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The modeling of fracture problems within geometrically lin-
ear elasticity is often based on the space of generalized func-
tions of bounded deformation GSBDp(Ω), p ∈ (1,∞), their
treatment is however hindered by the very low regularity of
those functions and by the lack of appropriate density results.
We construct here an approximation of GSBDp functions,
for p ∈ (1,∞), with functions which are Lipschitz continuous
away from a jump set which is a finite union of closed sub-
sets of C1 hypersurfaces. The strains of the approximating
functions converge strongly in Lp to the strain of the target,
and the area of their jump sets converge to the area of the
target. The key idea is to use piecewise affine functions on a
suitable grid, which is obtained via the Freudenthal partition
of a cubic grid.

1 Introduction

The modeling of plasticity and fracture in a geometrically linear framework
leads to vectorial variational problems in which the local energy depends on
the symmetric part of the deformation gradient, and the deformation can
jump in a set of finite (n−1)-dimensional measure [28, 29, 22]. If one assumes
that the total variation of the distributional symmetrized gradient is con-
trolled by the energy then one deals with functions of bounded deformation,
which are defined as the functions u ∈ L1(Ω;Rn) such that the distributional
strain Eu := 1

2(Du + DuT ) is a bounded measure [30, 29, 3, 27, 1]. Here
Ω ⊂ Rn is an open set, and BD(Ω) denotes the set of functions of bounded
deformation on Ω.

In fracture problems one often deals with the proper subspace SBDp(Ω),
which is characterized by the fact that the distributional strain Eu is the
sum of an elastic part e(u)Ln Ω, with e(u) ∈ Lp(Ω;Rn×nsym ), and a singular

ContiFocardiIurlano2.tex 1 [January 28, 2018]



part [u] � νuHn−1 Ju concentrated on a (n − 1)-rectifiable set of finite
(n − 1)-dimensional measure, with νu the approximate normal and [u] the
jump of the traces of u across Ju (see [22, 4, 8, 5]). Typical fracture models,
such as Griffith’s model, do not, however, give control of the amplitude of
the jump of u over the discontinuity set; a typical energy takes the formˆ

Ω
f(e(u))dx+Hn−1(Ju), (1.1)

which is the natural vectorial generalization of the Mumford-Shah func-
tional in linear elasticity. The function f is assumed to be convex and to
have p-growth at infinity. One is then lead to compactness results in the
space GSBDp(Ω), which was introduced by Dal Maso in [20] and recalled
in Section 2 below.

In the study of problems modeled in SBDp or GSBDp (see for example
[25]) it is crucial to have good approximation results for functions in those
spaces. On the one hand, smooth functions are dense in BD(Ω) in the strict
topology, which entails weak convergence of the distributional strains. This
is clearly not enough to ensure continuity of the energy in (1.1) along such
approximating sequences. Indeed, the smooth approximants (which are typ-
ically obtained by mollification) replace both the discontinuities and the Lp

strain e(u) by smooth components, mixing fracture and elastic deformation.
It is apparent that this will, in general, increase significantly the energy. In
the scalar case from the point of view of applications to fracture mechanics,
the functional setting for the problem is provided by SBV p(Ω;Rn) functions,
and a density result which guarantees separate convergence of the two terms
in (1.1) was obtained by Cortesani and Toader [19]. The approximants are
still discontinuous, but the jump set has become regular (a finite union of
simplexes) and each function is regular away from the jump set. The gra-
dients converge strongly away from the jump set, and the jumps and the
orientation of the jump set converge. More generally, in such a restricted
framework one can allow the domain and the codomain to have different
dimensions, in what follows we shall limit to comment the case of interest
in this paper.

In the vector-valued case, and restricting to energies with quadratic
growth, density of regular functions in SBD2(Ω) ∩ L2(Ω;Rn) was proven
by Chambolle in 2004 for n = 2 [9] and then for n ≥ 3 [10]. His proof was
extended to GSBD2(Ω) ∩ L2(Ω;Rn) by Iurlano [26]. Their result shows that
any u ∈ GSBD2(Ω) ∩ L2(Ω;Rn) can be approximated by functions which
are continuous away from a finite union of closed pieces of C1 hypersur-
faces, are Lipschitz continuous away from this set, with strong convergence
of the strains and, in an appropriate sense, of the discontinuities. This per-
mits to obtain convergence of energies of the type (1.1), as long as f has
quadratic growth, and of more general functionals where the surface term
has the form

´
Ju
ϕ(u+, u−, x, ν)dHn−1(x) for a suitable surface energy den-
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sity ϕ : Rn × Rn × Ω × Sn−1 → R. For a discussion of the related problem
of density for partition problems we refer to [7].

The restriction of the mentioned results of [9, 10, 26] to the quadratic
energies does not originate from simplicity of presentation, but is instead
a consequence of the type of construction used. Indeed, the key idea, first
introduced in [9], is to replace the function u by a componentwise linear ap-
proximation on a suitably chosen (very fine) cubic grid, and then to remove
the cubes which intersect, in a suitable sense, the jump set. The fact that
the energy is quadratic permits an explicit integration of the energy density
in each cube, and leads to the identification of the continuum energy of the
approximation with a discrete energy, which consists of sums of squares of
difference quotients along the edges of the grid. In turn, for a suitable choice
of the grid this discrete energy approximates the original energy. For non-
quadratic expressions the first step, in which one integrates explicitly over a
unit cell, breaks down. Estimates are of course still possible, but the result
will only hold up to a p-dependent factor, even in the easy case where the
functions are smooth to start with. Therefore we use a different strategy,
and resort to a piecewise affine interpolation on a suitable refinement of the
grid, see discussion in Section 3 below.

Our result permits to replace functions GSBDp(Ω) ∩ Lp(Ω;Rn) with
much more regular functions in a number of problems related to fracture
(see for example [14, 15, 13, 12]). After the completion of this work, Cham-
bolle and Crismale in [13] have extended our main result to all functions
in GSBDp(Ω) by adopting a different technique. We stress that the extra
integrability hypothesis that we impose on the relevant function is often not
meaningful for problems in fracture mechanics.

Together with the elliptic regularity results for solutions to linear elastic-
ity type systems established in [17], our result has been instrumental for the
proof of existence in dimension n = 2 of minimizers for the strong counter-
part of the Griffith functional in (1.1), that was presented in [14, 15]. More
precisely, in [15] it is proved that any local minimizer u of (1.1) has relatively
closed jump set, i.e. H1(Ju∩Ω\Ju) = 0, and it is smooth outside it, namely
u ∈ C1,α(Ω \ Ju;R2) for some α ∈ (0, 1). The equivalence between the weak
formulation of the problem as stated in (1.1) and the classical strong form
then follows (cf. [14, 15] for more details).

Such a mild regularity result extends the analogous statement for SBV p

functions proved in the celebrated paper [21] by De Giorgi, Carriero and
Leaci, corresponding in applications to the (generalized) antiplane shear
setting. As already mentioned before, in [14, 15] the strong approximation
property established in this paper is used to infer such kind of regularity;
viceversa the quoted approximation result by Cortesani and Toader [19] uses
De Giorgi, Carriero and Leaci’s regularity result (in particular by means of
[6, Lemma 5.2] by Braides and Chiadò Piat) as a key tool to prove the strong
approximation property.
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In closing this Introduction we mention a complementary approach to
the regularity of SBDp and GSBDp functions, which has received a lot
of attention in the last years, namely, the proof of rigidity estimates for
functions with small jump set. A Korn-Poincaré bound in term of the elastic
energy alone was proven for SBDp functions in [11]. An improved estimate,
which controls also the gradients, was obtained in the two-dimensional case
in [23, 24, 16].

Finally, we summarize the structure of the paper. Section 2 is devoted
to fix the notation for the piecewise affine finite elements and the functional
spaces which are involved in our main approximation result, Theorem 3.1,
that we shall prove in Section 3.

2 Notation

One key ingredient of our piecewise affine approximation is the Freudenthal
partition of the n-cube [0, 1]n. We say that the vertex (i1, . . . , in), ik ∈ {0, 1},
precedes the vertex (j1, . . . , jn), jk ∈ {0, 1}, if ik ≤ jk for all k. The convex
hull of a chain of n+1 distinct vertices is a n-simplex. Then the Freudenthal
partition S of the n-cube is defined as the set of all n-simplexes obtained
through maximal chains of ordered vertices connecting the origin to the
vertex (1, . . . , 1) (see Figure 1). Such partition counts n! simplexes.

Figure 1: Freudenthal partition of [0, 1]3: the origin is the vertex on the
bottom in front, (1,1,1) is at the top in the back.

Alternatively, for any permutation σ of {1, . . . , n} one defines a simplex
Sσ as the convex envelope of the points vi :=

∑
j≤i eσ(j), i = 0, 1, . . . , n.
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Explicitly one obtains

Sσ :={
∑
i

λi
∑
j≤i

eσ(j) : λi ≥ 0,
∑

λi = 1}

={
∑
j

eσ(j)

∑
i≥j

λi : λi ≥ 0,
∑

λi = 1}.

It is then apparent that Sσ consists of the points x ∈ [0, 1]n such that
j 7→ xσ(j) is nonincreasing. Therefore the sets Sσ have disjoint interiors and
cover [0, 1]n. They differ only by a permutation of the components, hence
they are congruent and each has volume 1/n!.

We use standard notations for the space BV and its subspaces SBV p

always referring to the book [2] for details.
As already mentioned in the introductionBD(Ω) is the space of functions

u ∈ L1(Ω;Rn) for which the symmetrized distributional strain Eu = 1
2(Du+

DuT ) is a Radon measure. The subspace SBDp(Ω), p ≥ 1, contains all
functions u ∈ BD(Ω) for which

Eu = e(u)Ln Ω + (u+ − u−)� νuHn−1 Ju,

with e(u) ∈ Lp(Ω;Rn×n) and Hn−1(Ju) <∞ (cf. [1, 4]).
Given u ∈ L1(Ω;Rn), for Ω ⊂ Rn open, ξ ∈ Sn−1 and y ∈ Rn one defines

the slice uξy : Ωξ
y → R by uξy(t) = u(y + tξ) · ξ, where Ωξ

y := {t ∈ R : y+ tξ ∈
Ω}. If u ∈ BD(Ω) one can show that uξy ∈ BV (Ωξ

y) for almost every y. One
denotes with Ωξ := (Id − ξ ⊗ ξ)Ω the set of “relevant” values of y, i.e., the
set of y ∈ Rn such that y · ξ = 0 and (y + Rξ) ∩ Ω 6= ∅.

An Ln-measurable function u : Ω → Rn belongs to GSBD(Ω) if there
exists a bounded positive Radon measure λu ∈ M+

b (Ω) such that the fol-
lowing condition holds for every ξ ∈ Sn−1: for Hn−1-a.e. y ∈ Ωξ the function
uξy(t) = u(y+tξ)·ξ belongs to SBVloc(Ω

ξ
y), where Ωξ

y := {t ∈ R : y+tξ ∈ Ω},
and for every Borel set B ⊂ Ω it satisfiesˆ

Ωξ

(
|Duξy|(Bξ

y \ J1
uξy

) +H0(Bξ
y ∩ J1

uξy
)
)
dHn−1 ≤ λu(B),

where J1
uξy

:= {t ∈ J
uξy

: |[uξy](t)| ≥ 1}.
If u ∈ GSBD(Ω), the aforementioned quantities e(u) and Ju are still

well-defined, and are respectively integrable and rectifiable in the previous
sense. Moreover for every ξ ∈ Sn−1 and for Hn−1-a.e. y ∈ Ωξ we have

J
uξy
⊂ (Ju)ξy and e(u)(y + tξ)ξ · ξ = (uξy)

′(t) a.e. t in Ωξ
y, (2.1)

where (uξy)′ denotes the absolutely continuous part of the distributional
derivative. In analogy to SBDp(Ω), the subspace GSBDp(Ω) includes all
functions in GSBD(Ω) satisfying e(u) ∈ Lp(Ω;Rn×n) and Hn−1(Ju) < ∞
(cf. [20]).
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3 The main result

Theorem 3.1. Let Ω ⊂ Rn be a bounded Lipschitz set and let p > 1.
Given u ∈ GSBDp(Ω) ∩ Lp(Ω;Rn), there exists a sequence (uj) ⊂ SBV p ∩
L∞(Ω;Rn) such that each Juj is contained in the union Sj of a finite number
of closed connected pieces of C1-hypersurfaces, uj ∈ W 1,∞(Ω \ Sj ;Rn), and
the following properties hold:

(1) ‖uj − u‖Lp(Ω,Rn) → 0;

(2) ‖e(uj)− e(u)‖Lp(Ω,Rn×n) → 0;

(3) Hn−1(Juj )→ Hn−1(Ju).

Remark 3.2. The sequence (uj) in Theorem 3.1 can be constructed in a
way that it satisfies in addition

Hn−1(Juj4Ju)→ 0,ˆ
Juj∪Ju

(
|u±j − u

±| ∧ 1
)
dHn−1 → 0.

These further properties can be obtained by following the arguments in [26]
step-by-step, with obvious modifications due to the fact that the proof there is
written for p = 2. In this respect, since only a technical effort is required, we
focus here on the main difficulties and we prove Theorem 3.1 in the stated
form.

Remark 3.3. By combining Theorem 3.1 and [19, Theorem 3.1] by Corte-
sani and Toader, it is possible to obtain a sequence of approximating func-
tions whose jump set is polyhedral, namely the intersection of Ω with the
union of a finite number of (n − 1)-dimensional simplexes compactly con-
tained in Ω. If p ∈ (1, 2] the result can be even improved by taking the
(n−1)-simplexes pairwise disjoint (see [19, Remark 3.5] and [18, Section 4,
Proof of Corollary 3.11]).

As mentioned in the Introduction the proof of Theorem 3.1 follows the
general strategy of Chambolle and Iurlano [9, 10, 26], but uses a different
interpolation scheme and a different finite-element grid for the actual con-
struction. Indeed, we first construct a sequence of SBV p ∩ L∞-functions
converging to a given u ∈ GSBDp(Ω), in a way that the bulk estimate is
sharp and the surface estimate is obtained up to a multiplicative factor. Each
approximating function is a piecewise linear interpolation outside from a fi-
nite number of cubes, where it is set equal to 0. Considering piecewise linear
interpolations is essential in order to treat the case of maps in GSBDp(Ω)
with p 6= 2. It is the main difference with the mentioned references [9, 10, 26]
which deal with the quadratic case p = 2. Indeed, in [9, 10, 26] piecewise
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polynomial interpolations (of degree equal to the dimension of the space)
are employed. Such approximations in dimension higher than 3 if p 6= 2
would give rise to a multiplicative factor in the bulk estimate (cf. with [9,
Lemma A.1]), so that the strong approximation property would fail. The
piecewise polynomials correspond to a componentwise affine interpolation,
that can be done directly on a cubic grid. In the p 6= 2 case we need to use a
piecewise affine interpolation, and therefore need to decompose the domain
in simplexes. However, the strategy of [9, 10, 26] was based on controlling
the longitudinal difference quotients along grid segments (the segments join-
ing two vertices of the grid, which are edges of the elements or diagonals
of their faces). A natural approach would be to choose an expression for
the energy density which uses only these components. In dimension n = 2
this still works, since one can decompose the square [0, 1]2 into two triangles
whose sides have the same orientations (the three orientations being (1, 0),
(0, 1) and (1, 1) for both of the triangles). In dimension 3 and higher this
is, however, not any more possible, and the energy density will typically
not match the geometry of the simplex. Therefore we need to decompose
each term of the energy into the components which are “longitudinal” with
respect to the edges of the simplexes. We shall denote by A ∈ A ⊂ Rn×nsym

the “components” of e(u) which enter the energy, and by αA,Sj the coeffi-
cients of the decomposition of strain direction A in linear combinations of
longitudinal strains along the edges simplex S, where j labels the sides of
S. The key observation on which the construction in this paper is based is
that one can perform this decomposition jointly for the continuous and for
the discrete energy.

We now introduce the objects just mentioned in more detail. We fix
p ≥ 1 and choose a finite set of matrices A ⊂ Rn×nsym , which span Rn×nsym and
are fixed for the rest of the proof. Let W : Rn×nsym → R be defined by

W (ξ) :=
∑
A∈A
|ξ : A|p (3.1)

where A : B := TrATB =
∑

ij AijBij denotes the Euclidean scalar product

on Rn×nsym . We denote by DS the set of the edges directions for a simplex
S in the Freudenthal partion S . Notice that DS contains n(n+ 1)/2 linearly
independent vectors and that for any given S the set {e ⊗ e : e ∈ DS}
constitutes a basis for Rn×nsym . To see this, it suffices to show that if ξ ∈ Rn×nsym

obeys e · ξe = 0 for all e ∈ DS then ξ = 0. Indeed, the simplex S can be
written as the convex envelope of {0, f1, . . . , fn}, where (fi)i=1,...,n is a basis
of Rn. The set DS is then given by the set of the ±fi’s and the set of all the
differences fi− fj ’s with i 6= j. Therefore, if ξ ∈ Rn×nsym is such that e · ξe = 0
for all e ∈ DS , we deduce first that fi · ξfi = 0 for all i by taking e = fi, and
then fi · ξfj = 0 for all i 6= j by taking e = fi − fj . Hence, ξ = 0. We stress
that DS is a set of differences of vertices of S, not a set of unit vectors.
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As in the references mentioned above, the key point is to prove an ap-
proximation result that enlarges the jump set by at most a fixed factor. The
sharp constant can then be recovered by applying this to the complement
of a suitable “large” compact subset of Ju.

Theorem 3.4. Let Ω ⊂ Rn be an open bounded set with Lipschitz boundary
and let p ≥ 1. Given u ∈ GSBDp(Ω) ∩ Lp(Ω;Rn), there exists a sequence
(uj) ⊂ SBV p ∩ L∞(Ω;Rn) such that each Juj is contained in the union Σj

of a finite number of (n − 1)-dimensional faces of closed simplexes, uj ∈
W 1,∞(Ω \ Σj ,Rn), and the following properties hold:

(1) ‖uj − u‖Lp(Ω,Rn) → 0;

(2) for a positive constant c1 depending only on n and p

lim sup
j→∞

(ˆ
Ω
W (e(uj)) dx+Hn−1(Σj)

)
≤
ˆ

Ω
W (e(u)) dx+c1Hn−1(Ju).

In order to prove Theorem 3.4 we need a preliminary lemma, whose
proof is entirely similar to [9, Lemma 3.2], [26, Lemma 3] and therefore not
repeated here. The given function u is replaced by another GSBDp-function
close in energy to u and defined in a larger set.

Lemma 3.5. Let Ω ⊂ Rn, n ≥ 2, be open bounded with Lipschitz boundary,
and let p ≥ 1. Given u ∈ GSBDp(Ω) ∩ Lp(Ω;Rn) and ε > 0 there exists
an open bounded set with Lipschitz boundary Ω̂ ⊃⊃ Ω and a function û ∈
GSBDp(Ω̂) ∩ Lp(Ω̂;Rn), such that the following hold

(1) ||û− u||Lp(Ω,Rn) < ε,

(2)

ˆ
Ω̂
|e(û)|p dx ≤

ˆ
Ω
|e(u)|p dx+ ε,

(3) Hn−1(Jû) ≤ Hn−1(Ju) + ε.

Proof of Theorem 3.4. Fixed u ∈ GSBDp(Ω)∩Lp(Ω;Rn) and ε > 0, Lemma
3.5 provides û and Ω̂ satisfying (1)-(3).

Fixed y ∈ [0, 1)n and h > 0 small, we consider the translated lattice hy+
ξ, with ξ ∈ hZn. We introduce the tubular neighborhood in the direction
−τ of Jû,

Jτ :=
⋃
x∈Jû

[x, x− τ ] = {y ∈ Rn : [y, y + τ ] ∩ Jû 6= ∅}, for τ ∈ Rn,

and the longitudinal difference quotient along the edge ẽj of S ∈ S

4S
j,h(z) :=

(û(z + haj + hẽj)− û(z + haj)) · ẽj
h|ẽj |2
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for [z + haj , z + haj + hẽj ] ⊂ Ω̂, and zero elsewhere, where aj and aj + ẽj
are the only two vertices of S whose difference is ẽj . Let us introduce the
discrete bulk and surface energies

Ey,h1 (Ω̂) :=
hn

n!

∑
A∈A
S∈S

∑
ξ ∈ hZn∣∣∣∑

j

αA,Sj 4
S
j,h(ξ + hy)(1− 1

Jhẽj
(hy + ξ + haj))

∣∣∣p,
Ey,h2 (Ω̂) := c̃1h

n−1
∑

e∈
⋃
S DS

∑
ξ ∈ hZn

1Jhe(hy + ξ)

|e|
, (3.2)

where 1B denotes the characteristic function of the set B, αA,Sj are the

coordinates of A in the basis {ν̃j⊗ ν̃j : ẽj ∈ DS} of Rn×nsym , where ν̃j = ẽj/|ẽj |
and c̃1 := 2nn

√
n, the latter choice will be motivated later.

Let wy,h be the piecewise affine function obtained interpolating û on
each simplex of the partition. Let us prove that there exist y ∈ [0, 1)n and
a subsequence of h ↓ 0 not relabeled, such that

(1′) ‖wy,h − û‖Lp(Ω,Rn) → 0;

(2′) lim
h→∞

[
Ey,h1 (Ω̂) + Ey,h2 (Ω̂)

]
≤
ˆ

Ω̂
W (e(û))dx+ c1Hn−1(Jû), where c1 is

a constant depending on c̃1 and W is the integrand defined in (3.1).

In order to prove (1′) we observe that for every simplex ξ + hy + hS of the
partition with vertices ai, i = 0, . . . , n, there exist n + 1 affine functions fi
such that

n∑
i=0

fi = 1 and wy,h =
n∑
i=0

û(ai)fi on ξ + hy + hS.

Then integrating on [0, 1)n, we deduce by convexity and Fubini’s theorem
for h sufficiently small
ˆ

[0,1)n
dy

ˆ
Ω
|wy,h(x)− û(x)|pdx

≤ c
ˆ

[0,1)n
dy

∑
ξ∈hZn∩Ω̂

ˆ
Ω∩(ξ+hy+[−h,h]n)

|û(ξ + hy)− û(x)|pdx

= c

ˆ
Ω
dx

∑
ξ∈hZn∩Ω̂

ˆ
[0,1)n

1ξ+hy+[−h,h]n(x)|û(ξ + hy)− û(x)|pdy,

where c takes into account the convexity of the power R 3 t 7→ |t|p and
the number of simplexes sharing a certain ai as a vertex. Changing variable
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z = (x− hy − ξ)/h in the second integral we obtain

ˆ
[0,1)n

dy

ˆ
Ω
|wy,h(x)− û(x)|pdx

≤ c
ˆ

Ω
dx

∑
ξ∈hZn∩Ω̂

ˆ
(x−ξ
h
−[0,1)n)∩(−1,1)n

|û(x− hz)− û(x)|pdz

≤ c
ˆ

(−1,1)n
dz

ˆ
Ω
|û(x− hz)− û(x)|pdx.

By dominated convergence theorem the last term vanishes as h ↓ 0, therefore
there is a subsequence of h, not relabeled, and a measurable set of full
measure E ⊂ [0, 1)n such that for every y ∈ E the convergence in (1′) holds.

Let us prove now (2′). We integrate again on [0, 1)n and estimate first the
bulk part. Changing variable x = hy + ξ and then slicing through Fubini’s
theorem we obtainˆ

[0,1)n
Ey,h1 (Ω̂) dy

=
1

n!

∑
A∈A
S∈S

∑
ξ∈hZn

ˆ
ξ+h[0,1)n

1Ω̂(x)
∣∣∣∑

j

αA,Sj 4
S
j,h(x)(1− 1

Jhẽj
(x+ haj))

∣∣∣pdx
=

1

n!

∑
A∈A
S∈S

ˆ
Ω̂

∣∣∣∑
j

αA,Sj

h|ẽj |

(
û
ν̃j
πj(x+haj)

((x+ haj) · ν̃j + h|ẽj |)−

û
ν̃j
πj(x+haj)

((x+ haj) · ν̃j)
)

(1− 1
Jhẽj

(x+ haj))
∣∣∣pdx, (3.3)

where πj is the orthogonal projection on Πν̃j := ν̃⊥j . We recall that ν̃j =
ẽj/|ẽj | and that the slice is defined as usual by ûνz(s) := û(z + sν) · ν for
z ∈ Πν .

Since û ∈ GSBDp(Ω̂) ∩ Lp(Ω̂;Rn) we have ûνz ∈ SBV p(Ω̂ν
z), for Hn−1-

a.e. z ∈ Πν . Observe that 1Jhe(z+sν) = 0, for e = |e|ν and z ·ν = 0, means
z+ sν 6∈ Jhe, which is the same as [s, s+h|e|]∩ (Jû)νz = ∅. For almost every
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z, by (2.1) this implies [s, s+ h|e|] ∩ Jûνz = ∅. Therefore (3.3) yields

ˆ
[0,1)n

Ey,h1 (Ω̂) dy

≤ 1

n!

∑
A∈A
S∈S

ˆ
Ω̂

∣∣∣∑
j

αA,Sj

h|ẽj |

ˆ h|ẽj |

0
(û
ν̃j
πj(x+haj)

)′(t+ (x+ haj) · ν̃j))dt
∣∣∣pdx

=
1

n!

∑
A∈A
S∈S

ˆ
Ω̂

∣∣∣∑
j

αA,Sj

ˆ h|ẽj |

0
−(e(û)ν̃j · ν̃j)(x+ haj + tν̃j)dt

∣∣∣pdx. (3.4)

As h ↓ 0 we find by the continuity of the translation, the Lebesgue theorem,
and the dominated convergence theorem

lim sup
h↓0

ˆ
[0,1)n

Ey,h1 (Ω̂) dy ≤ 1

n!

∑
A∈A
S∈S

ˆ
Ω̂

∣∣∣∑
j

αA,Sj e(û)ν̃j · ν̃j
∣∣∣pdx

=
1

n!

∑
A∈A
S∈S

ˆ
Ω̂

∣∣∣∑
j

αA,Sj e(û) : ν̃j ⊗ ν̃j
∣∣∣pdx

=
1

n!

∑
A∈A
S∈S

ˆ
Ω̂

∣∣∣e(û) : A
∣∣∣pdx =

ˆ
Ω̂
W (e(û))dx.

Arguing in a similar way for Ey,h2 we obtain

ˆ
[0,1)n

Ey,h2 (Ω̂) dy= c̃1

∑
e∈∪SDS

ˆ
Rn

1Jhe

h|e|
dz

≤ c̃1

∑
e∈∪SDS

ˆ
Jû

|νû · νe|dHn−1 ≤ c1Hn−1(Jû), (3.5)

having set c1 := c̃1#(∪S∈SDS) = 2n−1n5/2(n+ 1)n!, νe := e/|e|, and having
used in the last inequality the slicing formula

ˆ
Jû

|νû · νe| dHn−1 =

ˆ
Πνe

#(Jûνez ) dHn−1(z) .

By inequalities (3.4) and (3.5) and Fatou’s lemma we conclude there
there exists y ∈ [0, 1)n and a subsequence of h ↓ 0 not relabeled for conve-
nience such that properties (1′) and (2′) hold. In what follows we drop the
index y ad denote wy,h simply by wh.
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We define now a sequence vh as 0 in the cubes Q = ξ+ hy+ [0, h)n such
that Jû crosses an edge of ξ+hy+hS for some S ∈ S , while we set vh := wh
otherwise. In the first case we say that the cube is bad, in the second case
that it is good. We let Σh be the union of the faces of the bad cubes. We
claim that

(1′′) ‖wh − vh‖Lp(Ω,Rn) → 0,

(2′′) the constant c̃1 in (3.2) can be chosen in a way that for every h suffi-
ciently smallˆ

Ω
W (e(vh))dx+Hn−1(Σh) ≤ Eh1 (Ω̂) + Eh2 (Ω̂).

As for (2′′), we first notice that Hn−1(Jvh) ≤ 2nhn−1Nh, being Nh the
number of bad cubes. For every bad cube Q := ξ̃ + hy + [0, h)n there is at
least one pair e ∈

⋃
S DS , ξ ∈ hZn, such that [ξ + hy, ξ + hy + he] ⊂ Q and

1Jhe(ξ + hy) = 1. At the same time, the edge [ξ + hy, ξ + hy+ he] is shared
by at most 2n−1 cubes. Therefore

Nh ≤ 2n−1
∑

e∈
⋃
S DS

∑
ξ∈hZn

1Jhe(ξ + hy).

Recalling that |e| ≤
√
n and defining c̃1 := 2nn

√
n we obtain from the

definition of Eh2 (Ω̃) that

Hn−1(Σh) ≤ 2nhn−1Nh ≤ Eh2 (Ω̃). (3.6)

Let us prove now that ˆ
Ω
W (e(vh))dx ≤ Eh1 (Ω̂). (3.7)

By definition of W , for each good cube Q = [0, h)n + ξ + hy of the lattice
being vh = wh we obtainˆ

[0,h)n+ξ+hy
W (e(vh))dx =

∑
A∈A
S∈S

ˆ
hS+ξ+hy

|e(wh): A|pdx,

since S gives a partition of the cube. Recalling that αA,Sj denotes the
coefficients of A in the basis {ν̃j ⊗ ν̃j : ẽj ∈ DS}, we have
ˆ

[0,h)n+ξ+hy
W (e(vh))dx =

∑
A∈A
S∈S

ˆ
hS+ξ+hy

|e(wh) :
∑
j

αA,Sj ν̃j ⊗ ν̃j |pdx

=
∑
A∈A
S∈S

ˆ
hS+ξ+hy

|
∑
j

αA,Sj e(wh)ν̃j · ν̃j |pdx.
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Since wh is the affine interpolation of û on each simplex constituting Q, we
have

e(wh)ν · ν =
(wh(a)− wh(b)) · ν

|a− b|
=

(û(a)− û(b)) · ν
|a− b|

,

for every pair a, b of vertices of Q, with ν = (a− b)/|a− b|. Therefore
ˆ

[0,h)n+ξ+hy
W (e(vh))dx =

∑
A∈A
S∈S

hn

n!

∣∣∣∑
j

αA,Sj 4
S
j,h(ξ + hy)

∣∣∣p,
recalling that the difference quotient is defined by

4S
j,h(z) =

(û(z + haj + hẽj)− û(z + haj)) · ẽj
h|ẽj |2

, for z ∈ Ω̂,

and that aj , aj + ej represent the only two vertices of S whose difference is
ẽj . Summing on the good cubes Q which intersect Ω we finally obtain (3.7).
Property (2′′) then follows by (3.6) and (3.7).

To check (1′′) we use (1′) and we observe that

‖vh − wh‖pLp(Ω,Rn) =

ˆ
C
|wh|pdx,

where C denotes the union of the bad cubes. Notice that C has small
Lebesgue measure, indeed by (3.6)

Ln(C ) ≤ hnNh = O(h).

Properties (1′), (2′), (1′′), (2′′), together with Lemma 3.5, imply (1) and
(2).

Using a by now standard Besicovitch covering argument we can refine
the estimate obtained in Theorem 3.4 reducing the coefficient of the surface
term to 1. The idea is to cover the most of the jump set of u with a finite
number of pairwise disjoint closed balls, in a way that the jump set in each of
them is close to a C1 hypersurface separating the ball into two components.
Then Theorem 3.4 is applied in each component and in the complement of
the balls, so that the jump of the resulting function is the union of the C1

hypersurfaces separating the balls and of the (n − 1)-dimensional faces of
closed simplexes obtained by applying Theorem 3.4 (see [9, Theorem 2] or
[26, Theorem 6] for more details).

Theorem 3.6. Let Ω ⊂ Rn be an open bounded set with Lipschitz boundary,
p ∈ (1,∞), and let u ∈ GSBDp(Ω)∩Lp(Ω;Rn). Then there exists a sequence
uj ∈ SBV p ∩ Lp(Ω;Rn) such that Juj is contained in the union Sj of a
finite number of closed connected pieces of C1-hypersurfaces, uj ∈W 1,∞(Ω\
Sj ;Rn), and the following properties hold:
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(1) ‖uj − u‖Lp(Ω;Rn) → 0;

(2) lim sup
j→∞

(ˆ
Ω
W (e(uj)) dx+Hn−1(Sj)

)
≤
ˆ

Ω
W (e(u)) dx+Hn−1(Ju).

Remark 3.7. We emphasize that the growth hypothesis p > 1 is in fact not
needed in the proof of Theorem 3.6. It is only used to deduce conditions (2)
and (3) in Theorem 3.1 by means of the GSBDp compactness result in [20,
Theorem 11.3] and strict convexity of W as oulined below.

Theorem 3.1 easily follows from Theorem 3.6.

Proof of Theorem 3.1. Let uj be given by Theorem 3.6. By compactness in
GSBDp [20, Theorem 11.3] there exists a subsequence of uj , not relabeled,
satisfying

e(uj) ⇀ e(u) weakly in Lp(Ω,Rn×n), (3.8)ˆ
Ω
W (e(u))dx ≤ lim inf

j→∞

ˆ
Ω
W (e(uh))dx, (3.9)

Hn−1(Ju) ≤ lim infj→∞Hn−1(Juj ). (3.10)

By virtue of inequality (2) of Theorem 3.6, (3.9), and (3.10) we obtain
ˆ

Ω
W (e(u))dx = lim

j→∞

ˆ
Ω
W (e(uj))dx,

Hn−1(Ju) = lim
j→∞

Hn−1(Juj ),

and the thesis follows at once from (3.8) and the strict convexity of W .
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[6] A. Braides and V. Chiadó Piat, Integral representation results
for functionals defined on SBV(Ω;Rm), J. Math. Pures Appl. (9), 75
(1996), pp. 595–626.

[7] A. Braides, S. Conti, and A. Garroni, Density of polyhedral par-
titions, Calc. Var. Part. Diff. Eq., 56 (2017), p. 28.

[8] A. Chambolle, A density result in two-dimensional linearized elastic-
ity, and applications, Arch. Ration. Mech. Anal., 167 (2003), pp. 211–
233.

[9] , An approximation result for special functions with bounded de-
formation, J. Math. Pures Appl. (9), 83 (2004), pp. 929–954.

[10] , Addendum to: “An approximation result for special functions
with bounded deformation” [J. Math. Pures Appl. (9) 83 (2004), no. 7,
929–954], J. Math. Pures Appl. (9), 84 (2005), pp. 137–145.

[11] A. Chambolle, S. Conti, and G. Francfort, Korn-Poincaré in-
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