Q 1/2 0 (e(u r ))dx, θ r (A) := ˆA Q 1/2
0 (e(u r ))dx, and ζ r (A) := F r (u r , v r , A), where F r (•, •, A) denotes the functional defined in (3.1) with the set of integration Ω replaced by A.

It is evident that the former set functions are finite Borel measures, with (µ r ), (θ r ) and (ζ r ) actually equi-bounded in mass thanks to inequalities (4.3) and (4.7). Hence, up to subsequences not relabelled for convenience, we may suppose that µ r µ, θ r θ, and

ζ r ζ weakly * in M + b (Ω), (4.28) 
for some µ, θ and ζ ∈ M + b (Ω), respectively.

Being lim

r µ r (Ω) ≥ µ(Ω),
to infer (4.27) we need only to show that

dµ dH n-1 J u ≥ Q 1/2 0 ([u] ν u ) H n-1 -a.e. in J u , (4.29) 
where

dµ dH n-1 Ju
is the Radon-Nikodým derivative of µ with respect to H n-1 J u . We shall prove the latter inequality for the subset of points x 0 in J u for which the Radon-Nikodým derivatives

dµ dH n-1 J u (x 0 ), dθ dH n-1 J u (x 0 ), dζ dH n-1 J u (x 0 ), (4.30) 
exist finite, dQ

1/2 0 ( dEu d|Eu| )|Eu| dH n-1 J u (x 0 ) = Q 1/2 0 ([u] ν u )(x 0 ) (4.31) 
and

lim ρ→0 H n-1 (J u ∩ Q ν (x 0 , ρ)) ρ n-1 = 1, (4.32) 
where ν := ν u (x 0 ), Q ν is any unitary cube centred in the origin with one face orthogonal to ν, and

Q ν (x 0 , ρ) := x 0 + ρ Q ν . Formula (4.32
) is a consequence of the (H n-1 , n -1) rectifiability of J u (see [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF]Theorem 2.83]). Note that all the conditions above define a set of full measure in J u . By selecting one of such points x 0 ∈ J u , we get

dµ dH n-1 J u (x 0 ) = lim ρ→0 µ(Q ν (x 0 , ρ)) ρ n-1 = lim ρ∈I ρ→0 lim r→∞ µ r (Q ν (x 0 , ρ)) ρ n-1 = lim ρ∈I ρ→0 lim r→∞ 1 ρ n-1 θ r (Q ν (x 0 , ρ)) -θ r (Q ν (x 0 , ρ) \ Ω λ r ) , (4.33) 
where

I := ρ ∈ (0, 2 √ n dist(x 0 , ∂Ω)) : µ(∂Q ν (x 0 , ρ)) = θ(∂Q ν (x 0 , ρ)) = ζ(∂Q ν (x 0 , ρ)) = 0 .
Note that I is a subset of radii of full measure in (0, 2 √ n dist(x 0 , ∂Ω)), and that the second equality in (4.33) easily follows from the convergence µ r µ weakly * in M + b (Ω). Further, we claim that lim ρ∈I ρ→0

lim r→∞ θ r (Q ν (x 0 , ρ) \ Ω λ r ) ρ n-1 = 0. (4.34)
Indeed, the Hölder inequality, the very definition of F k in (3.1), and (3.5) imply 

θ r (Q ν (x 0 , ρ) \ Ω λ r ) ρ n-1 = 1 ρ n-1 ˆQν(x0,ρ)\Ω λ r Q 1/2 0 (e(u r ))dx ≤ c 1/2 3 ρ n-1 ˆQν(x0,ρ)\Ω λ k Q 1/2 vr(x) (e(u r ))dx ≤ c 3 L n (Q ν (x 0 , ρ) \ Ω λ r ) ρ n-1 1/2 1 ρ n-1 ˆQν(x0,ρ)\Ω λ r Q vr(x) (e(u r ))dx 1/2 ≤ (c 3 ρ) 1/2 λ -1/2 F r (u r , v r , Q ν (x 0 , ρ)) ρ n-1 1/2 = (c 3 ρ) 1/2 λ -1/2 ζ r (Q ν (x 0 , ρ)) ρ n-1 1/2
dθ dH n-1 J u (x 0 ) ≥ lim inf ρ→0 1 ρ n-1 ˆQν(x0,ρ) Q 1/2 0 dEu d|Eu| d|Eu| = Q 1/2 0 ([u] ν u )(x 0 ). ( 4 
∈ GSBD 2 (Ω) ∩ L 2 (Ω, R n ). Then there exists a sequence (u k ) ⊂ SBV 2 ∩ L ∞ (Ω, R n ) such that each J u k is contained in the union S k of a finite number of closed connected pieces of C 1 -hypersurfaces, each u k belongs to W 1,∞ (Ω \ S k , R n ),
and the following properties hold: We recall next a density result in SBV , for which we need to introduce further terminology. We say that u ∈ SBV (Ω, R n ) is a piecewise smooth SBV -function if u ∈ W m,∞ (Ω \ J u , R n ) for every m, H n-1 ((J u ∩ Ω) \ J u ) = 0, and the set J u ∩ Ω is a finite union of closed pairwise disjoint (n -1)-simplexes intersected with Ω. Theorem 4.3. Assume that Ω has Lipschitz boundary. Let u ∈ SBV 2 ∩ L ∞ (Ω, R n ). Then there exists a sequence (u k ) of piecewise smooth SBV -functions such that

(1) ||u k -u|| L 2 (Ω,R n ) → 0, (2) ||e(u k ) -e(u)|| L 2 (Ω,M n×n sym ) → 0, (3) H n-1 (J u k J u ) → 0, (4) ˆJu k ∪Ju |u ± k -u ± | ∧ M dH n-1 → 0, for every M > 0.
(1) ||u k -u|| L 2 (Ω,R n ) → 0, (2) ||∇u k -∇u|| L 2 (Ω,M n×n ) → 0, (3) lim sup k ˆA∩Ju k ϕ(x, u + k , u - k , ν u k )dH n-1 ≤ ˆA∩Ju ϕ(x, u + , u -, ν u )dH n-1 ,
for every open set A ⊂ Ω and for every function ϕ : Ω×R n ×R n ×S n-1 → [0, +∞) upper semicontinuous and such that 

∞ (Ω, R n )×L 1 (Ω) of L 1 (Ω, R n )×L
∞ (Ω, R n ) since the approximating sequence (u k ) in Theorem 4.1 is constructed in a way that u k L ∞ (Ω,R n ) ≤ u L ∞ (Ω,R n ) .
The same conclusion of Theorem 3.4 can be drawn for all fields in SBV 2 (Ω, R n ). Indeed, the functional in (3.6) is continuous on sequences of truncations, therefore the conclusion follows by Theorem 4.3 and a diagonal argument. In this respect, take also into account the equality 

GSBV 2 (Ω, R n ) ∩ BD(Ω) = SBV 2 (Ω, R n ).
∈ L ∞ (Ω, R n ) is preserved.
For the construction of the recovery sequence we shall follow the lines of [28, Theorem 3.3] (see also [START_REF] Maso | Fracture models as Γ-limits of damage models[END_REF]Theorem 3.3]).

Since J u is a finite union of closed pairwise disjoint (n -1)-simplexes well-contained in Ω, we reduce to study the case when S := J u is a (n -1)-simplex. In order to simplify the computation we also assume S ⊂ {x n = 0}, we denote the generic point x ∈ R n by x = (x, x n ) ∈ R n-1 × R, and we orient J u so that ν u = (0, 1).

Let Ω ± := x ∈ Ω : ±x n > 0 and let L be the maximum between the Lipschitz constants of u in Ω + and Ω -. Let also

σ k (x) := ε k 2ψ(0) 1/2 Q 1/2 0 ([u(x, 0)] e n ), for every x ∈ S. (4.39) 
Being u + and u -Lipschitz functions, we deduce that σ k is in turn a Lipschitz function and that

|∇σ k (x)| ≤ c ε k , (4.40) 
for H n-1 -a.e. x ∈ S and for a suitable constant c = c(ψ, L, Q 0 ) > 0. Moreover, σ k = 0 on ∂S, where ∂S is the boundary of S in the relative topology of R n-1 ×{0}.

We set for ρ ∈ (0, 1)

f (ρ) := ψ(1 -ρ), g(ρ) := ˆ1-ρ 0 ψ -1/p (s) ds -1
, and h(ρ

) := (f • g) 1/2 (ρ),
and we introduce the infinitesimal sequence ρ k := h -1 (ε k ) having the property that 

f (ρ k ) ε k = ε k g(ρ k ) → 0 as k ↑ ∞. ( 4 
   w k = q γp 1/p ε -1 k ψ 1/p (w k ) w k (0) = ε k , (4.42)
where T k ∈ (0, ∞] is given by

T k := γp q 1/p ε k ˆ1 ε k ψ -1/p (s) ds. Furthermore, define µ k ∈ (0, T k ) µ k := γp q 1/p ε k ˆ1-ρ k ε k ψ -1/p (s) ds, (4.43) 
thus µ k is infinitesimal by (4.41).

We are now in a position to introduce the sets

A k := x ∈ R n : (x, 0) ∈ S, |x n | < σ k (x) , B k := x ∈ R n : (x, 0) ∈ S, 0 ≤ |x n | -σ k (x) ≤ µ k , C k := x ∈ R n : (x, 0) / ∈ S, d(x, ∂S) ≤ µ k ,
where d(x, ∂S) is the distance of the point x from the set ∂S.

Consider the sequence (u k , v k ) defined by

u k (x, x n ) :=      x n + σ k (x) 2σ k (x) (u(x, σ k (x)) -u(x, -σ k (x))) + u(x, -σ k (x)) if x ∈ A k , u(x) if x ∈ Ω \ A k , and 
v k (x) :=            ε k if x ∈ A k , w k (|x n | -σ k (x)) if x ∈ B k , w k (d(x, ∂S)) if x ∈ C k , 1 -ρ k otherwise.
Then, (u k , v k ) → (u, 1) in L 1 (Ω, R n )×L 1 (Ω), moreover we shall show that it provides a recovery sequence following the arguments used in [START_REF] Maso | Fracture models as Γ-limits of damage models[END_REF]Theorem 3.3, inequalities (71)-( 78)]. First note that, for every component u i k of u k for L n -a.e. (x, x n ) ∈ A k we have that where Λ : R n → M n×n sym is defined by (Λ(x 1 , . . . , x n )) i j := 0 if i, j < n, (Λ(x 1 , . . . , x n )) i n := x i if i ≤ n.

|D j u i k (x, x n )| ≤ x n σ k (x) D j σ k (x) u i (x,
(4.50)

In addition, the definitions of u k , of σ k in (4.39), of A k , and the 2-homogeneity of

Q yield ˆAk Q ε k , 1 2 Λ(D n u 1 k , . . . , D n u n-1 k , 2D n u n k ) dx = b 2 ˆJu Q ε k (ζ k (x)) • Q -1/2 0 ([u](x, 0) e n )dH n-1 ,
where ζ k (x) := 1 2 Λ u 1 (x, σ k (x)) -u 1 (x, -σ k (x)), . . . , u n-1 (x, σ k (x)) -u n-1 (x, -σ k (x)), 2(u n (x, σ k (x)) -u n (x, -σ k (x))) .

Eventually, the conclusion follows by (4.50), by (H4), and by the dominated convergence theorem as (ζ k ) converges uniformly to [u](•, 0) e n on S as k ↑ ∞.
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 1034 Theorem Assume (3.1)-(3.7) and assume that Ω is a bounded open set with Lipschitz boundary. Then, for every u ∈ L ∞ (Ω, R n ) we have F (u, 1) ≤ Φ(u).(3.11) 

  a set of finite perimeter satisfying by the latter inequality and (4.3) Per (Ω \ Ω λ k k , Ω) ≤ c (4.13) for some c = c(λ, λ , φ, L). Let now ũk := χ Ω\Ω λ k k u k , then the Chain Rule Formula in BV [6, Theorem 3.96] yields that ũk ∈ SBV (Ω, R n ) with

  .37) Eventually, (4.35) and (4.37) conclude the proof of (4.29), and then of (4.27). The proof of the Γ-lim sup inequality in Theorem 3.4 takes advantage of the density theorems for GSBD(Ω) [28, Theorem 3.1] and for SBV (Ω, R n ) [19, Theorem 3.1] stated below for convenience of the reader.

Theorem 4 . 1 .

 41 Assume that Ω has Lipschitz boundary, and let u

Remark 4 . 2 .

 42 Note that the expression in (4) makes sense by [21, Theorem 5.2], since one can define the traces u ± of a function u ∈ GBD(Ω) on any C 1 submanifold of dimension n -1.

ϕ 1 . 4 . 4 .

 144 (x, a, b, ν) = ϕ(x, b, a, -ν) for x ∈ Ω, lim sup (y,a ,b ,µ)→(x,a,b,ν) y∈Ω ϕ(y, a , b , µ) < +∞ for x ∈ ∂Ω, for every a, b ∈ R n , and ν ∈ S n-Remark Note that if Ω ⊂ R n is an open cube, then the intersection J u k ∩ Ω is a polyhedron. Therefore, adapting the arguments in [19, Remark 3.5] and [18, Corollary 3.11] we can construct a new approximating sequence (ũ k ) satisfying all requirements of Theorem 4.3 and such that J ũk ⊂⊂ Ω.

Remark 4 . 5 .

 45 The Γ-lim sup inequality in Theorem 3.4 is stated only for fields in the subspace L

Finally

  let us prove the upper bound estimate.Proof of Theorem 3.4. Let u ∈ SBD 2 (Ω) ∩ L ∞ (Ω, R n ),then by the lower semicontinuity of F and Theorem 4.1 it is not restrictive to assume that u belongs to SBV 2 ∩ L ∞ (Ω, R n ). By a local reflection argument we can also assume that Ω ⊂ R n is a open cube and again by the lower semicontinuity of F , by Theorem 4.3, and by Remark 4.4 we can reduce ourselves to prove(3.11) for a piecewise smooth SBV -function u with J u ⊂ Ω. Finally, up to a truncation argument, condition u

  .41) Denote by w k the only solution of the following Cauchy problem in the interval [0, T k ) (uniqueness on such an interval follows from (3.2))

1 kˆ1-ρ k ε k ψ 1 b 2 ˆJu Q 1 / 2 0 1 . 1 k,

 111211 σ k (x)) -u i (x, -σ k (x)) 2σ k (x) + D j u i (x, -σ k (x)) -D n u i (x, -σ k (x))D j σ k (x) + D j u i (x, σ k (x)) + D n u i (x, σ k (x))D j σ k (x) -D j u i (x, -σ k (x)) + D n u i (x, -σ k (x))D j σ k (x) ≤ |D j σ k (x)| |[u i (x, 0)]| 2σ k (x) + 4L + 3L ≤ c,(4.44)where j = 1, . . . , n -1, and|D n u i k (x, x n )| = u i (x, σ k (x)) -u i (x, -σ k (x)) 2σ k (x) = u i (x, σ k (x)) -u i + (x, 0) 2σ k (x) + u i + (x, 0) -u i -(x, 0) 2σ k (x) + u i -(x, 0) -u i (x, -σ k (x)) 2σ k (x) ≤ L + |[u i (x, 0)]| 2σ k (x) ≤ c ε k ; (4.45)in the previous estimates c = c(L) and we have used (4.40). In particular, we deduce that u k is a Lipschitz function.As far as the computation of the energy F k (u k , v k ) is concerned we shall mainly focus on the term ˆAk Q(v k , e(u k ))dx.The others are estimated in an elementary way following[START_REF] Iurlano | Fracture and plastic models as Γ-limits of damage models under different regimes[END_REF] Theorem 3.3]. More precisely, we havelim sup k ˆΩ\A k Q(v k , e(u k ))dx = lim sup k ˆΩ\A k Q(v k , e(u))dx ≤ ˆΩ Q 1 (e(u))dx (4.46) by dominated convergence thanks to assumptions (H1) and (H3); then as a result of a straightforward calculation u] e n ) dH n-1 ; (4.47) furthermore from the very definition of w k and (4.43) we find ˆBkψ(v k ) ε k + γ ε p-1 k |∇v k | p dx ≤ 2(1 + O(ε k ))(γp) 1/p q 1/q ˆ1-ρ k ε k ψ 1/q (s) ds H n-1 (J u ); (4.48)finally by the Coarea formula and again by the definition ofw k it follows that ˆCk ψ(v k ) ε k + γ ε p-|∇v k | p dx ≤ c µ k /q (s) ds ≤ c µ k ,(4.49) where c < ∞. Therefore, by collecting (4.46)-(4.49), to conclude we need only to verify that lim k ˆAk Q(v k , e(u k ))dx = ([u] e n )dH n-To this aim, observe first that assumption (H3), the very definition of u k , v k and estimates (4.44), (4.45) imply ˆAk Q(v k , e(u k ))dx = ˆAk Q ε k , 1 2 Λ(D n u 1 k , . . . , D n u n-2D n u n k ) dx + o(1), as k ↑ ∞,

  Lemma 5.1]) and from inequality (4.14) that actually u ∈ SBD 2 (Ω),

	with		
	e(ũ k )	e(u) weakly in L 2 (Ω, M n×n sym ),	(4.16)
	and		
	H n-1 (J u ) ≤ lim inf k→∞	H n-1 (J ũk ).	(4.17)
	Eventually, by taking into account that lim inf k→∞ ˆΩ\Ω λ	

k Q(v k , e(u k ))dx = lim inf k→∞ ˆΩ Q(v k , e(ũ k ))dx,

(4.4) follows from (4.16), from the convergence v k → 1 in L 1 (Ω), and from [15, Theorem 2.3.1].

  1 (Ω) since Theorem 4.1 does not guarantee the convergenceˆJu k ∪Ju |[u k ] -[u]| dH n-1 → 0 (4.38) for every u in SBD 2 (Ω) ∩ L 2 (Ω, R n ). If(4.38) was true, then Theorem 4.1 combined with Theorem 4.3 would allow us to prove the Γ-lim sup inequality for those fields u that are piecewise smooth.In such a case, the construction of recovery sequences follows quite classical lines, and by density the Γ-lim sup inequality in L 2 (Ω, R n )×L 1 (Ω) would be completely proved.Nevertheless, this argument applies to fields in L
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