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The modeling of fracture problems within geometrically linear elasticity is often based on the space of generalized functions of bounded deformation GSBD p (Ω), p ∈ (1, ∞), their treatment is however hindered by the very low regularity of those functions and by the lack of appropriate density results. We construct here an approximation of GSBD p functions, for p ∈ (1, ∞), with functions which are Lipschitz continuous away from a jump set which is a finite union of closed subsets of C 1 hypersurfaces. The strains of the approximating functions converge strongly in L p to the strain of the target, and the area of their jump sets converge to the area of the target. The key idea is to use piecewise affine functions on a suitable grid, which is obtained via the Freudenthal partition of a cubic grid.

Introduction

The modeling of plasticity and fracture in a geometrically linear framework leads to vectorial variational problems in which the local energy depends on the symmetric part of the deformation gradient, and the deformation can jump in a set of finite (n-1)-dimensional measure [START_REF] Suquet | Sur un nouveau cadre fonctionnel pour les équations de la plasticité[END_REF][START_REF] Temam | Problèmes mathématiques en plasticité[END_REF][START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF]. If one assumes that the total variation of the distributional symmetrized gradient is controlled by the energy then one deals with functions of bounded deformation, which are defined as the functions u ∈ L 1 (Ω; R n ) such that the distributional strain Eu := 1 2 (Du + Du T ) is a bounded measure [START_REF] Temam | Functions of bounded deformation[END_REF][START_REF] Temam | Problèmes mathématiques en plasticité[END_REF][START_REF] Anzellotti | Existence of the displacement field for an elastoplastic body subject to Hencky's law and von Mises yield condition[END_REF][START_REF] Kohn | Dual spaces of stresses and strains, with applications to Hencky plasticity[END_REF][START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF]. Here Ω ⊂ R n is an open set, and BD(Ω) denotes the set of functions of bounded deformation on Ω.

In fracture problems one often deals with the proper subspace SBD p (Ω), which is characterized by the fact that the distributional strain Eu is the sum of an elastic part e(u)L n Ω, with e(u) ∈ L p (Ω; R n×n sym ), and a singular
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[ January 28, 2018] part [u] ν u H n-1 J u concentrated on a (n -1)-rectifiable set of finite (n -1)-dimensional measure, with ν u the approximate normal and [u] the jump of the traces of u across J u (see [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF][START_REF] Bellettini | Compactness and lower semicontinuity properties in SBD(Ω)[END_REF][START_REF] Chambolle | A density result in two-dimensional linearized elasticity, and applications[END_REF][START_REF] Bourdin | The variational approach to fracture[END_REF]). Typical fracture models, such as Griffith's model, do not, however, give control of the amplitude of the jump of u over the discontinuity set; a typical energy takes the form ˆΩ f (e(u))dx + H n-1 (J u ), (1.1) which is the natural vectorial generalization of the Mumford-Shah functional in linear elasticity. The function f is assumed to be convex and to have p-growth at infinity. One is then lead to compactness results in the space GSBD p (Ω), which was introduced by Dal Maso in [START_REF] Maso | Generalised functions of bounded deformation[END_REF] and recalled in Section 2 below.

In the study of problems modeled in SBD p or GSBD p (see for example [START_REF] Hutchinson | A course on nonlinear fracture mechanics[END_REF]) it is crucial to have good approximation results for functions in those spaces. On the one hand, smooth functions are dense in BD(Ω) in the strict topology, which entails weak convergence of the distributional strains. This is clearly not enough to ensure continuity of the energy in (1.1) along such approximating sequences. Indeed, the smooth approximants (which are typically obtained by mollification) replace both the discontinuities and the L p strain e(u) by smooth components, mixing fracture and elastic deformation. It is apparent that this will, in general, increase significantly the energy. In the scalar case from the point of view of applications to fracture mechanics, the functional setting for the problem is provided by SBV p (Ω; R n ) functions, and a density result which guarantees separate convergence of the two terms in (1.1) was obtained by Cortesani and Toader [START_REF] Cortesani | A density result in SBV with respect to non-isotropic energies[END_REF]. The approximants are still discontinuous, but the jump set has become regular (a finite union of simplexes) and each function is regular away from the jump set. The gradients converge strongly away from the jump set, and the jumps and the orientation of the jump set converge. More generally, in such a restricted framework one can allow the domain and the codomain to have different dimensions, in what follows we shall limit to comment the case of interest in this paper.

In the vector-valued case, and restricting to energies with quadratic growth, density of regular functions in SBD 2 (Ω) ∩ L 2 (Ω; R n ) was proven by Chambolle in 2004 for n = 2 [START_REF]An approximation result for special functions with bounded deformation[END_REF] and then for n ≥ 3 [START_REF] To | An approximation result for special functions with bounded deformation[END_REF]. His proof was extended to GSBD 2 (Ω) ∩ L 2 (Ω; R n ) by Iurlano [START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF]. Their result shows that any u ∈ GSBD 2 (Ω) ∩ L 2 (Ω; R n ) can be approximated by functions which are continuous away from a finite union of closed pieces of C 1 hypersurfaces, are Lipschitz continuous away from this set, with strong convergence of the strains and, in an appropriate sense, of the discontinuities. This permits to obtain convergence of energies of the type (1.1), as long as f has quadratic growth, and of more general functionals where the surface term has the form ´Ju ϕ(u + , u -, x, ν)dH n-1 (x) for a suitable surface energy den-
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For a discussion of the related problem of density for partition problems we refer to [START_REF] Braides | Density of polyhedral partitions[END_REF].

The restriction of the mentioned results of [START_REF]An approximation result for special functions with bounded deformation[END_REF][START_REF] To | An approximation result for special functions with bounded deformation[END_REF][START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF] to the quadratic energies does not originate from simplicity of presentation, but is instead a consequence of the type of construction used. Indeed, the key idea, first introduced in [START_REF]An approximation result for special functions with bounded deformation[END_REF], is to replace the function u by a componentwise linear approximation on a suitably chosen (very fine) cubic grid, and then to remove the cubes which intersect, in a suitable sense, the jump set. The fact that the energy is quadratic permits an explicit integration of the energy density in each cube, and leads to the identification of the continuum energy of the approximation with a discrete energy, which consists of sums of squares of difference quotients along the edges of the grid. In turn, for a suitable choice of the grid this discrete energy approximates the original energy. For nonquadratic expressions the first step, in which one integrates explicitly over a unit cell, breaks down. Estimates are of course still possible, but the result will only hold up to a p-dependent factor, even in the easy case where the functions are smooth to start with. Therefore we use a different strategy, and resort to a piecewise affine interpolation on a suitable refinement of the grid, see discussion in Section 3 below.

Our result permits to replace functions GSBD p (Ω) ∩ L p (Ω; R n ) with much more regular functions in a number of problems related to fracture (see for example [START_REF] Conti | Existence of minimizers for the 2d stationary Griffith fracture model[END_REF][START_REF]Existence theorem for the Griffith static fracture model in dimension two[END_REF][START_REF] Chambolle | A density result in gsbd p with applications to the approximation of brittle fracture energies[END_REF][START_REF]Approximation of a brittle fracture energy with a constraint of non-interpenetration[END_REF]). After the completion of this work, Chambolle and Crismale in [START_REF] Chambolle | A density result in gsbd p with applications to the approximation of brittle fracture energies[END_REF] have extended our main result to all functions in GSBD p (Ω) by adopting a different technique. We stress that the extra integrability hypothesis that we impose on the relevant function is often not meaningful for problems in fracture mechanics.

Together with the elliptic regularity results for solutions to linear elasticity type systems established in [START_REF] Conti | A note on the Hausdorff dimension of the singular set of solutions to elasticity type systems[END_REF], our result has been instrumental for the proof of existence in dimension n = 2 of minimizers for the strong counterpart of the Griffith functional in (1.1), that was presented in [START_REF] Conti | Existence of minimizers for the 2d stationary Griffith fracture model[END_REF][START_REF]Existence theorem for the Griffith static fracture model in dimension two[END_REF]. More precisely, in [START_REF]Existence theorem for the Griffith static fracture model in dimension two[END_REF] it is proved that any local minimizer u of (1.1) has relatively closed jump set, i.e. H 1 (J u ∩ Ω \ J u ) = 0, and it is smooth outside it, namely u ∈ C 1,α (Ω \ J u ; R 2 ) for some α ∈ (0, 1). The equivalence between the weak formulation of the problem as stated in (1.1) and the classical strong form then follows (cf. [START_REF] Conti | Existence of minimizers for the 2d stationary Griffith fracture model[END_REF][START_REF]Existence theorem for the Griffith static fracture model in dimension two[END_REF] for more details).

Such a mild regularity result extends the analogous statement for SBV p functions proved in the celebrated paper [START_REF] De Giorgi | Existence theorem for a minimum problem with free discontinuity set[END_REF] by De Giorgi, Carriero and Leaci, corresponding in applications to the (generalized) antiplane shear setting. As already mentioned before, in [START_REF] Conti | Existence of minimizers for the 2d stationary Griffith fracture model[END_REF][START_REF]Existence theorem for the Griffith static fracture model in dimension two[END_REF] the strong approximation property established in this paper is used to infer such kind of regularity; viceversa the quoted approximation result by Cortesani and Toader [START_REF] Cortesani | A density result in SBV with respect to non-isotropic energies[END_REF] uses De Giorgi, Carriero and Leaci's regularity result (in particular by means of [6, Lemma 5.2] by Braides and Chiadò Piat) as a key tool to prove the strong approximation property.
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In closing this Introduction we mention a complementary approach to the regularity of SBD p and GSBD p functions, which has received a lot of attention in the last years, namely, the proof of rigidity estimates for functions with small jump set. A Korn-Poincaré bound in term of the elastic energy alone was proven for SBD p functions in [START_REF] Chambolle | Korn-Poincaré inequalities for functions with a small jump set[END_REF]. An improved estimate, which controls also the gradients, was obtained in the two-dimensional case in [START_REF] Friedrich | A Korn-Poincaré-type inequality for special functions of bounded deformation[END_REF][START_REF]A Korn-type inequality in SBD for functions with small jump sets[END_REF][START_REF]Integral representation for functionals defined on SBD p in dimension two[END_REF].

Finally, we summarize the structure of the paper. Section 2 is devoted to fix the notation for the piecewise affine finite elements and the functional spaces which are involved in our main approximation result, Theorem 3.1, that we shall prove in Section 3.

Notation

One key ingredient of our piecewise affine approximation is the Freudenthal partition of the n-cube [0, 1] n . We say that the vertex (i

1 , . . . , i n ), i k ∈ {0, 1}, precedes the vertex (j 1 , . . . , j n ), j k ∈ {0, 1}, if i k ≤ j k for all k.
The convex hull of a chain of n+1 distinct vertices is a n-simplex. Then the Freudenthal partition S of the n-cube is defined as the set of all n-simplexes obtained through maximal chains of ordered vertices connecting the origin to the vertex (1, . . . , 1) (see Figure 1). Such partition counts n! simplexes. Alternatively, for any permutation σ of {1, . . . , n} one defines a simplex S σ as the convex envelope of the points v i := j≤i e σ(j) , i = 0, 1, . . . , n.
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[January [START_REF] Suquet | Sur un nouveau cadre fonctionnel pour les équations de la plasticité[END_REF]2018] Explicitly one obtains

S σ :={ i λ i j≤i e σ(j) : λ i ≥ 0, λ i = 1} ={ j e σ(j) i≥j λ i : λ i ≥ 0, λ i = 1}.
It is then apparent that S σ consists of the points x ∈ [0, 1] n such that j → x σ(j) is nonincreasing. Therefore the sets S σ have disjoint interiors and cover [0, 1] n . They differ only by a permutation of the components, hence they are congruent and each has volume 1/n!. We use standard notations for the space BV and its subspaces SBV p always referring to the book [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs[END_REF] for details.

As already mentioned in the introduction BD(Ω) is the space of functions u ∈ L 1 (Ω; R n ) for which the symmetrized distributional strain Eu = 1 2 (Du+ Du T ) is a Radon measure. The subspace SBD p (Ω), p ≥ 1, contains all functions u ∈ BD(Ω) for which Theorem 3.1. Let Ω ⊂ R n be a bounded Lipschitz set and let p > 1. Given u ∈ GSBD p (Ω) ∩ L p (Ω; R n ), there exists a sequence (u j ) ⊂ SBV p ∩ L ∞ (Ω; R n ) such that each J u j is contained in the union S j of a finite number of closed connected pieces of C 1 -hypersurfaces, u j ∈ W 1,∞ (Ω \ S j ; R n ), and the following properties hold:

(1) u j -u L p (Ω,R n ) → 0; (2) e(u j ) -e(u) L p (Ω,R n×n ) → 0; (3) H n-1 (J u j ) → H n-1 (J u ).
Remark 3.2. The sequence (u j ) in Theorem 3.1 can be constructed in a way that it satisfies in addition

H n-1 (J u j J u ) → 0, ˆJu j ∪Ju |u ± j -u ± | ∧ 1 dH n-1 → 0.
These further properties can be obtained by following the arguments in [START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF] step-by-step, with obvious modifications due to the fact that the proof there is written for p = 2. In this respect, since only a technical effort is required, we focus here on the main difficulties and we prove Theorem 3.1 in the stated form. As mentioned in the Introduction the proof of Theorem 3.1 follows the general strategy of Chambolle and Iurlano [START_REF]An approximation result for special functions with bounded deformation[END_REF][START_REF] To | An approximation result for special functions with bounded deformation[END_REF][START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF], but uses a different interpolation scheme and a different finite-element grid for the actual construction. Indeed, we first construct a sequence of SBV p ∩ L ∞ -functions converging to a given u ∈ GSBD p (Ω), in a way that the bulk estimate is sharp and the surface estimate is obtained up to a multiplicative factor. Each approximating function is a piecewise linear interpolation outside from a finite number of cubes, where it is set equal to 0. Considering piecewise linear interpolations is essential in order to treat the case of maps in GSBD p (Ω) with p = 2. It is the main difference with the mentioned references [START_REF]An approximation result for special functions with bounded deformation[END_REF][START_REF] To | An approximation result for special functions with bounded deformation[END_REF][START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF] which deal with the quadratic case p = 2. Indeed, in [START_REF]An approximation result for special functions with bounded deformation[END_REF][START_REF] To | An approximation result for special functions with bounded deformation[END_REF][START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF] polynomial interpolations (of degree equal to the dimension of the space) are employed. Such approximations in dimension higher than 3 if p = 2 would give rise to a multiplicative factor in the bulk estimate (cf. with [9, Lemma A.1]), so that the strong approximation property would fail. The piecewise polynomials correspond to a componentwise affine interpolation, that can be done directly on a cubic grid. In the p = 2 case we need to use a piecewise affine interpolation, and therefore need to decompose the domain in simplexes. However, the strategy of [START_REF]An approximation result for special functions with bounded deformation[END_REF][START_REF] To | An approximation result for special functions with bounded deformation[END_REF][START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF] was based on controlling the longitudinal difference quotients along grid segments (the segments joining two vertices of the grid, which are edges of the elements or diagonals of their faces). A natural approach would be to choose an expression for the energy density which uses only these components. In dimension n = 2 this still works, since one can decompose the square [0, 1] 2 into two triangles whose sides have the same orientations (the three orientations being (1, 0), (0, 1) and (1, 1) for both of the triangles). In dimension 3 and higher this is, however, not any more possible, and the energy density will typically not match the geometry of the simplex. Therefore we need to decompose each term of the energy into the components which are "longitudinal" with respect to the edges of the simplexes. We shall denote by A ∈ A ⊂ R n×n sym the "components" of e(u) which enter the energy, and by α A,S j the coefficients of the decomposition of strain direction A in linear combinations of longitudinal strains along the edges simplex S, where j labels the sides of S. The key observation on which the construction in this paper is based is that one can perform this decomposition jointly for the continuous and for the discrete energy.

We now introduce the objects just mentioned in more detail. We fix p ≥ 1 and choose a finite set of matrices A ⊂ R n×n sym , which span R n×n sym and are fixed for the rest of the proof. Let W : R n×n sym → R be defined by

W (ξ) := A∈A |ξ : A| p (3.1)
where A : B := Tr A T B = ij A ij B ij denotes the Euclidean scalar product on R n×n sym . We denote by D S the set of the edges directions for a simplex S in the Freudenthal partion S . Notice that D S contains n(n + 1) /2 linearly independent vectors and that for any given S the set {e ⊗ e : e ∈ D S } constitutes a basis for R n×n sym . To see this, it suffices to show that if ξ ∈ R n×n sym obeys e • ξe = 0 for all e ∈ D S then ξ = 0. Indeed, the simplex S can be written as the convex envelope of {0, f 1 , . . . , f n }, where (f i ) i=1,...,n is a basis of R n . The set D S is then given by the set of the ±f i 's and the set of all the differences f i -f j 's with i = j. Therefore, if ξ ∈ R n×n sym is such that e • ξe = 0 for all e ∈ D S , we deduce first that f i • ξf i = 0 for all i by taking e = f i , and then f i • ξf j = 0 for all i = j by taking e = f i -f j . Hence, ξ = 0. We stress that D S is a set of differences of vertices of S, not a set of unit vectors.
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As in the references mentioned above, the key point is to prove an approximation result that enlarges the jump set by at most a fixed factor. The sharp constant can then be recovered by applying this to the complement of a suitable "large" compact subset of J u . Theorem 3.4. Let Ω ⊂ R n be an open bounded set with Lipschitz boundary and let p ≥ 1. Given u ∈ GSBD p (Ω) ∩ L p (Ω; R n ), there exists a sequence (u j ) ⊂ SBV p ∩ L ∞ (Ω; R n ) such that each J u j is contained in the union Σ j of a finite number of (n -1)-dimensional faces of closed simplexes, u j ∈ W 1,∞ (Ω \ Σ j , R n ), and the following properties hold:

(1) u j -u L p (Ω,R n ) → 0;
(2) for a positive constant c 1 depending only on n and p lim sup

j→∞ ˆΩ W (e(u j )) dx+H n-1 (Σ j ) ≤ ˆΩ W (e(u)) dx+c 1 H n-1 (J u ).
In order to prove Theorem 3.4 we need a preliminary lemma, whose proof is entirely similar to [9, Lemma 3.2], [26, Lemma 3] and therefore not repeated here. The given function u is replaced by another GSBD p -function close in energy to u and defined in a larger set. 

(1) ||û -u|| L p (Ω,R n ) < ε, (2) ˆΩ |e(û)| p dx ≤ ˆΩ |e(u)| p dx + ε, (3) H n-1 (J û) ≤ H n-1 (J u ) + ε.
Proof of Theorem 3.4. Fixed u ∈ GSBD p (Ω)∩L p (Ω; R n ) and ε > 0, Lemma 3.5 provides û and Ω satisfying ( 1)-( 3). Fixed y ∈ [0, 1) n and h > 0 small, we consider the translated lattice hy + ξ, with ξ ∈ hZ n . We introduce the tubular neighborhood in the direction -τ of J û,

J τ := x∈J û[x, x -τ ] = {y ∈ R n : [y, y + τ ] ∩ J û = ∅}, for τ ∈ R n ,
and the longitudinal difference quotient along the edge ẽj of S ∈ S S j,h (z) := (û(z + ha j + hẽ j ) -û(z + ha j )) • ẽj h|ẽ j | 2
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[ January 28, 2018] for [z + ha j , z + ha j + hẽ j ] ⊂ Ω, and zero elsewhere, where a j and a j + ẽj are the only two vertices of S whose difference is ẽj . Let us introduce the discrete bulk and surface energies

E y,h 1 ( Ω) := h n n! A∈A S∈S ξ ∈ hZ n j α A,S j S j,h (ξ + hy)(1 -1 J hẽ j (hy + ξ + ha j )) p , E y,h 2 ( Ω) := c1 h n-1 e∈ S D S ξ ∈ hZ n 1 J he (hy + ξ) |e| , (3.2) 
where 1 B denotes the characteristic function of the set B, α A,S j are the coordinates of A in the basis {ν j ⊗ νj : ẽj ∈ D S } of R n×n sym , where νj = ẽj /|ẽ j | and c1 := 2 n n √ n, the latter choice will be motivated later. Let w y,h be the piecewise affine function obtained interpolating û on each simplex of the partition. Let us prove that there exist y ∈ [0, 1) n and a subsequence of h ↓ 0 not relabeled, such that

(1 ) w y,h -û L p (Ω,R n ) → 0; (2 ) lim h→∞ E y,h 1 ( Ω) + E y,h 2 ( Ω) ≤ ˆΩ W (e(û))dx + c 1 H n-1 (J û)
, where c 1 is a constant depending on c1 and W is the integrand defined in (3.1).

In order to prove (1 ) we observe that for every simplex ξ + hy + hS of the partition with vertices a i , i = 0, . . . , n, there exist n + 1 affine functions f i such that

n i=0 f i = 1 and w y,h = n i=0 û(a i )f i on ξ + hy + hS.
Then integrating on [0, 1) n , we deduce by convexity and Fubini's theorem for h sufficiently small

ˆ[0,1) n dy ˆΩ |w y,h (x) -û(x)| p dx ≤ c ˆ[0,1) n dy ξ∈hZ n ∩ Ω ˆΩ∩(ξ+hy+[-h,h] n ) |û(ξ + hy) -û(x)| p dx = c ˆΩ dx ξ∈hZ n ∩ Ω ˆ[0,1) n 1 ξ+hy+[-h,h] n (x)|û(ξ + hy) -û(x)| p dy,
where c takes into account the convexity of the power R t → |t| p and the number of simplexes sharing a certain a i as a vertex. Changing variable
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[January 28, 2018] z = (x -hy -ξ)/h in the second integral we obtain

ˆ[0,1) n dy ˆΩ |w y,h (x) -û(x)| p dx ≤ c ˆΩ dx ξ∈hZ n ∩ Ω ˆ( x-ξ h -[0,1) n )∩(-1,1) n |û(x -hz) -û(x)| p dz ≤ c ˆ(-1,1) n dz ˆΩ |û(x -hz) -û(x)| p dx.
By dominated convergence theorem the last term vanishes as h ↓ 0, therefore there is a subsequence of h, not relabeled, and a measurable set of full measure E ⊂ [0, 1) n such that for every y ∈ E the convergence in (1 ) holds.

Let us prove now (2 ). We integrate again on [0, 1) n and estimate first the bulk part. Changing variable x = hy + ξ and then slicing through Fubini's theorem we obtain

ˆ[0,1) n E y,h 1 ( Ω) dy = 1 n! A∈A S∈S ξ∈hZ n ˆξ+h[0,1) n 1 Ω(x) j α A,S j S j,h (x)(1 -1 J hẽ j (x + ha j )) p dx = 1 n! A∈A S∈S ˆΩ j α A,S j h|ẽ j | ûν j π j (x+ha j ) ((x + ha j ) • νj + h|ẽ j |)- ûν j π j (x+ha j ) ((x + ha j ) • νj ) (1 -1 J hẽ j (x + ha j )) p dx, (3.3) 
where π j is the orthogonal projection on Π νj := ν⊥ j . We recall that νj = ẽj /|ẽ j | and that the slice is defined as usual by ûν z (s) := û(z + sν) Arguing in a similar way for E y,h

• ν for z ∈ Π ν . Since û ∈ GSBD p ( Ω) ∩ L p ( Ω; R n ) we have ûν z ∈ SBV p ( Ων z ), for H n-1 - a.e. z ∈ Π ν . Observe that 1 J he (z + sν) = 0,
2 we obtain ˆ[0,1) n E y,h 2 ( Ω) dy= c1 e∈∪ S D S ˆRn 1 J he h|e| dz ≤ c1 e∈∪ S D S ˆJû |ν û • ν e |dH n-1 ≤ c 1 H n-1 (J û), (3.5) 
having set c 1 := c1 #(∪ S∈S D S ) = 2 n-1 n 5 /2 (n + 1)n!, ν e := e/|e|, and having used in the last inequality the slicing formula

ˆJû |ν û • ν e | dH n-1 = ˆΠνe #(J ûνe z ) dH n-1 (z) .
By inequalities (3.4) and (3.5) and Fatou's lemma we conclude there there exists y ∈ [0, 1) n and a subsequence of h ↓ 0 not relabeled for convenience such that properties (1 ) and (2 ) hold. In what follows we drop the index y ad denote w y,h simply by w h .

ContiFocardiIurlano2.tex 11

[ January 28, 2018] We define now a sequence v h as 0 in the cubes Q = ξ + hy + [0, h) n such that J û crosses an edge of ξ +hy +hS for some S ∈ S , while we set v h := w h otherwise. In the first case we say that the cube is bad, in the second case that it is good. We let Σ h be the union of the faces of the bad cubes. We claim that (1 )

w h -v h L p (Ω,R n ) → 0, (2 ) 
the constant c1 in (3.2) can be chosen in a way that for every h sufficiently small

ˆΩ W (e(v h ))dx + H n-1 (Σ h ) ≤ E h
As for (2 ), we first notice that H n-1 (J v h ) ≤ 2nh n-1 N h , being N h the number of bad cubes. For every bad cube Q := ξ + hy + [0, h) n there is at least one pair e ∈ S D S , ξ ∈ hZ n , such that [ξ + hy, ξ + hy + he] ⊂ Q and 1 J he (ξ + hy) = 1. At the same time, the edge [ξ + hy, ξ + hy + he] is shared by at most 2 n-1 cubes. Therefore

N h ≤ 2 n-1 e∈ S D S ξ∈hZ n 1 J he (ξ + hy).
Recalling that |e| ≤ √ n and defining c1 := 2 n n √ n we obtain from the definition of E h 2 ( Ω) that Since w h is the affine interpolation of û on each simplex constituting Q, we have

H n-1 (Σ h ) ≤ 2nh n-1 N h ≤ E h 2 ( Ω). ( 3 
e(w h )ν • ν = (w h (a) -w h (b)) • ν |a -b| = (û(a) -û(b)) • ν |a -b| , for every pair a, b of vertices of Q, with ν = (a -b)/|a -b|. Therefore ˆ[0,h) n +ξ+hy W (e(v h ))dx = A∈A S∈S h n n! j α A,S j S j,h (ξ + hy) p ,
recalling that the difference quotient is defined by

S j,h (z) = (û(z + ha j + hẽ j ) -û(z + ha j )) • ẽj h|ẽ j | 2 , for z ∈ Ω,
and that a j , a j + e j represent the only two vertices of S whose difference is ẽj . Summing on the good cubes Q which intersect Ω we finally obtain (3.7). Property (2 ) then follows by (3.6) and (3.7).

To check (1 ) we use (1 ) and we observe that

v h -w h p L p (Ω,R n ) = ˆC |w h | p dx,
where C denotes the union of the bad cubes. Notice that C has small Lebesgue measure, indeed by (3.6)

L n (C ) ≤ h n N h = O(h).
Properties (1 ), ( 2), (1 ), ( 2), together with Lemma 3.5, imply (1) and (2). Using a by now standard Besicovitch covering argument we can refine the estimate obtained in Theorem 3.4 reducing the coefficient of the surface term to 1. The idea is to cover the most of the jump set of u with a finite number of pairwise disjoint closed balls, in a way that the jump set in each of them is close to a C 1 hypersurface separating the ball into two components. Then Theorem 3.4 is applied in each component and in the complement of the balls, so that the jump of the resulting function is the union of the C 1 hypersurfaces separating the balls and of the (n -1)-dimensional faces of closed simplexes obtained by applying Theorem 3.4 (see [START_REF]An approximation result for special functions with bounded deformation[END_REF]Theorem 2] or [START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF]Theorem 6] for more details). Theorem 3.6. Let Ω ⊂ R n be an open bounded set with Lipschitz boundary, p ∈ (1, ∞), and let u ∈ GSBD p (Ω)∩L p (Ω; R n ). Then there exists a sequence u j ∈ SBV p ∩ L p (Ω; R n ) such that J u j is contained in the union S j of a finite number of closed connected pieces of C 1 -hypersurfaces, u j ∈ W 1,∞ (Ω \ S j ; R n ), and the following properties hold:
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(1) u j -u L p (Ω;R n ) → 0;

(2) lim sup j→∞ ˆΩ W (e(u j )) dx + H n-1 (S j ) ≤ ˆΩ W (e(u)) dx + H n-1 (J u ).

Remark 3.7. We emphasize that the growth hypothesis p > 1 is in fact not needed in the proof of Theorem 3.6. It is only used to deduce conditions ( 2) and (3) in Theorem 3.1 by means of the GSBD p compactness result in [START_REF] Maso | Generalised functions of bounded deformation[END_REF]Theorem 11.3] and strict convexity of W as oulined below.

Theorem 3.1 easily follows from Theorem 3.6.

Proof of Theorem 3.1. Let u j be given by Theorem 3.6. By compactness in GSBD p [20, Theorem 11.3] there exists a subsequence of u j , not relabeled, satisfying e(u j ) e(u) weakly in L p (Ω, R n×n ), (3.8) ˆΩ W (e(u))dx ≤ lim inf j→∞ ˆΩ W (e(u h ))dx, (3.9)

H n-1 (J u ) ≤ lim inf j→∞ H n-1 (J u j ). 

Figure 1 :

 1 Figure 1: Freudenthal partition of [0, 1] 3 : the origin is the vertex on the bottom in front, (1,1,1) is at the top in the back.

Remark 3 . 3 .

 33 By combining Theorem 3.1 and[START_REF] Cortesani | A density result in SBV with respect to non-isotropic energies[END_REF] Theorem 3.1] by Cortesani and Toader, it is possible to obtain a sequence of approximating functions whose jump set is polyhedral, namely the intersection of Ω with the union of a finite number of (n -1)-dimensional simplexes compactly contained in Ω. If p ∈ (1, 2] the result can be even improved by taking the (n -1)-simplexes pairwise disjoint (see[START_REF] Cortesani | A density result in SBV with respect to non-isotropic energies[END_REF] Remark 3.5] and [18, Section 4, Proof of Corollary 3.11]).

Lemma 3 . 5 .

 35 Let Ω ⊂ R n , n ≥ 2, be open bounded with Lipschitz boundary, and let p ≥ 1. Given u ∈ GSBD p (Ω) ∩ L p (Ω; R n ) and ε > 0 there exists an open bounded set with Lipschitz boundary Ω ⊃⊃ Ω and a function û ∈ GSBD p ( Ω) ∩ L p ( Ω; R n ), such that the following hold

10 [

 10 for e = |e|ν and z • ν = 0, means z + sν ∈ J he , which is the same as [s, s + h|e|] ∩ (J û) ν z = ∅. For almost every ContiFocardiIurlano2.texJanuary 28, 2018] z, by (2.1) this implies [s, s+ h|e|] ∩ J ûν z = ∅. Therefore (3.3) yields ˆ[0,1) n E π j (x+ha j ) ) (t + (x + ha j ) • νj ))dt û)ν j • νj )(x + ha j + tν j )dt p dx.(3.4)As h ↓ 0 we find by the continuity of the translation, the Lebesgue theorem, and the dominated convergence theorem lim sup h↓0 ˆ[0,1) n E y,h 1 ( Ω) dy ≤

(3. 10 )

 10 By virtue of inequality (2) of Theorem 3.6, (3.9), and (3.10) we obtain ˆΩ W (e(u))dx = lim j→∞ ˆΩ W (e(u j ))dx,H n-1 (J u ) = lim j→∞ H n-1 (J u j ),and the thesis follows at once from (3.8) and the strict convexity of W .
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Eu = e(u)L n Ω + (u + -u -) ν u H n-1 J u , with e(u) ∈ L p (Ω; R n×n ) and H n-1 (J u ) < ∞ (cf. [START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF][START_REF] Bellettini | Compactness and lower semicontinuity properties in SBD(Ω)[END_REF]).

Given

where Ω ξ y := {t ∈ R : y + tξ ∈ Ω}. If u ∈ BD(Ω) one can show that u ξ y ∈ BV (Ω ξ y ) for almost every y. One denotes with Ω ξ := (Id -ξ ⊗ ξ)Ω the set of "relevant" values of y, i.e., the set of y ∈ R n such that y • ξ = 0 and (y + Rξ) ∩ Ω = ∅.

An L n -measurable function u : Ω → R n belongs to GSBD(Ω) if there exists a bounded positive Radon measure λ u ∈ M + b (Ω) such that the following condition holds for every ξ ∈ S n-1 : for H n-1 -a.e. y ∈ Ω ξ the function u ξ y (t) = u(y +tξ)•ξ belongs to SBV loc (Ω ξ y ), where Ω ξ y := {t ∈ R : y +tξ ∈ Ω}, and for every Borel set B ⊂ Ω it satisfies

where J 1

, the aforementioned quantities e(u) and J u are still well-defined, and are respectively integrable and rectifiable in the previous sense. Moreover for every ξ ∈ S n-1 and for H n-1 -a.e. y ∈ Ω ξ we have

y and e(u)(y

where (u ξ y ) denotes the absolutely continuous part of the distributional derivative. In analogy to SBD p (Ω), the subspace GSBD p (Ω) includes all functions in GSBD(Ω) satisfying e(u) ∈ L p (Ω; R n×n ) and H n-1 (J u ) < ∞ (cf. [START_REF] Maso | Generalised functions of bounded deformation[END_REF]).
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