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Integral representation for functionals defined on SBD p in dimension two

We prove an integral representation result for functionals with growth conditions which give coercivity on the space SBD p (Ω), for Ω ⊂ R 2 a bounded open Lipschitz set, p ∈ (1, ∞). The space SBD p of functions whose distributional strain is the sum of an L p part and a bounded measure supported on a set of finite H 1 -dimensional measure appears naturally in the study of fracture and damage models. Our result is based on the construction of a local approximation by W 1,p functions. We also obtain a generalization of Korn's inequality in the SBD p setting.

Introduction

The direct methods of Γ-convergence are of paramount importance in studying variational limits and relaxation problems since their introduction in the seminal paper by Dal Maso and Modica [START_REF] Maso | A general theory of variational functionals[END_REF]. They focus on the study of abstract limiting functionals F (u, A), obtained for instance using Γ-convergence arguments; one key ingredient is the proof of an integral representation for F (u, A). Here u : Ω → R N is an element of a suitable function space X (Ω), and A runs in the class A(Ω) of open subsets of a given open set Ω ⊂ R n . The notion of variational functional is at the heart of the matter: F , regarded as depending on the couple (u, A) ∈ X (Ω) × A(Ω), has to satisfy suitable lower semicontinuity, locality and measure theoretic properties (for more details see properties (i)-(iii) in Theorem 1.1). The specific growth conditions of the functional determine the natural functional space in which the function u lies. Under these assumptions F (u, A) can be written as an integral over the domain of integration A with respect to a suitable measure. The integrands may depend on x, u(x) and ∇u(x), and possibly on other local quantities of u, such as higher order or distributional derivatives. Furthermore, as first int_repr-rev-final.tex 1

[October [START_REF] Conti | Rigidity and Gamma convergence for solid-solid phase transitions with SO(2) invariance[END_REF]2016] shown in some cases in [START_REF]Integral functionals determined by their minima[END_REF] and then generalized in [START_REF] Bouchitté | A global method for relaxation[END_REF], the corresponding energy densities can be characterized in terms of cell formulas, i.e. asymptotic Dirichlet problems on small cubes or balls involving F itself, with boundary data depending on the local properties of u.

Integral representation results have been obtained in several contexts with increasing generality: starting with the pioneering contribution by De Giorgi for limits of area-type integrals [START_REF] Giorgi | Sulla convergenza di alcune successioni d'integrali del tipo dell'area[END_REF], it has been extended to functionals defined first on Sobolev spaces in [START_REF] Sbordone | Su alcune applicazioni di un tipo di convergenza variazionale[END_REF][START_REF] Carbone | Some properties of Γ-limits of integral functionals[END_REF][START_REF] Buttazzo | Γ-limits of integral functionals[END_REF][START_REF]Integral representation and relaxation of local functionals[END_REF][START_REF]A characterization of nonlinear functionals on Sobolev spaces which admit an integral representation with a Carathéodory integrand[END_REF] and on the space of functions with Bounded Variation in [START_REF] Maso | Integral representation on BV(Ω) of Γ-limits of variational integrals[END_REF][START_REF] Bouchitté | Integral representation and relaxation of convex local functionals on BV(Ω)[END_REF], and then to energies defined on partitions in [START_REF] Ambrosio | Functionals defined on partitions in sets of finite perimeter. I. Integral representation and Γ-convergence[END_REF] and on the subspace SBV in [START_REF] Braides | Integral representation results for functionals defined on SBV(Ω; R m )[END_REF] (we refer to [START_REF]A characterization of nonlinear functionals on Sobolev spaces which admit an integral representation with a Carathéodory integrand[END_REF][START_REF]An introduction to Γ-convergence[END_REF][START_REF] Bouchitté | A global method for relaxation[END_REF][START_REF] Bouchitté | A global method for relaxation in W 1,p and in SBV p[END_REF] for a more exhaustive list of references). The global method for relaxation introduced and developed in [START_REF] Bouchitté | A global method for relaxation[END_REF][START_REF] Bouchitté | A global method for relaxation in W 1,p and in SBV p[END_REF] provides a general approach that unifies and extends the quoted results.

In this paper we address the integral representation of functionals defined on the subspace SBD p (Ω) of the space BD(Ω) in the two dimensional setting. The space of functions of bounded deformation BD(Ω) is characterized by the fact that the symmetric part of the distributional gradient Eu := (Du + Du T )/2 of u ∈ L 1 (Ω, R n ) is a bounded Radon measure, namely BD(Ω) := {u ∈ L 1 (Ω; R n ) : Eu ∈ M(Ω; R n×n sym )}, where Ω ⊆ R n is an open set, see [START_REF] Suquet | Sur un nouveau cadre fonctionnel pour les équations de la plasticité[END_REF][START_REF] Temam | Problèmes mathématiques en plasticité[END_REF][START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF]. BD and its subspaces SBD and SBD p constitute the natural setting for the study of plasticity, damage and fracture models in a geometrically linear framework [START_REF] Suquet | Sur un nouveau cadre fonctionnel pour les équations de la plasticité[END_REF][START_REF] Temam | Problèmes mathématiques en plasticité[END_REF][START_REF] Temam | Functions of bounded deformation[END_REF][START_REF] Anzellotti | Existence of the displacement field for an elastoplastic body subject to Hencky's law and von Mises yield condition[END_REF][START_REF] Kohn | Dual spaces of stresses and strains, with applications to Hencky plasticity[END_REF][START_REF] Conti | Dislocation microstructures and the effective behavior of single crystals[END_REF]. In particular, SBD p , p ∈ [1, ∞), is the set of BD functions such that the strain Eu can be written as the sum of an absolutely continuous measure with respect to L n Ω, with density e(u) in L p (Ω, R n×n ), and a singular measure concentrated on the set J u of jump points of u, that is (n -1)-rectifiable and with finite H n-1 -measure, see [START_REF] Bellettini | Compactness and lower semicontinuity properties in SBD(Ω)[END_REF]18,[START_REF]An approximation result for special functions with bounded deformation[END_REF][START_REF] Chambolle | Piecewise rigidity[END_REF]. We recall that each function u ∈ BD(Ω) has an approximate gradient ∇u(x) for L n -a.e. x ∈ Ω, and that the density e(u) is exactly its symmetrized part (see [START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF]Theorem 7.4]).

For functionals with linear growth defined on SBD an integral representation result was obtained by Ebobisse and Toader [START_REF] Ebobisse | A note on the integral representation representation of functionals in the space SBD(Ω)[END_REF]. These functionals, however, lack coercivity on the relevant space. Integral representation for functionals defined on BD was studied in [START_REF] Barroso | A relaxation theorem in the space of functions of bounded deformation[END_REF], lower semicontinuity and relaxation in [START_REF] Rindler | Lower semicontinuity for integral functionals in the space of functions of bounded deformation via rigidity and Young measures[END_REF]. The situation of functionals defined on SBD p and with corresponding growth properties is open. We give here a solution in two dimensions. Then there are two Borel functions f :

Ω × R 2 × R 2×2 → [0, ∞) and g : Ω × R 2 × R 2 × S 1 → [0, ∞) such that F (u, B) = ˆB f (x, u(x), ∇u(x))dx + ˆB∩Ju g(x, u -(x), u + (x), ν u (x))dH 1 .
(

Above and throughout the paper we will refer to the book [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs[END_REF] and to the papers [START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF][START_REF] Bellettini | Compactness and lower semicontinuity properties in SBD(Ω)[END_REF] for the notation and results about BV and BD spaces, respectively. In particular, B(Ω) is the family of Borel subsets of Ω.

The proof of Theorem 1.1, which is given in Section 4, follows the general strategy introduced in [START_REF] Bouchitté | A global method for relaxation[END_REF][START_REF] Bouchitté | A global method for relaxation in W 1,p and in SBV p[END_REF]. Their approach was based on a Poincaré-type inequality in SBV by De Giorgi, Carriero and Leaci, which is not known in SBD p (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs[END_REF]). Our main new ingredient is the construction of an approximation by W 1,p functions, discussed in Section 3, which permits to bypass the De Giorgi-Carriero-Leaci inequality. The approximation is done so that the function is only modified outside a countable set of balls with small area and perimeter. In each ball, we give a construction of a W 1,p extension for the SBD p function by constructing a finite-element approximation on a countable mesh, which is chosen depending on the function u, see Section 2.

Our W 1,p approximation result also leads naturally to the proof of the following variant of Korn's inequality for SBD p functions. Theorem 1.2. Let Ω ⊂ R 2 be a connected, bounded, open Lipschitz set and let p ∈ (1, ∞). Then there exists a constant c, depending on p and Ω, with the following property: for every u ∈ SBD p (Ω) there exist a set ω ⊂ Ω of finite perimeter, with H 1 (∂ω) ≤ cH 1 (J u ), and an affine function a

(x) = Ax + b, with A ∈ R 2×2 skew-symmetric and b ∈ R 2 , such that u -a L p (Ω\ω,R 2 ) ≤ c e(u) L p (Ω,R 2×2 ) , ∇u -A L p (Ω\ω,R 2×2 ) ≤ c e(u) L p (Ω,R 2×2 ) .
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This improves a result of [START_REF]A Korn-type inequality in SBD for functions with small jump sets[END_REF] to the sharp exponent. Variants of the first inequality were first obtained in [START_REF] Chambolle | Korn-Poincaré inequalities for functions with a small jump set[END_REF][START_REF] Friedrich | A Korn-Poincaré-type inequality for special functions of bounded deformation[END_REF]. Another consequence of the approximation discussed in Section 3 is the possibility to prove existence of minimizers for Griffith's fracture functional in two dimensions, which will be discussed elsewhere [START_REF]Existence of minimizers for the 2d stationary Griffith fracture model[END_REF].

Approximation of SBD p functions with small jump set

In this Section we prove the following approximation result.

Theorem 2.1. Let n = 2, p ∈ [1, ∞).
There exist η > 0 and c > 0 such that if J ∈ B(B 2r ), for some r > 0, satisfies

H 1 (J) < 2rη, (2.1) 
then there exists R ∈ (r, 2r) for which the following holds: for every u ∈

SBD p (B 2r ) with H 1 (J u ∩ B 2r \ J) = 0 there exist φ(u) ∈ SBD p (B 2r ) ∩ W 1,p (B R , R 2 ) such that (i) H 1 (J u ∩ ∂B R ) = 0; (ii) ˆBR |e(φ(u))| q dx ≤ c ˆBR |e(u)| q dx, for every q ∈ [1, p]; (iii) u -φ(u) L 1 (B R ,R 2 ) ≤ cR|Eu|(B R ); (iv) u = φ(u) on B 2r \ B R , H 1 (J φ(u) ∩ ∂B R ) = 0; (v) if u ∈ L ∞ (B 2r , R 2 ), then φ(u) L ∞ (B 2r ,R 2 ) ≤ u L ∞ (B 2r ,R 2 ) .
Proof. We follow an idea of [START_REF]A sharp-interface limit for a two-well problem in geometrically linear elasticity[END_REF][START_REF] Conti | Rigidity and Gamma convergence for solid-solid phase transitions with SO(2) invariance[END_REF], which we first summarize. The basic strategy is to construct a triangular grid, see Figure 1, which refines towards the boundary of B R , and to define φ(u) as the piecewise linear interpolation of the values of u at the grid nodes. If the grid nodes are chosen appropriately, in the sense of having values of u close to the local average, φ(u) turns out to be close to u. Further, the choice of the grid nodes can be done in such a way that all grid segments do not intersect the jump set of u, and that the average of |e(u)| along the segment is not significantly larger than its average in a neighborhood of the segment. In turn, this implies that e(φ(u)), which is constant in each triangle, can be estimated by the average of |e(u)| in a neighborhood of the triangle itself, leading -after summing over all triangles int_repr-rev-final.tex

[ [START_REF] Nečas | Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle[END_REF] -to the desired W 1,p estimate for φ(u). The critical point is the construction of the grid, which is obtained by iteratively choosing the vertices, after having globally selected the radius R in such a way that the density of the jump set around ∂B R is controlled on any scale. For some η > 0 chosen below, given r > 0 and a Borel set J ∈ B(B 2r ) with H 1 (J) < 2rη, we first claim, following [START_REF]A sharp-interface limit for a two-well problem in geometrically linear elasticity[END_REF]Lemma 4.3], that there exists R ∈ (r, 2r) such that for δ k := R 2 -k we have

H 1 (J ∩ ∂B R ) = 0, (2.2) H 1 (J ∩ (B R \ B R-δ k )) < 10ηδ k , for every k ∈ N. (2.3)
To prove this, we first observe that (2.2) holds for all but countably many R, therefore it suffices to show that the set of R ∈ (r, 2r) for which (2.3) holds has positive measure. We consider the family of intervals

{[R -δ k , R] : H 1 (J ∩ (B R \ B R-δ k )) ≥ 10ηδ k }
and we define I as the union of all intervals of the family, with R ∈ (r, 2r), k ∈ N. By Vitali's covering theorem, there exists a countable set (R i , k i ) i∈N such that the corresponding intervals [R i -δ k i , R i ] are pairwise disjoint and five times their total measure is greater than or equal to the measure of I,

5 i∈N δ k i ≥ L 1 (I). Therefore by (2.1) we obtain 2rη > H 1 (J ∩ B 2r ) ≥ i∈N H 1 (J ∩ (B R i \ B R i -δ k i )) ≥ i∈N 10ηδ k i ≥ 2ηL 1 (I).
Since the first inequality is strict, we conclude that L 1 (I) < r and therefore there is R ∈ (r, 2r) \ I such that (2.2) holds. Since R ∈ I, by the definition of I we obtain

H 1 (J ∩ (B R \ B R-δ k )) < 10ηδ k } for all k ∈ N. Therefore (2.
3) holds as well. The value of R is fixed for the rest of the proof.

Let u ∈ SBD p (B 2r ) be such that H 1 (B 2r ∩ J u \ J) = 0. From (2.2) we deduce that (i) holds. We define R k := R-δ k and x k,j := R k (cos 2πj 2 k , sin 2πj 2 k ), j = 1, . . . , 2 k . We say that x k,j and x k ,j are neighbors if either k = k and j = j ± 1, working modulo 2 k , or (up to a permutation) k = k + 1 and j ∈ {2j -1, 2j , 2j + 1}, again modulo 2 k . Connecting all neighbors we obtain a decomposition of B R into countably many triangles, whose angles are uniformly bounded away from 0 and π, see Figure 1.

We will construct φ(u) as a linear interpolation on a triangulation whose vertices are slight modifications of x k,j . Following the idea of [25, Proposition 2.2], we next show how to construct the modified triangulation. We start off considering two neighboring points x and y in {x k,j } k,j , connected by the segment S x,y ⊂ B R k+1 \B R k-1 for some k, and notice that c for some c 1 ∈ (0, 1), c 2 > 1 independent from k. Let α := c 1 /(8c 2 ) and consider the convex envelope

1 δ k ≤ |x-y| ≤ c 2 δ k int_repr-rev-final.tex [October 25, 2016] R k-1 R k R k+1
O x,y := conv (B(x, αδ k ) ∪ B(y, αδ k )).
(2.4)

Let a x,y denote the infinitesimal rigid movement appearing in the Poincaré's inequality for u on the set

Q x,y := {ξ ∈ B R : dist(ξ, S x,y ) < |x -y|/(8c 2 )}, so that u -a x,y L 1 (Q x,y ;R 2 ) ≤ c|Eu|(Q x,y
); since the sets Q x,y all have the same shape the constant is universal.

We will now choose points (x, y) ∈ B(x, αδ k )×B(y, αδ k ) such that u does not jump on the segment S x,y joining them, and such that the longitudinal component has a controlled derivative. To make this precise, we define by u ν z (t) := u(z + tν) • ν the slice of u along the line of direction

ν := x -y |x -y| , (2.5) 
and passing through

z := (Id -ν ⊗ ν)x ∈ Rν ⊥ ∩ (x + Rν) (2.6)
where Rν ⊥ is the linear space orthogonal to ν, see Figure 2. We denote by s x,y ⊂ R the segment defined by z + s x,y ν = S x,y . Given ϑ ∈ (0, 1), we will prove that for η sufficiently small and c sufficiently large, depending only on ϑ, there exists a subset F ⊂ B(x, αδ k )×B(y, αδ k ) with (L 2 ×L 2 )(F ) L 2 (B αδ k ) 2 < ϑ, such that for every (x, y) / ∈ F the one-dimensional section u ν z has the following properties: int_repr-rev-final.tex 6 (P1) u ν z ∈ SBV (s x,y );

(P2) H 0 (J u ν z ) = 0, so that u ν z ∈ W 1,1 (s x,y ); (P3) ˆsx,y |(u ν z ) |dt ≤ c δ k ˆOx,y |e(u)|dx ; (P4) |u(ξ) -a x,y (ξ)| ≤ c δ k |Eu|(Q x,y
), for ξ = x, y;

(P5) x and y are Lebesgue points of u.

The proof of (P1)-(P4) is based on the properties of slicing of SBD functions; (P5) obviously holds for almost all choices. We recall that by [START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF]Theorem 4.5] for any fixed ν ∈ S 1 the following holds: there is an H 1 -null set N ν ⊂ Rν ⊥ such that for all z ∈ Rν ⊥ \ N ν the section u ν z is in SBV (s), where s ⊂ R is the set of t ∈ R such that z + tν ∈ O x,y , the jump set of u ν z coincides almost everywhere with the section of the jump set of u (intersected with the set of points where [u] • ν = 0), and its distributional derivative obeys ∇u ν z (t) = ν • e(u)(z + tν)ν for almost every t ∈ s. We now show that for almost every pair (x, y) ∈ B * := B(x, αδ k )×B(y, αδ k ) property (P1) holds. To see this, consider the change of variables given by x = z+tν, y = z+t ν, corresponding to the map ψ(z, ν, t, t ) := (z+tν, z+t ν). This is a locally Lipschitz map from

R 2 × R 2 × R × R to R 4 . Let M := {(z, ν, t, t ) ∈ R 6 : ν ∈ S 1 , z ∈ N ν }
denote the exceptional set. By Fubini's theorem and H 1 (N ν ) = 0 for all ν one obtains H 4 (M ) = 0, and since ψ is locally Lipschitz the set F 1 := ψ(M ) is also a H 4 -null set. Therefore for int_repr-rev-final.tex almost every choice of (x, y) ∈ B * the above slicing properties, including in particular u ν z ∈ SBV (s), hold and (P1) is proven. In order to obtain property (P2) we first define the measure µ ν,z := H 0 (J u ν z ∩ s x,y ) and we observe that, by the change of variables y = x + tν, ˆB(x,αδ k )×B(y,αδ k ) µ ν,z (s x,y )dx dy

= ˆB(x,αδ k ) ˆS1 ˆ∞ 0 χ B(y,αδ k ) (x + tν)µ ν,z (s x,x+tν )t dt dH 1 (ν) dx .
We observe that, since α ≤ 

)×B(y,αδ k ) µ ν,z (s x,y )dx dy ≤ cδ 2 k ˆS1 ˆB(x,αδ k ) µ((O x,y ) ν z ) dx dH 1 (ν) . (2.7) 
By Fubini's theorem the last term in the previous inequality is less than or equal to

cδ 3 k ˆS1 dH 1 (ν) ˆRν ⊥ µ ν,z ((O x,y ) ν z )dH 1 (z) ≤ cδ 3 k µ(O x,y ), (2.8) 
where

µ := H 1 (J u ∩ O x,y ). Now (2.3) implies ˆB(x,αδ k )×B(y,αδ k ) H 0 (J u ν z ∩ s x,y )dx dy ≤ cδ 4 k η, (2.9) 
and hence the set F 2 of points (x, y) for which H 0 (J u ν z ∩ s x,y ) > 1/2 satisfies

(L 2 ×L 2 )(F 1 )
L 2 (B αδ k ) 2 < ϑ/16, for η small enough. This proves property (P2). Note that this is the only step which requires the hypothesis on the dimension n = 2.

In order to prove (P3), for (x, y) ∈ B(x, αδ k )×B(y, αδ k ) \ (F 1 ∪ F 2 ) we repeat the argument in (2.7) and (2.8) above redefining

µ ν,z := |D(u ν z )|.
By the previous steps the function u ν z belongs to W 1,1 (s), and by the properties of slicing its weak derivative obeys ∇u ν z (t) = ν • e(u)(z + tν)ν for almost int_repr-rev-final.tex every t ∈ s. Repeating the same procedure as above we find that for (x, y) out of a small (in the previous sense) set F 3 one has

|D(u ν z )|(s x,y ) ≤ c δ k ˆOx,y |e(u)|dx , (2.10) 
for c large enough.

Analogously property (P4) can be derived. From the argument above it is straightforward that for many points x ∈ B(x, αδ k ), still in the sense of a large ϑ-fraction of B(x, αδ k ), there are many points y ∈ B(y, αδ k ) for which (x, y) / ∈ F .

Let us construct now the modified grid with an iterative process (see also [START_REF] Conti | Rigidity and Gamma convergence for solid-solid phase transitions with SO(2) invariance[END_REF]Proposition 3.4]). We will use the notation B i to indicate the balls B(x k,j , αδ k ), lexicographically ordered.

We start by fixing a point x 0 ∈ B 0 for which there are many good choices in each neighboring ball. This means that for any neighbor y of x 0 , the set of y ∈ B(y, αδ 0 ) such that (x 0 , y) does not have properties (P1)-(P4) has measure smaller than ϑL 2 (B αδ 0 ). We next select x 1 ∈ B 1 among the points which are good choices for x 0 and which have many good choices in each neighboring subsequent ball B i , i ≥ 2. Iterating the process, the point x m ∈ B m will be taken among the good choices for the neighboring previously fixed x i , i < m, and with the property that have many good choices in the neighboring subsequent B i , i > m. Since each ball can have at most seven neighbors, at each step we select x m avoiding just a small subset of B m .

We call S the set of points obtained by this process and we construct a new triangulation, with x, y neighbors if and only if x, ȳ are neighbors. Notice that again

c 1 δ k ≤ |x -y| ≤ c 2 δ k , (2.11) 
for every couple of neighboring points x, y, with the same k as for the corresponding reference points x and y, and suitable c 1 , c 2 > 0 independent from k. We finally define φ(u) as the linear interpolation between the values of u(x), x ∈ S on each triangle of the triangulation.

Fixed a triangle T and any couple of its vertices x, y, we compute a component of the constant matrix e(φ(u)) on T by

e(φ(u))ν • ν = (φ(u)(x) -φ(u)(y)) • ν |x -y| = - ˆsx,y (u ν z ) dt, (2.12) 
where ν and z are defined in (2.5) and (2.6). We used the fact that u and φ(u) agree on x and y and that u is W 1,1 (s x,y ) by the choice of x and y. By int_repr-rev-final.tex

(2.12), (2.11), and property (P3) above it follows

|e(φ(u))ν • ν| ≤ c δ 2 k ˆOx,y |e(u)|dx ,
where O x,y is defined in (2.4). We recall that here and henceforth c can possibly change. Letting ν vary among the directions of the sides of T , we obtain a control on the whole |e(φ(u))| thanks to (2.11)

|e(φ(u))| ≤ c δ 2 k ˆCT |e(u)|dx , (2.13) 
where C T denotes the convex envelope

C T := conv (∪B(x, αδ k ))
and the union is taken over the three vertices x in the old triangulation corresponding to the three vertices of T . We remark that

B(x, αδ k ) ⊂ B R k+1 \ B R k-1 for all x ∈ ∂B R k , therefore there is a universal c > 0 such that any x ∈ B R is contained in at most c of the C T .
We are ready to prove property (ii). By Jensen's inequality and (2.13) we have for 1 ≤ q ≤ p (changing again the value of c)

ˆT |e(φ(u))| q dx = L 2 (T )|e(φ(u))| q ≤ cL 2 (C T ) - ˆCT |e(u)|dx q ≤ c ˆCT |e(u)| q dx , (2.14) 
and finally summing up on all triangles T we get the conclusion.

In order to prove properties (iii) and (iv) we estimate

ˆT |u -φ(u)|dx ≤ ˆT |u -a x,y |dx + ˆT |a x,y -φ(u)|dx , (2.15) 
where T is again a triangle of the modified triangulation with vertices x, y, z, while x, y, z denote the three corresponding vertices of the old triangulation, a x,y is the infinitesimal rigid motion appearing in the Poincaré's inequality for u on Q x,y (see item (P4) above).

Let us study first the second term in (2.15). Since a x,y -φ(u) is affine, it achieves its maximum on a vertex ξ of T , therefore

ˆT |a x,y -φ(u)|dx ≤ cδ 2 k |a x,y (ξ) -φ(u)(ξ)| = cδ 2 k |a x,y (ξ) -u(ξ)|.
int_repr-rev-final.tex 10

[October [START_REF] Conti | Rigidity and Gamma convergence for solid-solid phase transitions with SO(2) invariance[END_REF]2016] Notice that if ξ = z then by taking into account that a x,z , a x,y are affine and item (P4) above we find

δ 2 k |a x,y (ξ) -u(ξ)| ≤ δ 2 k |a x,y (ξ) -a x,ξ (ξ)| + δ 2 k |a x,ξ (ξ) -u(ξ)| ≤ ˆB(x,αδ k ) |a x,y -a x,ξ |dx + cδ k |Eu|(Q x,ξ ) ≤ c ˆQx,y |u -a x,y (ξ)|dx + c ˆQx,ξ |u -a x,ξ (ξ)|dx + cδ k |Eu|(Q x,ξ ) ≤ cδ k |Eu|(Q x,y ) + cδ k |Eu|(Q x,ξ ) ≤ cδ k |Eu|(Q T ), (2.16)
where

Q T := Q x,y ∪ Q y,z ∪ Q z,x . Instead, if ξ ∈ {x, y} we may directly apply item (P4).
For what the first term in (2.15) is concerned we first use Poincaré's inequality on T , obtaining for a rigid motion a T that u -a T L 1 (T ;R 2 ) ≤ cδ k |Eu|(T ). Since the angles of T are uniformly controlled the constant is universal. We then estimate as follows:

ˆT

|u -a x,y |dx ≤ ˆT |u -a T |dx + ˆT |a x,y -a T |dx ≤ cδ k |Eu|(T ). (2.17) By (2.15)-(2.17), we conclude ˆT |u -φ(u)|dx ≤ cδ k |Eu|(T ), (2.18) 
Finally summing up over T we obtain property (iii).

We prove now property (iv), property (v) holding true by (P5) and convexity of the Euclidean norm. We define φ(u) := u outside B R and know that φ(u) ∈ W 1,p (B R , R 2 )∩SBD(B 2r ). It remains to prove that the traces on ∂B R coincide, or, equivalently, that

H 1 (J φ(u) ∩ ∂B R ) = 0. Let ψ k ∈ C ∞ (B R , [0, 1]) be such that ψ k = 0 on B R k , ψ k = 1 in a neighborhood of ∂B R , and |∇ψ k | ≤ c/δ k . We define v k := (u -φ(u))ψ k ∈ SBD(B R ) and we prove that v k → 0 strongly in BD, this implying in turn v k | ∂B R → 0 in L 1 (∂B R , R 2 )
in the sense of traces and therefore property (iv). Clearly

ˆBR |v k |dx ≤ ˆBR \B R k |u -φ(u)|dx → 0
by the dominated convergence theorem. Finally, using (2.18) and the fact that the triangles have finite overlap,

|Ev k |(B R ) ≤ |E(u -φ(u))|(B R \ B R k ) + c δ k ˆBR \B R k |u -φ(u)|dx ≤ c|E(u -φ(u))|(B R \ B R k ).
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Since B R is open, by monotonicity the last term tends to 0 and this concludes the proof of property (iv).

The thesis follows choosing η and c such that (2.9), (2.10), and (2.14) hold.

3 Regularity of SBD p functions with small jump set

We first discuss how SBD p functions can be approximated by W 1,p functions locally away from the jump set (Section 3.1), and then how they can be approximated by piecewise W 1,p functions around the jump set (Section 3.3).

Our approximation result also leads to the Korn inequality stated in Theorem 1.2. The key ingredient for all these results is the construction of Theorem 2.1. Throughout the section η ∈ (0, 1) will be the constant from Theorem 2.1 and n = 2.

Approximation of SBD p functions with W 1,p functions

We will show that the construction of Theorem 2.1, using a suitable covering argument, permits to approximate SBD p functions by W 1,p functions which coincide away from a small neighborhood of the jump set. The neighborhood is the union of countably many balls, such that each of them contains an amount of jump set proportional to the radius. Before discussing the covering argument in Proposition 3.2, we show that (away from the boundary) almost any point of the jump set is the center of a ball with the appropriate density.

Lemma 3.1. Let s ∈ (0, 1). Let J ∈ B(B 2ρ ), for some ρ > 0, be such that

H 1 (J) < η(1 -s)ρ. Then for H 1 -a.e. x ∈ J ∩ B 2sρ there exists a radius r x ∈ (0, (1 -s)ρ) such that H 1 J ∩ ∂B rx (x) = 0, (3.1) η r x ≤ H 1 J ∩ B rx (x) ≤ H 1 J ∩ B 2rx (x) < 2 η r x . (3.2)
Proof. We fix x ∈ J∩B 2sρ , choose λ x ∈ (ρ, 2ρ) such that H 1 J∩∂Bλ x/2 k (x) = 0 for all k ∈ N, and define

r x := max{ λx /2 k : k ∈ N, H 1 J ∩ Bλ x/2 k (x) ≥ η λ x 2 -k }.
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The set is nonempty for H 1 -almost every x because η < 1. The estimates (3.2) hold by definition. To conclude that r x < (1 -s)ρ it is enough to notice that the opposite inequality would give the ensuing contradiction

H 1 (J) ≥ H 1 J ∩ B rx (x) ≥ η r x ≥ (1 -s)η ρ > H 1 (J).
We are now ready to prove the main result of the section via a covering argument, Lemma 3.1, and Theorem 2.1.

Proposition 3.2. Let p ∈ (1, ∞), n = 2. There exists a universal constant c > 0 such that if u ∈ SBD p (B 2ρ ), ρ > 0, satisfies H 1 (J u ∩ B 2ρ ) < η (1 -s)ρ
for η ∈ (0, 1) as in Theorem 2.1 and some s ∈ (0, 1), then there is a countable family F = {B} of closed balls of radius r B < 2(1-s)ρ, such that their union is compactly contained in B 2ρ , and a field w

∈ SBD p (B 2ρ ) such that (i) ρ -1 F L 2 B + F H 1 ∂B ≤ c /η H 1 (J u ∩ B 2ρ ); (ii) H 1 J u ∩ ∪ F ∂B = H 1 (J u ∩ B 2sρ ) \ ∪ F B = 0; (iii) w = u L 2 -a.e. on B 2ρ \ ∪ F B; (iv) w ∈ W 1,p (B 2sρ , R 2 ) and H 1 (J w \ J u ) = 0; (v) ˆ∪F B |e(w)| p dx ≤ c ˆ∪F B |e(u)| p dx; (3.3) (vi) u -w L 1 (B,R 2 ) ≤ c r B |Eu|(B), for every B ∈ F; (vii) if, additionally, u ∈ L ∞ (B 2ρ , R 2 ) then w ∈ L ∞ (B 2ρ , R 2 ) with w L ∞ (B 2ρ ,R 2 ) ≤ u L ∞ (B 2ρ ,R 2 ) .
Before giving the proof we show an immediate consequence of this result. 

:= ∪ ξ j=1 F j we have H 1 (J u ∩ B 2sρ ) \ ∪ F B = 0.
In addition, by (3.1) the first condition in item (ii) is satisfied as well, so that (ii) is established. Furthermore,

B∈F H 1 (∂B) =2π B∈F r B (3.2) ≤ 2π η B∈F H 1 J u ∩ B ≤ξ 2π η H 1 J u ∩ ∪ B∈F B ≤ ξ 2π η H 1 (J u ∩ B 2ρ ).
The volume estimate follows since r B ≤ ρ implies r 2 B ≤ ρ r B . We remark that a quadratic volume estimate also follows by r 2 B ≤ ( r B ) 2 . Let φ(u) be the function given by Theorem 2.1 on the balls of the first family F 1 and define for every h ∈ N a function

w h 1 := φ(u) B i 1 , i ≤ h u otherwise int_repr-rev-final.tex such that w h 1 ∈ SBD p (B 2ρ ), w h 1 ∈ W 1,p (∪ i≤h B i 1 ; R 2 ) with w h 1 = u L 2 -a.e. on B 2ρ \ ∪ i≤h B i 1 and H 1 (J w h 1 \ J u ) = 0. In addition by item (ii) in Theorem 2.1 ˆB2ρ |e(w h 1 )| p dx = ˆ∪i≤h B i 1 |e(φ(u))| p dx + ˆB2ρ \∪ i≤h B i 1 |e(u)| p dx ≤ c ˆ∪i≤h B i 1 |e(u)| p dx + ˆB2ρ \∪ i≤h B i 1 |e(u)| p dx ≤ (1 + c) ˆB2ρ |e(u)| p dx, (3.6) 
and

|Ew h 1 |(B 2ρ ) ≤ |Eu| B 2ρ \ ∪ i≤h B i 1 + c ˆ∪i≤h B i 1 |e(u)| dx.
Moreover, recalling that the B i 1 's are disjoint and that w h-1

1 = u on B h 1 , item (iii) in Theorem 2.1 gives w h 1 -w h-1 1 L 1 (B 2ρ ;R 2 ) = w h 1 -u L 1 (B h 1 ;R 2 ) ≤ c ρ |Eu|(B h 1 ), in turn implying that for all h ≥ k ≥ 1 w h 1 -w k 1 L 1 (B 2ρ ;R 2 ) ≤ h i=k+1 w i 1 -w i-1 1 L 1 (B h 1 ;R 2 ) ≤ c ρ |Eu| ∪ k+1≤i≤h B i 1 .
Thus,

w h 1 → w 1 in L 1 (B 2ρ ; R 2 ) with w 1 := φ(u) ∪ F 1 B u otherwise.
The BD compactness theorem then yields that w 1 ∈ BD(B 2ρ ). In turn, by (3.6) and since H 1 (J w h 1 \ J u ) = 0, the SBD compactness theorem implies that actually w 1 ∈ SBD p (B 2ρ ) (see also [START_REF]Generalised functions of bounded deformation[END_REF]Theorem 11.3]). Furthermore, since

H 1 J w h 1 ∩ ∪ F 1 B = H 1 (J u ∩ ∪ i≥h+1 B i 1 , we may conclude that H 1 J w 1 ∩ ∪ F 1 B ≤ lim inf h H 1 J w h 1 ∩ ∪ F 1 B = 0,
and therefore

w 1 ∈ W 1,p (∪ F 1 B, R 2 ). Finally, by construction w 1 = u L 2 -a.e. on B 2ρ \ ∪ F 1 B and H 1 (J w 1 \ J u ) = 0.
By iterating the latter construction, for all 1 < k ≤ ξ and for every h ∈ N we find

w h k := φ(w k-1 ) B i k , i ≤ h w k-1 otherwise int_repr-rev-final.tex such that w h k ∈ SBD p (B 2ρ ), w h k ∈ W 1,p (∪ i≤h B i k ; R 2 ), w h k = w k-1 L 2 -a.e. on B 2ρ \ ∪ i≤h B i k , H 1 (J w h k \ J w k-1 ) = 0.
In addition, arguing as above, Finally, it is clear that also items (vi) and (vii) are satisfied in view of properties (iii) and (v) in Theorem 2.1.

w h k → w k in L 1 (B 2ρ , R 2 ) with w k := φ(w k-1 ) ∪ F k B w k-1 otherwise, w k ∈ SBD p (B 2ρ ), w k ∈ W 1,p (∪ j≤k ∪ F j B; R 2 ), w k = w k-1 L 2 -a.e. on B 2ρ \ ∪ F k B and H 1 (J w k \ J w k-1 ) = 0. Set w := w ξ , then w ∈ SBD p (B 2ρ ), w ∈ W 1,p (∪ F B; R 2 ), w = u L 2 -a.e. on B 2ρ \ ∪ F B, H 1 (J w \ J u ) = 0. Iterating estimate (3.

Korn's inequality in SBD p

Proof of Theorem 1.2. By standard scaling and covering arguments it suffices to prove the assertion for a special Lipschitz domain. Precisely, let ϕ : R → R Lipschitz with min ϕ[(-1, 1)] = 2, and set U := {x :

x 1 ∈ (-2, 2), x 2 ∈ (-2, ϕ(x 1 ))}, and U int := {x : x 1 ∈ (-1, 1), x 2 ∈ (-1, ϕ(x 1 ))}.
It suffices to show that for any u ∈ SBD p (U ) there are ω with H 1 (∂ω) + L 2 (ω) ≤ cH 1 (J u ) and an affine function a : R 2 → R 2 such that u -a L p (U int \ω,R 2 ) + ∇u -∇a L p (U int \ω,R 2 ) ≤ c L,p e(u) L p (U,R 2×2 ) , with c depending on p and the Lipschitz constant L of ϕ. Obviously we can assume H 1 (J u ) to be small.

Consider first two squares q j := y j + (-r j /2, r j /2) 2 and Q j := y j + (-r j , r j ) 2 contained in U , and let η be the constant from Proposition 3.2. If u ∈ SBD p (Q j ) obeys H 1 (J u ∩ Q j ) ≤ ηr j /8, then by Proposition 3.2 and Corollary 3.3 with ρ := r j /2 and s := 1/ √ 2 there are a measurable set ω j ⊂ Q j and an affine function a j : R 2 → R 2 such that H 1 (∂ω j )+r -1 j L 2 (ω j ) ≤ cH 1 (J u ∩Q j ) and r -1 j u j -a j L p (q j \ω j ,R 2 ) + ∇u j -∇a j L p (q j \ω j ,R 2×2 ) ≤ c p e(u) L p (Q j ,R 2×2 ) , with a constant which depends only on the exponent p. If instead H 1 (J u ∩ Q j ) > ηr j /8 we define ω j = q j , a j = 0, and trivially obtain the same estimates.

To pass to the estimate on U int one uses a Whitney cover with pairs of open cubes q j ⊂ Q j ⊂ U such that the exterior ones have finite overlap and the interior ones cover U int , as done for example in proving the nonlinear Korn's inequality in [START_REF] Friesecke | A theorem on geometric rigidity and the derivation of nonlinear plate theory from threedimensional elasticity[END_REF]Theorem 3.1]. We can additionally require that Q 0 = (-2, 2) 2 , q 0 = (-1, 1) 2 , and that if q i ∩ q j = ∅ then cL 2 (q i ∩ q j ) ≥ L 2 (q i ) + L 2 (q j ). Following [START_REF]A Korn-type inequality in SBD for functions with small jump sets[END_REF], if H 1 (J u ∩ Q j ) ≥ ηr j /8 we define P j := (y j + (-r j , r j ) × (-r j , ∞)) ∩ U , otherwise P j = ∅ and ω j , a j are obtained as int_repr-rev-final.tex 16
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j ∪ω i ),R 2×2 ) ≤ c p e(u) L p (Q j ∪Q i ,R 2×2 ) .
By the properties of the covering, for any i and j such that q i ∩ q j = ∅ one has L 2 (q j ∩ q i ) ≥ cr 2

i . If η is sufficiently small, the bounds on ω i and ω j give

L 2 (q j ∩ q i \ (ω j ∪ ω i )) ≥ cr 2 i and, since a i -a j is affine, r -1 j a j -a i L p (q j ∩q i ,R 2 ) + ∇a j -∇a i L p (q j ∩q i ,R 2×2 ) ≤ c p e(u) L p (Q j ∪Q i ,R 2×2 ) .
Fix now a partition of unity θ j ∈ C 2 c (q j ) with |Dθ j | ≤ c/r j , and define a * ∈ C ∞ (U, R 2 ) by a * := j θ j a j . Since i Dθ i = 0, for x ∈ q j we obtain Da * (x) = i:q i ∩q j =∅ (θ i Da i (x) + (a i -a j ) ⊗ Dθ i (x)), and correspondingly

r j |D 2 a * |(x) ≤ c i:q i ∩q j =∅ (r -1 j |a i -a j |(x) + |Da i -Da j |(x)).
At the same time, by the properties of the covering r j can be estimated with the distance from the boundary, which in turn, since U is a Lipschitz set, behaves as ϕ(x 1 ) -x 2 . Taking the L p norm we conclude ˆUint

\∪ j P j (ϕ(x 1 ) -x 2 ) p |D 2 a * | p (x)dx ≤ c L,p e(u) p L p (U,R 2 ) .
At this point we apply a weighted Poincaré inequality, as was done in [ 

f ∈ W 1,p loc (Ω) there is f * ∈ R such that ˆΩ |f -f * | p (x)dx ≤ c ˆΩ dist p (x, ∂Ω)|Df | p (x)dx
where the constant may depend on p and Ω, see [41, Theorem 1.5] or [39, Theorem 8.8] for a proof. In one dimension, this corresponds to the fact that for any function

f ∈ C 0 ([s, t)) ∩ W 1,p loc ((s, t)) one has ˆt s |f (x) -f (s)| p (x)dx ≤ c ˆt s |x -t| p |f | p (x)dx.
Since the cube Q 0 = (-2, 2) 2 was not removed one has a * = a 0 in q 0 = (-1, 1) 2 and application of the one-dimensional weighted Poincaré inequality to Da * (x 1 , •) on the segment (-2, ϕ(x 1 )) leads to the assertion, with ω := ∪ j (P j ∪ω j ) and a := a 0 . Equivalently, in the last step one may use a Poincaré or Korn inequality on John domains, as done in [START_REF]A Korn-type inequality in SBD for functions with small jump sets[END_REF]Theorem 4.2].
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We remark that the nonoptimality of the exponent in [36, Theorem 4.2] is only consequence of the nonoptimal local estimate employed there (see [START_REF]A Korn-type inequality in SBD for functions with small jump sets[END_REF]Theorem 3.1]).

Reflection

In this subsection we establish a technical result instrumental for the identification of the surface energy density in Section 4.3. To this aim, given u ∈ SBD p (Ω) and a point x 0 ∈ J u we set

u x 0 (x) := u + (x 0 ) if x -x 0 , ν x 0 > 0, u -(x 0 ) if x -x 0 , ν x 0 < 0. (3.7) Lemma 3.4. Let p ∈ (1, ∞), u ∈ SBD p (Ω), Ω ⊂ R 2 open. For H 1 -a.e.
x 0 ∈ J u and any ρ > 0 sufficiently small there is

v ρ ∈ SBD p (B 2ρ (x 0 )) ∩ SBV p (B ρ (x 0 ), R 2 ) such that: (i) lim ρ→0 1 ρ H 1 (B ρ (x 0 ) ∩ J vρ \ J u ) = 0; (ii) lim ρ→0 1 ρ ˆBρ(x0) |∇v ρ | p dx = 0; (iii) lim ρ→0 1 ρ 2 L 2 ({x ∈ B ρ (x 0 ) : u = v ρ }) = 0; (iv) lim ρ→0 1 ρ 2 ˆBρ(x0) |v ρ -u|dx = 0; (v) lim ρ→0 1 ρ p+1 ˆBρ(x0) |v ρ -u x 0 | p dx = 0; (vi) lim ρ→0 1 ρ ˆBρ(x0)∩Jvρ |[v ρ ] -[u]|dH 1 = 0. Proof. Since J u is (H 1 , 1) rectifiable, there exists a sequence (Γ i ) ∞ i=1 of C 1 curves such that H 1 (J u \ ∪ ∞ i=1 Γ i ) = 0. For H 1 -a.e. x 0 ∈ J u we have lim ρ→0 1 2ρ ˆJu∩Bρ(x0) (|[u]| + 1)dH 1 = |[u](x 0 )| + 1, lim ρ→0 1 2ρ ˆJu∩Γ∩Bρ(x0) (|[u]| + 1)dH 1 = |[u](x 0 )| + 1,
int_repr-rev-final.tex 18
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lim ρ→0 1 2ρ ˆ(Ju Γ)∩Bρ(x 0 ) (|[u]| + 1)dH 1 = 0 (3.8)
and for ρ small Γ separates B 6ρ (x 0 ) into two connected components. It is not restrictive to assume that Γ ∩ B 6ρ (x 0 ) is the graph of a function h ∈ C 1 (R).

Moreover the following properties hold for H 1 -a.e.

x 0 ∈ J u lim ρ→0 1 ρ ˆBρ(x0) |e(u)| p dx = 0, (3.9) lim ρ→0 1 2ρ |Eu|(B ρ (x 0 )) = |[u] ν u |(x 0 ), (3.10) 
lim ρ→0 1 ρ 2 ˆBρ(x0)∩{±(x2-h(x1))>0} |u -u ± (x 0 )|dx = 0. (3.11)
Indeed, the first one follows from |e(u)| p ∈ L 1 (Ω) and L 2 Ω ⊥ H 1 J u , the second one from [4, Eq. (4.

2)], and the third one from [7, Prop. 4.1, Eq. (

].

For simplicity we next assume that the point x 0 = 0 satisfies all the previous properties (3.8)-(3.11), with h(0) = h (0) = 0. We also set τ ρ := h L ∞ (B 6ρ ) and note that τ ρ /ρ → 0 as ρ → 0. We now define the reflections of u with respect to the lines {x 2 = ±τ ρ }, in the sense of [42, Lemma 1]. More precisely, define ũ+ ρ on the set B 2ρ ∩ {x 2 < τ ρ } by

(ũ + ρ ) 1 (x 1 , x 2 ) := -2u 1 (x 1 , 3τ ρ -2x 2 ) + 3u 1 (x 1 , 2τ ρ -x 2 ) (ũ + ρ ) 2 (x 1 , x 2 ) := 4u 2 (x 1 , 3τ ρ -2x 2 ) -3u 2 (x 1 , 2τ ρ -x 2 )
and by u otherwise in B 2ρ . Note that ũ+ ρ ∈ SBD p (B 2ρ ) and that lim ρ→0

1 2ρ H 1 (J ũ+ ρ ∩ B 2ρ ) = 0, (3.12 
)

e(ũ + ρ ) L p (B 2ρ ,R 2×2 ) ≤ c e(u) L p (B 6ρ ,R 2×2 ) , (3.13) 
for a universal constant c. Using a similar reflection we define ũρ in B 2ρ ∩ {(x 1 , x 2 ) : x 2 > -τ ρ } and we set ũρ := u otherwise in B 2ρ . By (3.8) and (3.12) for ρ small we have that ũ± ρ satisfy the hypotheses of Proposition 3.2 on B 2ρ with s = 1/2. Thus, there exist w ± ρ ∈ SBD p (B 2ρ ) ∩ W 1,p (B ρ , R 2 ), for which properties (i)-(vii) hold true. Finally let us define v ρ ∈ SBD p (B 2ρ ) by

v ρ := w + ρ in B 2ρ ∩ {x 2 > h(x 1 )}, w - ρ in B 2ρ ∩ {x 2 < h(x 1 )}. int_repr-rev-final.tex Since w ± ρ ∈ W 1,p (B ρ , R 2 ) we obtain v ρ ∈ SBV p (B ρ , R 2 ) with Dv ρ B ρ =∇w + ρ L 2 B ρ ∩ {x 2 > h(x 1 )} + (w + ρ -w - ρ ) ⊗ ν Γ H 1 Γ ∩ B ρ + ∇w - ρ L 2 B ρ ∩ {x 2 < h(x 1 )
}. We next check that v ρ satisfies the properties in the statement in the ball B ρ . Property (i) comes straightforwardly from (3.8) and from the fact that J vρ ⊂ Γ. Moreover (3.13), (3. As for property (iii), we observe that

lim ρ→0 1 ρ 2 L 2 ({x ∈ B ρ : u(x) = v ρ (x)}) ≤ lim ρ→0 (c τ ρ ρ + c ρ H 1 ((J u \ Γ) ∩ B 6ρ )) = 0,
where we have used Proposition 3.2 (i) and (3.8).

Let us now prove property (iv). By the definition of v ρ and ũ± ρ and by triangular inequality we obtain

1 ρ 2 ˆBρ |v ρ -u|dx ≤ 1 ρ 2 ˆBρ∩{h(x1)<x2} |w + ρ -ũ+ ρ |dx + 1 ρ 2 ˆBρ∩{h(x1)<x2<τρ} |ũ + ρ -u|dx+ 1 ρ 2 ˆBρ∩{x2<h(x1)} |w - ρ -ũ- ρ |dx + 1 ρ 2 ˆBρ∩{-τρ<x2<h(x1)} |ũ - ρ -u|dx. (3.15)
By the definition of w + ρ and Proposition 3.2 (vi) we can estimate 1

ρ 2 ˆBρ |w + ρ -ũ+ ρ |dx ≤ c ρ |E ũ+ ρ |(B 2ρ ) ≤ c ρ |Eu|(B 6ρ \ Γ).
By (3.8) and (3.9) we conclude that the first term of (3.15) tends to 0.

Clearly, the same argument can be applied to the third term there. So, it remains to treat the second term in (3.15), being the fourth one similar. By triangular inequality and a change of variable we infer

1 ρ 2 ˆBρ∩{h(x1)<x2<τρ} |ũ + ρ -u|dx ≤ 1 ρ 2 ˆBρ |ũ + ρ -u + (x 0 )|dx + 1 ρ 2 ˆBρ∩{h(x1)<x2} |u + (x 0 ) -u|dx ≤ c ρ 2 ˆB6ρ ∩{h(x 1 )<x 2 } |u + (x 0 ) -u|dx, int_repr-rev-final.tex 20 
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Let us prove now property (v). By Korn's inequality and Poincaré's inequality in W 1,p , there exists an affine function a ρ (x) := d ρ + β ρ x such that

1 ρ p+1 ˆBρ |w + ρ -a ρ | p dx ≤ c ρ ˆBρ |e(w + ρ )| p dx. (3.16) 
We first claim that lim

ρ→0 d ρ = u + (x 0 ). (3.17) Let ω + ρ := B ρ ∩ {u = w + ρ } ∩ {x 2 > h(x 1 )}. Since |ω + ρ |/ρ 2 → π/2
, and a ρ is affine, by [START_REF] Conti | Which special functions of bounded deformation have bounded variation?[END_REF]Lemma 4.3] we obtain, for ρ small,

a ρ -u + (x 0 ) L ∞ (B + ρ ,R 2 ) ≤ c ρ 2 ˆω+ ρ |w + ρ -a ρ |dx + c ρ 2 ˆω+ ρ |u -u + (x 0 )|dx.
The right hand side above is infinitesimal by (3.16), (3.14) and (3.11), thus we conclude lim sup

ρ→0 |d ρ -u + (x 0 )| ≤ lim ρ→0 a ρ -u + (x 0 ) L ∞ (B + ρ ,R 2 ) = 0,
which proves (3.17 To establish (3.18), we fix δ > 0 small and we consider ρ such that

1 ρ ˆBρ |e(w + ρ )| p dx 1 p < δ, for ρ ≤ ρ, (3.20) 
note that this is possible by (3.14). For ρ < ρ we define ρ k := (2 k ρ) ∧ ρ and we adopt the notation k in place of ρ k for the subscriptions. As above, using [22, Lemma 4.3] and the triangular inequality we infer

a k -a k+1 L ∞ (B + ρ k ,R 2 ) ≤ c ρ k 2 ˆ{u=w + k } |w + k -a k |dx + c ρ 2 k+1 ˆ{u=w + k+1 } |w + k+1 -a k+1 |dx ≤ cδρ p-1 p k ,
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|d k -d k+1 | ≤ a k -a k+1 L ∞ (B + ρ k ,R 2 ) ≤ cδρ p-1 p k , (3.21) 
and hence once more by [START_REF] Conti | Which special functions of bounded deformation have bounded variation?[END_REF]Lemma 4.3] and by the triangular inequality we conclude

|β k -β k+1 | ≤ cδρ -1 p k .
Collecting these estimates as k varies we obtain

ρ|β ρ | p ≤ ρ | β| + k-1 k=0 |β k -β k+1 | p ≤ cδ p + cρ| β| p ,
where k is the first index such that ρ k = ρ and β := β k = β ρ. This proves (3.18) as ρ → 0 and δ → 0.

We next prove (3.19). Similarly to the previous estimate, summing ( At this point we turn to property (ii). Korn's inequality implies that

∇w + ρ L p (Bρ,R 2×2 ) ≤ ∇w + ρ -β ρ L p (Bρ,R 2×2 ) + c ρ 2 /p |β ρ | ≤ c e(w + ρ ) L p (Bρ,R 2×2 ) + c ρ 2 /p |β ρ |,
where c > 0 is a universal constant. This, together with (3.14) and (3.18) and the corresponding estimates for w - ρ , implies property (ii). We finally show property (vi). Note that by the trace theorem we have

1 ρ ˆΓ∩Bρ |v ± ρ -u ± |dH 1 ≤ c ρ 2 ˆBρ |v ρ -u|dx + c ρ |E(v ρ -u)|(B ρ \ Γ) ≤ c ρ 2 ˆBρ |v ρ -u|dx + c ρ ˆBρ |e(v ρ )|dx + c ρ ˆBρ |e(u)|dx + c ρ ˆJu\Γ |[u]|dH 1
and all terms in the last expression approach 0 respectively by (iv), (3.9), (3.14) and (3.8).
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Preliminaries

In this Section we prove Theorem 1.1, along the lines of [START_REF] Bouchitté | A global method for relaxation in W 1,p and in SBV p[END_REF]Section 2.2]. Before starting we specify that property (ii) means that if u j , u ∈ SBD p (Ω) obey

u j → u in L 1 (Ω, R 2 ), then F (u, A) ≤ lim inf j→∞ F (u j , A) for any open set A. By property (iii), if u, v ∈ SBD p (Ω) obey u = v L 2 -a.e. in A, then F (u, A) = F (v, A).
The functions f and g are defined in (4.1) and (4.2) below. We recall that any u ∈ SBD p (Ω) (actually, also any function in BD(Ω)) for L 2 -a.e. x ∈ Ω has an approximate gradient ∇u(x) ∈ R 2×2 , defined by the fact that

lim ρ→0 1 ρ 2 L 2 y ∈ B ρ (x) : |u(y) -u(x) -∇u(x)(y -x)| |y -x| > ε = 0
for every ε > 0 (see [START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF]Theorem 7.4]). It is easy to see that this definition implies e(u) = (∇u + ∇u) T /2. The family of balls contained in Ω is denoted by 

A * (Ω) := {B ε (x) : x ∈ Ω, ε > 0, B ε (x) ⊂ Ω} .
m δ (u, A) := inf{ ∞ i=1 m(u, B i ) : B i ∈ A * , B i ∩ B j = ∅, B i ⊂ A, diam (B i ) < δ, µ(A \ ∞ i=1 B i ) = 0} , where µ := L 2 Ω + (1 + |[u]|)H 1 (J u ∩ Ω). Since δ → m δ (u, A) is decreasing, we can define m * (u, A) := lim δ→0 m δ (u, A).
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Moreover, we set

f (x 0 , u 0 , ξ) := lim sup ε→0 m(u 0 + ξ(• -x 0 ), B ε (x 0 )) L 2 (B ε ) (4.1) g(x 0 , a, b, ν) := lim sup ε→0 m(u x 0 ,a,b,ν , B ε (x 0 )) 2ε , (4.2) 
where u x 0 ,a,b,ν is defined as

u x 0 ,a,b,ν (x) := a if x -x 0 , ν > 0, b if x -x 0 , ν < 0.
In the next Lemmas we will see that F is equivalent to m, in the sense that the two quantities have the same Radon-Nykodym derivative with respect to µ, see Lemma 4.3 below. This will then be used in the next Section to determine the structure of F , separately for the diffuse part, which is absolutely continuos with respect to L 2 , and the jump part, which is orthogonal to it. We start by showing that F = m * on open sets (Lemma 4.1) and determining continuity of m in the radius of the ball (Lemma 4.2). To prove the converse inequality, let δ > 0, pick countably many balls B δ i as in the definition of m δ (u, A), such that

∞ i=1 m(u, B δ i ) < m δ (u, A) + δ .
By the definition of m there are functions

v δ i ∈ SBD p (B δ i ) such that v δ i = u around ∂B δ i and F (v δ i , B δ i ) ≤ m(u, B δ i ) + δL 2 (B δ i ). We define v δ := ∞ i=1 v δ i χ B δ i + uχ N δ 0
where N δ 0 := Ω \ ∪ i B δ i . By the BD compactness theorem v δ ∈ BD(Ω) and by the SBD closure theorem (see also [START_REF]Generalised functions of bounded deformation[END_REF]Theorem 11.3]) we conclude that v δ ∈ SBD p (Ω) and

Ev δ = ∞ i=1 Ev δ i B δ i + Eu N δ 0 ,
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|Ev δ | N δ = 0, µ(N δ ) = 0 , F (v δ , N δ ) = 0
where N δ := A ∩ N δ 0 . Further,

F (v δ , A) = ∞ i=1 F (v δ i , B δ i ) + F (v δ , N δ ) ≤ m δ (u, A) + δ + δL 2 (A) .
We claim that v δ → u in L 1 (Ω, R 2 ). Since F (•, A) is lower semicontinuous, this will imply

F (u, A) ≤ lim inf δ→0 F (v δ , A) ≤ lim inf δ→0 m δ (u, A) = m * (u, A) .
To prove v δ → u, we observe that by Poincaré's inequality (see for example [START_REF] Ebobisse | Fine Properties of Functions with Bounded Deformation and Applications in Variational Problems[END_REF]Proposition 1.7.6]), or [47, Theorem 2.2]), since diam B δ i ≤ δ and v δ = u on ∂B δ i we obtain

v δ -u L 1 (B δ i ,R 2 ) ≤ cδ|Ev δ -Eu|(B δ i ) . Therefore v δ -u L 1 (Ω,R 2 ) ≤ i v δ -u L 1 (B δ i ,R 2 ) ≤ cδ(|Ev δ |(A) + |Eu|(A)) ≤cδ(F (v δ , A) + F (u, A)) .
Since F (v δ , A) has a finite limit as δ → 0, this proves v δ → u in L 1 (Ω, R 2 ).

Lemma 4.2. For any ball B r (x 0 ) ⊂ Ω and δ > 0 sufficiently small we have

(i) lim δ→0 m(u, B r-δ (x 0 )) = m(u, B r (x 0 )); (ii) m(u, B r+δ (x 0 ))) ≤ m(u, B r (x 0 )) + β ˆBr+δ (x 0 )\Br(x 0 ) (1 + |e(u)| p )dx + β ˆJu∩Br+δ(x0)\Br(x0) (1 + |[u]|)dH 1 .
Proof. We drop x 0 from the notation. Choose

v δ ∈ SBD p (B r-δ ) with v δ = u around ∂B r-δ and F (v δ , B r-δ ) ≤ m(u, B r-δ ) + δ. We define w δ (x) := v δ (x) if x ∈ B r-δ , u(x) if x ∈ Ω \ B r-δ .
int_repr-rev-final.tex 25

[October [START_REF] Conti | Rigidity and Gamma convergence for solid-solid phase transitions with SO(2) invariance[END_REF]2016] We have

m(u, B r ) ≤F (w δ , B r ) ≤ F (v δ , B r-δ ) + F (w δ , B r \ B r-δ ) ≤m(u, B r-δ ) + δ + β ˆBr\Br-δ (|e(u)| p + 1)dx + β ˆJu∩Br\Br-δ (1 + |[u]|)dH n-1 . Since (1+|e(u)| p )L 2 Ω+(1+|[u]|)H 1 J u is a bounded measure, we conclude that m(u, B r ) ≤ lim inf δ→0 m(u, B r-δ ) .
Conversely, for any ε > 0 there is

v ε ∈ SBD p (B r ) with v ε = u around ∂B r and F (v ε , B r ) ≤ m(u, B r ) + ε. For δ > 0 sufficiently small one has v ε = u on B r \ B r-2δ and therefore m(u, B r-δ ) ≤ F (v ε , B r-δ ) ≤ m(u, B r ) + ε.
Taking first δ → 0 and then ε → 0 concludes the proof of (i). The proof of (ii) is analogous.

Lemma 4.3. For µ-a.e. x 0 ∈ Ω, lim ε→0 F (u, B ε (x 0 )) µ(B ε (x 0 )) = lim ε→0 m(u, B ε (x 0 )) µ(B ε (x 0 )) ,
where, as above,

µ := L 2 Ω + (1 + |[u]|)H 1 (J u ∩ Ω). Proof. From m(u, B ε (x 0 )) ≤ F (u, B ε (x 0 )) one immediately obtains lim sup ε→0 m(u, B ε (x 0 )) µ(B ε (x 0 )) ≤ lim sup ε→0 F (u, B ε (x 0 )) µ(B ε (x 0 ))
for any x 0 ∈ Ω. To prove the converse inequality, we define for t > 0 the set

E t := {x ∈ Ω : there is ε h → 0 such that F (u, B ε h (x)) > m(u, B ε h (x)) + tµ(B ε h (x)) for all h} .
From this definition one immediately has

lim inf ε→0 F (u, B ε (x 0 )) µ(B ε (x 0 )) ≤ lim inf ε→0 m(u, B ε (x 0 )) µ(B ε (x 0 )) + t for all x 0 ∈ Ω \ E t .
If we can prove that µ(E t ) = 0 for all t > 0 (4.3) then, recalling that lim ε→0 F (u,Bε(x 0 )) µ(Bε(x 0 )) exists µ-almost everywhere, the proof is concluded.
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It remains to prove (4.3) for an arbitrary t > 0. For δ > 0 we define

X δ := {B ε (x) : ε < δ, B ε (x) ⊂ Ω, µ(∂B ε (x)) = 0, F (u, B ε (x)) > m(u, B ε (x)) + tµ(B ε (x))}
and

U * := δ>0 {x : ∃ε > 0 s.t. B ε (x) ∈ X δ } .
We first show that

E t ⊂ U * . Let x ∈ E t . Then for any δ > 0 there is ε ∈ (0, δ) such that F (u, B ε (x)) > m(u, B ε (x))+tµ(B ε (x)). By Lemma 4.2 the function ε → m(u, B ε (x)) is left-continuous; F (u, B ε (x)) is left-continuous because F (u,
•) is a measure, therefore the same inequality holds for all ε ∈ (ε , ε).

In particular, there is one which additionally obeys µ(∂B ε (x)) = 0, so that x ∈ U * . It remains to show that µ(U * ) = 0. We fix a compact set

K ⊂ U * and 0 < δ < η. Let U η := {B ε (x) : B ε (x) ∈ X η } and Y δ := {B ε (x) : ε < δ, B ε (x) ⊂ U η \ K, µ(∂B ε (x)) = 0} .
By definition, X δ is a fine cover of K and Y δ of U η \ K. Therefore there are countably many pairwise disjoint balls B i ∈ X δ and Bj ∈ Y δ and a set N with µ(N ) = 0 such that

U η = i∈N B i ∪ j∈N Bj ∪ N . Then F (u, U η ) = i F (u, B i ) + j F (u, Bj ) + F (u, N ) ≥ i (m(u, B i ) + tµ(B i )) + j m(u, Bj ) = i m(u, B i ) + j m(u, Bj ) + tµ(∪ i B i ) ≥m δ (u, U η ) + tµ(K)
where in the last step we used the definition of m δ . For δ → 0, the definition of m * and Lemma 4.1 give 

F (u, U η ) ≥ m * (u, U η ) + tµ(K) = F (u, U η ) + tµ(K) .

Bounds on the volume term

In this subsection we identify the volume energy density in the integral representation for F to be the function f defined in (4.1). Throughout the whole subsection we consider a fixed map u ∈ SBD p (Ω). Our first result shows that the local volume energy density can be computed with a W 1,p -approximation to the blow-ups of u (see (4.7-4.8) below), in the sense that

dF (u, •) dL 2 (x 0 ) = lim ε→0 m w ε , B ε (x 0 ) L 2 (B ε ) . (4.4) 
We will however not need (4.4), but only the apparently more complex version in (4.5)-(4.6). Taking a diagonal subsequence they imply (4.4).

Lemma 4.4. For L 2 -almost any x 0 ∈ Ω, any ε > 0, and any s ∈ (0, 1) there are functions

w s ε ∈ W 1,p (B sε (x 0 ); R 2 ) which obey dF (u, •) dL 2 (x 0 ) ≤ lim inf s→1 lim inf ε→0 m w s ε , B sε (x 0 ) L 2 (B sε ) (4.5) 
and

lim sup s→1 lim sup ε→0 m w s ε , B s 2 ε (x 0 ) L 2 (B sε ) ≤ dF (u, •) dL 2 (x 0 ) (4.6)
and which approximate the affine function y → ∇u(x 0 )(y -x 0 ) + u(x 0 ) in the sense that

lim ε→0 1 ε 2 ˆBε(x0) |e(w s ε ) -e(u)(x 0 )| p dx = 0 (4.7) 
and

lim ε→0 1 ε 2+p ˆBε(x0) |w s ε (x) -u(x 0 ) -∇u(x 0 )(x -x 0 )| p dx = 0 . (4.8) 
We remark that the ball in (4.6) has radius s 2 ε instead of sε. The estimate would also hold on B sε , the variant we chose is more convenient in the proof of Lemma 4.7 (cp. (4.12)).

Proof. Let x 0 ∈ Ω be such that lim ε→0 1 ε 2 ˆBε(x0) |e(u)(x) -e(u)(x 0 )| p dx = 0 , (4.9) 
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lim ε→0 1 ε 2 ˆBε(x0)∩Ju (1 + |[u]|)dH 1 = 0 , (4.10) 
and lim

ε→0 1 ε 3 ˆBε(x0) |u(x) -u(x 0 ) -∇u(x 0 )(x -x 0 )|dx = 0 . (4.11) 
By [4, Th. 7.4], L 2 -almost every x 0 obeys (4.11), the other two are standard. By (4.10), for sufficiently small ε one has

H 1 (J u ∩ B ε (x 0 )) ≤ η(1 -s)ε/2, where η is the constant from Theorem 2.1. By Proposition 3.2 applied to u -u(x 0 ) -∇u(x 0 )(• -x 0 ) there is ws ε ∈ SBD p (B ε (x 0 )) ∩ W 1,p (B sε (x 0 ); R 2 ) with properties (i)-(vii), then we set w s ε := ws ε + u(x 0 ) + ∇u(x 0 )(• -x 0 )
. In particular, (4.7) follows from (3.3) and (4.9), while (4.8) follows from Lemma 4.5 below applied to ws ε , estimating the right-hand side with (4.7), (vi), and (4.9)-(4.11).

We first prove (4.6). By the very definition of m and the fact that

F (w s ε , •) is a positive measure, it follows m(w s ε , B s 2 ε (x 0 )) ≤ F (w s ε , B s 2 ε (x 0 )) ≤ F (w s ε , B ε (x 0 )) . (4.12) 
Let (B i ) i∈N be the balls from Proposition 3.2. For M ∈ N we define

w s,M ε := u + χ ∪ M i=1 B i (w s ε -u) . Then w s,M ε ∈ SBD p (B ε (x 0 )) and w s,M ε → w s ε in L 1 as M → ∞. Further, F (w s,M ε , B ε (x 0 )) ≤F (w s,M ε , B ε (x 0 ) \ ∪ M i=1 B i ) + M i=1 F (w s,M ε , B i ) ≤F (u, B ε (x 0 ) \ ∪ M i=1 B i ) + β M i=1 ˆBi (1 + |e(w s ε )| p )dx since w s,M ε = w s ε is a W 1,p function on each B i .
By monotonicity and lower semicontinuity of F we obtain

F (w s ε , B ε (x 0 )) ≤F (u, B ε (x 0 )) + β ∞ i=1 ˆBi (1 + |e(w s ε )| p )dx ≤F (u, B ε (x 0 )) + cL 2 (∪ i B i )(1 + |e(u)| p (x 0 )) + c ˆBε(x0) |e(w s ε ) -e(u)(x 0 )| p dx int_repr-rev-final.tex 29 
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v ε ∈ SBD p (B sε (x 0 )) be such that v ε = w s ε around ∂B sε (x 0 ) and F (v ε , B sε (x 0 )) ≤ m(w s ε , B sε (x 0 )) + ε 3 . We define ṽε (x) := v ε (x) if x ∈ B sε (x 0 ) w s ε (x) if x ∈ B ε (x 0 ) \ B sε (x 0 ) .
By definition of m and additivity of F we obtain

m(u, B ε (x 0 )) ≤F (ṽ ε , B ε (x 0 )) = F (ṽ ε , B sε (x 0 )) + F (ṽ ε , B ε (x 0 ) \ B sε (x 0 ))
where by locality of F and definition of v ε

F (ṽ ε , B sε (x 0 )) = F (v ε , B sε (x 0 )) ≤ m(w s ε , B sε (x 0 )) + ε 3
and, since ṽε = w s ε outside B sε (x 0 ) and H 1 (J ṽε ∩ ∂B sε (x 0 )) = 0, recalling (3.3) we obtain

F (ṽ ε , B ε (x 0 ) \ B sε (x 0 )) ≤β ˆBε(x0)\Bsε(x0) (1 + |e(w s ε )| p )dx + β ˆJu∩Bε(x0)\B s 2 ε (x 0 ) (1 + |[u]|)dH 1 ≤cβL 2 (B ε )(1 -s 2 )(1 + |e(u)| p (x 0 )) + cβ ˆBε(x0) |e(w s ε )(x) -e(u)(x 0 )| p dx + β ˆJu∩Bε(x0) (1 + |[u]|)dH 1 .
Dividing by L 2 (B ε ) and taking the limit as ε → 0 gives

lim ε→0 m(u, B ε (x 0 )) L 2 (B ε ) ≤ lim inf ε→0 m(w s ε , B sε (x 0 )) L 2 (B ε ) + cβ(1 -s 2 )(1 + |e(u)| p (x 0 )) ,
where we used (4.7) and (4.10). Recalling Lemma 4.3 we obtain

dF (u, •) dL 2 (x 0 ) = lim ε→0 m(u, B ε (x 0 )) L 2 (B ε ) ≤ lim inf s→1 lim inf ε→0 m(w s ε , B sε (x 0 )) L 2 (B sε ) .
This concludes the proof of (4.5).

The next Lemma is a reverse-Hölder estimate for functions with small strain, of the form v p ≤ r e(v) p + r -n/p v 1 .
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Lemma 4.6. For L 2 -a.e. x 0 ∈ Ω,

dF (u, •) dL 2 (x 0 ) ≤ f (x 0 , u(x 0 ), ∇u(x 0 ))
where f was defined in (4.1).

Proof. Let x 0 , w s ε be as in Lemma 4.4, for s ∈ (0, 1). We choose v s ε ∈ SBD p (B s 2 ε (x 0 )) such that v s ε (x) = u(x 0 ) + ∇u(x 0 )(x -x 0 ) around ∂B s 2 ε (x 0 ) and F (v s ε , B s 2 ε (x 0 )) ≤ m(u(x 0 ) + ∇u(x 0 )(• -x 0 ), B s 2 ε (x 0 )) + ε 3 . We extend it to R 2 setting it equal to u(x 0 ) + ∇u(x 0 )(• -x 0 ) outside B s 2 ε (x 0 ) and choose ϕ ∈ C ∞ c (B sε (x 0 )) with ϕ = 1 on B s 2 ε (x 0 ) and Dϕ ∞ ≤ c/(s(1 -s)ε). We define

z s ε := ϕv s ε + (1 -ϕ)w s ε . We remark that z s ε = v s ε on B s 2 ε (x 0 ) and z s ε ∈ W 1,p (B sε (x 0 ) \ B s 2 ε (x 0 ); R 2 ). Then m(w s ε , B sε (x 0 )) ≤F (z s ε , B sε (x 0 )) ≤ F (v s ε , B s 2 ε (x 0 )) + F (z s ε , B sε (x 0 ) \ B s 2 ε (x 0 )) ≤m(u(x 0 ) + ∇u(x 0 )(• -x 0 ), B s 2 ε (x 0 )) + ε 3 + β ˆBsε(x0)\B s 2 ε (x 0 ) (1 + |e(z s ε )| p )dx .
In order to estimate the error term, we observe that in B sε (x 0 ) \ B s 2 ε (x 0 ) one has

∇z s ε -∇u(x 0 ) = (u(x 0 ) + ∇u(x 0 )(• -x 0 ) -w s ε ) ⊗ ∇ϕ + (1 -ϕ)(∇w s ε -∇u(x 0 ))
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ˆBsε(x0)\B s 2 ε (x 0 ) (1 + |e(z s ε )| p )dx ≤c(1 -s)L 2 (B sε )(1 + |e(u)| p (x 0 )) + c ˆBsε(x0) |e(w s ε ) -e(u)(x 0 )| p dx + c ˆBsε(x0) |u(x 0 ) + ∇u(x 0 )(x -x 0 ) -w s ε | p ε p s p (1 -s) p dx.
Therefore, recalling (4.7) and (4.8),

lim sup ε→0 F (z s ε , B sε (x 0 ) \ B s 2 ε (x 0 )) L 2 (B sε ) ≤ c(1 -s)(1 + |e(u)| p (x 0 )) and lim sup ε→0 m(w s ε , B sε (x 0 )) L 2 (B sε ) ≤ lim sup ε→0 m(u(x 0 ) + ∇u(x 0 )(• -x 0 ), B s 2 ε (x 0 )) L 2 (B sε ) + c(1 -s)(1 + |e(u)| p (x 0 )) =s 2 f (x 0 , u 0 , ∇u(x 0 )) + c(1 -s)(1 + |e(u)| p (x 0 )) .
Since s was arbitrary, this concludes the proof. Lemma 4.7. For L 2 -a.e. x 0 ∈ Ω,

f (x 0 , u(x 0 ), ∇u(x 0 )) ≤ dF (u, •) dL 2 (x 0 )
where f was defined in (4.1).

Proof. We choose x 0 and w s ε as in Lemma 4.4, for s ∈ (0, 1). We let v s ε ∈ SBD p (B s 2 ε (x 0 )) be such that v s ε = w s ε around ∂B s 2 ε (x 0 ) and

F (v s ε , B s 2 ε (x 0 )) ≤ m(w s ε , B s 2 ε (x 0 )) + ε 3 , and extend it to B sε (x 0 ) setting it equal to w s ε out- side B s 2 ε (x 0 ). We choose ϕ ∈ C ∞ c (B sε (x 0 )) with ϕ = 1 on B s 2 ε (x 0 ) and Dϕ ∞ ≤ c/(s(1 -s)ε) and define z s ε := ϕv s ε + (1 -ϕ)(u(x 0 ) + ∇u(x 0 )(x -x 0 )) . Then m(u(x 0 ) + ∇u(x 0 )(• -x 0 ),B sε (x 0 )) ≤ F (z s ε , B sε (x 0 )) =F (v s ε , B s 2 ε (x 0 )) + F (z s ε , B sε (x 0 ) \ B s 2 ε (x 0 )) ≤m(w s ε , B s 2 ε (x 0 )) + ε 3 + F (z s ε , B sε (x 0 ) \ B s 2 ε (x 0 )) .
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∇z s ε -∇u(x 0 ) = -(u(x 0 ) + ∇u(x 0 )(• -x 0 ) -w s ε ) ⊗ ∇ϕ + ϕ(∇w s ε -∇u(x 0
)) which leads as in the proof of Lemma 4.6 to

lim sup ε→0 F (z s ε , B sε (x 0 ) \ B s 2 ε (x 0 )) L 2 (B sε ) ≤ c(1 -s)(1 + |e(u)| p (x 0 )) .
We conclude that for any s ∈ (0, 1)

lim sup ε→0 m(u(x 0 ) + ∇u(x 0 )(• -x 0 ), B sε (x 0 )) L 2 (B sε ) ≤ lim sup ε→0 m(w s ε , B s 2 ε (x 0 )) L 2 (B sε ) + c(1 -s)(1 + |e(u)| p (x 0 )) .
Since s was arbitrary, this concludes the proof.

Bounds on the surface term

In the current subsection we identify the function g in (4.2) to be the surface energy density in the integral representation of F . As above, we work with a fixed map u ∈ SBD p (Ω). We first prove a technical result.

Lemma 4.8. For H 1 -a.e. x 0 ∈ J u there are functions w ε ∈ SBV p (B 2ε (x 0 ), R 2 ) satisfying for all t ∈ (0, 2)

dF (u, •) dH 1 J u (x 0 ) = lim ε→0 m(w ε , B tε (x 0 )) 2tε . (4.13) 
Proof. It suffices to consider points x 0 such that the conclusions of Lemmata 3.4 and 4.3 hold true, the Radon-Nikodym derivative dF (u,•)

dH 1 Ju (x 0 ) exists finite, lim ε→0 µ(B ε (x 0 )) 2ε = 1 + |[u](x 0 )|, (4.14) 
and

lim ε→0 1 ε ˆBε(x0) |e(u)| p dx + 1 ε 2 ˆBε(x0) |u(x) -u x 0 |dx = 0, (4.15) 
where u x 0 is the piecewise constant function defined in (3.7). In view of all these choices and thanks to Lemma 4.3 we may conclude that dF (u, •)

dH 1 J u (x 0 ) = lim ε→0 F (u, B ε (x 0 )) 2ε = lim ε→0 m(u, B ε (x 0 )) 2ε . (4.16)
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For ε > 0 small enough the function v 2ε introduced in Lemma 3.4 belongs to SBD p (B 4ε (x 0 )) ∩ SBV p (B 2ε (x 0 ), R 2 ) and it satisfies properties (i)-(vi). We set w ε := v 2ε , we are left with proving that for all t ∈ (0, 2)

dF (u, •) dH 1 J u (x 0 ) ≥ lim sup ε→0 m(w ε , B tε (x 0 )) 2tε , (4.17 
)

dF (u, •) dH 1 J u (x 0 ) ≤ lim inf ε→0 m(w ε , B tε (x 0 )) 2tε . (4.18)
For the sake of notational simplicity we will prove inequalities (4.17) and (4.18) only for t = 1. We start off with (4.17). Let (ε j ) j be a sequence that

lim j→∞ m(w ε j , B ε j (x 0 )) 2ε j = lim sup ε→0 m(w ε , B ε (x 0 )) 2ε . (4.19) 
Items (iii) and (iv) in Lemma 3.4 and the Coarea formula yield for a subsequence not relabeled for convenience that for L 1 -a.e. s ∈ (0, 1)

lim j→∞ 1 ε j ˆ∂Bsε j (x 0 )∩{u =wε j } 1 + |u -w ε j | dH 1 = 0, (4.20) 
µ ∂B sε j (x 0 ) = H 1 ∂B sε j (x 0 ) ∩ J wε j = 0. (4.21) 
We choose z j ∈ SBD p (B sε j (x 0 )) such that z j = u around ∂B sε j (x 0 ) and F (z j , B sε j (x 0 )) ≤ m(u, B sε j (x 0 )) + ε 2 j , and define

ζ j := z j B sε j (x 0 ) w ε j B ε j (x 0 ) \ B sε j (x 0 ).
The definition of z j , the growth conditions in (1.1), and the locality of F yield

m(w ε j , B ε j (x 0 )) ≤ F (ζ j , B ε j (x 0 )) ≤ F (z j , B sε j (x 0 )) + β ˆBε j (x 0 )\Bsε j (x 0 ) (1 + |e(w ε j )| p ) dx =:I (1) j +β ˆ∂Bsε j (x 0 )∩{u =wε j } (1 + |u -w ε j |)dH 1 =:I (2) j + β ˆ(Bε j (x 0 )\Bsε j (x 0 ))∩Jw ε j (1 + |[w ε j ]|)dH 1 =:I (3) j ≤ m(u, B sε j (x 0 )) + ε 2 j + I (1) 
j + I (2) j + I (3) j . 
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[October [START_REF] Conti | Rigidity and Gamma convergence for solid-solid phase transitions with SO(2) invariance[END_REF]2016] We note that I

(1) j and I

(2) j are o(ε j ) as j → ∞ thanks to Lemma 3.4 (ii) and (4.20), respectively. Instead, employing Lemma 3.4 (vi) and (4.14) to bound I

(3) j we infer that lim sup j→∞

I (3) j 2ε j ≤ lim sup j→∞ β 2ε j ˆ((Bε j (x 0 )\Bsε j (x 0 ))∩Ju (1 + |[u]|)dH 1 = β lim sup j→∞ µ (B ε j (x 0 ) \ B sε j (x 0 )) ∩ J u 2ε j = (1 -+ |[u](x 0 )|). (4.22)
Therefore, by (4.16) we conclude

lim j→∞ m(w ε j , B ε j (x 0 )) 2ε j ≤ lim inf j→∞ m(u, B sε j (x 0 )) 2ε j + (1 -s)β(1 + |[u](x 0 )|) = s dF (u, •) dH 1 J u (x 0 ) + (1 -s)β(1 + |[u](x 0 )|).
Estimate (4.17 Let λ ∈ (1, 2), arguing as for (4.20) and (4.21), up to a subsequence depending on λ and not relabeled for convenience we may assume that for L 1 -a.e. s ∈ (0, 1)

lim j→∞ 1 ε j ˆ∂B sλε j (x 0 )∩{u =wε j } 1 + |u -w ε j | dH 1 = 0, (4.24) 
and µ ∂B sλε j (x 0 ) = H 1 ∂B sλε j (x 0 ) ∩ J wε j = 0. (4.25)

Given z j ∈ SBD p (B sλε j (x 0 )) with z j = w ε j around ∂B sλε j (x 0 ) and such that

F (z j , B sλε j (x 0 )) ≤ m(w ε j , B sλε j (x 0 )) + ε 2 j , define ζ j := z j B sλε j (x 0 ) u B λε j (x 0 ) \ B sλε j (x 0 ). int_repr-rev-final.tex 35 
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m(u, B λε j (x 0 )) ≤ F (ζ j , B λε j (x 0 )) ≤ m(w ε j , B sλε j (x 0 )) + ε 2 j + β ˆBλε j (x 0 ) (1 + |e(u)| p ) dx I (4) j + β ˆ∂B sλε j (x 0 )∩{u =wε j } (1 + |u -w ε j |)dH 1 I (5) j + β ˆ(B λε j (x 0 )\B sλε j (x 0 ))∩Ju (1 + |[u]|)dH 1 I (6) j .
The terms I (4) j and I

(5) j

are o(ε j ) by (4.15) and (4.24), respectively. The term I (6) j can be estimated thanks to (4.14). Hence, we get by (4.16)

dF (u, •) dH 1 J u (x 0 ) = lim sup j→∞ m(u, B λε j (x 0 )) 2λε j ≤ lim sup j→∞ m(w ε j , B sλε j (x 0 )) 2λε j +(1 -s)β(1 + |[u]|(x 0 )). (4.26)
Next, by choosing s ∈ (0, 1) for which (4.24) and (4.25) hold and sλ > 1, we may use Lemma 4.2(ii) to infer

m(w ε j , B sλε j (x 0 )) ≤m(w ε j , B ε j (x 0 )) + β ˆBsλε j (x 0 )\Bε j (x 0 ) (1 + |e(w ε j )| p )dx + β ˆ(B sλε j (x 0 )\Bε j (x 0 ))∩Jw ε j (1 + |[w ε j ]|)dH 1 . (4.27) 
Clearly, the first integral is o(ε j ) by Lemma 3.4 (ii), while the other one can be dealt with as I

(3) j in (4.22). Thus, (4.26) and (4.27) give

dF (u, •) dH 1 J u (x 0 ) ≤ 1 λ lim j→∞ m(w ε j , B ε j (x 0 )) 2ε j + (λ -1)β(1 + |[u](x 0 )|).
In conclusion, by taking into account (4.23), we deduce (4.18) by taking first the limit as s ↑ 1, for s ∈ (0, 1) chosen as explained above, and then as λ ↓ 1 in the latter inequality.

We are now ready to show that the function g in (4.2) is the surface energy density of F . This task will be accomplished by proving two inequalities. int_repr-rev-final.tex Lemma 4.9. For H 1 -a.e. x 0 ∈ J u ,

dF (u, •) dH 1 J u (x 0 ) ≤ g(x 0 , u + (x 0 ), u -(x 0 ), ν u (x 0 ))
where g was defined in (4.2).

Proof. We consider the same x 0 as in Lemma 4.8. In view of (4.13) and the definition of g in (4.2) it suffices to show that

lim ε→0 m(w ε , B ε (x 0 )) 2ε ≤ lim sup ε→0 m(u x 0 , B ε (x 0 )) 2ε , (4.28) 
where w ε is the function introduced in Lemma 4.8. To prove such a claim consider any sequence (ε j ) j , we have that for L 1 -a.e. s ∈ (0, 1)

µ ∂B sε j (x 0 ) = H 1 ∂B sε j (x 0 ) ∩ J w j = 0, (4.29) 
where we have set w j := w ε j . Fix s ∈ (0, 1) as above and a test field z j ∈ SBD p (B sε j (x 0 )) with z j = u x 0 on ∂B sε j (x 0 ) such that

F (z j , B sε j (x 0 )) ≤ m(u x 0 , B sε j (x 0 )) + ε 2 j . Consider a cut-off function ϕ ∈ C ∞ c (B ε j (x 0 ), [0, 1]
) such that ϕ ≡ 1 on B sε j (x 0 ) and ∇ϕ L ∞ ≤ 2 (1-s)ε j . Define ζ j := ϕ z j + (1 -ϕ)w j , with the convention that z j is extended equal to u x 0 outside B sε j (x 0 ). Therefore, by using ζ j as a test field for m(w j , B ε j (x 0 )) we infer from the growth condition in (1.1) and the locality of The reverse inequality is established arguing in an analogous fashion, therefore we provide a more concise proof. Lemma 4.10. For H 1 -a.e. x 0 ∈ J u , dF (u, •) dH 1 J u (x 0 ) ≥ g(x 0 , u + (x 0 ), u -(x 0 ), ν u (x 0 ))

F m(w j , B ε j (x 0 )) ≤ F (ζ j , B ε j (x 0 )) ≤ F (z j , B sε j (x 0 )) +C ˆBε j (x 0 )\Bsε j (x 0 ) (1 + |e(w j )| p ) dx =:I (7) j + C ((1 -s)ε j ) p ˆBε j (x 0 )\Bsε j (x 0 ) |w j -u x 0 | p dx =:I (8) j + C H 1 (B ε j (x 0 ) \ B sε j (x 0 )) ∩ J ζ j =:I ( 
where g was defined in (4.2).
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Having fixed such an s, let z j ∈ SBD p (B s ε j (x 0 )) with z j = w j on ∂B sε j (x 0 ) be such that F (z j , B sε j (x 0 )) ≤ m(w j , B sε j (x 0 )) + ε 2 j . Let ϕ ∈ C ∞ c (B ε j (x 0 ), [0, 1]) be a cut-off function such that ϕ ≡ 1 on B sε j (x 0 ) and ∇ϕ L ∞ ≤ 2 (1-s)ε j . Define ζ j := ϕ z j + (1 -ϕ)u x 0 , with the convention that z j is extended equal to w j outside B sε j (x 0 ). By using ζ j as a test field for m(u x 0 , B ε j (x 0 )) we infer from the growth condition in (1.1) and the locality of F m(u x 0 , B ε j (x 0 )) ≤ F (ζ j , B ε j (x 0 )) ≤ m(w j , B sε j (x 0 )) + ε 2 j +C ˆBε j (x 0 )\Bs ε j (x 0 ) (1+|e(w j )| p ) dx+ C ((1 -s)ε j ) p ˆBε j (x 0 )\Bsε j (x 0 ) |w j -u x 0 | p dx + C ˆ(Bε j (x 0 )\Bsε j (x 0 ))∩J The last equality follows from (4.13). The conclusion is achieved by letting s ↑ 1 in the last inequality, with s ∈ (0, 1) satisfying (4.29). for u ∈ SBD p (Ω) and B ∈ B(Ω). Since F δ satisfies properties (i)-(iv) of Theorem 1.1, there are two functions f and g δ such that F δ can be represented as in (1.2). The family of functionals F δ is pointwise increasing in δ, therefore there exists the pointwise limit g of g δ as δ → 0. We conclude that the representation (1.2) holds for F with densities f and g.

Remark 4.12. Since F is lower semicontinuous on W 1,p , the integrand f is quasiconvex [START_REF] Acerbi | Semicontinuity problems in the calculus of variations[END_REF][START_REF] Marcellini | Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals[END_REF]. Since F is lower semicontinuous on piecewise constant functions, g is BV -elliptic [START_REF] Ambrosio | Functionals defined on partitions in sets of finite perimeter. I. Integral representation and Γ-convergence[END_REF][START_REF]Functionals defined on partitions in sets of finite perimeter. II. Semicontinuity, relaxation and homogenization[END_REF]. for L 2 a.e. x ∈ Ω and for all (u, ξ) ∈ R 2 × R 2×2 . In particular, with fixed u and x for which (4.31) holds, if f (x, u, •) turns out to be convex then the restriction of f (x, u, •) to the subspace of skewsymmetric matrices is constant. Therefore, f (x, u, •) depends only on the symmetric part of the matrix ξ rather than on the whole matrix. Instead, if f is not convex in ξ the growth condition in (4.31) does not prevent the dependence on the skew-symmetric part of ξ. As an example, the integrand f : R 2×2 → [0, ∞) defined by f (ξ) := (ξ 11 + ξ 22 ) 2 + (ξ 2 12 + ξ 2 21 ) 2 + 1 -2 det(ξ) (4.32)

satisfies 1 4 |ξ + ξ T | 2 ≤ f (ξ) ≤ 1 2 |ξ + ξ T | 2 + 1
for every ξ ∈ R 2×2 , but evidently f (ξ) depends also on the skew-symmetric part ξ -ξ T . In particular, f is not convex; note that f is actually polyconvex. We do not know if there is g such that the functional F defined as in (1.2) with f given by (4.32) satisfies the growth condition (1.1) and is lower semicontinuous.

Theorem 1 . 1 .

 11 Let Ω ⊂ R 2 be a bounded open Lipschitz set, p ∈ (1, ∞), F : SBD p (Ω) × B(Ω) → [0, ∞) be such that (i) F (u, •) is a Borel measure for any u ∈ SBD p (Ω); int_repr-rev-final.tex (ii) F (•, A) is lower semicontinuous with respect to the strong L 1 (Ω, R 2 )convergence for any open set A ⊂ Ω; (iii) F (•, A) is local for any open set A ⊂ Ω, in the sense that if u, v ∈ SBD p (Ω) obey u = v L 2 -a.e. in A, then F (u, A) = F (v, A);(iv) There are α, β > 0 such that for any u ∈ SBD p (Ω), any B ∈ B(Ω),α( ˆB |e(u)| p dx + ˆJu∩B (1 + |[u]|)dH 1 ) ≤ F (u,B) ≤β( ˆB(|e(u)| p + 1)dx + ˆJu∩B (1 + |[u]|)dH 1 ). (1.1)

Figure 1 :

 1 Figure 1: Sketch of the construction of the grid in the proof of Theorem 2.1.

Figure 2 :

 2 Figure 2: Slice along the line of direction ν = (x -y)/|x -y| passing through z in the proof of Theorem 2.1.

  [START_REF] Anzellotti | Existence of the displacement field for an elastoplastic body subject to Hencky's law and von Mises yield condition[END_REF], inequality(3.3) follows at once with c := max{1 + c, 2π} ξ, with c the constant in Theorem 2.1.

p

  |d ρ -u + (x 0 )| = 0. (3.19)

Let

  B ∈ A * (Ω). We can identify any u ∈ SBD p (B) with its zero extension uχ B ∈ SBD p (Ω), and correspondingly write F (u, B) for F (uχ B , B). By locality, for any other extension the value of the functional is the same. For B ∈ A * (Ω) we define m(u, B) := inf{F (w, B) : w ∈ SBD p (B), w = u around ∂B} where the condition w = u around ∂B means that a ball B ⊂⊂ B exists, so that w = u on B \ B . For δ > 0, A ∈ A(Ω), we set

Lemma 4 . 1 .

 41 For all u ∈ SBD p (Ω) andA ∈ A(Ω), F (u, A) = m * (u, A).Proof. By definition, m(u, B) ≤ F (u, B) for any ball B. Since F (u, •) is a measure, we obtain m δ (u, A) ≤ F (u, A) for any δ > 0. Therefore m * (u, A) ≤ F (u, A).

27 [

 27 Therefore µ(K) = 0, and by the regularity of µ we conclude µ(U * ) = 0. int_repr-rev-final.tex[START_REF] Nečas | Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle[END_REF] 

[Lemma 4 . 5 .

 45 [START_REF] Nečas | Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle[END_REF] For any p ≥ 1 there is c > 0 (depending on n and p) such that for any v ∈ W 1,p (B r ; R n ) one has By scaling it suffices to consider r = 1. By Korn's inequality there is an affine function a such thatˆB1 |v -a| p dx ≤ c ˆB1 |e(v)| p dx .Since a is affine, ˆB1 |a| p dx ≤ c |v -a| p dx .

  ) follows at once by(4.19) and by letting s ↑ 1 in the last inequality.Let now (ε j ) j be a sequence such thatlim j→∞ m(w ε j , B ε j (x 0 )) 2ε j = lim inf ε→0 m(w ε , B ε (x 0 )) 2ε . (4.23) 

37 [ 1 ≤

 371 j (x 0 )\Bsε j (x 0 ))∩J ζ j |[ζ j ]|dH 1 =:I (10) j ≤ m(u x 0 , B sε j (x 0 )) + ε 2 j + I C = C(β, p) > 0.int_repr-rev-final.tex[START_REF] Nečas | Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle[END_REF] By taking into account Lemma 3.4 (ii) and (v) we deduce that I j ) as j → ∞. Moreover, asH 1 ((B ε j (x 0 ) \ B sε j (x 0 )) ∩ J ζ j \ (J ux 0 ∪ J w j )) = 0, item (i) in Lemma 3.4 together with (41 -s)(1 + |[u](x 0 )|). Furthermore, for H 1 -a.e. x ∈ J ζ j ∩ (B ε j (x 0 ) \ B sε j (x 0 )) it holds |[ζ j ]| ≤ |[u x 0 ]|χ Ju x 0 ∩J ζ j + |[w j ]|χ Jw j ∩J ζ j ≤ 2|[u x 0 ]|χ J ζ j + |[w j ] -[u x 0 ]|χ Jw j .In turn the latter inequality implies by (4.14) and (4.29)1 -s)|[u](x 0 )| + C lim sup j→∞ 1 2ε j ˆ(Bε j (x 0 )\Bsε j (x 0 ))∩J ζ j (|[w j ] -[u](x 0 )|) dH C(1 -s)|[u](x 0 )|,thanks to item (vi) in Lemma 3.4. Finally, we obtain from (4.30)lim inf j→∞ m(w j , B ε j (x 0 )) 2ε j ≤ s lim sup j→∞ m(u x 0 , B sε j (x 0 )) 2sε j +C(1-s)(1+|[u](x 0 )|) ≤ s lim sup ε→0 m(u x 0 , B ε (x 0 )) 2ε + C(1 -s)(1 + |[u](x 0 )|),and the claim in (4.28) follows at once by letting s → 1 in the inequality above.

ζ j ( 1 +

 1 |[ζ j ]|)dH1 , where C = C(β, p) > 0. Arguing as in the corresponding estimate in Lemma 4.9 (cf. (4.30)), and by taking into account the choice of (ε j ) j we conclude thatg(x 0 , u + (x 0 ), u -(x 0 ), ν u (x 0 )) ≤ lim inf j→∞ m(w j , B sε j (x 0 )) 2ε j +C(1-s)(1+|[u](x 0 )|) = s dF (u, •) dH 1 J u (x 0 ) + C(1 -s)(1 + |[u](x 0 )|).

4. 4 1 Proof of Theorem 1 . 1 .Proposition 4 . 11 . 39 [

 411141139 Proof of Theorem 1.The conclusion straightforwardly follows by Lemmata 4.6, 4.7, 4.9, and 4.10. The assertion in Theorem 1.1 holds also if property (iv) is replaced by the weaker int_repr-rev-final.tex[START_REF] Nečas | Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle[END_REF] (iv') There are α, β > 0 such that for any u ∈ SBD p (Ω), any B ∈ B(Ω),α ˆB |e(u)| p dx + H 1 (J u ∩ B) ≤ F (u, B) ≤β ˆB(|e(u)| p + 1)dx + ˆJu∩B (1 + |[u]|)dH 1 .Proof. Given F satisfying properties (i)-(iii) and (iv'), we define for δ > 0 a functionalF δ : SBD p (Ω) × B(Ω) → [0, ∞) by F δ (u, B) := F (u, B) + δ ˆJu∩B |[u]|dH 1 ,

Remark 4 . 13 .Remark 4 . 14 .+ ξ T 2 p 2 p

 41341422 If the functional F additionally obeysF (u + a, B) = F (u, B),for every u ∈ SBD p (Ω), every ball B ⊂ Ω, and every affine function a : R 2 → R 2 such that e(a) = 0, then there are two functions f :Ω × R 2×2 → [0, ∞) and g : Ω × R 2 × S 1 → [0, ∞) such that F (u, B) = ˆB f (x, e(u(x)))dx + ˆB∩Ju g(x, [u](x), ν u (x))dH 1 .The bulk density f satisfies the growth conditionsα ξ ≤ f (x, u, ξ) ≤ β 1 + ξ + ξ T

40 [

 40 int_repr-rev-final.tex[START_REF] Nečas | Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle[END_REF] 

  1 and |x -y| ≤ c 2 δ k , the characteristic function vanishes for t ≥ 3c 2 δ k . For any fixed x ∈ B(x, αδ k ) and ν ∈ S 1 , we define z as in (2.6) and (O x,y ) ν z ⊂ R as the set of t such that z + tν ∈ O x,y , so that, by convexity of the latter set, s x,x+tν ⊂ (O x,y ) ν z for all t for which χ B(y,αδ k ) (x + tν) = 0. Therefore the integral in t can be estimated by cδ 2

	k µ((O x,y ) ν z ), and
	ˆB(x,αδ k

  Corollary 3.3. Under the same assumptions and notation of Proposition 3.2, there is an affine map a : R 2 → R 2 such that By Korn's inequality applied to w on the ball B 2sρ there is a skew-

	symmetric matrix A such that		
		ˆB2sρ		ˆB2sρ
		|∇w -A| p dx ≤ c(p)			|e(w)| p dx,
	and by Poincaré's inequality applied to x → w(x) -Ax on the same domain
	there is d ∈ R 2 such that		
	ˆB2sρ					ˆB2sρ
		|w(x) -Ax -d| p dx ≤ c(p)ρ p		|∇w -A| p dx.
		ˆB2sρ \ω	|∇u -∇a| p dx ≤ c(p)	ˆB2ρ	|e(u)| p dx;	(3.4)
	and	ˆB2sρ \ω	|u -a| p dx ≤ c(p)ρ p	ˆB2ρ	|e(u)| p dx ,	(3.5)

where ω := ∪ F B.

int_repr-rev-final.tex 13
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Proof.

To conclude the proof we define a(x) := Ax + d and for the left-hand side observe that w = u, ∇w = ∇u on B 2sρ \ ∪ F B (more precisely ∇u = ∇w L n a.e. on {u = w} by [5, Proposition 3.73]), and instead use (v) from Proposition 3.2 to estimate the right-hand side. Proof of Proposition 3.2. By Lemma 3.1 we find a family F of open balls covering H 1 -a.e. J u ∩ B 2sρ that satisfies (3.1) and (3.2). Since the inequality H 1 J ∩ ∂B rx (x) = 0 is strict, we can further assume that they are all contained in B 2ρ for some ρ < ρ. Setting J = J u , to every B ∈ F we associate a new ball B * ⊂ B with the properties (i)-(v) of Theorem 2.1. Let F * be the family of the new balls B * , this is still a cover of J. Further, the balls B * can be taken to be closed. By the Besicovitch covering theorem [5, Theorem 2.17] there are ξ countable subfamilies F j = {B i j } i∈N of disjoint balls. Therefore, setting F
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