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PHASE FIELD APPROXIMATION OF COHESIVE FRACTURE MODELS

S. CONTI – M. FOCARDI – F. IURLANO

Abstract. We obtain a cohesive fracture model as a Γ-limit of scalar damage models in which

the elastic coefficient is computed from the damage variable v through a function fk of the form

fk(v) = min{1, ε
1/2
k f(v)}, with f diverging for v close to the value describing undamaged material.

The resulting fracture energy can be determined by solving a one-dimensional vectorial optimal

profile problem. It is linear in the opening s at small values of s and has a finite limit as s → ∞.

If the function f is allowed to depend on the index k, for specific choices we recover in the limit
Dugdale’s and Griffith’s fracture models, and models with surface energy density having a power-

law growth at small openings.

1. Introduction

The modeling of fracture in materials leads naturally to functional spaces with discontinuities, in
particular functions of bounded variation (BV ) and of bounded deformation (BD). In variational
models, the key ingredients are a volume term, corresponding to the stored energy and depending
on the diffuse part of the deformation gradient, and a surface term, modeling the fracture energy
and depending on the jump part of the deformation gradient [32, 16, 10, 26]. For antiplane shear
models one can consider a scalar displacement u ∈ BV (Ω), typical models take the form∫

Ω

h(|∇u|)dx+ κ |Dcu|(Ω) +

∫
Ω∩Ju

g(|[u]|)dHn−1 . (1.1)

Here h represents the strain energy density, quadratic near the origin; g is the surface energy density
depending on the opening [u] of the crack, and κ ∈ [0,+∞] is a constant related to the slope of g at
0 and the slope of h at ∞.

In models of brittle fracture one usually considers g to be a constant, given by twice the energy
required to generate a free surface [32, 16]. Correspondingly κ = ∞ and the Cantor part Dcu
disappears, so that one can assume u ∈ SBV . Physically this represents a situation in which
already for the smallest opening there is no interaction between the two sides of the fracture, surface
reconstruction is purely local. Analytically, the resulting functional coincides with the Mumford-
Shah functional from image segmentation.

In ductile materials fracture proceeds through the opening of a series of voids, separated by thin
filaments which produce a weak bound between the surfaces at moderate openings [10, 26, 31].
The function g grows then continuously from g(0) = 0 to some finite value g(∞), representing the
energetic cost of total fracture. The constant κ is its slope at 0, and Dcu represents the distribution
of microcracks. For the same reason the volume energy density h becomes linear at ∞.

A large literature was devoted to the derivation of models like (1.1) from more regular models, like
damage or phase field models, mainly within the framework of Γ-convergence. These regularizations
can be interpreted as microscopic physical models, so that the Γ-limit justifies the macroscopic
model (1.1), or as regularizations used for example to approximate (1.1) numerically. Ambrosio and
Tortorelli [7, 8] have shown that∫

Ω

(
(v2 + o(ε))|∇u|2 +

(1− v)2

4ε
+ ε|∇v|2

)
dx (1.2)
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converges to the Mumford-Shah functional, which coincides with (1.1) with h(t) = t2, κ = ∞,
g(t) = 1. This result was extended in many directions, for example to vector-valued functions [28, 29],
to linearized elasticity [22, 23, 34], to second-order problems [4], vectorial problems [38], and models
with nonlinear injectivity constraints [27]; for numerical simulations we refer to [11, 15, 14, 20, 21].
There is also a large numerical literature on the application to computer vision, see for example
[33, 9] and references therein.

Models like (1.1) with a linear h were obtained in [2, 3]. The case with a quadratic h and an affine
g, i.e. h(t) = t2, g(t) = t + c, and κ = +∞, described in [6] a strain localization plastic process.
From the mathematical point of view the functional was limit of models like (1.2) with an additional
term linear in |∇u|. In [25, 35] the asymptotic behavior of a generalization of (1.2) with different
scalings of the three terms was analyzed. In one of the several regimes identified, the limiting model
again exhibited an affine g. The result was then extended to the vectorial case in [30]. In [35] a
different scaling of the parameters led to the Hencky’s diffuse plasticity, i.e. to a model like (1.1)
with a linear g. This functional can be used to describe ductile fracture only at small openings.
Discrete models for fracture were studied for example in [18, 19]. Up to now, we are unaware of any
result in which a ductile fracture model with g continuous and bounded, as described above, has
been derived.

In this work we study a damage model as proposed by Pham and Marigo [36, 37] (cp. Remark 3.2),
namely,

Fε(u, v) :=

∫
Ω

(
f2
ε (v)|∇u|2 +

(1− v)2

4ε
+ ε|∇v|2

)
dx, (1.3)

with u, v ∈ H1(Ω), 0 ≤ v ≤ 1 Ln-a.e. in Ω, and Fε(u, v) :=∞ otherwise, and show that it converges
to a cohesive fracture model like (1.1), where g is a continuous bounded function with g(0) = 0,
which is linear close to the origin. The potential fε : [0, 1)→ [0,+∞] in (1.3) is defined by

fε(s) := 1 ∧ ε1/2f(s), (1.4)

where f ∈ C0([0, 1), [0,+∞)) is nondecreasing, f−1(0) = {0}, and it satisfies

lim
s→1

(1− s)f(s) = `, ` ∈ (0,+∞). (1.5)

Our main result describes the asymptotic of (Fε) as follows.

Theorem 1.1. Let Ω ⊂ Rn be a bounded Lipschitz set.
Then, the functionals Fε Γ-converge in L1(Ω)×L1(Ω) to the functional F defined by

F (u, v) :=


∫

Ω

h(|∇u|)dx+

∫
Ju

g(|[u]|)dHn−1 + `|Dcu|(Ω) if v = 1 Ln-a.e. in Ω, u ∈ GBV (Ω)

+∞ otherwise.

Here the volume energy density h is set as h(s) := s2 if s ≤ `/2 and as h(s) := `s− `2/4 otherwise,
while the surface energy density g is given by

g(s) := inf

{∫ 1

0

|1− β|
√
f2(β)|α′|2 + |β′|2 dt : (α, β) ∈ H1

(
(0, 1)

)
,

α(0) = 0, α(1) = s, β(0) = β(1) = 1

}
. (1.6)

The key difference with the previously discussed work is that in our case the optimal profiles for
the damage variable v and the elastic displacement u cannot be determined separately. They instead
arise from a joint vectorial minimization problem which defines the cohesive energy g, specified in
(1.6). Figures 1 and 2 show the behavior of fε and g in the case f(s) = s/(1 − s), Figure 3 shows
the profiles α, β entering (1.6).

Theorem 1.1, in the equivalent formulation given in Theorem 3.1 below, is proved first in the
one-dimensional case in Section 5, relying on elementary arguments in which we estimate separately
the diffuse and jump contributions, and then extended to the general n-dimensional setting in
Section 6. This extension is obtained by means of several tools. A slicing technique and the above
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Figure 1. Sketch of the function fε(s) for the prototypical case f(s) = s/(1− s).

mentioned one-dimensional result are the key for the lower bound inequality. Instead, the upper
bound inequality is proved through the direct methods of Γ-convergence on SBV , i.e. abstract
compactness results and integral representation of the corresponding Γ-limits. The latter methods
are complemented with an ad-hoc one-dimensional construction to match the lower bound on SBV
and a relaxation procedure to prove the result on BV . Finally, the extension to GBV is obtained
via a simple truncation argument.

The issues of equi-coercivity of Fε and the convergence of the related minima are dealt with in
Theorem 3.3 and Corollary 3.4 below, respectively.

Qualitative properties of the surface energy density g defined in (1.6) are analyzed in Section 4.
Its monotonicity, sublinearity, boundedness and linear behavior in the origin are established in
Proposition 4.1. Proposition 4.3 characterizes g by means of an asymptotic cell formula particularly
convenient in the proof of the Γ-limsup inequality. Furthermore, the dependence of g on f is
analyzed in detail in Proposition 4.5. The latter results on one hand show the variety of such a class
of functions, and on the other hand are instrumental to handle the approximation of other models.

In Section 7 we discuss how the phase field approximation scheme can be used to approximate
different fracture models. We first consider damage functions of the form

fk(s) := min{1, ε1/2
k max{f(s), aks}}

and show that if ak → ∞ and akε
1/2
k → 0 then the a similar result holds with the limiting surface

energy g(s) = 1 ∧ (`s), so that (1.1) reduces to Dugdale’s fracture model (Theorem 7.1 in Section
7.1).

Secondly we consider a situation in which f diverges with exponent p > 1 close to s = 1, so that
(1.5) is replaced by

lim
s→1

(1− s)pf(s) = ` .

Also in this case the functionals Γ-converge to a problem of the form of (1.1), in this case however
the fracture energy g turns out to be proportional to the opening s to the power 2/(p+ 1) at small
s. Correspondingly the coefficient κ of the diffuse part is infinite, so that the limiting problem is
framed in the space GSBV, see Theorem 7.4 in Section 7.2.

Finally we show that if fk(s) diverges as `k/(1− s), with `k →∞, then Griffith’s fracture model
is recovered in the limit, see Theorem 7.5 in Section 7.3 below.

We finally resume the structure of the paper. In Section 2 we introduce some notations, some
preliminaries, and the functional setting of the problem. The main result of the paper is stated in
Section 3, where we also discuss the convergence of related minimum problems and minimizers. Our
Γ-convergence result relies on several properties of the surface energy density g that are established
in Section 4. The proof is then given first in the one-dimensional case in Section 5 and then in n
dimensions in Section 6. The three generalizations are discussed and proven in Section 7.
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1

s

g(s)

Figure 2. Sketch of the function g(s) defined in (1.6), obtained by numerical
minimization using f(s) = s/(1− s) (cp. Proposition 4.1 and Remark 4.2).
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β
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Figure 3. Optimal profiles (α/s, β) obtained numerically from the minimization
in the definition of g(s), see (1.6), for f(s) = s/(1 − s) and for s = 0.1, 0.3, 0.5, 1,
and 1.5 (from top to bottom). All curves remain inside the rectangle (0, 1)× (0, 1)
except for the two endpoints.

2. Notation and preliminaries

Let n ≥ 1 be a fixed integer. We denote the Lebesgue measure and the k-dimensional Hausdorff
measure in Rn by Ln and Hk, respectively. Given Ω ⊂ Rn an open bounded set with Lipschitz
boundary, we define A(Ω) as the set of all open subsets of Ω.

Throughout the paper c denotes a generic positive constant that can vary from line to line.

2.1. Γ- and Γ-convergence. Given an open set Ω ⊂ Rn and a sequence of functionals Fk : X ×
A(Ω)→ [0,+∞], (X, d) a separable metric space, such that the set function Fk(u; ·) is nondecreasing
on the family A(Ω) of open subsets of Ω, set

F ′(·;A) := Γ- lim inf
k→+∞

Fk(·;A), F ′′(·;A) := Γ- lim sup
k→+∞

Fk(·;A)

for every A ∈ A(Ω). If A = Ω we drop the set dependence in the above notation. Moreover we recall
that if F = F ′ = F ′′ we say that Fk Γ-converges to F (with respect to the metric d).

Next we recall the notion of Γ-convergence, useful in particular to deal with the integral rep-
resentation of Γ-limits of families of integral functionals. We say that (Fk) Γ -converges to F :
X ×A(Ω)→ [0,+∞] if F is the inner regular envelope of both functionals F ′ and F ′′, i.e.,

F (u;A) = sup{F ′(u;A′) : A′ ∈ A(Ω), A′ ⊂⊂ A} = sup{F ′′(u;A′) : A′ ∈ A(Ω), A′ ⊂⊂ A},
for every (u,A) ∈ X ×A(Ω).

2.2. Functional setting of the problem. All the results we shall prove in what follows will be
set in the spaces BV and SBV and in suitable generalizations. For the definitions, the notations
and the main properties of such spaces we refer to the book [5]. Below we just recall the definition
of SBV 2(Ω) that we shall often use in the sequel:

SBV 2(Ω) :=
{
u ∈ SBV (Ω) : ∇u ∈ L2(Ω) and Hn−1(Ju) < +∞

}
.

Moreover, a function u : Ω→ R belongs to GBV (Ω) (respectively to GSBV (Ω)) if the truncations
uM := −M ∨ (u ∧M) belong to BVloc(Ω) (respectively to SBVloc(Ω)), for every M > 0. For fine
properties of GBV and GSBV again we refer to [5].
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The prototype of the asymptotic result we shall prove in Sections 5, 6, and 7 concerns the
Mumford-Shah functional of image segmentation

MS(u) :=


∫

Ω

|∇u|2dx+Hn−1(Ju) if u ∈ GSBV (Ω),

+∞ otherwise in L1(Ω).
(2.1)

Let ψ : [0, 1]→ [0, 1] be any nondecreasing lower-semicontinuous function such that ψ−1(0) = 0 and
ψ(1) = 1. Then the classical approximation by Ambrosio and Tortorelli (cp. [7, 8], and also [28])

establishes that the two fields functionals ATψk : L1(Ω)× L1(Ω)→ [0,+∞]

ATψk (u, v) :=


∫

Ω

(
ψ2(v)|∇u|2 +

(1− v)2

4εk
+ εk|∇v|2

)
dx if (u, v) ∈ H1(Ω)×H1(Ω)

and 0 ≤ v ≤ 1 Ln-a.e. in Ω,

+∞ otherwise

(2.2)

Γ-converge in L1(Ω)×L1(Ω) to

M̃S(u, v) :=

{
MS(u) if v = 1 Ln-a.e. in Ω,

+∞ otherwise,

that is equivalent to the Mumford-Shah functional MS for minimization purposes.
We finally introduce the notation related to slicing. Fixed ξ ∈ Sn−1 := {ξ ∈ Rn : |ξ| = 1}, let

Πξ :=
{
y ∈ Rn : y · ξ = 0

}
, and for every subset A ⊂ Rn set

Aξy :=
{
t ∈ R : y + tξ ∈ A

}
for y ∈ Πξ,

Aξ := {y ∈ Πξ : Aξy 6= ∅}.

For u : Ω→ R we define the slices uξy : Ωξy → R by uξy(t) := u(y + tξ).

Observe that if uk, u ∈ L1(Ω) and uk → u in L1(Ω), then for every ξ ∈ Sn−1 there exists a
subsequence (ukj ) such that

(ukj )
ξ
y → uξy in L1(Ωξy) for Hn−1-a.e. y ∈ Ωξ.

3. The main results: approximation, compactness and convergence of minimizers

Given a bounded open set Ω ⊂ Rn with Lipschitz boundary and an infinitesimal sequence εk > 0,
we consider the sequence of functionals Fk : L1(Ω)×L1(Ω)→ [0,+∞]

Fk(u, v) :=



∫
Ω

(
f2
k (v)|∇u|2 +

(1− v)2

4εk
+ εk|∇v|2

)
dx if (u, v) ∈ H1(Ω)×H1(Ω)

and 0 ≤ v ≤ 1 Ln-a.e. in Ω,

+∞ otherwise,

(3.1)

where
fk(s) := 1 ∧ ε1/2

k f(s) , fk(1) = 1 , (3.2)

and
f ∈ C0([0, 1), [0,+∞)) is a nondecreasing function satisfying f−1(0) = {0} (3.3)

with
lim
s→1

(1− s)f(s) = `, ` ∈ (0,+∞). (3.4)

In particular, the function [0, 1) 7→ (1− s)f(s) can be continuously extended to s = 1 with value `.
One can consider f(s) := s

1−s as prototype.

It is also useful to introduce a localized version Fk(·;A) of Fk simply obtained by substituting the
domain of integration Ω with any measurable subset A of Ω itself. In particular, to be consistent
with (3.1), for A = Ω we shall not indicate the dependence on the domain of integration.
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Let now Φ: L1(Ω)→ [0,+∞] be defined by

Φ(u) :=


∫

Ω

h(|∇u|)dx+

∫
Ju

g(|[u]|)dHn−1 + `|Dcu|(Ω) if u ∈ GBV (Ω),

+∞ otherwise,
(3.5)

where we recall that h, g : [0,+∞)→ [0,+∞) are given by

h(s) :=

{
s2 if s ≤ `/2,
`s− `2/4 if s ≥ `/2, (3.6)

and

g(s) := inf
(α,β)∈Us

∫ 1

0

|1− β|
√
f2(β)|α′|2 + |β′|2 dt, (3.7)

where Us := Us(0, 1) and for all T > 0

Us(0, T ) := {α, β ∈ H1
(
(0, T )

)
: 0 ≤ β ≤ 1, α(0) = 0, α(T ) = s, β(0) = β(T ) = 1}. (3.8)

At the points t with β(t) = 1 the integrand in (3.7) reduces to `|α′|(t), in agreement with (3.4).
Our main result is the following.

Theorem 3.1. Under the assumptions above, the functionals Fk Γ-converge in L1(Ω)×L1(Ω) to the
functional F defined by

F (u, v) :=

{
Φ(u) if v = 1 Ln-a.e. in Ω,

+∞ otherwise.
(3.9)

Remark 3.2. The assumption that f−1(0) = 0 is not restrictive and changes only the detailed
properties of g. Indeed, standing all the other hypotheses, defining λ := sup{s ∈ [0, 1) : f(s) = 0} ∈
[0, 1), we would get that g(s) ≤ (1− λ)2 ∧ `s (cp. Proposition 4.1 below).

In addition, the function (1− v)2 in (3.1) can be replaced by any continuous, decreasing function
d(v) with d(1) = 0. In this case d1/2(s) and d1/2(β) appear in formulas (3.4) and (3.7) in place of

1− s and 1− β respectively, and we obtain g(s) ≤ 2
∫ 1

0
d1/2(t)dt ∧ `s (see Proposition 4.1).

Finally the definition of fk in (3.2) can be given in the following more general form fk := ψk ∧
ε1/2f . Here the truncation of f is performed with any continuous nondecreasing function ψk :
[0, 1] → [0, 1] satisfying ψk ≥ c > 0, limk ψk(1) = 1, and converging uniformly in a neighborhood of
1.

We next address the issue of equi-coercivity for the Fk’s.

Theorem 3.3. Under the assumptions above, if (uk, vk) ∈ H1(Ω)×H1(Ω) is such that

sup
k

(
Fk(uk, vk) + ||uk||L1(Ω)

)
< +∞,

then there exists a subsequence (uj , vj) of (uk, vk) and a function u ∈ GBV ∩L1(Ω) such that uj → u
Ln-a.e. in Ω and vj → 1 in L1(Ω).

We shall prove Theorem 3.1 in Sections 5 and 6, Theorem 3.3 shall be established in Section 6.
In the rest of this section instead we address the issue of convergence of minimum problems.

Minimum problems related to the functional Fk could have no solution due to a lack of coercivity.
Therefore we slightly perturb the fk’s to guarantee the existence of a minimum point for each
Fk. This together with Theorems 3.1 and 3.3 shall in turn imply the convergence of minima and
minimizers as k ↑ ∞.

Let ηk, εk be positive infinitesimal sequences such that ηk = o(εk) and let ζ ∈ Lq(Ω), with q > 1.
Let us consider the sequence of functionals Gk : L1(Ω)×L1(Ω)→ [0,+∞] defined by

Gk(u, v) :=



∫
Ω

((
f2
k (v) + ηk

)
|∇u|2 +

(1− v)2

4εk
+ εk|∇v|2 + |u− ζ|q

)
dx if (u, v) ∈ H1(Ω)×H1(Ω)

and 0 ≤ v ≤ 1 Ln-a.e. in Ω,

+∞ otherwise,
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where fk is as in (3.2). Let now G : L1(Ω)→ [0,+∞] be defined by

G (u) :=


∫

Ω

h(|∇u|)dx+

∫
Ju

g(|[u]|)dHn−1 + `|Dcu|(Ω) +

∫
Ω

|u− ζ|qdx if u ∈ GBV (Ω),

+∞ otherwise,

where h, g, and ` are as in (3.6), (3.7) and (3.4) respectively. Then the following corollary holds
true.

Corollary 3.4. For every k, let (uk, vk) ∈ H1(Ω)×H1(Ω) be a minimizer of the problem

min
(u,v)∈H1(Ω)×H1(Ω)

Gk(uk, vk). (3.10)

Then vk → 1 in L1(Ω) and a subsequence of uk converges in Lq(Ω) to a minimizer u of the problem

min
u∈GBV (Ω)

G (u).

Moreover the minimum values of (3.10) tend to the minimum value of the limit problem.

Proof. We shall only sketch the main steps to establish the conclusion, being the arguments quite
standard.

One first proves that in fact the functionals Fk Γ-converge to F in Lq(Ω)×L1(Ω), where Fk and F
are the functionals in Theorem 3.1. Indeed, when q > 1 the Γ-limsup inequality works exactly as in
the case q = 1, whereas the Γ-liminf inequality is an immediate consequence of the comparison with
the case q = 1 and of [24, Proposition 6.3]. Let us observe that the presence of ηk in the functional
Fk does not modify the Γ-convergence result and that the proofs still hold analogously.

As a consequence Gk Γ-converges to G in L1(Ω)×L1(Ω) for every q ≥ 1, where G(u, v) := G (u)
if v = 1 Ln-a.e. in Ω and ∞ otherwise. Indeed, [24, Proposition 6.3] yields that the Γ-limsup of
Gk in L1(Ω)×L1(Ω) is less than or equal to the one in Lq(Ω)×L1(Ω). In addition,

∫
Ω
| · −ζ|qdx is

continuous in Lq(Ω)×L1(Ω), so that the conclusion follows from [24, Propositions 6.17 and 6.21].
The previous result combined with a general result of Γ-convergence technique [24, Corollary 7.20]

concludes the proof of Corollary 3.4 through the compactness result Theorem 3.3. �

4. Properties of the surface energy density

In this section we shall establish several properties enjoyed by the surface energy density g defined
in (3.7).

To this aim we shall often exploit that, in computing g(s), s ≥ 0, we may assume that the
admissible functions α satisfy 0 ≤ α ≤ s by a truncation argument (whereas 0 ≤ β ≤ 1 by definition).
Further, given a curve (α, β) ∈ Us(0, T ), note that the integral appearing in the definition of g is
invariant under reparametrizations of (α, β).

Proposition 4.1. The function g defined in (3.7) enjoys the following properties:

(i) g(0) = 0, and g is subadditive, i.e., g(s1 + s2) ≤ g(s1) + g(s2), for every s1, s2 ∈ R+;
(ii) g is nondecreasing, 0 ≤ g(s) ≤ 1 ∧ `s for all s ∈ R+, and g is Lipschitz continuous with

Lipschitz constant `;
(iii)

lim
s↑∞

g(s) = 1; (4.1)

(iv)

lim
s↓0

g(s)

s
= `. (4.2)

Proof. Proof of (i). The couple (α, β) = (0, 1) is admissible for the minimum problem defining g(0),
so that g(0) = 0.
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In order to prove that g is subadditive we fix s1, s2 ∈ R+ and we consider the minimum prob-
lems for g(s1) and g(s2), respectively. Let η > 0 and let (α1, β1), (α2, β2) be admissible couples
respectively for g(s1) and g(s2) such that for i = 1, 2∫ 1

0

|1− βi|
√
f2(βi)|α′i|2 + |β′i|2dt < g(si) + η. (4.3)

Next define α := α1 in [0, 1], α := α2(· − 1) + s1 in [1, 2], β := β1 in [0, 1], and β := β2(· − 1) in
[1, 2]). An immediate computation and the reparametrization property mentioned above entail the
subadditivity of g since η is arbitrary.

Proof of (ii). In order to prove that g is nondecreasing we fix s1, s2 with s1 < s2 and η > 0, and
we consider (α, β) satisfying a condition analogous to (4.3) for g(s2). Then ( s1s2α, β) is admissible

for g(s1), thus we infer

g(s1) ≤
∫ 1

0

|1− β|
√(s1

s2

)2

f2(β)|α′|2 + |β′|2dt < g(s2) + η,

since s1/s2 < 1. As η → 0 we find g(s1) ≤ g(s2).
Next we prove that g(s) ≤ 1∧ `s. Indeed, inequality g ≤ 1 straightforwardly comes from the fact

that for every s ≥ 0 the following couple (α, β) is admissible for g(s): α := 0 in (0, 1/3), α := s in
(2/3, 1), and linearly linked in (1/3, 2/3), and β := 0 in (1/3, 2/3) and linearly linked to 1 in (0, 1/3)
and in (2/3, 1). Moreover, g(s) ≤ `s for every s ≥ 0 since the couple (st, 1) is admissible for g(s).

The Lipschitz continuity of g is an obvious consequence of the facts that g is nondecreasing,
subadditive and g(s) ≤ `s for s ≥ 0.

Proof of (iii). Let sk, k ∈ N, be a diverging sequence and let (αk, βk) be an admissible couple for
g(sk) such that ∫ 1

0

|1− βk|
√
f2(βk)|α′k|2 + |β′k|2dt < g(sk) +

1

k
. (4.4)

If inf(0,1) βk ≥ δ for some δ > 0 and for every k, then there exists a constant c(δ) > 0 such that
f(βk)(1− βk) > c(δ), since f(s)(1− s)→ 0 if and only if s→ 0. Therefore by (4.4) one finds

c(δ)sk ≤ g(sk) +
1

k
,

so that g(sk)→ +∞ as k → +∞ and this contradicts the fact that g ≤ 1. Therefore there exists a
sequence xk ∈ (0, 1) such that βk(xk) → 0 up to subsequences. Since we have already shown that
g ≤ 1, we conclude the proof of (4.1) noticing that (4.4) yields

(1− βk(xk))2 ≤
∫ xk

0

|1− βk||β′k|dt+

∫ 1

xk

|1− βk||β′k|dt ≤ g(sk) +
1

k
. (4.5)

Proof of (iv). Let sk, k ∈ N, be an infinitesimal sequence and let (αk, βk) be an admissible couple
for g(sk) satisfying (4.4) with sk/k in place of 1/k. If there exists δ > 0, a not relabeled subsequence
of k, and a sequence xk ∈ [0, 1] such that βk(xk) < 1 − δ, then the same computation as in (4.5)
leads to

δ2 ≤ g(sk) +
sk
k
.

As k → +∞ this contradicts the fact that g(s) ≤ `s. Therefore, βk converges uniformly to 1 and
fixing δ > 0

(`− δ)sk ≤
∫ 1

0

(1− βk)f(βk)|α′k|dt ≤ g(sk) +
sk
k

holds for k large by (3.4). Formula (4.2) immediately follows dividing both sides of the last inequality
by sk, taking first k → +∞ and then δ → 0, and using the fact that g(s) ≤ ` s, for s ≥ 0. �

Remark 4.2. We can actually show that g does not coincide with the function 1∧ ` s at least in the
model case f(s) = `s

1−s by slightly refining the construction used in (ii) above. With fixed s > 0, let

λ ∈ [0, 1] and set α := 0 on [0, 1/3], α := s on [1/3, 2/3], and the linear interpolation of such values
on [1/3, 2/3]; moreover, set βλ := λ on [1/3, 2/3] and the linear interpolation of the values 1 and
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λ on each interval [0, 1/3] and [2/3, 1] in order to match the boundary conditions. Straightforward
calculations lead to

g(s) ≤ (1− λ)2 + (1− λ)f(λ) s.

Thus, minimizing over λ ∈ [0, 1] yields in turn

g(s) ≤ `s− (`s)2

4
< 1 ∧ `s for all s ∈ (0, 2/`).

In what follows it will be convenient to provide an alternative representation of g by means of a
cell formula more closely related to the one-dimensional version of the energies Fk’s.

To this aim we introduce the function ĝ : [0,+∞)→ [0,+∞) defined by

ĝ(s) := lim
T↑∞

inf
(α,β)∈Us(0,T )

∫ T

0

(
f2(β)|α′|2 +

|1− β|2

4
+ |β′|2

)
dt, (4.6)

the class Us(0, T ) has been introduced in (3.8). We note that ĝ is well-defined as the minimum
problems appearing in its definition are decreasing with respect to T .

Proposition 4.3. For all s ∈ [0,+∞) it holds g(s) = ĝ(s).

Proof. Let α, β ∈ H1
(
(0, T )

)
, T > 0, be admissible functions in the definition of ĝ(s). By Cauchy

inequality we obtain√
f2(β)|α′|2 + |β′|2 |1− β| ≤ f2(β)|α′|2 + |β′|2 +

(1− β)2

4

and integrating∫ T

0

|1− β|
√
f2(β)|α′|2 + |β′|2 dt ≤

∫ T

0

(
f2(β)|α′|2 +

|1− β|2

4
+ |β′|2

)
dt .

The first integral is one-homogeneous in the derivatives, therefore we can reparametrize from (0, T )
to (0, 1). Taking the infimum over all such α, β, and T we obtain g(s) ≤ ĝ(s).

To prove the converse inequality, we first show that α and β in the infimum problem defining g
can be taken in W 1,∞((0, 1)

)
. Let η > 0 small and let α, β ∈ H1

(
(0, 1)

)
be competitors for g(s)

such that ∫ 1

0

|1− β|
√
f2(β)|α′|2 + |β′|2 dt < g(s) + η. (4.7)

By density we find two sequences αj , βj ∈W 1,∞((0, 1)
)

(actually in C∞([0, 1])) such that αj(0) = 0,

αj(1) = s, βj(0) = βj(1) = 1, 0 ≤ βj ≤ 1, and converging respectively to α and β in H1
(
(0, 1)

)
.

Since the function (1− s)f(s) is uniformly continuous and βj → β also uniformly, we deduce that∫ 1

0

|1− βj |
√
f2(βj)|α′j |2 + |β′j |2 dt < g(s) + η

for j large, and this concludes the proof of the claim.
Let us prove now that ĝ ≤ g. We fix a small parameter η > 0 and consider competitors α, β ∈

W 1,∞((0, 1)
)

for g(s) satisfying (4.7). We define, for t ∈ [0, 1],

βη(t) := β(t) ∧ (1− η) and ψη(t) :=

∫ t

0

2

1− βη
√
η + f2(βη) |α′|2 + |(βη)′|2dt′ .

The function ψη : [0, 1] → [0,Mη := ψη(1)] is bilipschitz and in particular invertible. We define
ᾱη, β̄η ∈W 1,∞((0,Mη)

)
by

ᾱη := α ◦ ψ−1
η and β̄η := βη ◦ ψ−1

η .
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We compute, using the definition and the change of variables x = ψη(t),∫ Mη

0

(1− β̄η)2

4
dx =

∫ Mη

0

(1− βη(ψ−1
η (x)))2

4
dx =

∫ 1

0

(1− βη(t))2

4
ψ′η(t)dt

=

∫ 1

0

1− βη

2

√
η + f2(βη) |α′|2 + |(βη)′|2dt

≤ √η +

∫ 1

0

1− βη

2

√
f2(βη) |α′|2 + |(βη)′|2dt ,

where we inserted ψ′η from the definition of ψη and used
√
η +A ≤ √η +

√
A. Analogously,∫ Mη

0

(
f2(β̄η)|(ᾱη)′|2 + |(β̄η)′|2

)
dx =

∫ 1

0

(
f2(βη)|α′|2 + |(βη)′|2

) 1

ψ′η
dt

=

∫ 1

0

(
f2(βη)|α′|2 + |(βη)′|2

) 1− βη

2
√
η + f2(βη) |α′|2 + |(βη)′|2

dt

≤
∫ 1

0

1− βη

2

√
f2(βη) |α′|2 + |(βη)′|2dt .

We extend ᾱη and β̄η to (−1,Mη + 1) setting ᾱη := 0 in (−1, 0), ᾱη := s in (Mη,Mη + 1), and
β̄η the linear interpolation between 1 − η and 1 in each of the two intervals, so that they obey the
required boundary conditions for ĝ in the larger interval. Collecting terms, we obtain

ĝ(s) ≤
∫ Mη+1

−1

(
(1− β̄η)2

4
+ f2(β̄η)|ᾱ′η|2 + |̄(βη)′|2

)
dx

≤ √η + 3η2 +

∫ 1

0

(1− βη)
√
f2(βη) |α′|2 + |(βη)′|2dt , (4.8)

where the 3η2 term comes from an explicit computation on the two boundary intervals.
It remains to replace βη by β in the last integral. We observe that (βη)′ = 0 almost everywhere

on the set where β 6= βη (which coincides with the set {β > 1− η}). Therefore∫
{β 6=βη}

(1− βη)
√
f2(βη) |α′|2 + |(βη)′|2dt =

∫
{β 6=βη}

(1− βη)f(βη) |α′|dt

≤
∫
{β 6=βη}

(1− β)f(β) |α′|dt+ ω(η)

∫ 1

0

|α′|dt

where ω(η) is the continuity modulus of (1− s)f(s) near s = 1, and therefore

ĝ(s) ≤ √η + 3η2 + ω(η)

∫ 1

0

|α′|dt+

∫ 1

0

(1− β)
√
f2(β) |α′|2 + |β′|2dt .

Since the last integral is less than g(s) + η and η can be made arbitrarily small, this concludes the
proof. �

For the proof of the lower bound we also need to introduce the auxiliary functions g(η) : [0,+∞)→
[0,+∞), for η > 0, defined by

g(η)(s) := inf
(α,β)∈U(η)

s

∫ 1

0

|1− β|
√
f2(β)|α′|2 + |β′|2 dt, (4.9)

where

U (η)
s := {α, β ∈ H1

(
(0, 1)

)
: α(0) = 0, α(1) = s, β(0) = β(1) = 1− η}.

Proposition 4.4. For all s ∈ [0,+∞) it holds

|g(s)− g(η)(s)| ≤ η2.
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Proof. We consider the minimum problems for g and g(η) respectively in the intervals (−1, 2) and
(0, 1). Let (αη, βη) be an admissible couple for g(η)(s) and let α := 0 in (−1, 0), α := αη in (0, 1),
and α := s in (1, 2); we also set β := βη in (0, 1) and linearly linked to 1 in (−1, 0) and in (1, 2).
Then an easy computation shows that

g(s) ≤
∫ 1

0

|1− βη|
√
f2(βη)|α′η|2 + |β′η|2dt+ η2.

By taking the infimum on (αη, βη) we infer that

g(s) ≤ g(η)(s) + η2.

Reversing the roles of g and g(η) we conclude. �

Finally, we study the dependence of g on the function f in detail. The results in the next
proposition provide a first insight on the class of functions g that arise as surface energy densities
in our analysis. Moreover, they will be instrumental to get in the limit different energies by slightly
changing the functionals Fk’s in (3.1) (cp. Theorems 7.1, 7.4, and 7.5 below).

Proposition 4.5. Let (f (j)) be a sequence of functions satisfying (3.3) and (3.4). Denote by `j, gj
the value of the limit in (3.4) and the function in (3.7) corresponding to f (j), respectively. Then,

(i) if `j = ` for all j, f (j) ≥ f (j+1), and f (j)(s) ↓ 0 for all s ∈ [0, 1), then gj ≥ gj+1 and
gj(s) ↓ 0 for all s ∈ [0,+∞);

(ii) if `j = ` for all j, f (j) ≤ f (j+1), and f (j)(s) ↑ ∞ for all s ∈ (0, 1), then gj ≤ gj+1 and
gj(s) ↑ 1 ∧ `s for all s ∈ [0,+∞);

(iii) if `j ↑ ∞, f (j) ≤ f (j+1), and f (j)(s) ↑ ∞ for all s ∈ (0, 1), then gj ≤ gj+1 and gj(s) →
χ(0,+∞)(s) for all s ∈ [0,+∞).

Proof. To prove item (i) we note that the monotonicity of the sequence (f (j)) and the pointwise
convergence to a continuous function on [0, 1) yield that the sequence (f (j)) actually converges
uniformly on compact subsets of [0, 1) to 0. Therefore, for all δ ∈ (0, 1) we have for some jδ

max
[0,1−δ]

f (j) ≤ δ for all j ≥ jδ.

Then, consider αj , βj defined as follows: αj(t) := 3s(t− 1/3) on [1/3, 2/3], αj := 0 on [0, 1/3], and
αj := s on [2/3, 1]; βj := 1−δ on [1/3, 2/3] and a linear interpolation between the values 1 and 1−δ
on each interval [0, 1/3] and [2/3, 1]. Straightforward calculations give

gj(s) ≤ δ2 s+ δ2 for all j ≥ jδ,
from which the conclusion follows by passing to the limit first in j ↑ ∞ and finally letting δ ↓ 0.

We now turn to item (ii). We first note that (gj) is nondecreasing and that

lim
j
gj(s) ≤ `s ∧ 1 (4.10)

in view of item (ii) in Proposition 4.1. Next we show the following: for all δ > 0

lim
j

min
t∈[δ,1]

(1− t)f (j)(t) = `. (4.11)

Let sj ∈ argmin[δ,1](1− t)f (j)(t), and denote by jk a subsequence such that

lim
k

min
t∈[δ,1]

(1− t)f (jk)(t) = lim inf
j

min
t∈[δ,1]

(1− t)f (j)(t).

Either lim supk sjk < 1 or lim supk sjk = 1. We exclude the former possibility: suppose that, up to
further subsequences not relabeled, limk sjk = s∞ ∈ [δ, 1), then for all i ∈ N

lim inf
k

(1− sjk)f (jk)(sjk) = (1− s∞) lim inf
k

f (jk)(sjk) ≥ (1− s∞)f (i)(s∞),

that gives a contradiction by letting i ↑ ∞ since by minimality of sj

(1− sj)f (j)(sj) ≤ ` for all j. (4.12)
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Therefore, lim supk sjk = 1, and thus we get

lim inf
j

(1− sj)f (j)(sj) ≥ lim inf
k

(1− sjk)f (1)(sjk) = `.

Formula (4.11) follows straightforwardly by this and (4.12).
If s = 0, clearly we conclude as gj(0) = 0 for all j. Let then s ∈ (0,+∞) and αj , βj ∈ H1

(
(0, 1)

)
be such that αj(0) = 0, αj(1) = s, βj(0) = βj(1) = 1 and

gj(s) +
1

j
≥
∫ 1

0

|1− βj |
√

(f (j))2(βj)|α′j |2 + |β′j |2dt.

There are now two possibilities: either there exists δ > 0 and a subsequence jk such that inf [0,1] βjk ≥
δ, or inf [0,1] βj → 0. In the former case the subsequence satisfies

gjk(s) +
1

jk
≥
(

min
t∈[δ,1]

(1− t)f (jk)(t)
)
s.

Taking the lim supk and using (4.11) we obtain

lim sup
j

gj(s) ≥ `s . (4.13)

In the other case for every δ > 0 definitively it holds

gj(s) +
1

j
≥
∫ 1

0

(1− βj)|β′j |dt ≥ (1− δ)2. (4.14)

Taking again the lim sup we obtain

lim sup
j

gj(s) ≥ (1− δ)2 . (4.15)

Since δ was arbitrary, from (4.13) and (4.15) we obtain lim supj gj(s) ≥ 1 ∧ `s and, recalling (4.10),
conclude the proof of (ii).

Let us now prove item (iii). First we observe that gj(s) ≤ 1 for all j. To prove the lower bound,
we notice that arguing similarly as in the proof of (4.11) one obtains

lim
j

min
t∈[δ,1]

(1− t)f (j)(t) =∞ for all δ > 0. (4.16)

For any s ∈ (0,+∞) we choose (αj , βj) ∈ Us such that

gj(s) +
1

j
≥
∫ 1

0

|1− βj |
√

(f (j))2(βj)|α′j |2 + |β′j |2dt.

If there is δ > 0 such that inf βj ≥ δ for infinitely many j then for the same indices

gj(s) +
1

j
≥ min
t∈[δ,1]

(1− t)f (j)(t)s ,

which in view of (4.16) and the bound gj(s) ≤ 1 is impossible. Therefore inf [0,1] βj → 0, which in
view of (4.14) proves the assertion. �

Remark 4.6. The monotonicity assumption f (j) ≤ f (j+1) in items (ii) and (iii) above leads to
simple proofs but it is actually not needed. The same convergence results for (gj) would follow

by using the uniform convergence on compact subsets of [0, 1) of (f (j)). The latter property is a
consequence of the fact that each f (j) is nondecreasing and that f ∈ C0([0, 1)).
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5. Proof in the one-dimensional case

Let us study first the one-dimensional case n = 1. As usual, we will prove a Γ-liminf inequality
and a Γ-limsup inequality. The following proposition gives the lower estimate.

Proposition 5.1 (Lower bound). For every (u, v) ∈ L1(Ω)×L1(Ω) it holds

F (u, v) ≤ F ′(u, v).

Proof. The conclusion is equivalent to the following fact: let (uk, vk) be a sequence such that

(uk, vk)→ (u, v) in L1(Ω)×L1(Ω), (5.1)

sup
k
Fk(uk, vk) < +∞, (5.2)

then u ∈ BV (Ω), v = 1 L1-a.e. in Ω, and

Φ(u) ≤ lim inf
k→∞

Fk(uk, vk). (5.3)

Since the left-hand side of (5.3) is σ-additive and the right-hand side is σ-superadditive with respect
to Ω, it is enough to prove the result when Ω is an interval. For the sake of convenience in what
follows we assume Ω = (0, 1).

By (5.2) one deduces that v = 1 Ln-a.e. in Ω. Up to subsequences one can assume that the lower
limit in (5.3) is in fact a limit and that the convergences in (5.1) are also L1-a.e. in Ω.

For the first part of the proof we will use a discretization argument, following the lines of [2]. We
fix δ ∈ (0, 1) and for any N ∈ N divide Ω into N intervals

IjN :=
(j − 1

N
,
j

N

)
, j = 1, . . . , N.

Up to subsequences we can assume that lim
k→+∞

inf
IjN

vk exists for every j = 1, . . . , N . We define

JN :=
{
j ∈ {1, . . . , N} : lim

k→+∞
inf
IjN

vk ≤ 1− δ
}
.

Fixed j ∈ JN , we denote by xk and y two points in IjN such that vk(xk) < 1− δ/2 and vk(y) → 1.
Then by Cauchy’s inequality we deduce for k large (assuming for instance xk ≤ y)∫ y

xk

( (1− vk)2

4εk
+ εk|v′k|2

)
dx ≥ 1

2
((1− vk(xk))2 − (1− vk(y))2) ≥ δ2

16
. (5.4)

The previous computation entails

sup
N
H0(JN ) < +∞,

so that up to subsequences we can assume JN = {jN1 , . . . , jNL }, with L independent on N , and that
all sequences jNi /N converge. We denote by S the set of limits of these sequences,

S = {t1, . . . , tL′} =
{

lim
N→+∞

jNi
N

, i = 1, . . . , L
}
⊂ Ω .

We claim now that there exists a modulus of continuity ω, i.e., ω(δ)→ 0 as δ → 0, depending only
on f , such that for all η sufficiently small and k sufficiently large (depending on η) one has

(1− ω(δ))

∫
Ω\Sη

h(|u′k|)dx ≤ Fk(uk, vk,Ω \ Sη), (5.5)

where Sη :=
⋃L′
i=1(ti − η, ti + η). It suffices to prove (5.5) in the case that η is so small that the

intervals (ti − η, ti + η) are pairwise disjoint.
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In order to prove (5.5), we observe that by definition of fk in (3.2) and by Cauchy’s inequality
we obtain

Fk(uk, vk; Ω \ Sη) ≥
∫

Ω\Sη

(
f2
k (vk)|u′k|2 +

(1− vk)2

4εk

)
dx

≥
∫

Ω\Sη

(
|u′k|2 ∧

(
εkf

2(vk)|u′k|2 +
(1− vk)2

4εk

))
dx

≥
∫

Ω\Sη
|u′k|2 ∧

(
(1− vk)f(vk)|u′k|

)
dx. (5.6)

Let us note that vk > 1 − δ in Ω \ Sη for k large. By (3.4) there exists a modulus of continuity ω
such that

|(1− s)f(s)− `| ≤ `ω(δ), for s ≥ 1− δ. (5.7)

Therefore by (5.6) and (5.7) we obtain

Fk(uk, vk; Ω \ Sη) ≥ (1− ω(δ))

∫
Ω\Sη

|u′k|2 ∧ `|u′k|dx ≥ (1− ω(δ))

∫
Ω\Sη

h(|u′k|)dx. (5.8)

The last inequality holds true as h is the convex envelope of t2 ∧ `t. Formula (5.8) proves the claim
in (5.5).

Notice that the boundedness assumption in (5.2) and formula (5.5) imply that

sup
k

∫
Ω\Sη

|u′k|dx < +∞.

Therefore u ∈ BV (Ω \ Sη), and actually the finiteness of S ensures that u ∈ BV (Ω). In addition,
the L1-lower semicontinuity of the functional Φ defined in (3.5) yields

(1− ω(δ))Φ(u; Ω \ Sη) ≤ lim inf
k

Fk(uk, vk; Ω \ Sη). (5.9)

We now estimate the energy contribution on Sη. To this aim it is not restrictive to assume that
S ⊆ Ju.

Let us fix i ∈ {1, . . . , L′} and consider Iiη := (ti − η, ti + η). We claim that

(1− ω(δ))g(ess sup
Iiη

u− ess inf
Iiη

u) ≤ lim inf
k→+∞

Fk(uk, vk; Iiη) +O(η). (5.10)

Let us introduce a small parameter µ > 0 and x1, x2 ∈ Iiη such that

vk(x1)→ 1, vk(x2)→ 1,

uk(x1)→ u(x1), uk(x2)→ u(x2), (5.11)

u(x1) > ess sup
Iiη

u− µ, u(x2) < ess inf
Iiη

u+ µ. (5.12)

Assuming without loss of generality that x1 < x2, we define I := (x1, x2).
There are just finitely many connected components of the set

{x ∈ I : vk(x) < 1− η}

where vk achieves the value 1 − δ, as a computation analogous to (5.4) easily shows (recall that
η � δ). Precisely one finds up to subsequences that the number N of these components is

N ≤ c

δ2 − η2
,

for some constant c > 0 independent of N . Let us now estimate the functional Fk over each
component Cjk of this type, j = 1, . . . , N . Since vk < 1 − η in Cjk one finds for k large that
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fk(vk) = ε
1/2
k f(vk), so that for j = 1, . . . , N it follows

Fk(uk, vk;Cjk) ≥
∫
Cjk

(
εkf

2(vk)|u′k|2 +
(1− vk)2

4εk
+ εk|v′k|2

)
dx

≥ g(η)

(∣∣∣∣∣
∫
Cjk

u′kdx

∣∣∣∣∣
)
≥ g

(∣∣∣∣∣
∫
Cjk

u′kdx

∣∣∣∣∣
)
− η2, (5.13)

by Cauchy’s inequality and Proposition 4.4.
Outside the selected components Cjk, j = 1, . . . , N , one has vk ≥ 1− δ, so that estimate (5.8) also

holds with I \
⋃N
j=1 C

j
k replacing Ω \ Sη. Therefore

Fk

uk, vk; I \
N⋃
j=1

Cjk

 ≥ (1− ω(δ))

∫
I\

⋃N
j=1 C

j
k

h(|u′k|)dx

≥ (1− ω(δ))`

∫
I\

⋃N
j=1 C

j
k

|u′k|dx− (1− ω(δ))
`2

4
L1(I \

N⋃
j=1

Cjk)

≥ (1− ω(δ))g
(∣∣∣ ∫

I\
⋃N
j=1 C

j
k

u′kdx
∣∣∣)− `2

2
η, (5.14)

where we have used the definition of h and Proposition 4.1 (ii).
By (5.13), (5.14), and the subadditivity of g one finds

Fk(uk, vk; I) +
`2

2
η +

c η2

δ2 − η2
≥ (1− ω(δ))g

(∣∣∣∣∫
I

u′kdx

∣∣∣∣) = (1− ω(δ))g(|uk(x1)− uk(x2)|).

By property (5.11) and by the continuity of g, as k → +∞ one deduces

lim inf
k→+∞

Fk(uk, vk; Iiη) +
`2

2
η +

cη2

δ2 − η2
≥ (1− ω(δ))g(|u(x1)− u(x2)|).

Finally property (5.12) concludes the proof of (5.10) as µ→ 0.
The thesis follows by summing (5.9) and (5.10) for i = 1, . . . , L and taking first η → 0 and finally

δ → 0. �

Proposition 5.2 (Upper bound). For all u ∈ BV (Ω) there exists (uk, vk)→ (u, 1) in L1(Ω)×L1(Ω)
such that

lim sup
k→+∞

Fk(uk, vk) ≤ Φ(u).

Proof. Let us consider first the case when u ∈ SBV 2(Ω). By a localization argument it is not
restrictive to assume that Ju = {x0} and to take x0 = 0. We also assume for a while that u is
constant in a neighborhood on both sides of 0.

With fixed η > 0, we consider Tη > 0 and αη, βη ∈ H1
(
(0, Tη)

)
such that αη(0) = u−(0),

αη(Tη) = u+(0), 0 ≤ βη ≤ 1, βη(0) = βη(Tη) = 1, and

g
(
|[u](0)|

)
+ η >

∫ Tη

0

(
f2(βη)|α′η|2 +

|1− βη|2

4
+ |β′η|2

)
dt. (5.15)

This choice is possible in view of Proposition 4.3, up to a translation of the variable αη.

Let us define Ak := (− εkTη2 ,
εkTη

2 ) and

uk(x) :=

 αη

(
x

εk
+
Tη
2

)
if x ∈ Ak,

u otherwise,

vk(x) :=

 βη

(
x

εk
+
Tη
2

)
if x ∈ Ak,

1 otherwise.
(5.16)
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An easy computation shows that (uk, vk)→ (u, 1) in L1(Ω)×L1(Ω), that uk, vk ∈ H1(Ω) for k large,
and that for the same k

Fk(uk, vk,Ω \Ak) ≤
∫

Ω

|u′|2dx,

being fk ≤ 1. Moreover using that fk ≤ ε
1/2
k f and changing the variable x with y = x

εk
+

Tη
2 one

has
Fk(uk, vk, Ak) ≤ g

(
|[u](0)|

)
+ η,

where we have used (5.15). Therefore we find

F ′′(u, 1) ≤
∫

Ω

|u′|2dx+

∫
Ju

(g(|[u]|) + η)dH0,

and then
F ′′(u, 1) ≤ Φ(u), (5.17)

since η is arbitrary.
Let us remove now the hypothesis that u is constant near 0. For a function u ∈ SBV 2(Ω) with

Ju = {0}, one can consider the sequence uj := u in Ω \ (−1/j, 1/j), with uj := u(−1/j) in (−1/j, 0)
and uj = u(1/j) in (0, 1/j). Then uj → u in L1(Ω) and |u′j | ≤ |u′| L1-a.e. in Ω, so that by the lower
semicontinuity of F ′′ and by the absolute continuity of u on both sides of 0 we conclude as j → +∞
that u still satisfies (5.17).

The extension of (5.17) to each u ∈ SBV 2(Ω) with H0(Ju) < +∞ is immediate and finally [12,
Propositions 3.3-3.5] conclude the proof. �

6. Proof in the n-dimensional case

In this section we establish the Γ-convergence result in the n-dimensional setting. We recover the
lower bound estimate by using a slicing technique thus reducing ourselves to the one-dimensional
setting of Proposition 5.1. Instead, the upper bound inequality follows by an abstract approach
based on integral representation results (cp. Proposition 6.4 below).

Proposition 6.1. For every (u, v) ∈ L1(Ω)×L1(Ω) it holds

F (u, v) ≤ F ′(u, v).

Proof. Let us assume first that u ∈ L∞(Ω). We set M := ||u||L∞(Ω). Let (uk, vk) be a sequence

such that (uk, vk) → (u, v) in L1(Ω)×L1(Ω) and supFk(uk, vk) < +∞. Then it is straightforward
that v = 1 Ln-a.e. in Ω. We are going to show that u ∈ BV (Ω) and that

Φ(u) ≤ lim inf
k→+∞

Fk(uk, vk), (6.1)

that proves the thesis under the assumption of the boundedness of u.
Given ξ ∈ Sn−1, we consider a subsequence (ur, vr) of (uk, vk) satisfying

((ur)
ξ
y, (vr)

ξ
y)→ (uξy, 1) in L1(Ωξy)×L1(Ωξy) for Hn−1-a.e. y ∈ Πξ

and realizing the lower limit in (6.1) as a limit.
By Fubini’s theorem and Fatou’s lemma one deduces that

lim inf
r→∞

∫
Ωξy

(
fr((vr)

ξ
y)
∣∣∇((ur)

ξ
y)
∣∣2 +

(1− (vr)
ξ
y)2

4εr
+ εr|∇((vr)

ξ
y)|2

)
dt < +∞ (6.2)

holds for Hn−1-a.e. y ∈ Ωξ

The one-dimensional result Proposition 5.1 yields now that uξy ∈ BV (Ωξy) and that∫
Ωξy

h(|∇(uξy)|)dt+

∫
J
u
ξ
y

g(|[uξy]|)dH0 + `|Dcuξy|(Ωξy) ≤

≤ lim inf
r→∞

∫
Ωξy

(
fr((vr)

ξ
y)
∣∣∇((ur)

ξ
y)
∣∣2 +

(1− (vr)
ξ
y)2

4εr
+ εr|∇((vr)

ξ
y)|2

)
dt. (6.3)
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Let us check that (6.3) implies u ∈ BV (Ω) by estimating
∫

Ωξ
|D(uξy)|(Ωξy)dHn−1. We first notice

that ∫
Ωξy

|∇(uξy)|dt ≤ 1

`

∫
Ωξy

h(|∇(uξy)|)dt+
`

4
L1(Ωξy), (6.4)

being h(s) ≥ `s− `2/4.
Since g(s)/s→ ` as s→ 0, with fixed η > 0 one has

g(s) > (`− η)s for s < δ, (6.5)

for some δ sufficiently small.
Therefore (6.4), (6.5), and the boundedness of u entail

|D(uξy)|(Ωξy) ≤ 1

`

∫
Ωξy

h(|∇(uξy)|)dt+
`

4
diam Ω +

1

`− η

∫
{t∈J

u
ξ
y

:|[uξy ]|<δ}
g(|[uξy]|)dH0

+
2M

g(δ)

∫
{t∈J

u
ξ
y

:|[uξy ]|≥δ}
g(|[uξy]|)dH0 + |Dcuξy|(Ωξy)

≤ c+ c

∫
Ωξy

h(|∇(uξy)|)dt+

∫
J
u
ξ
y

g(|[uξy]|)dH0 + `|Dcuξy|(Ωξy)

 ,

where diam Ω denotes the diameter of Ω and c := max{ 1
` ,

`
4 diam Ω, 1

`−η ,
2M
g(δ)}. Integrating the last

inequality on Ωξ one deduces by (6.3)∫
Ωξ
|D(uξy)|(Ωξy)dHn−1 ≤ cHn−1(Ωξ) + c sup

k
Fk(uk, vk).

Taking ξ = e1, . . . , en one obtains u ∈ BV (Ω).
Let us prove now formula (6.1) using localization. The integration on Ωξ of the one-dimensional

estimate in (6.3) gives∫
Ω

h(|∇u · ξ|)dx+

∫
Ju

|νu · ξ|g(|[u]|)dHn−1 + `

∫
Ω

|γu · ξ|d|Dcu| ≤ lim inf
k→+∞

Fk(uk, vk; Ω), (6.6)

where γu := dDcu
d|Dcu| denotes the density of Dcu with respect to |Dcu|. Let E ⊂ Ω be a Borel set such

that Dau(E) = 0 and Dsu(Ω \ E) = 0, and let

λ := LnbΩ \ E +Hn−1bJu + |Dcu|bE \ Ju.
Let us consider a countable dense set D ⊂ Sn−1 and the functions

ψξ := h(|∇u · ξ|)χΩ\E + |νu · ξ|g(|[u]|)χJu + `|γu · ξ|χE\Ju , ξ ∈ D.
Then (6.6) gives (ψξλ)(A) ≤ F ′(u, 1, A) for all open sets A ⊂ Ω. Since F ′(u, 1, ·) is superadditive,
this implies ((supξ ψξ)λ)(A) ≤ F ′(u, 1, A) (see [17, Lemma 15.2]) and therefore the conclusion.

In the general case, if u ∈ L1 \ L∞(Ω) one considers (uMk , vk) and (uM , v), where uM := (−M ∨
u)∧M denotes the truncation at level M ∈ (0,+∞). Since the functional Fk decreases by truncation
and uMk → uM in L1(Ω), we deduce that uM ∈ BV (Ω) and

Φ(uM ) ≤ lim inf
k→+∞

Fk(uMk , vk) ≤ lim inf
k→+∞

Fk(uk, vk). (6.7)

Therefore u ∈ GBV (Ω) and (6.1) follows easily from (6.7) as M → +∞. �

To prove the limsup inequality we follow an abstract approach. We first show that the Γ-limit is a
Borel measure. The only relevant property to be checked is the weak subadditivity of the Γ-limsup.
This is a consequence of De Giorgi’s slicing and averaging argument as shown in the following lemma.

Lemma 6.2. Let (u, v) ∈ L1(Ω)×L1(Ω), let A′, A,B ∈ A(Ω) with A′ ⊂⊂ A, then

F ′′(u, 1;A′ ∪B) ≤ F ′′(u, 1;A) + F ′′(u, 1;B). (6.8)
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Proof. We assume that the right-hand side of (6.8) is finite, so that u ∈ GBV (A ∪ B) and v = 1
Ln-a.e. in A ∪ B. We can reduce the problem to the case of functions u ∈ BV ∩ L∞(A ∪ B). This
is a straightforward consequence of the fact that the energies Fk’s, and thus the Γ-limsup F ′′, are
decreasing by truncations. Actually, thanks to L1 lower semicontinuity, they are continuous under
such an operation.

Under this assumption, let (uAk , v
A
k ), (uBk , v

B
k ) be recovery sequences for (u, 1) on A and B respec-

tively, that is:

(uAk , v
A
k ), (uBk , v

B
k )→ (u, 1) in L1(Ω)×L1(Ω), (6.9)

and

lim sup
k→+∞

Fk(uAk , v
A
k ;A) = F ′′(u, 1;A), lim sup

k→+∞
Fk(uBk , v

B
k ;B) = F ′′(u, 1;B). (6.10)

Note that, again up to truncations, we may assume that

(uAk , v
A
k ), (uBk , v

B
k ) are bounded in L∞(Ω). (6.11)

To simplify the calculations below we introduce the functionals Gk : L1(Ω)×A(Ω)→ [0,+∞] given
by

Gk(v;O) :=

∫
O

(
(1− v)2

4εk
+ εk|∇v|2

)
dx, if v ∈ H1(Ω),

+∞ otherwise. Notice that

Fk(u, v;O) =

∫
O

f2
k (v)|∇u|2dx+Gk(v;O).

Let δ := dist(A′, ∂A) > 0, and with fixed M ∈ N, we set for all i ∈ {1, . . . ,M}

Ai :=

{
x ∈ Ω : dist(x,A′) <

δ

M
i

}
,

and A0 := A′. Clearly, we have Ai−1 ⊂⊂ Ai ⊂ A. Denote by ϕi ∈ C1
c (Ω) a cut-off function between

Ai−1 and Ai, i.e., ϕi|Ai−1 = 1, ϕi|Aci = 0, and ‖∇ϕi‖L∞(Ω) ≤ 2M
δ . Then, set

uik := ϕi u
A
k + (1− ϕi)uBk , (6.12)

and

vik :=


ϕi−1 v

A
k + (1− ϕi−1)(vAk ∧ vBk ) on Ai−1

vAk ∧ vBk on Ai \Ai−1

ϕi+1(vAk ∧ vBk ) + (1− ϕi+1) vBk on Ω \Ai.
(6.13)

With fixed i ∈ {2, . . . ,M − 1}, by the very definitions in (6.12) and (6.13) above (uik, v
i
k) ∈

H1(Ω)×H1(Ω) and the related energy Fk on A′ ∪B can be estimated as follows

Fk(uik, v
i
k;A′∪B) ≤ Fk(uAk , v

A
k ;Ai−2)+Fk(uBk , v

B
k ;B \Ai+1)+Fk(uik, v

i
k;B∩ (Ai+1 \Ai−2)). (6.14)

Therefore, we need to bound only the last term. To this aim we further split the contributions in
each layer; in estimating each of such terms we shall repeatedly use the monotonicity of fk and the
fact that it is bounded by 1. In addition, a positive constant, which may vary from line to line,
will appear in the formulas below. Elementary computations and the very definitions in (6.12) and
(6.13) give, using vik ≤ vAk ,

Fk(uik, v
i
k;B ∩ (Ai−1 \Ai−2)) ≤

∫
B∩(Ai−1\Ai−2)

f2
k (vAk )|∇uAk |2 dx+Gk(vik;B ∩ (Ai−1 \Ai−2))

≤ c
(
Fk(uAk , v

A
k ;B ∩ (Ai−1 \Ai−2)) + Fk(uBk , v

B
k ;B ∩ (Ai−1 \Ai−2))

)
+
cM2εk
δ2

∫
B∩(Ai−1\Ai−2)

|vAk − vBk |2 dx, (6.15)
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Fk(uik, v
i
k;B ∩ (Ai \Ai−1))

≤ c
∫
B∩(Ai\Ai−1)

f2
k (vAk ∧vBk )

(
|∇uAk |2 + |∇uBk |2 +

4M2

δ2
|uAk − uBk |2

)
dx+Gk(vAk ∧vBk ;B∩(Ai\Ai−1))

≤ c
(
Fk(uAk , v

A
k ;B∩(Ai \Ai−1))+Fk(uBk , v

B
k ;B∩(Ai \Ai−1))

)
+
cM2

δ2

∫
B∩(Ai\Ai−1)

|uAk −uBk |2 dx,

(6.16)

and

Fk(uik, v
i
k;B ∩ (Ai+1 \Ai)) ≤

∫
B∩(Ai+1\Ai)

f2
k (vBk )|∇uBk |2 dx+Gk(vik;B ∩ (Ai+1 \Ai))

≤ c
(
Fk(uAk , v

A
k ;B∩(Ai+1\Ai))+Fk(uBk , v

B
k ;B∩(Ai+1\Ai))

)
+
cM2εk
δ2

∫
B∩(Ai+1\Ai)

|vAk −vBk |2 dx.

(6.17)

By adding (6.14)-(6.17), we deduce that

Fk(uik, v
i
k;A′ ∪B) ≤ Fk(uAk , v

A
k ;A) + Fk(uBk , v

B
k ;B)

+ c
(
Fk(uAk , v

A
k ;B ∩ (Ai+1 \Ai−2)) + Fk(uBk , v

B
k ;B ∩ (Ai+1 \Ai−2))

)
+
cM2

δ2

∫
B∩(Ai+1\Ai−2)

|uAk − uBk |2 dx+
cM2εk
δ2

∫
B∩(Ai+1\Ai−2)

|vAk − vBk |2 dx.

Hence, by summing up on i ∈ {2, . . . ,M − 1} and taking the average, for each k we may find an
index ik in that range such that

Fk(uikk , v
ik
k ;A′ ∪B) ≤ Fk(uAk , v

A
k ;A) + Fk(uBk , v

B
k ;B)

+
c

M

(
Fk(uAk , v

A
k ;B ∩ (A \A′)) + Fk(uBk , v

B
k ;B ∩ (A \A′))

)
+
cM

δ2

∫
B∩(A\A′)

|uAk − uBk |2 dx+
cMεk
δ2

∫
B∩(A\A′)

|vAk − vBk |2 dx.

By (6.9) we deduce that (uikk , v
ik
k ) → (u, 1) in L1(Ω)×L1(Ω), and actually in Lq(Ω)×Lq(Ω) for all

q ∈ [1,+∞) thanks to the uniform boundedness assumption in (6.11). Therefore, in view of (6.10)
and the definition of Γ-limsup we infer that

F ′′(u, 1;A′ ∪B) ≤
(

1 +
c

M

)(
F ′′(u, 1;A) + F ′′(u, 1;B)

)
.

The conclusion then follows by passing to the limit on M ↑ ∞. �

We next prove that F ′′(u, 1; ·) is controlled in terms of the Mumford-Shah functional MS, whose
definition is given in (2.1). This result gives a first rough estimate for the upper bound inequality.
We shall improve on the jump part in Proposition 6.4 below and finally we shall conclude the proof
of the Γ-limsup inequality using a relaxation argument.

Lemma 6.3. For all u ∈ L1(Ω) and A ∈ A(Ω) it holds

F ′′(u, 1;A) ≤MS(u;A). (6.18)

Proof. Denote by ψ : [0, 1] → [0, 1] any nondecreasing lower-semicontinuous function such that
ψ−1(0) = 0, ψ(1) = 1 and

sup
k
fk(s) ≤ ψ(s) for all s ∈ [0, 1],

for instance ψ = χ(0,1] satisfies all the conditions written above. Consider the corresponding func-

tionals ATψk : L1(Ω)× L1(Ω)→ [0,+∞] defined in (2.2), and note that Fk ≤ ATψk for every k. The
upper bound inequality for (Fk) then follows at once from the classical results by Ambrosio and
Tortorelli (cp. [8], and see also [28]). �
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We are now ready to prove the upper bound inequality.

Proposition 6.4. For every (u, v) ∈ L1(Ω)×L1(Ω) it holds

F ′′(u, v) ≤ F (u, v).

Proof. Since L1 is separable, given any subsequence (Fkj ) of (Fk) we may extract a further subse-

quence, not relabeled for convenience, Γ-converging to some F̂ (see [24, Theorem 16.9]).

The functional F̂ (u, v; ·) is by definition increasing and inner regular. Since Fk(u, v; ·) is additive,

one easily deduces that F ′ is superadditive and from this that its inner regular envelope F̂ = (F ′)−
is superadditive (see [24, Proposition 14.18 or Proposition 16.12]).

Using Lemma 6.2 one can show that F̂ = (F ′′)− is subadditive (see [24, Lemma 14.20 and the

proof of Proposition 18.4]). Therefore F̂ is the restriction to open sets of the Borel measure

F∗(u, v;E) = inf{F̂ (u, v;A) : A ∈ A(Ω);E ⊂ A} ,

see [24, Theorem 14.23], in the following we identify F̂ and F∗.
If u ∈ L1(Ω) is such that MS(u; Ω) < +∞, then by Lemma 6.3 we obtain F ′′(u, 1; ·) ≤MS(u; ·) <

+∞ on all open sets, and by the regularity properties of Radon measures F ′′ coincides with its
inner envelope. Indeed, for a given open set A and ε > 0, choose open sets A′, A′′ and C with
A′ ⊂⊂ A′′ ⊂⊂ A and A\A′ ⊂ C such that MS(u;C) ≤ ε. Then use Lemmas 6.2 and 6.3 to estimate

F ′′(u, 1;A) ≤ F ′′(u, 1;A′∪C) ≤ F ′′(u, 1;A′′)+MS(u;C) ≤ F ′′(u, 1;A′′)+ε. In other words, F̂ (u, 1)
is the Γ-limit of Fkj for all u such that MS(u) < +∞.

For all u ∈ SBV 2(Ω) in particular the estimate in Lemma 6.3 implies that

F̂ (u, 1; Ω \ Ju) ≤
∫

Ω

|∇u|2dx. (6.19)

We provide below for the same u the estimate

F̂ (u, 1; Ju) ≤
∫
Ju

g(|[u]|) dHn−1. (6.20)

Given this for granted we conclude as follows: we consider the functional F∞ : BV (Ω)→ [0,+∞]

F∞(u) :=


∫

Ω

|∇u|2dx+

∫
Ju

g(|[u]|) dHn−1 if u ∈ SBV 2(Ω)

+∞ otherwise on BV (Ω).

Further, note that by [12, Theorem 3.1 and Propositions 3.3-3.5] its relaxation w.r.to the w ∗ -BV

topology is given on BV (Ω) by F (·, 1). Since, by (6.19) and (6.20) we have that F̂ ≤ F∞, and F̂ (·, 1)
is L1-lower semicontinuous, we infer that

F̂ (u, 1) ≤ F (u, 1) for all u ∈ BV (Ω).

We conclude that the same inequality is true for all u ∈ GBV ∩ L1(Ω) by the usual truncation
argument.

Finally, by combining the latter estimate with the lower estimate of Proposition 6.1 allows us to
deduce that the Γ-limit does not depend on the chosen subsequence and it is equal to F . Hence, by
Urysohn’s property the whole family (Fk) Γ-converges to F (cp. [24, Proposition 8.3]).

Let us now prove formula (6.20). To this aim, fixed λ > 0 we introduce the perturbed functional

F̂λ(u, 1) := F̂ (u, 1) + λ
(∫

Ω

|∇u|2dx+

∫
Ju

(1 + |[u]|)dHn−1
)

for all u ∈ SBV 2(Ω). We may apply to F̂λ the integral representation result [13, Theorem 1] to
infer that for Hn−1-a.e. x ∈ Ju

dF̂λ(u, 1; ·)
d(Hn−1 Ju)

(x) = lim sup
δ↓0

1

δn−1
inf
{
F̂λ(w, 1;x+ δ Qνu(x)) : w ∈ SBV 2

(
x+ δ Qνu(x)

)
,

w = ux on a neighborhood of x+ δ ∂Qνu(x)

}
, (6.21)
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where

ux(y) :=

{
u+(x) if 〈y − x, νu(x)〉 > 0

u−(x) if 〈y − x, νu(x)〉 < 0

and Qνu(x) denotes any cube of side 1 centered in the origin and with a face orthogonal to νu(x).

Hence, it is enough to show that for Hn−1-a.e. x ∈ Ju

lim sup
δ↓0

1

δn−1
F̂ (ux, 1;x+ δ Qνu(x)) ≤ g(|[u](x)|), (6.22)

since by taking ux itself as test function in (6.21) we get

dF̂λ(u, 1; ·)
d(Hn−1 Ju)

(x) ≤ lim sup
δ↓0

1

δn−1
F̂ (ux, 1;x+ δ Qνu(x)) + λ(1 + |[u](x)|),

in turn implying

F̂ (u, 1; Ju) ≤ F̂λ(u, 1; Ju) ≤
∫
Ju

(
g(|[u](x)|) + λ+ λ|[u](x)|

)
dHn−1.

Finally, (6.20) follows at once by letting λ ↓ 0.
Formula (6.22) easily follows by repeating the one-dimensional construction of Proposition 5.2.

More precisely, assume x = 0 and νu(x) = en for simplicity. With fixed η > 0, let Tη > 0
and αη, βη ∈ H1

(
(0, Tη)

)
be such that αη(0) = u−(0), αη(Tη) = u+(0), βη(0) = βη(Tη) = 1,

u−(0) ≤ αη ≤ u+(0), 0 ≤ βη ≤ 1, and∫ Tη

0

(
f2(βη)|α′η|2 +

|1− βη|2

4
+ |β′η|2

)
dt ≤ g

(
|[u](0)|

)
+ η.

Let Aj := (− εkjTη2 ,
εkjTη

2 ), and set

uj(y) :=

 αη

(
yn
εkj

+
Tη
2

)
if yn ∈ Aj

u0 otherwise,

vj(y) :=

 βη

(
yn
εkj

+
Tη
2

)
if yn ∈ Aj

1 otherwise.
(6.23)

Clearly, (uj , vj) → (u0, 1) in L1(Qen) × L1(Qen), and if Q′en = Qen ∩ (Rn−1 × {0}), a change of
variable yields

Fkj (uj , vj ; δ Qen) = Fkj
(
uj , vj , δ Q

′
en ×Aj

)
≤ δn−1

∫ Tη

0

(
f2(βη)|α′η|2 +

|1− βη|2

4
+ |β′η|2

)
dt ≤ δn−1(g

(
|[u](0)|

)
+ η).

Therefore, by the very definition of F̂ we infer that

F̂ (u0, 1; δ Qen) ≤ δn−1(g
(
|[u](0)|

)
+ η),

and estimate (6.22) follows at once dividing by δn−1 and taking the superior limit as δ ↓ 0, and
finally by letting η ↓ 0 in the formula above. �

The proof of the compactness result Theorem 3.3 follows the lines of [25, Theorem 7.4], so we
just sketch the relevant arguments and refer to [25] for more details.

Proof of Theorem 3.3. One first proves the thesis in the one-dimensional case under the hypothesis
that uk is bounded in L∞(Ω). Then one extends the proof to the n-dimensional case and finally
removes the boundedness assumption.
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Let us start assuming that n = 1 and that supk ||uk||L∞(Ω) < +∞. Up to a diagonalization
argument, one reduces to study the case Ω = (0, 1). Repeating the proof of Theorem 5.1 one finds
that vk → 1 in L1(Ω) and that for every δ > 0 there exists a finite subset S ⊂ Ω for which

(1− ω(δ))

∫
Ω\Sη

h(|u′k|)dx ≤ Fk(uk, vk,Ω \ Sη)

holds for η > 0 small (dependently on δ) and for k large (dependently on η), where ω is a modulus

of continuity provided by f and Sη :=
⋃L
i=1(ti − η, ti + η). This implies by assumption that uk is

bounded in BV (Ω \ Sη) uniformly with respect to k and η. Hence up to subsequences uk converges
to a function u ∈ BV (Ω \ Sη) L1-a.e. in Ω \ Sη. The boundedness hypothesis and a diagonalization
argument yield that u in fact belongs to BV (Ω) and that uk → u L1(Ω).

In order to generalize the previous result to the case n > 1, one applies a compactness result by
Alberti, Bouchitté, and Seppecher [1, Theorem 6.6]. Indeed, fixed ξ ∈ Sn−1 and δ > 0, one can
introduce the sequence wk whose slices satisfy

(wk)ξy :=

{
(uk)ξy if y ∈ Ak,

0 otherwise,

Ak := {y ∈ Ωξ : F 1
k ((uk)ξy, (vk)ξy) ≤ L},

where F 1
k denotes the one-dimensional counterpart of the functional Fk and L is chosen properly

and depends on δ. An easy computation shows that wk is bounded in L∞(Ω), that uk is in a
δ-neighborhood of wk in L1(Ω), and that (wk)ξy is pre-compact in L1(Ω) (the last property follows

from the first part of the proof). Then the pre-compactness of uk in L1(Ω) is ensured by [1, Theorem
6.6] as ξ varies in a basis of Rn.

If uk is not bounded in L∞(Ω) the argument above applies to the truncations, so that up to
subsequences uMk → uM in L1(Ω) and Ln-a.e. in Ω, with uM ∈ BV (Ω), for every M ∈ N. One can
prove that the function

u := lim
M→+∞

uM

is well-defined, finite Ln-a.e. in Ω, and its truncation uM coincides with uM Ln-a.e. in Ω. This
straightforwardly implies that uk → u Ln-a.e. in Ω and that u ∈ GBV ∩ L1(Ω). �

7. Further results

In this section we build upon the results in Sections 3-6 to obtain in the limit different models by
slightly changing the approximating energies Fk’s. More precisely, we shall approximate a cohesive
model with the Dugdale’s surface density, a cohesive model with power-law growth at small openings,
and a model in Griffith’s brittle fracture.

This task will be accomplished by letting the function f vary as in item (ii) of Proposition 4.5 in
the first instance, as in item (iii) in the third, and suitably in the second (cp. (iii) of Proposition 7.3
below), respectively. More precisely, we consider a sequence of functions (f (j)) satisfying (3.3) and
(3.4) and for all j, k ∈ N introduce the energies

F
(j)
k (u, v) :=


∫

Ω

(
(f

(j)
k )2(v)|∇u|2 +

(1− v)2

4εk
+ εk|∇v|2

)
dx if (u, v) ∈ H1(Ω)×H1(Ω)

and 0 ≤ v ≤ 1 Ln-a.e. in Ω,

+∞ otherwise,

(7.1)

where f
(j)
k (s) := 1 ∧ ε1/2

k f (j)(s).
In each of Theorems 7.1, 7.4, and 7.5 below we shall further specify the nature of the sequence

(f (j)).
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7.1. Dugdale’s cohesive model. In order to approximate the Dugdale’s model, i.e., to get in the
limit D : L1(Ω)→ [0,+∞]

D(u) :=


∫

Ω

h(|∇u|)dx+

∫
Ju

(
1 ∧ `|[u]|

)
dHn−1 + `|Dcu|(Ω) if u ∈ GBV (Ω),

+∞ otherwise,

(7.2)

with h as in (3.6), we shall consider the specific choice

f (j)(s) := (aj s) ∨ f(s) (7.3)

with f satisfying (3.3) and (3.4), and

(aj) nondecreasing, aj ↑ ∞ and such that aj ε
1/2
j ↓ 0. (7.4)

Theorem 7.1. Suppose that (f (j)) is as in (7.3) and (7.4) above.

Then, the functionals F
(k)
k Γ-converge in L1(Ω)×L1(Ω) to the functional D̃ defined as follows

D̃(u, v) :=

{
D(u) if v = 1 Ln-a.e. in Ω,

+∞ otherwise.
(7.5)

Proof of Theorem 7.1. The very definitions in (3.1) and (7.1) give F
(j)
k ≤ F (k)

k for j ≤ k, being (f (j))
nondecreasing by assumption. Hence, by Theorem 3.1 we deduce

Γ- lim inf
k

F
(k)
k (u, v) ≥ F (j)(u, v), (7.6)

where F (j) is defined as F in (3.9) with f substituted by f (j) in formulas (3.4) and (3.6) defining
the volume density, and (3.7) defining the surface density.

In particular, being `j = ` for all j, the corresponding volume density hj equals the function
h in (3.6). Moreover, the surface energy densities gj are dominated by the constant 1, and by
item (ii) in Proposition 4.5 we have limj gj(s) = 1 ∧ `s for all s ∈ [0,+∞). In conclusion, if

Γ- lim infk F
(k)
k (u, v) < +∞, we infer that v = 1 Ln-a.e. in Ω, u ∈ GBV (Ω), and

Γ- lim inf
k

F
(k)
k (u, 1) ≥ D(u),

by the Dominated Convergence theorem, as j ↑ +∞ in (7.6).
The upper bound inequality follows by arguing as in Proposition 6.4. Indeed, we first note that by

a careful inspection of the proofs, Lemmas 6.2 and 6.3 are still valid in this generalized framework.
More precisely, Lemma 6.2 continue to hold true as there we have only used that each function

fk = 1 ∧ ε1/2
k f in (3.2) is nondecreasing and bounded by χ(0,1], properties enjoyed by f

(k)
k as well.

In conclusion, as a first step we establish the estimate

lim sup
δ↓0

1

δn−1
F̂ (ux, 1;x+ δ Qνu(x)) ≤ 1 ∧ `|[u](x)|, (7.7)

for u ∈ SBV 2(Ω) and for Hn−1-a.e. x ∈ Ju, where F̂ is the Γ-limit of a properly chosen subsequence

(F
(kj)
kj

) of (F
(k)
k ) (cp. Proposition 6.4).

Given (7.7), the derivation of the upper bound inequality in general follows exactly as in Propo-
sition 6.4.

Let us now prove (7.7) by means of a one-dimensional construction. For the sake of simplicity
we assume x = 0 and νu(x) = en. Actually, in view of the estimate in Lemma 6.3 we need only to
discuss the case |[u](0)| < `−1. To this aim, set

sj := sup{s ∈ [0, 1) : akjs = f(s)},
it is easy to check that sj it is actually a maximum, i.e., akjsj = f(sj), and that sj ≤ sj+1 < 1 with
sj ↑ 1. Let now

Tj := |[u](0)| f(sj)

1− sj
,
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then Tj ↑ ∞. Define αj(t) := u−(0) on [−Tj−1,−Tj ], αj(t) := [u](0) ·( t
2Tj

+ 1
2 )+u−(0) on [−Tj , Tj ],

αj(t) := u+(0) on [Tj , Tj + 1], and βj(t) := sj on [−Tj , Tj ], βj(t) := (1− sj)(|t| − Tj) + sj otherwise
in [−Tj − 1, Tj + 1].

Setting Aj := (−εkj (Tj + 1), εkj (Tj + 1)), we have that L1(Aj) → 0 as j ↑ ∞ by (7.4). Indeed,
in view of (3.4) and the definition of sj it is easy to deduce that (1− sj)akj → ` as j ↑ ∞, so that

εkjTj ∼ εkja2
kj
→ 0 as j ↑ ∞ thanks to (7.4). Therefore, if

uj(y) :=

 αj

(
yn
εkj

)
if yn ∈ Aj

u0 otherwise,

vj(y) :=

 βj

(
yn
εkj

)
if yn ∈ Aj

1 otherwise,
(7.8)

then (uj , vj)→ (u0, 1) on L1(Qen)× L1(Qen), where u0 = u−(0)χ{yn≤0} + u+(0)χ{yn>0}.

Moreover, if Q′en = Qen ∩ (Rn−1 × {0}), then a change of variable yields

F
(kj)
kj

(uj , vj ; δ Qen) = F
(kj)
kj

(
uj , vj ; δ Q

′
en ×Aj

)
≤ δn−1

(∫ Tj

−Tj

(
f2(βj)|∇αj |2 +

(1− βj)2

4

)
dt+ 2

∫ Tj+1

Tj

(
|1− βj |2

4
+ |β′j |2

)
dt

)

= δn−1

((
f2(sj)

|[u](0)|2

2Tj
+ 2Tj

(1− sj)2

4

)
+ 2(1− sj)2

∫ Tj+1

Tj

(t− (Tj + 1))2

4
dt+ 2(1− sj)2

)

= δn−1

(
(1− sj)f(sj)|[u](0)|+ 13

6
(1− sj)2

)
= δn−1

(
`|[u](0)|+ o(1)

)
as j ↑ ∞.

Therefore, being |[u](0)| < `−1, by the very definition of F̂ we infer that

F̂ (u0, 1; δ Qen) ≤ δn−1(1 ∧ `|[u](0)|),
and estimate (7.7) follows at once dividing by δn−1 and taking the superior limit as δ ↓ 0 in the
formula above. �

Remark 7.2. The analysis in the general case of a diverging sequence f (k) is much more intricate
because of the combination of several effects: the speed of divergence of the f (k)’s compared with

the scaling ε
1/2
k in the definition of f

(k)
k , and even more the behavior of each f (k) close to 1. In

this remark we limit ourselves to consider those families of functions f (k) satisfying item (ii) in
Proposition 4.5, another instance shall be discussed in Remark 7.6 below.

Therefore, assume for example that f(s) = `s
1−s , and that f (k) is defined as in (7.3) above but

with ak = ε
−1/2
k , thus violating the last condition in (7.4). Then, one can show that the Γ-limit is

given by the Mumford-Shah energy introduced in (2.1). This claim follows easily by noting that with
this choice

f
(k)
k (s) =


s 0 ≤ s ≤ 1− ` ε1/2

k

ε
1/2
k

`s

1− s
1− ` ε1/2

k ≤ s ≤ (1 + ` ε
1/2
k )−1

1 (1 + ` ε
1/2
k )−1 ≤ s ≤ 1,

so that f
(k)
k (s) ≥ s for all s ∈ [0, 1], and actually (f

(k)
k ) converges uniformly to the identity on [0, 1].

Therefore, AT Idk ≤ F
(k)
k ≤ ATψk , with ψ(s) = χ(0,1](s) (cp. with (2.2) for the definition of ATψk ),

and the result follows at once from Ambrosio and Tortorelli classical results (cp. [8], see also [28]).

A similar argument works also in the regime akε
1/2
k ↑ ∞, in which

f
(k)
k (s) =

{
akε

1/2
k s 0 ≤ s ≤ a−1

k ε
−1/2
k

1 a−1
k ε
−1/2
k ≤ s ≤ 1,
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for k sufficiently large, so that f
(k)
k (s) → χ(0,1](s) for all s ∈ [0, 1], and again we get the Mumford-

Shah energy in the Γ-limit arguing as above.
Finally, note that for ak as in (7.4), we have

f
(k)
k (s) =


akε

1/2
k s 0 ≤ s ≤ 1− `a−1

k

ε
1/2
k

`s
1−s 1− `a−1

k ≤ s ≤ (1 + `ε
1/2
k )−1

1 (1 + `ε
1/2
k )−1 ≤ s ≤ 1

so that f
(k)
k (s)→ χ{1}(s) in [0, 1].

7.2. A model with power-law growth at small openings. In Theorem 7.4 below we approxi-
mate a model with sublinear surface density in the origin and quadratic growth for the volume term.
To this aim, let p > 1 and consider a function ψp satisfying condition (3.3) and

lim
s→1

(1− s)pψp(s) = κ, κ ∈ (0,+∞). (7.9)

Clearly, one can take ψp(s) := s
(1−s)p as prototype. The surface energy density ϑp : [0,+∞) →

[0,+∞) is defined as g in (3.7) by

ϑp(s) := inf
(α,β)∈Us

∫ 1

0

|1− β|
√
ψ2
p(β)|α′|2 + |β′|2 dt, (7.10)

where Us has been introduced in (3.8). In this case the integral is finite only if β < 1 almost every-
where on the set {α′ 6= 0}. We next prove some properties of ϑp in analogy to Propositions 4.1, 4.3
and 4.5. In what follows, we keep the same notations introduced there. We also note that given any
curve (α, β), the integral to be minimized in the definition of ϑp is invariant under reparametrizations
of (α, β).

Proposition 7.3. Let ψp satisfy (3.3) and (7.9), let ϑp : [0,+∞) → [0,+∞) be the corresponding
surface energy in (7.10). Then,

(i) ϑp(0) = 0, ϑp is nondecreasing, subadditive, and

0 ≤ ϑp(s) ≤ 1 ∧ c s
2
p+1 , for all s ≥ 0, (7.11)

where c = c(ψp) > 0. Moreover, ϑp ∈ C0, 2
p+1
(
[0,+∞)

)
and

κ
2
p+1 ≤ lim

s↓0

ϑp(s)

s
2
p+1

≤ p+ 1

2
2
p+1 (p− 1)

p−1
p+1

κ
2
p+1 ; (7.12)

(ii) ϑp = ϑ̂p, where

ϑ̂p(s) := lim
T↑∞

inf
(α,β)∈Us(0,T )

∫ T

0

(
ψ2
p(β)|α′|2 +

(1− β)2

4
+ |β′|2

)
dt; (7.13)

(iii) the functions

f (j)(s) :=
j s

1− s
∧ ψp(s), (7.14)

satisfy (3.3) and (3.4). If gj denotes the corresponding surface energy in (3.7), then gj ≤
gj+1 and

lim
j→∞

gj(s) = ϑp(s) for all s ≥ 0. (7.15)

Proof. We prove (i). The facts that ϑp(0) = 0 and that ϑp is nondecreasing follow easily from the
definition. The subadditivity follows as in Proposition 4.1(i). Moreover, 0 ≤ ϑp ≤ 1 arguing as in
(ii) of Proposition 4.1.

To show (7.11) and the upper bound in (7.12), let s, λ > 0 and consider α := 0 in [0, 1/3], α := s in

[2/3, 1] and set α to be the linear interpolation of the values 0 and s on [1/3, 2/3]; βλ := 1− (λ s)
1
p+1

in [1/3, 2/3] and set βλ to be the linear interpolation of that value to 1 on [0, 1/3] ∪ [2/3, 1].
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Then, clearly (α, βλ) ∈ Us and a simple computation shows that

ϑp(s) ≤
∫ 1

0

|1− βλ|
√
ψ2
p(βλ)|α′|2 + |β′λ|2 dt = (λ s)

1
p+1 ψp

(
1− (λ s)

1
p+1
)
s+ (λ s)

2
p+1 . (7.16)

By taking λ = 1, since (1 − t)pψp(t) ≤ c for some constant c = c(ψp) > 0 and for all t ∈ [0, 1], we
deduce that

ϑp(s) ≤ (c+ 1) s
2
p+1 ,

from which inequality (7.11) follows as 0 ≤ ϑp ≤ 1.
Note that the Hölder continuity of ϑp then follows easily from (7.11) and its subadditivity and

monotonicity.
Further, by (7.16) we infer

lim sup
s↓0

ϑp(s)

s
2
p+1

≤ κλ−
p−1
p+1 + λ

2
p+1 ,

minimizing the latter inequality over λ ∈ (0,∞) yields the upper bound in (7.12).

We now prove the lower bound in (7.12). Let sk → 0, sk > 0, and up to subsequences let the
liminf in (7.12) be a limit. Let αk, βk be competitors for ϑp(sk) such that∫ 1

0

|1− βk|
√
ψ2
p(βk)|α′k|2 + |β′k|2 dt ≤ ϑp(sk) + sk.

If, after taking a subsequence, there is a sequence xj ∈ [0, 1] such that

1− βj(xj)

s
1
p+1

j

≥ κ1/(p+1) for all j,

then

ϑp(sj) + sj ≥ (1− βj(xj))2 ≥ κ2/(p+1) s
2
p+1

j . (7.17)

Otherwise, for all k large enough
1− βk
s

1
p+1

k

≤ κ1/(p+1)

must hold uniformly, so that βk → 1 uniformly and by (7.9) for any ε > 0

(1− βk)pψp(βk) ≥ κ− ε uniformly, for k large enough.

Therefore

ϑp(sk)+sk >

∫ 1

0

ψp(βk)(1−βk)|α′k|dt ≥
∫ 1

0

ψp(βk)(1− βk)p

(1− βk)p−1
|α′k|dt ≥

κ− ε
κ(p−1)/(p+1)

s
2/(p+1)
k . (7.18)

Since ε was arbitrary this and (7.17) give the lower bound in (7.12).
Finally we prove that the limit in (7.12) exists. We fix a sequence sj ↓ 0 and choose αj , βj ∈ Usj

such that ∫ 1

0

|1− βj |
√
ψ2
p(βj)|α′j |2 + |β′j |2 dt ≤ ϑp(sj) +

1

j
s

2/(p+1)
j .

By the computation above we obtain βj → 1 uniformly. For k ≥ j we define αk, βk ∈ Usk by

αk =
sk
sj
αj and βk = 1−

(sk
sj

)1/(p+1)

(1− βj) .

After a straightforward computation, using these test functions in the definition of ϑp(sk) leads to

ϑp(sk) ≤
(sk
sj

)2/(p+1)
[∫ 1

0

|1− βj |
√
ψ2
p(βj)|α′j |2 + |β′j |2 dt

]
sup
{ ψp(t)(1− t)p
ψp(t′)(1− t′)p

: minβj ≤ t, t′ < 1
}
.

Since βj → 1 uniformly as j → ∞, and ψp(t)(1 − t)p has a finite limit as t → 1, the sup converges
to 1 as j →∞. Therefore we obtain that for every ε > 0 if j is sufficiently large, then

ϑp(sk)

s
2/(p+1)
k

≤ (1 + ε)
ϑp(sj)

s
2/(p+1)
j

+
1

j
for all k ≥ j .
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This implies that the sequence converges. Since the decreasing sequence sj was arbitrary, the limit
in (7.12) exists.

To establish (ii), we note first that by Cauchy inequality ϑp ≤ ϑ̂p. For the sake of proving the
converse inequality, we first claim that α and β in the infimum problem defining ϑp can be taken in
W 1,∞((0, 1)

)
. Let η > 0 small and let α, β ∈ H1

(
(1/3, 2/3)

)
be competitors for ϑp(s) such that∫ 2/3

1/3

|1− β|
√
ψ2
p(β)|α′|2 + |β′|2 dt ≤ ϑp(s) + η. (7.19)

We define βη(t) := β(t) ∧ (1 − η) in [1/3, 2/3]. Since (1 − s)pψp(s) has a finite nonzero limit at 1,
there is a function ω, with ω(η)→ 0 as η → 0, such that

(1− s′)pψp(s′) ≤ (1 + ω(η))(1− s)pψp(s) for all s, s′ ∈ [1− η, 1) . (7.20)

In particular, if 1− η < β(t) < 1, then

ηψp(1− η) ≤ η1−p(1 + ω(η))(1− β(t))pψp(β(t)) ≤ (1 + ω(η))(1− β(t))ψp(β(t)) . (7.21)

We observe that βη = 1− η and (βη)′ = 0 almost everywhere on the set {β 6= βη} and compute∫
{β 6=βη}

(1− βη)
√
ψ2
p(βη) |α′|2 + |(βη)′|2dt =

∫
{β 6=βη}

ηψp(1− η) |α′|dt

≤ (1 + ω(η))

∫
{β 6=βη}

(1− β)ψp(β)|α′| dt, (7.22)

so that by (7.19) it follows∫ 2/3

1/3

|1− βη|
√
ψ2
p(βη)|α′|2 + |(βη)′|2 dt ≤ ϑp(s) + η + ω(η) + ηω(η). (7.23)

By density we are able to find two sequences αj , β
η
j ∈W 1,∞((1/3, 2/3)

)
(actually in C∞([1/3, 2/3]))

such that αj(1/3) = 0, αj(2/3) = s, βηj (1/3) = βηj (2/3) = 1 − η, 0 ≤ β ≤ 1 − η, and converging

respectively to α and βη in H1
(
(1/3, 2/3)

)
.

Since the function (1 − s)pψp(s) is uniformly continuous in [0, 1 − η] and since βηj → βη also
uniformly, we deduce that for j large it holds∫ 2/3

1/3

|1− βηj |
√
ψ2
p(βηj )|α′j |2 + |(βηj )′|2 dt ≤ ϑp(s) + 2η + ω(η) + ηω(η).

Finally we extend αj and βηj in [0, 1] defining αj := 0 in [0, 1/3], αj := s in [2/3, 1], and βηj as a

linear interpolation of the values 1 − η and 1. Now αj and βηj are competitors for ϑp(s) and for j
large they satisfy∫ 1

0

|1− βηj |
√
ψ2
p(βηj )|α′j |2 + |(βηj )′|2 dt ≤ ϑp(s) + 2η + ω(η) + ηω(η) + η2

and this concludes the proof of the claim.

Let us prove now that ϑ̂p(s) ≤ ϑp(s). We argue exactly as in Proposition 4.3 until estimate (4.8).

In doing this we point out that f , g and ĝ have to be substituted by ψp, ϑp and ϑ̂p, respectively.
By keeping the same notation introduced there, we repeat the computations in (7.20)-(7.22) and

we conclude that

ϑ̂p(s) ≤
√
η + 3η2 + (1 + ω(η))

∫ 1

0

(1− β)
√
ψ2
p(β) |α′|2 + |β′|2dt .

Since the last integral is less than ϑp(s) + η and η can be made arbitrarily small the inequality

ϑ̂p ≤ ϑp follows at once.

We finally prove (iii). It is easy to check that f (j) ≤ f (j+1), and that f (j)(s) → ψp(s) for all
s ∈ [0, 1). Hence, the sequence (gj) is nondecreasing and gj(s) ≤ ϑp(s) for all s ≥ 0. To prove
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(7.15), with fixed s ∈ (0,+∞), consider the functionals Gj , G∞ : L1
(
(0, 1)

)
× L1

(
(0, 1)

)
→ [0,+∞]

defined for (α, β) ∈ Us by

Gj(α, β) :=

∫ 1

0

|1− β|
√

(f (j))2(β)|α′|2 + |β′|2 dt

and

G∞(α, β) :=

∫ 1

0

|1− β|
√
ψ2
p(β)|α′|2 + |β′|2 dt

respectively, and set equal to +∞ otherwise on L1
(
(0, 1)

)
× L1

(
(0, 1

)
).

Note that Gj ≤ Gj+1 and that Gj pointwise converge to G∞ by Beppo-Levi’s theorem. Therefore,

(Gj) Γ-converges to G∞, the relaxation of G∞ w.r.to the L1×L1 topology. Being gj(s) = inf Gj and
ϑp(s) = inf G∞ to conclude we need only to discuss the compactness properties of the minimizing
sequences of Gj ’s.

To this aim let αj , βj ∈W 1,∞((0, 1)
)

be such that αj(0) = 0, αj(1) = s, βj(0) = βj(1) = 1, and

Gj(αj , βj) ≤ gj(s) +
1

j
.

Hence, either there exists δ > 0 and a subsequence jk such that inf [0,1] βjk ≥ δ, or inf [0,1] βj → 0. In
the former case, we note that(

min
t∈[δ,1)

(1− t)f (jk)(t)
)
‖α′jk‖L1 ≤ gjk(s) +

1

jk
,

and since for k sufficiently large (depending on δ)

min
t∈[δ,1)

(1− t)f (jk)(t) = min
t∈[δ,1)

(1− t)ψp(t) > 0 ,

we conclude that supk ‖α′jk‖L1 < +∞. Moreover, as

1

2
sup
j
‖
(
(1− βj)2

)′‖L1 ≤ sup
j
gj(s) ≤ ϑp(s),

the sequence (αjk , βjk) is pre-compact in L1 × L1, so that by standard properties of Γ-convergence
we may conclude that

lim
j
gj(s) = lim

j
inf Gj = min G∞ = inf G∞ = ϑp(s). (7.24)

Instead, in case inf [0,1] βj → 0, set sj = argmin[0,1]βj and deduce that

lim
j
gj(s) ≥ lim inf

j

(∫ sj

0

|1− βj ||β′j | dt+

∫ 1

sj

|1− βj ||β′j | dt

)
≥ 1. (7.25)

Together with inequality ϑp(s) ≤ 1, the latter formula provides the conclusion. �

The functionals F
(k)
k corresponding to the sequence (f (j)) in (7.14) of Proposition 7.3 provide an

approximation of Φp : L1(Ω)→ [0,+∞] defined by

Φp(u) :=


∫

Ω

|∇u|2dx+

∫
Ju

ϑp(|[u]|)dHn−1 if u ∈ GSBV (Ω),

+∞ otherwise,

(7.26)

with ϑp is defined in formula (7.10).

Theorem 7.4. Suppose that (f (j)) is as in (7.14) above.

Then, the functionals F
(k)
k Γ-converge in L1(Ω)×L1(Ω) to Φ̃p, where

Φ̃p(u, v) :=

{
Φp(u) if v = 1 Ln-a.e. in Ω,

+∞ otherwise.
(7.27)
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Proof. By monotonicity of the sequence (f
(j)
k ) we have that F

(k)
k ≥ F

(j)
k for k ≥ j, so that by

Theorem 3.1 if Γ- lim infk F
(k)
k (u, v) < +∞ then u ∈ GBV (Ω), v = 1 Ln-q.o. on Ω and for all j ∈ N

Γ- lim inf
k

F
(k)
k (u, 1) ≥ Γ- lim

k
F

(j)
k (u, 1) =

∫
Ω

hj(|∇u|)dx+

∫
Ju

gj(|[u]|)dHn−1 + j|Dcu|(Ω),

where hj and gj are defined, respectively, by (3.6) and (3.7) with f (j) in place of f . By letting
j ↑ ∞, we get that

hj(s) ↑ s2, and gj(s) ↑ ϑp(s) for all s ≥ 0.

Indeed, the former convergence follows from the explicit formula hj(s) = s2 for s ∈ [0, j/2] and
hj(s) = js − j2/4 for s ∈ [j/2,+∞), while the latter in view of (iii) in Proposition 7.3. Therefore,
by Beppo-Levi’s theorem we conclude that u ∈ GSBV (Ω) with

Γ- lim inf
k

F
(k)
k (u, 1) ≥ Φ̃p(u, 1).

To prove the upper bound inequality we note that Lemma 6.2 and 6.3 still hold true in this setting

as there we have only used that each function fk = 1∧ ε1/2
k f in (3.2) is nondecreasing and bounded

by 1 from above, properties enjoyed by f
(k)
k as well (cp. also Theorem 7.1).

Hence, we may argue again as in Proposition 6.4 and reduce ourselves to prove the estimate

lim sup
δ↓0

1

δn−1
F̂ (ux, 1;x+ δ Qνu(x)) ≤ ϑp(|[u](x)|), (7.28)

for u ∈ SBV 2(Ω) and for Hn−1-a.e. x ∈ Ju, where F̂ is the Γ̄-limit of a properly chosen subsequence

(F
(kj)
kj

) of (F
(k)
k ). Given (7.28), we deduce the upper bound estimate as follows: we employ first [12,

Propositions 3.3-3.5] to get the estimate F̂ (·, 1) ≤ Φ̃p(·, 1) on the full SBV space, by relaxing the
functional Φ∞ : BV (Ω)→ [0,+∞]

Φ∞(u) :=


∫

Ω

|∇u|2dx+

∫
Ju

ϑp(|[u](x)|) dHn−1 if u ∈ SBV 2(Ω)

+∞ otherwise on BV (Ω),

w.r.to the w ∗ -BV topology on BV (Ω). This implies F̂ (·, 1) ≤ Φp on BV (Ω). We get the required
estimate on the whole GSBV ∩ L1(Ω) by the usual truncation argument. We then argue as in

Proposition 6.4 to show that the whole family (F
(k)
k ) Γ-converges to Φ̃p.

The proof of (7.28) is identical to the proof of (6.22) in Proposition 6.4 and therefore not repeated.
�

7.3. Griffith’s brittle fracture. Finally, we show how to approximate the Mumford-Shah func-
tional by means of any sequence

(
f (j)

)
satisfying item (iii) in Proposition 4.5. Thus, we recover the

original approximation scheme of Ambrosio and Tortorelli [7], [8] (see also [28]).

Theorem 7.5. Suppose that (f (j)) satisfies f (j) ≤ f (j+1), `j ↑ ∞ and f (j)(s) ↑ ∞ pointwise in (0, 1).

Then, the functionals F
(k)
k Γ-converge in L1(Ω)×L1(Ω) to the functional M̃S defined as follows

M̃S(u, v) :=

{
MS(u) if v = 1 Ln-a.e. in Ω,

+∞ otherwise.
(7.29)

Proof of Theorem 7.5. We start off as in the proof of Theorem 7.1 and note that by the very defi-

nitions F
(j)
k ≤ F

(k)
k for j ≤ k being (f (j)) nondecreasing by assumption. Thus, by Theorem 3.1 we

deduce

Γ- lim inf
k

F
(k)
k (u, v) ≥ F (j)(u, v), (7.30)
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where F (j) is defined as F in (3.9) with f substitued by f (j) in formulas (3.6) defining hj , and (3.7)
defining gj . In particular, the corresponding volume density is given by

hj(t) =

{
t2 t ≤ `j

2

`j t−
`2j
4 t ≥ `j

2 ,

where `j is the value of the limit in (3.4) and it satisfies `j ↑ ∞. Thus hj(s) ≤ s2 and limj hj(s) = s2

for all s ∈ [0,+∞). Moreover, the surface energy densities gj are dominated by the constant
1, and by item (iii) in Proposition 4.5 we have limj gj(s) = χ(0,+∞)(s) for all s ∈ [0,+∞). In

conclusion, if Γ- lim infk F
(k)
k (u, v) < +∞, by letting j ↑ ∞ in (7.30) we infer that v = 1 Ln-a.e. in Ω,

u ∈ GSBV (Ω) and by the Beppo-Levi’s theorem we get

Γ- lim inf
k

F
(k)
k (u, v) ≥ M̃S(u).

Eventually, we establish the limsup inequality. Set ψ := χ(0,1], we observe once more that F
(k)
k ≤

ATψk for every k, where ATψk has been defined in (2.2). Therefore the conclusion follows by the
Ambrosio and Tortorelli result [8] (see also [28]). �

Remark 7.6. In Remark 7.2 we have shown that both the divergence of the fk’s and the scaling with

ε
1/2
k in the definition of f

(k)
k are influencing the asymptotic behavior of the related sequence (F

(k)
k ).

Here, we show that also the sequence of values of the limits in 1 of the functions (1 − s)f (k)(s) is

playing a role. In particular, we highlight that the pointwise limit of (f
(k)
k ) is not determining the

asymptotics of (F
(k)
k ).

Indeed, suppose that f (k)(s) := ak
s

1−s , where ak ↑ ∞, then

f
(k)
k (s) =

{
akε

1/2
k

s
1−s 0 ≤ s ≤ (1 + akε

1/2
k )−1

1 (1 + akε
1/2
k )−1 ≤ s ≤ 1,

and by letting k ↑ ∞ we infer that

f
(k)
k (s)→


χ{1}(s) if akε

1/2
k ↓ 0

γ s
1−s ∧ 1 if akε

1/2
k → γ ∈ (0,+∞)

χ(0,1](s) if akε
1/2
k ↑ ∞.

Hence, by taking also into account the examples in Remark 7.2, we have built two sequences of

functions f
(k)
k both converging to χ{1} but giving rise in the Γ-limit on one hand to the Dugdale’s

cohesive energy and on the other hand to a Griffith’s type energy.
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338 (2010), pp. 199–206.

[38] J. Shah, Curve evolution and segmentation functionals: application to color images, in Proceedings IEEE ICIP,
1996.

Universität Bonn

E-mail address: sergio.conti@uni-bonn.de

E-mail address: iurlano@iam.uni-bonn.de
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