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Abstract

We prove partial regularity for minimizers to elasticity type energies in the nonlinear
framework with p-growth, p > 1, in dimension n > 3. It is an open problem in such a setting
either to establish full regularity or to provide counterexamples. In particular, we give an
estimate on the Hausdorff dimension of the potential singular set by proving that is strictly
less than n — (p* A2), and actually n — 2 in the autonomous case (full regularity is well-known
in dimension 2).

The latter result is instrumental to establish existence for the strong formulation of Griffith
type models in brittle fracture with nonlinear constitutive relations, accounting for damage
and plasticity in space dimensions 2 and 3.

1 Introduction

In this paper we investigate partial regularity of local minimizers for a class of energies whose
prototype is
5 (et e+ = ) o+ [ Jute) — gl de
Qb Q

for u € WHP(Q;R"™), Q C R™ bounded and open, p € (1, 00) (see below for the precise assumptions
on the relevant quantities). In addition, we establish an estimate on the Hausdorff dimension of
the related singular set.

The main motivations for our study arise from Griffith’s variational approach to brittle fracture.
In such a model the equilibrium state of an elastic solid body deformed by external forces is
determined by the minimization of an energy in which a bulk term and a surface one are in
competition (see [22, 6, 14]). The former represents the elastic stored energy in the uncracked
part of the body, instead the latter is related to the energy spent to create a crack, and it is
typically proportional to the measure of the crack surface itself. As a model case, for p € (1,00)
and £, u > 0 one looks for minimizers (I', u) of

uj = ! e(u) - e(u kY dr vk u(z) — g(x)|P dx n—l
Bt = [ (et e ) =) desn [ jute) — g de 2510000
(1.1)

over all closed sets I' C  and all deformations u € C*(Q \ T'; R") subject to suitable boundary
and irreversibility conditions. Here  C R™ is the reference configuration, the function x|{ —
g(z)|P € C°(Q x R™) represents external volume forces, e(u) = (Vu+ Vu®)/2 is the elastic strain,
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C e R(mxm)x(nxn) ig the matrix of elastic coefficients, 5 > 0 the surface energy. More precisely, the
energy in (1.1) for p = 2 corresponds to classical Griffith’s fracture model, while densities having
p-growth with p # 2 may be instrumental for a variational formulation of fracture with nonlinear
constitutive relations, accounting for damage and plasticity (see for example [29, Sections 10-11]
and references therein).

In their seminal work [15], De Giorgi, Carriero and Leaci have introduced a viable strategy to
prove existence of minimizers for the corresponding scalar energy,

Bus[T, ] := /Q\F %((\DUF +u) - WZ) dz + H/Q\F lu(z) — g(z)[P dz + 28H"1(TNQ), (1.2)

better known for p = 2 as the Mumford and Shah functional in image segmentation (cf. the
book [2] for more details on the Mumford and Shah model and related ones). From a mechanical
perspective the scalar setting matches the case of anti-plane deformations u : Q\I' — R. Following
a customary idea in the Calculus of Variations, the functional Fyg is first relaxed in a wider
space, so that existence of minimizers can be obtained. The appropriate functional setting in the
scalar framework is provided by a suitable subspace of BV functions. Surface discontinuities in
the distributional derivative of the deformation u are then allowed, they are concentrated on a
(n — 1)-dimensional (rectifiable) set S,. Then, existence for the strong formulation is recovered
by establishing a mild regularity result for minimizers u of the weak counterpart: the essential
closedness of the jump set S, namely H"~1(Q2N S, \ S,) = 0, complemented with smoothness of
won Q\ S,. Given this, (u,S,) turns out to be a minimizing couple for (1.1).

In the approach developed by De Giorgi, Carriero and Leaci in [15], regularity issues for local
minimizers of the restriction of Eyg in (1.2) to Sobolev functions, such as decay properties of
the LP norm of the corresponding gradient, play a key role for establishing both the essential
closedness of S, for a minimizer u of (1.1) and the smoothness of u itself on Q\ S,. Nowadays,
these are standard subjects in elliptic regularity theory (cf. for instance the books [25, 28, 27]).

Following such a streamline of ideas, in a recent paper [12] we have proved existence in the two
dimensional framework for the functional in (1.1) for suitably regular g (see also [11] that settles
the case p = 2). In passing we mention that the domain of the relaxed functional is provided
for the current problem by a suitable subset, SBD (actually GSBD), of the space BD (GBD)
of functions with (generalized) bounded deformation (we omit the precise definitions since they
are inessential for the purposes of the current paper and rather refer to [12, 8]). More in details,
our modification of the De Giorgi, Carriero, and Leaci approach rests on three main ingredients:
the compactness and the asymptotic analysis of sequences in S BD having vanishing jump energy;
the approximation in energy of general (G)SBD maps with more regular ones; and the decay and
smoothness properties of local minimizers of the functional in (1.1) when restricted to Sobolev
functions. The compactness issue is dealt with in [12] in the two dimensional case and in [§] in
higher dimensions, in both papers for all p > 1. The asymptotic analysis is performed in [12] and
holds without dimensional limitations. The approximation property holds in any dimension as
well, it is established in the companion paper [13] (see also the recent work [9] for an improved
version which requires no integrability assumptions on the displacements). Instead, the regularity
properties of local minimizers of energies like

/Q L (Cetw) - e(w) + )" — ) da + H/Q lu(x) — g(a)[P dx (1.3)

p

on WHP(Q;R"™) are the object of investigation in the current paper. More generally, we study
smoothness of local minimizers of elastic-type energies

Funlt) = [ fuleu) ot [ ju—glra, (1.4)
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on WhP(Q;R™), n > 2, for f, satisfying suitable convexity, smoothness and growth conditions (see
Section 2.1 for the details). We carry over the analysis in any dimension since the results of the
current paper, together with the compactness property established in [8] mentioned above, imply
a corresponding existence result for the minimizers of (1.1) in the physical dimension n = 3, for
any p > 1, and for p > 0 (see [10] for the case of Dirichlet boundary conditions). In this respect
it is essential for us to derive an estimate on the Hausdorf{f dimension of the (potential) singular
set, and prove that it is strictly less than n — 1. We recall that if p = 2 the regularity properties
of the aforementioned local minimizers are well-known, so that the corresponding existence result
for the minimizers of (1.1) follows straightforwardly from [12] in dimension n = 2 and from [8] in
any dimension.
The starting point of our study is the equilibrium system satisfied by minimizers of (1.4) that
reads as
— div (V fu(e(w))) + wplu — g[P~*(u — g) = 0, (1.5)

in the distributional sense on 2. Variants of (1.5) have been largely studied in fluid dynamics (we
refer to the monograph [24] for all the details). In this context the system (1.5) with x = 0 is
coupled with a divergence-free constraint and represents a stationary generalized Stokes system. It
describes a steady flow of a fluid when the velocity u is small and the convection can be neglected.
To our knowledge all contributions present in literature and concerning (1.5) are in this framework,
apart from the case p = 2 which is classical, see for example [25, 27, 34].

Under the divergence-free constraint and x = 0, regularity of solutions has been established
first for p > 2 and every p > 0, see [24, 23], then in the planar setting for 1 < p < 2 and every
w >0, see [4, 5], and for u > 0, see [18] (the papers [4, 5] actually deal with the more general
case of integrands satisfying p — ¢ growth conditions, the latter with the case of growth in terms
of N-functions). LY estimates for solutions to (1.5) with the divergence-free constraint have been
obtained in the 3-dimensional setting in [17] for every u > 0. Regularity up to the boundary for
the second derivative of solutions is proved for p > 2 and p > 0 in [3].

We stress explicitly that we have not been able to find in literature the mentioned estimate
on the Hausdorff dimension of the singular set. Moreover, we also point out that the special
structure of our lower order term does not fit the usual assumptions in literature (see for instance
[31, Theorem 1.2] in the case of the p-laplacian). Despite this, it is possible to extend the results
of this paper to a wider class of energies, as those satisfying for instance the conditions [31, (1.1)-
(1.2)] building upon the ideas and techniques developed in [31, 30, 32] (see also [33] for a complete
report).

In conclusion, we provide here detailed proofs for the decay estimates (with k,u > 0, see
Proposition 3.4 and Corollary 4.3) and for full or partial regularity of solutions (the former for
n = 2, the latter for n > 3 and p > 0, see Section 4). We stress that if n > 3 it is a major open
problem to prove or disprove full regularity even in the non degenerate, i.e. u > 0, symmetrized
p-laplacian case for p # 2. In these regards, if n > 3 we provide an estimate of the Hausdorff
dimension of the potential singular set that seems to have been overlooked in the literature. In
particular, the potential singular set has dimension strictly less than n — 1.

Finally, we resume briefly the structure of the paper. In Section 2 we introduce the notation
and the (standard) assumptions on the class of integrands f,,. We also recall the basic properties
of the nonlinear potential V},, an auxiliary function commonly employed in literature for regularity
results in the non quadratic case. In addition, we review the framework of shifted N-functions
introduced in [16], that provides the right technical tool for deriving Caccioppoli’s type inequalities
for energies depending on the symmetrized gradient. Caccioppoli’s inequalities are the content of
Section 3.1, as a consequence of those in Section 3.2 we derive the mentioned decay properties
of the L? norm of V,(e(u)). We remark that the Morrey type estimates in Section 3.2 and the
improvement in Corollary 4.3 are helpful for the purposes of [12, 8] only for n € {2,3} in view of
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the decay rate established there. Partial regularity with an estimate on the Hausdorff dimension
of the singular set are the objects of Section 4. More precisely, the higher integrability of V},(e(u))
is addressed in Section 4.1, from this the full regularity of local minimizers in the two dimensional
case easily follows by Sobolev embedding (cf. Section 4.2). Section 4.3 deals with the autonomous
case k = 0, for which we use a linearization argument in the spirit of vectorial regularity results
(the needed technicalities for these purposes are collected in Appendix A). The non-autonomous
case is then a consequence of a perturbative approach as in the classical paper [26] (see Section 4.4).

2 Preliminaries

With 2 we denote an open and bounded Lipschitz set in R™, n > 2. The Euclidean scalar product
is indicated by (-, -). We use standard notation for Lebesgue and Sobolev spaces. By s* we denote
the Sobolev exponent of s if s € [1,n), otherwise it can be any positive number strictly bigger
than n. If w € LY(B;R"), B C ), we set

(w)p = ]iw(y)dy. (2.1)

In what follows we shall use the standard notation for difference quotients
1
Dspv(z) = E(U(:L‘ + hes) —v(x)), T pv(z) = hAspv(), (2.2)

ifxeQspi={reQ: x+hes € Q} and 0 otherwise in Q, where v : § — R™ is any measurable
map and €, is any coordinate unit vector of R™.

2.1 Assumptions on the integrand

For given p > 0 and p > 1 we consider a function f, : REX" — R satisfying

sym

(Reg) fu € C*(RL5M) if p e (1,2) and pu > 0 or p € [2,00) and p > 0, while fo € CH(RZX") N
C2Ray\ {0} i p e (1,2);

sym

(Conv) for all p € (1,00) and for all symmetric matrices £ and 1 € RE\? we have

1 r/2a—1 p/2—1

(a4 16)" Il < (P fu(©mm) < e(u+16P) T P, (2.3)
with ¢ = ¢(p) > 0, unless u = |{| = 0 and p € (1,2). We further assume f,(0) = 0 and
Df,(0) =0.

Remark 2.1. The prototype functions we have in mind for applications to the mentioned Griffith
fracture model are defined by

. 1 /2 r/2
@ = ((Ceevm™ —u"), (2.4
forall p >0 and p € (1,00). Clearly (Reg) is satisfied, moreover we have
VIa() = (CE-€+p)"Ce
(with ¥V fo(0) = 0), and in addition
V2£u(€) = (C¢- €+ )" (0~ 2)CE @ Ce + (CE - € + p)C) (2:5)
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(with V2 £5(0) = 0 if p € (2,00), V2£f(0) = C if p = 2, V2 £,(0) undefined if p € (1,2)). The lower
inequality in (2.3) is clearly satisfied for p € [2,00); to check it if p € (1,2) consider the quantity

a:=(p—2)(CE-n)* + (CE- €+ p)(Cn - ).
Since C defines a scalar product on the space of symmetric matrices, Cauchy-Schwarz inequality
C& -0 < (CE-€)*(Cn-m)'/?
yields for p € (1,2)
a>[(p—2)(CE- &)+ (CE- &+ w(Cn-m) = (p—1)(CE- &+ 1)(Cn-m),
the other inequality in (2.3) can be proved analogously.

Note that from (Conv) we deduce the p-growth conditions

cTHIEP + )PP < fu(€) < el + ) g (2.6)

and
VIu() < el + )" e] (27)
for all £ € RE with ¢ = ¢(p) > 0 (see also Lemma 2.3 below). Therefore, for all x, u > 0, the

functional .Z,, ., : WP (; R") — R given by

Fur(v) = / fule(v))dz + n/ lv — g|Pdx (2.8)
Q Q
is well-defined.

2.2 The nonlinear potential V,

In what follows it will also be convenient to introduce the auxiliary function V,, : R"*" — R™*",

V(€)= (n+ €))7,
with V5(0) = 0 (we do not highlight the p dependence for the sake of simplicity).
Remark 2.2. Note that [Vo(€)|? = |£|P for every & € R™ ™ and for all 1 > 0

Vi€ < (n+ €)= Vi OP + ulu + €)1 < e V(€ + e p™”? (2.9)
with ¢ = ¢(p) > 0.

The following two basic lemmas will be needed in this section (see [1, Lemma 2.1 and Lemma 2.2]
and [28, Lemma 8.3] for more details).

Lemma 2.3. For every v > —1/2, r >0, and u > 0 we have

Jo (pt I+t = m?)" (1 —t)dt _ ca, (2.10)

C1 S =
(1 + €12 + [nl?)”

for all €, n € R* such that p+ |€2 + |n|? # 0, with ¢; = c;(vy,r) > 0.
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Proof. If v > 0 the upper bound follows easily by |n+t(& —n)|? < |n]? + |£]? and the monotonicity
of (0,00) 3 s — (u+ )7 with ¢ = 1. To prove the lower bound we observe that if |{] < || then

1
I+t —n)| > [n| =t —tn| > glnl vt € [0,1/3],

which implies the other inequality with ¢; = ¢1 (7).

The lower bound for v < 0 is analogous to the previous upper bound. The remaining up-
per bound requires an explicit computation and the integrability assumption v > —1/2, see [1,
Lemma 2.1], which results in ¢ = 8/(2y + 1). O

Lemma 2.4. For every v > —1/2 and u > 0 we have

[(1n+ 1€17)7€ — (p + In?)7n)
(1 + €12 + |n?)”

for all €, n € R™ such that u+ |€]* + |n|? # 0, with ¢; = ¢;(y) > 0.

< cal§—nl, (2.11)

3§ —nl <

Proof. Assume p > 0 and consider the smooth convex function h(§) := 2’(771+1)('u + €%+, For
all ¢ € R™ we have

§®E )

_ 2\ 2 _ 2
VRO = (u+ EPYE VRO = (ut EP) (T2

Noting that for all £, n € R™ it holds

(VZh(&)n,n)
(w+ €12

the conclusion follows easily from Vh(§) — Vh(n) = fol V2h(n+t(€ —n))(€ —n)dt and Lemma 2.3
with ¢3 = (LA (14 27))er and ¢4 = (1V (1 + 27))c2 being ¢1 and ¢, the constants there.

If 4 = 0 we can simply pass to the limit in formula (2.11) as u | 0, since ¢3 and ¢4 depend only
on . O

(1A (1429)[n? < < (1v (1 +29)nl,

We collect next several properties of V,, instrumental for the developments in what follows.
Lemma 2.5. For all £, n € R™*™ and for all p > 0 we have

(1) if p>2: c|Vu(§E—n)| < V(&) —Vu(n)| for some c = c(p) > 0, and for all L > 0 there exists
¢ = c(p, L) > 0 such that [V, (€) = Vu(n)| < e|Vu(€ = )| if In| < L;

(it) if p € (1,2): |V, (§ —n)| > V(&) — Vu(n)| for some ¢ = c(p) > 0, and for all L > 0 there
exists ¢ = c¢(p, L) > 0 such that |V, (& —n)| < c|Vu(&) — Vu(n)| if [n] < L;

(i) V(& +n)| < ep) (Vi) + [Vu(n)]) for all p € (1,00);

(i) (2(pV[E2)72HER < V(P < €7 ifp € (1,2), [€P < |Viu(€)[> < 27271 (up/ 271 |€12 + |€]P)
if p>2;

(v) &€~ |V, (€)% is convex for all p € [2,00); for all p € (1,2) we have (™ "2 +|¢>7P)7L|¢)? <
Va@©F < elp)(u® 772+ [PP7P) M EP and & = (u® 72 + [€[>7P) M ¢]? is convea.
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Proof. If p € [2,00), property (i) follows from Lemma 2.4, while properties (iii) and (iv) are simple
consequences of the very definition of V,.
Instead, for the case p € (1,2) we refer to [7, Lemma 2.1]. More precisely, item (ii) above is
contained in items (v) and (vi) there, (iii) above in (iii) there, and (iv) above in (i) there.
Finally, (v) follows by a simple computation. Indeed, first note that |V,,(€)|* = ¢,.(|¢]?), where
¢u(t) := (u+t)"*"'t for t > 0. Then & — |V,,(£)|? is convex if and only if for all 5, £ € R”

26, (€1 Inl® + 4¢3 (1€]*) (n, €)* > 0.

Using the explicit formulas for the first and second derivatives of ¢,, this amounts to prove for all
n, & €R”

(1 +[€1%) 20+ pIE?) [n* + (400 = 2)n+ p(p = 2)[€*) (n,€)* > 0.
In particular the conclusion is straightforward for p > 2. Instead, for p € (1,2) we follow [20,
Section 3]. We first observe that ||| = < |z < 2p/2||m|\2% applied to the vector (u = "/?, £27P)

gives (47 4 €277 LR < V(O < e(p)(u® P + [€2-7) €. A direct computation
finally shows that ¢t — (u®~ "/ 4 t2=P)~1#2 is convex and monotone increasing on [0, +00), and
that it vanishes for ¢ = 0. We conclude that & — (u®~ /% 4 [¢]27P)~1|€|? is convex. O

Finally, we state a useful property established in [17, Lemma 2.8].

Lemma 2.6. For all i > 0 there exists a constant ¢ = c¢(n,p, ) > 0 such that for every u €
WP (Q;R") if B,(x) C

~/BT.(:1;0)

Vile(w)) = (Va(e(w) p, (s

2mg/ Vi(e(w) = Viu((e()) 5, (aoy) |* d
B, (zo)

2
< C/
BT(CE())

dx.

Vile(w) = (Va(e(u) ()

2.3 Shifted N-functions

We fix p € (1,00) and p > 0, and, following [16, Definition 22] for every a > 0 we consider the
function ¢, : [0,00) — R,

t
ba(t) ;:/ (it (a+5)2)" sds. (2.12)
0
A simple computation shows that ¢! > 0 and, further,
oL (t) < edll(t)t for all t >0 (2.13)

(¢ turns out to be a N-function in the language of [16, Appendix]). From the definition one easily
checks that for all a,t > 0 we have

ba(t) < —((u+ (a+1)°)" = (u+a?)"?). (2.14)

D=

More precisely, for every ¢ > 0 we have

12 tp
(1t (a+8))"" 7 5 < a(t) < 5 ifre(2), (2.15)
P 12
> < da(t) < (p+ (a+ t)2)”/“5 if p € [2,00). (2.16)

Conti-Focardi-Iurlano-revised-sc.tex 7 [JANUARY 30, 2019]



In addition, if p € (1,2), for every ¢ > 0 we have

2

Balt) < (u+ a1 (2.17)

A simple change of variables shows that the family {¢, }4>0 satisfies the A and V3 conditions
uniformly in a, that is for all a > 0

MN26. (1) < ga(At) < APY29, (1), (2.18)
for all A > 1 and ¢t > 0. We define the polar of ¢, in the sense of convex analysis by

01(s) = sup{st — da(1)} . (2.19)

t>0

By convexity and growth of ¢, one sees that the supremum is attained at a ¢ such that s = ¢/ ().
For all ¢ > 0 we have . .
AT (s) < dn(hs) < ATT V29 (s), (2.20)

a

for every A > 1 and for every ¢ > 0. In view of (2.18) and (2.20) above, Young’s inequality holds
uniformly in @ > 0: for all § € (0, 1] there exists Cs,, > 0 such that

st<¢n(s)+Csppa(t) and st <0¢q(t)+ Cspon(s) (2.21)

for every s and ¢ > 0 and for all @ > 0 (see also [16, Lemma 32]).
Convexity of ¢, implies

SOL(2) S dalt) <teL(t)  VEZO. (2.22)

From ¢ (¢, (¢)) = ¢L(t)t — da(t), (2.22), (2.21) we infer that there is a constant ¢ > 0 such that
foralla>0

L 0ult) < G2(64(0) < cault), (223)

for every ¢ > 0 (see also [16, formula (2.3)]).
Finally, note that by the first inequality in Lemma 2.4 with exponent v = (p — 2)/4 > —1/4
we have

cl€ =P (u+ €7 + )PP < V(&) = V()P
for every £, n € R™*™. Furthermore, by the second inequality in (2.22),

Py (1€ =) < el =P+ €7 + | —n)P/*1,

and therefore

e (1€ = nl) < e[ V(&) = Vi (2.24)

3 Basic regularity results

In this section we prove some regularity results on local minimizers of generalized linear elasticity
systems. The ensuing Propositions 3.1 and 3.3 contain the main Caccioppoli’s type estimates
in the super-quadratic and sub-quadratic case, respectively. In turn, those results immediately
entail a higher integrability result in any dimension that will be instrumental for establishing
partial regularity together with an estimate of the Hausdorff dimension of the singular set (see
Propositions 4.1 and Theorem 4.7), as well as for proving C*® regularity for minimizers in the
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two dimensional case. Moreover, in the two and three dimensional setting useful decay properties
that were needed in the proof of the density lower bound in [12] and [8] can be deduced from
Propositions 3.1, 3.3, and 4.1 (cf. Proposition 3.4 and Corollary 4.3).

We point out that if p € [2,00) a more direct and standard proof can be provided that does
not need the shifted N-functions ¢, in (2.12). Instead, those tools seem to be instrumental for the
sub-quadratic case. Therefore, for simplicity, we have decided to provide a common framework
for both.

In what follows we will make extensive use of the difference quotients introduced in (2.2) and
of the mean values in (2.1).

3.1 Caccioppoli’s inequalities

We start off dealing with the super-linear case. For future applications to higher integrability (cf.
Proposition 4.1) it is convenient to set, for p > 2,

_ Ap(p — 2)
A)i= ——— 3.1
) = (31)
for every A\ € (p%l, 1]. For p > 2, p(+) is a decreasing function on (p—il, 1] with p(1) = p and
P—00as\— ]ﬁ. In addition, define \g € (p%l, 1] to be such that p(Ag) = p*, being p* := nL_’;),
if p e (1,n), and g = zﬁ otherwise and p(Ao) can be any positive exponent. If p = 2 we

set A = \g = 1 and $()\g) = p*. In particular, by Sobolev embedding, u € LPXM(Q;R™) for all
A € [Xo, 1].

Proposition 3.1. Letn > 2, p € [2,00), k and pp >0, g € WHP(Q;R™) and let u € WHP(Q; R")
be a local minimizer of %, . defined in (2.8).
Then, V,(e(u)) € WIES(Q,RZLyﬁ) and, in addition, u € W22 (4 R™) if p > 2 for p > 0, and if

p =2 for p > 0. More precisely, if X € [Mo, 1] there is a constant ¢ = c¢(n,p,\) > 0 such that for
BQT(I’O) cQ

/ [V (Viu(e(u))|Pda < . EH / [Viule(w)) = (Viu(e(u)) By, (20| *d
B,.(z0) r Bar(z0)

+CW%/B ( )(‘“—QVM)+|V(u—9)|Ap)d” (3:2)
2r(Zo

Proof. We begin with showing that there is a constant ¢ = ¢(n,p) > 0 such that if Ba,.(xg) C Q
then for any matrix Q € R™*™ we have

c

| vewyPar< 5 [ e[V~ Qo
By (z0) """ J Bay(20)\ By (20)

—|—£2 |VU—Q|pd£E+CI€7’I’2j/ (Jlu=gP +|V(u—g)P)dz. (3.3)
T JBay(x0) Bar(z0)

In particular, on account of (2.16), we infer from (3.3) that V,(e(u)) € W?(B,(z¢)). A covering
argument implies then that V,,(e(u)) € W2 (Q; RZX™).

sym
Local minimality yields that u is a solution of

/ (Vfu(e(u)), e(p))da + Hp/ u— gl (u—g,0)dz =0 Vp € WyP(hR). (34)
Q Q

Conti-Focardi-Iurlano-revised-sc.tex 9 [JANUARY 30, 2019]



We can use the test field ¢ = A, (CP(Agpu — Qes)), with ¢ € C(Bar(20)), 0 < ¢ < 1,

ClB,(zo) = 1 and [V(| < ¢/r to infer, for h sufficiently small,

/Q (B (V (), P A p(e(ur)))d
- / (Doan (Y Fule(w)), PIVE© (Dp — Qes)da

kp / (Ban (= glP 2 — 9)), (P (D — Qen))dz. (3.5)

Recalling that f, € C?(R™*") if p > 2 for all u > 0 we compute

YAV (Vfu(e(u)))(a:) = /0 VQfM (e(u) +th A&h(e(u))) A p(e(u))dt

= Ay (1) Do (e(w) (@).

By taking into account (3.6), equality (3.5) rewrites as

/Q (P () D (e()), L () )z
— /Q P Ay (2) D (e(w)), VE O (Dgnu — Qey))d

kp / (Dot — g7~ (1w — 9)), (P (D — Qes))dir
Q

Setting

p/2—1

W, n(2) :=/0 (1 + le(u) () + tron(e(w))(@)?) ™ dt,

the estimates in (2.3) give for all n € R

1
“Won@)nl® < (Agn(@)n,m) < e Wi p(@)nf*

nxn
Sym

with ¢ = ¢(p) > 0. Therefore, using (3.8) in (3.7) yields for some ¢ = ¢(p) > 0

| W@l ante@)Pdn < ¢ | @TIWon@ITC S (e[ Bnp - Qe

ko / (B (e — g7~ (1 — g)), (P (Dt — Qes))di
Q

Proceeding as in (3.6), and using |VV,, ()| < ¢ (u+ |€]?)” ™ */*, we obtain

(p—2)/a

A (Viule(w)))| < C/o (1 + le(u)(@) + t 7o p(e(w)) (2)]?) dt| A n(e(w))] -

(3.7)

(3.8)

(3.9)

Using Jensen’s inequality in this integral and then comparing with the definition of W j, we infer

from (3.9)

/Q Pl un (Vile(w))) Pz < ¢ /Q P W ()|l L () | Dot — Qe

“kp / (Lo (= gP~2 (1w — 9)), (P (Dt — Qes))dir
Q
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In turn, from this inequality and (2.10) we get for some ¢ = ¢(p) > 0

Q/ Pl (Vi (e(uw)) [2dz
By (z0)

c

S,/ P+ e(w) 2 + le(u) (z + hey) [2) "
By (x0)\Br(z0)

, |Ts.n(e(w))]|Ts,ntt — hQes|dx

— Hp/ ( (Ts,h(\u —glP (u — g)),CP(T&hu — Qheg)ydr =: I + I,. (3.10)
Bar(z0

By counsidering the functions ¢,, a > 0, introduced in (2.12) above, the first term on the right
hand side of the last inequality can be estimated by

C

I = ;/ P16, o (1T (e ()]) 7ot — hQesda.
Bar(z0)\Br(0)

Since ¢ € (0, 1], Young’s inequality in (2.21) gives for every § € (0,1) and for some ¢ = ¢(p) > 0
(2.21)

I, < ¢é ¢|*e(u)|(Cpilﬁbfe(uﬂ(|Ts,h(€(u))|))d$
BZT(:EO)\BT(EO)

1
+C5;P/ ¢|e(u)| (7‘7—s,hu - hQ€s|)d$
Bay(20)\ By (o) r
(2.20) i ,
< co PPl (¢|e(u)\(|Ts,h(e(u))|))d33

Bz (z0)\Br(z0)

1
+Ca,p/ Dle(u)| (= |Ts,nu — hQes|) da
Bar(20)\Br(x0) "

(2.23)

< ¢ Cp¢|e(u)\(|T87h(e(u))|)d‘r
Bar(z0)\Br(0)

1
+Cz§,p/ ¢|e(u)| (7‘Ts,hu - thst(E
Bay(20)\Br(x0) r

By using estimate (2.24) in the last but one term from the latter inequality we get for some
c=c(p) >0

I <co / Clron (Vi(e(w))) P da
Bz, (0)\ Br (z0)
1
+C<5,p/ Dle(uy| (= |Ts,nt — hQe,|) dx. (3.11)
Bar(20)\ By (x0) r

We now estimate the second term in (3.10). We preliminarily note that by Meyers-Serrin’s
theorem and the Chain rule formula for Sobolev functions the field w := |u — g[P~2(u — g) belongs
to WP (A, R™) for every Lipschitz open subset A C . More precisely, we have

—2
IVl Lo (4 mrxny < €llw = gl7560) (4 mmy IV (@ = 9l Lrra rexny, (3.12)

for some constant ¢ = c¢(n,p, A) > 0, for all A € [A\g, 1] where p is the function defined in (3.1) and
p' = ;%7 (we recall that if p = 2 then A = Ao = 1).
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Therefore, by (3.12), Holder’s and Young’s inequalities we may estimate Io for h sufficiently
small as follows

h2 L < kpl|Dsnt = Qes||Lo(By, (20) B [P L h 0| 1o (B, (20) )
<Kp HAs,hu - Q68||LP(B2T(£0)7R")

vaLP/ (Bar(z0),R™)

< % |As pu — Qes|Pdr + K(p — 1)r%/ |Vw|p/dx
r Ba,-(z0) Bay ()

S % |A8,hu - Q65|pd1’ + CH?"% / (‘u _ g|ﬁ(/\) + |V(7_L o g)|)‘p)dx
r BQT(ZE()) B2’y.(w0)

(3.13)

for some ¢ = ¢(n,p,A) > 0. Hence, from inequalities (3.10), (3.11) and (3.13) for § = d(p) > 0
sufficiently small we conclude that

c 1
[ 1aew)Pds < 5 St (7o — hQes
By (z0) B2y (z0)\Br(x0) r
+ 5 |As,hu—Qes\”d$+cr£r1)%/ (Ju = glP™ + [V(u - g)¥)da, (3.14)
7" JBar(z0) Bz (o)

with ¢ = ¢(n,p,\) > 0. Finally, (2.18) and the last inequality for sufficiently small & yield for
some ¢ = ¢(n,p,\) > 0

c

/B e (Va(e(w) P < Sreter (100t — Qesl)da

72 ) Ba, (0)\Br (w0)
+7% |A81hu—Qes\pda§—|—cn7‘p2ﬁ/ (|u—g|’3()‘) —|—|V(u—g)|>‘p)dx. (3.15)

Ba,(z0) Bar(z0)

Hence, by summing on s € {1,...,n} in inequality (3.15) and by letting h | 0 there, we conclude
(3.3). Furthermore, since |VV,,(€)|? > c(n,p)u”/>~! for all £ € R™™ if p > 2, the latter estimate,
(3.3) and a covering argument imply u € leocz (;R™) if p > 0.

To conclude the Caccioppoli’s type inequality in (3.2) first observe that
/ ¢\e(u)\ (|VU - (VU’)Bzr(ZEo)Dd‘x < C/ ¢\e(u)| (Ie(u) - (e(u))Bzr(a:o)de' (316)
Bar (o) Bar(z0)

This follows from Korn’s inequality by using that if 1), (t) := a?~2t2 + p*/>~ 42 +P then ¢ 1), (t) <
$a(t) < cth(t) for all ¢ > 0 and for some ¢ = ¢(p) > 0. One inequality follows from (2.16), the
other one is similar. Alternatively, (3.16) follows directly from Korn’s inequality in Orlicz spaces
for shifted N-functions (cf. [17, Lemma 2.9]).

Moreover, since for p > 2 by the very definition of V), and Lemma 2.4

1€ =P < V=) <e@)Viu(&) = VumI® V& ne RV,

the standard Korn’s inequality implies for some ¢ = ¢(n,p) > 0

[, o Ve TPz e [ o) — e o i
Bar(zo

BQT(I())

<e /B o [Valew) = () o) P < /B Vi(e(w) = Vi (e(w) gy, (o)) Pl (3.17)

2 (20)
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Thus, by combining (3.16) and (3.17) with (3.3), with Q := (Vu)p,, (2,), we deduce

/ IV (Viu(e(u)))|?dz < r%/ Plequy) (le(w) = (e(w)) By, (a0 ) d
B, (zo0)

Bz (x0)
C _2 ~
+f<a—2/ \Vu(e(u))—VH((e(u))BQT(mO))de—&—c,m“p—l / (\u—g|p(’\)+\V(u—g)\)‘p)dx,
7% J By, (z0) Bar (o)
(3.18)

for some constant ¢ = ¢(n,p, A) > 0. Hence, by (2.24) we get from (3.18)

/ IV (Viu(e(u))) Pdz
BT(IO)

1+I€ _2 ~
<eit / IV (e00)) = Vi (€(w)) 3y o)) Pl e 770 / (Ju—glP® + |V (u—g)*?) dx
r B, (z0) By (o)

1+ k& 2 -
<c - / |Vu(e(u))—(VM(e(u)))Bzr(mo)|2dx+cmrpfl/ (|u—g|p(>‘)+\V(u—g)|)‘p)dx.
BQT(Zro) BQT(IO)

The last inequality follows from Lemma 2.6. U

In the sub-quadratic case we use a regularization argument following [17, Theorem 3.2]. Indeed,
even setting k = 0, the same arguments as in Proposition 3.1 lead only to a Besov type estimate.
More precisely, the first part of the argument in Proposition 3.1 up to (3.11) included, holds for
all p € (1,00) (one only has to use ¢? instead of (P as a cutoff function). Thus, in case p € (1,2),
arguing similarly to Proposition 3.1 one deduces the ensuing estimate

c

[V,U«(e(u))]QBD/ZQ,oc(BT(mO)) < —/B . (N‘f' |Vu — (VU)BQT(%)F)phdm,
2r(Zo

rp
for some ¢ = ¢(n,p) > 0, which is not sufficient for our purposes. Recall that the Besov space
B?/>2:(A), A C R™ open, is the space of maps v € L?>(A;R™ ™) such that

n
[/U}BP/Q,Z,OO(A) = Sl}llp |h|_p/2 Z ||Ts,hU||L2(A;]R"><") < 00.
s=1
Finally, we point out that the argument we use below requires only minimal assumptions on g,
namely LP summability. We start off with establishing a technical result.

Lemma 3.2. Letn > 2, p € (1,2], k and p > 0, g € LP(Ba,,R"), and w € C*°(Ba,;R"). Let u
be the minimizer of

1
Fr(v) := fule(v))dz + H/ lv —gPde + — |V2v|2dx (3.19)
B27‘ B27‘ 2L B27‘

over the set of w+W3? (B, R"). Then, u € Wl‘z’f(Bg,.,R”) and there is a constant ¢ = ¢(n,p) > 0
such that for all X > 0

l/ |VAu|2dx+/ IV (V(e(w)))Pde < -
L B, B, L

— |Vu — (Vu)p,, |*ds
7" J By, \B.,

1
+ < / V2uf2d et / Vi (e(w) — (Vi(e(w))) 5y, )P
Lr® Jp,\B, r Ba,

+m~%/ \u—g|pdx+c2—’ip(/ [V (e(w) P + ). (3.20)
BQT 2=p B2r

r2=p
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Proof. We first prove that u € W>2(By,, R™). Given V CC Ba,, we set d := min{1, dist(V, dBa,)}

loc

and take h < d/2. For p € (0,d/2) we consider the function

1
g(p) :=sup {/ |Ag n V2uldr s y € V} .
L JB,w

Next we prove that there exists a constant ¢ > 0 independent from h (but possibly depending on
L) such that

/ c CK
g(p’) n

4 7 3.21
2 (W=p* P-p (3.21)

9(p) <
for p, p" € (0,d/2), p < p'.

Fix p, p' as above, y € V, and consider ( € C°(B, (y)), with ¢ = 1 on B,(y) and [V*(| <
c/(p' — p)?. We now test

L), e [ (Ohe) s tap [ u-gru-gpde=0, 322

Ba,

holding for every ¢ € C°(Ba,;R™), with the test function ¢ := A, (A, ru) and we estimate
each appearing term.
First note that

/ (V2u, Vip)dr = — / (DN V2u, (VA pu + 2)da,
B,/ (y) B,/ (y)

where the function z satisfies
Z|\|L2(B , S u 2,2(By,.)-
(B, (v)) (o) — p)? W2:2(Ba..)

Therefore by Young’s inequality we obtain
1 c
- (N 1 VP, 2)dx < 7/ |8 n V2ulde + ————||ully22(p, - (3.23)
/;p/(y) 2 Bp/(y) (p/ - p)4 W (827)

Moreover we have

/ (Do VP, (V22 i) > / A nV2uf2dz,
B,/ (y) B, (y)

so that by (3.23)

1 c
(V2u, VZp)dx < 7/ |5 n V2uPda + ——— ||ull}-.
/Bp,(y) 2B, (o —p)t ! IWEEB)
- / |Ag nV2ul?de.  (3.24)
By (y)

On the set (Ba,)s,n (recall the notation introduced right after (2.2)) we define

a’(x) ::/0 V fu(e(u(z + thes)))dt
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and observe that (for p > 0)

DN (V fule(u h/ p (Vi (e(u(z + te,))) ) dt

h
Z%/o 0. (VSulelule + te))it = 30, / (Vfule(ula + te,))dt = da® . (325)

By continuity one obtains A, ,(V f.(e(u))) = 950 also for = 0. Therefore we estimate

/ (Vf,(e(u)), e(i) e = — / (Ban (T (€(0))), (O pe(u)) da
B,/ (y) B,/ (y)

— / VAV (Vf“(e(u))),VC © A pu)de
B,/ (y)

P

< / (a®,0,V( O D puydz + / (a®, V¢ O Ag pOsuydr,  (3.26)
B, (y) By (y)

P

where we have used (3.6), (3.8) and (3.25). Since u € W?2(By,(y), R") we conclude with (2.7)

[ hdetu), el < ¢
B, (y)

c S
WHUHWW(B%)HO‘ HLP/(Bp/(y))

C s C 1/2 r/p’
T _pH“”Wz'P(Bw)Ha e B, () < WHUHWQW(B%)HN + el /7 g, (3.27)

Eventually, by Holder’s inequality and the standard properties of difference quotients we can
estimate the last term on the left hand side of (3.22) as follows:

_ 1
| = al = giphde < = ol (G IVl + V20 e,,)- (329
2r

Estimates (3.22), (3.24), (3.27) and (3.28) yield

CK

1
/ |As 5 VPul?dr < 5/ |As 5 V2ul?dx +
o (y) B, (y)

P

/ )

+
(P =p* o—p

for a constant ¢ > 0 depending on n, p, k, L, the W%2 norm of u and the LP norm of g. Then,
(3.21) follows at once since y € V' is arbitrary. By this, [28, Lemma 6.1], and the compactness of
V we finally infer

/ |As)hv2u\2dm <e,

with ¢ independent from h, and therefore u € VVl *(Bay, R™).
Let us now prove (3.20). Using u € VVl %(Bay, R™) and the fact that e(y) has average zero for
every ¢ € Wy?(Ba,, R™), we can rewrite (3.22) as

1
f/ (VAu, Vo)dz
L Bar

- /B (Y, (e(0)) — V fule(@a)), e(@))dz + rip / g (u— g, )z, (3.29)

2r
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for any @ € R™*™.

Let now ¢ := > | 05(¢905(u— Qx)), where ¢ > 4, let ¢ € C2°(Bs,/2;[0,1]) obey ¢ =1 on B,
and |V¢| < ¢/r. Since u € W2 (Ba,, R™), 1 can be strongly approximated in W'2(By,, R™) by
smooth functions supported in Bs,./; therefore we can use ¢ = 9 as a trial function in (3.29).

We now estimate the three terms in (3.29). We start from the second one, which we write as

L= /B (B

where
1
B(z) := V fu(e(u)) = Vfu(e(Qu)) :/O V2 fu(e(Qx) + te(@) (x))e(a) (x)dt

and (z) := u(x) — Qr. We estimate, using (2.3) and Lemma 2.3,

1
B < [ G-+ 1e@a) + te(@P )/ el
0
< e(p+ 1e(Q)|* + le(w)[*)P*e(a)]
< e(p+ (le(Qa)] + le(@))*)P*~ e(@)| = ¢ ¢ (quy (le(@))
for 1 > 0. By continuity, |B| < C¢Te(Qw)|(|e(ﬂ)|) holds also for 4 = 0. We compute

e(y) = Z(@SVCq) © Ot + V¢ © 0%+ 05(¢105e()) -

s=1
We estimate the three contributions to Is separately. Recalling the estimate for B, we obtain

[12,1] S/
Bo,\B

T
2
C
<<
7‘2 B

2 2
cq . cq / - -
B—Vudmﬁ—/ Decon) le(@)])|Vu|dz
7‘| | 72 | | r2 Bay\B. le(Q )|(| ( )l)‘ |

2
- - cq -
\B ¢Te(Qx)|(|VU|)|VU|d$ < =) ¢\e(Qx)|(|VU|)d$

2r 2r r

where we used monotonicity of ¢/, and (2.22). Using Korn’s inequality for shifted N-functions (cf.
[17, Lemma 2.9] or (3.16)) and choosing @ := (Vu)p,, we conclude

2 2
21| < %/B Ble(@q)|(le(@)])dx < “ [Viu(e(u) = Vi(e(Qx))[*da

2
™ JB,,

where in the last step we used (2.24).
For the second one, we use that for any function v in I/Vlif one has

92vj = 205([e(v)]s;) — 9;([e(v)]ss), (3.30)
here [e(v)]nr denotes the entry of position (h, k) of the matrix e(v), to obtain
Iz gﬂ/ |B|CI1 | Adi|da
r BQT‘\B7

<A

=% Joon, ooy (le(@)CTHVe(a)|da.
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Recalling (2.13), choosing ¢ > 2 and since 0 < ¢ < 1, we deduce by Young’s inequality

12l < [ ofliqu (@ @) Ve(@) s

T

<9 (10 ouy (le(@)])|Ve(a) Pdx
BQ’F\BT

¢ /! B R
/BQT\BT We(qay (le(@Dle(@)*de,

2
with ¢ = ¢(6,¢) > 0 and § € (0,1) to be chosen below. Hence, recalling |[VV,,(€)|? > e(u+[¢[)"/>~1
and ¢[/(|t — a|)|t — a|* < ¢|V,,(t) — V,(a)|? (see Lemma 2.4 and the definition of ¢,), we infer

C
|I2] <0 CIV(Viu(e(w))Pdz + —
Ba,-\Br r

/ Vi(e(u)) — Vi(e(Qu)[2dz.
By, \B,

Finally, to deal with the last term I5 3 we integrate by parts. Since ;B = V2f,(e(u))dse(u),
recalling (2.3) and the definition of V,

n

—Ips :/B ¢ (V2 fule(w)se(u), dse(u))dz

s=1

Se [ CUput le(w) PP Ve(u) Pz > o / IV (Viu(e(u))) Pdz,
Ba, Bay

with ¢ = ¢(p) > 0.
We now turn to the first term in (3.29),

I ::/ (VAu, Vip)dx .
Ba,

Again we consider separately the contributions of the different components of Vi,

Vih = 0,0® (9,V¢) + 020 ® V¢ + (0:¢9)0: Vit + 102V

s=1
The first term is controlled by

& ~
hal <5 [ VA ilds
2

B,

<5 CI|VAu2da + %/ Vii|2da
By \B, ™" JBs,\B,

for some ¢ = ¢(q, ) > 0, provided that ¢ —2 > ¢/2, namely ¢ > 4. The second and the third terms
are controlled, for some ¢ = ¢(q,d) > 0, by

|12+ I1 3] S;/ |V Au|¢T V2| dx

BQT\BT

gs/ UV Aul2dz + %/ V2| 2dz .
Ba:\B; " J By, \B,

The fourth summand in I; is

Ly = CIVAuU - VAudz .
BQT

Conti-Focardi-Iurlano-revised-sc.tex 17 [JANUARY 30, 2019]



We deal with the remaining term in (3.29)

I3 := /@p/ |u—g\p_2<u—g,zas(cqasa»dw'
Ba, s=1

Holder’s and Young’s inequalities together with (3.30) yield for some constant ¢ = ¢(p,q) > 0

-1 2Ap C ~ C
K I3§7“P*1/ |u—gpdx+7/ VudeH—f/ ¢UVe(u)[Pdz.
Ba | r(A+Lp Bz, \B; ‘ ‘ AP Bz, ‘

Recalling that we have chosen @ = (Vu)p,,, apply Korn’s inequality to obtain

From Lemma 2.4 we obtain

€ =P < V(&) — V)P (u+ €7 + [n>)"* "7,

using Young’s inequality and Remark 2.2 we conclude that
¢
Vi(e(w) = Vi(e(Qu)) Pdz + —5 /B (1 + le(u)?)"dz
2r

1

2 23p.
r Ba, r2-p
1 c

K)il]’g,g

ra-p

< 5 [ Waletw) = Vilel@a)Pe+ — ([ 1Valetw o+ )

with ¢ = ¢(p) > 0. Furthermore, again by Lemma 2.4, Young’s inequality and Remark 2.2 we

have that
c

K_lfg,:s <46 Cq\V(Vu(e(u)))Fdx—k 5 (/B ‘V#(G(U))de—i-up/zr"),

Ba, r2-p

for some ¢ = ¢(0,p) > 0. Therefore, we deduce that

P 1
KU <pit / lu — g[Pdx + —2/ Viu(e(u)) = Viu(e(Qr))[da+
B, 7" JBa,

C

+5/Bzr ¢V (Viule(w))) Pda + —; (/B% |Vu(€(u))|2dx+u”/2r”)_

r2-p

Finally, we rewrite (3.29) as
.- <1|I \+l|f + sl + 11+ 1Iop+ I
pha—less Fihal+ 7l + s 21 +l22+ 3.

Choosing ¢ > 4 and 6 € (0, 1/4], for some constant ¢ = ¢(n,p) > 0 we have that

1
I - CI|V Auldx + /BQT Cq|V(VM(e(u)))|2dx

g%/ Vi2dz + — V24| 2d
Lr B, \B, Lr Bo, -

1+ k&

— (& X 255
+eit /BW'V“(G(“” Vi(e(Qu))

r

rz-r

4t / ju—glPde + e — / Vile(w) [2da + u2rm),
Bgr,v B?'r-

and (3.20) follows at once from Lemma 2.6.

O
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We are now ready to prove the Caccioppoli’s inequality in the sub-quadratic case.

Proposition 3.3. Letn>2,p€ (1,2], k and p > 0 and g € LP(Q;R™). Let u € WHP(;R™) be
a local minimizer of %, , defined in (2.8).
Then, V,(e(u)) € WE2(Q R and w € W2P(QR™). More precisely, there is a constant

loc sym loc

¢ = ¢(n,p) > 0 such that if Ba,(x9) CQ and A >0

[ et <5 [ Vo) = Bilew) o P
Br(z0) r Bar(x0)

—I—/w%/ \u—g|pdx+02—’ip</ |Vu(e(u))|2dac—I—,L/J/QT")7 (3.31)
Bar(z0) 2-p Bar(z0)

rz-p

and

[ wepa e[ w@emra) (|

Proof. By a simple translation argument we can assume xy = 0 without loss of generality. We
consider the functionals F}, defined in (3.19) and correspondingly we define

e\
(u+\e(u)\2)5dx) . (3.32)

7‘(5‘70)

Foo(V) = fu(e(v))dx + K/ |v—g|Pdx.

BQT BQr

Fix a sequence u; € C‘”(EQT;R") which converges strongly in WP to u, and let uy,, be the
minimizer of Fy, over the set of WP (By,; R"™) functions which coincide with u; on the boundary,
correspondingly u; for .

For a fixed [, let v be a smooth approximation to u; with the same boundary data. Then
Fr(v) = Fo(v) as L T oo. Since Fy > F, this implies that Fr(u;r) = Foo(u)) as L T
oo. In particular, the sequence v; 1 is a minimizing sequence for %, and since this functional
is strictly convex it converges strongly in WP to the unique minimizer uj of Z,. Further,
L™ [, IV Pdz — 0.

Using Lemma 3.2 with w = u; and taking the limit L 1 oo in (3.20) we obtain

1+k

| Vet s < =58 [ Wetu) = (Videlui ) o

bt [ g gpdo e ([ Waletwi))Pda + ).
2 2-p Bar

r r2-pr

Finally, since u; — u strongly the sequence u; +u — u; is also a minimizing sequence for #.,, and
by strict convexity it converges strongly to the unique minimizer u.

We deduce that u; — u strongly in W1P(By,;R") and in the limit as [ T oo we conclude the
proof of (3.31). Eventually, (3.32) follows by Hélder’s inequality and Lemma 2.4. O

3.2 Decay Estimates

As a first corollary of Propositions 3.1 and 3.3 we establish a decay property of the L?-norm
of V,,(e(u)) needed to prove the density lower bound inequality in [12] in the two dimensional
setting. The result shall be improved as a consequence of the higher integrability property in the
next section (cf. Corollary 4.3).
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Proposition 3.4. Letn >2, p € (1,00), k and pn > 0. Let u € WHP(;R™) be a local minimizer
of Fu defined in (2.8) with g € LP(;R™) if p € (1,2] and g € WHP(R™) if p € (2, 00).

Then, for all v € (0,2) there is a constant ¢ = ¢(v,p,n, k) > 0 such that if Bg,(xzg) « Q,
then for all p < R < Ry <1 if p > 2 it holds

1
[ WP < er (s [ Waletw) P+ enlu—olnogn) 339
B, (z0) Ry Br(xo) ’
and if p € (1,2) it holds
2 ¥ 1 2 p p/2
Vilelw)Pde < e (= [ Vale(w)Pde + cnlu — gl g + eni™), (330
By (o) RY JBa(ao) ’

Proof. Let 4r < Ry, and ¢ € C2°(Ba,(x0)) be such that 0 < ¢ < 1, ¢|p,.(z,) = 1, |V(| < 2/7. Note
that 2V, (e(u)) € Wy ?(Bay (1), RZX™), therefore

sym

/B VTt P

<2 / AV, (e(w)Pdz + 8 / IV IV, (e(w)) Pde
B, (z0)

Bz.,- (wo)
32

< 2/ [VVa(e(u)Pde + = [V, (e(u))|*dz. (3.35)
Ba,-(z0) 7" J Bar(w0)\Br(0)
If p > 2 by means of Proposition 3.1 with A = 1 we further estimate as follows
c(l+ k)
r2

/ IV (CPV(e(w)) P < / Vi(e(w) — (Vi(e(w))) 5y, (noy d
Ba,.(z0) Bur(z0)

p—— / (Ju = gIP ™) + |V (u = g)|)do + / Vi(e(w) de
B4T($o) r B27‘(10)\B7‘(I0)

< c(1+ k)

r? /1;4 (zo) |VH(€(U))|2dI +ere=t Hu - g”€V1,P(Q;R")7 (3-36)

with ¢ = ¢(p,n) > 0. Therefore, in view of Poincaré inequality and (3.36) we get for any 7 € (0,1)
and any g € (2,2%), with 2* =2n/(n —2) if n > 2,2* =0 if n =2,

J

2r(z0)

2/q
IV, (e(u))Pdar < ¢ (7)) </B |c2vu<e<u>>|”””>

rr(zq)

< CT”<1_2/Q>T2/ |V(<2Vu(e(”)))‘2d$
B2r(x0)

<c (1 + K)T”(1_2/<I) (/

_2p_
et P et = gl ). ()
4r(Zo

with ¢ ” c(p,q,n) > 0. We choose ¢ € (2,2%) such that n(1 —2/q) > 24'77, which is the same as

qe€ (2nfztw2*)- This is possible since v € (0,2). Then, for sufficiently small 7, and for § = 7/4

m
[ WewPde<6% [ Wletu)Pdo+ oo fu gz - (339
Baor(zg) Buar (o)
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The decay formula (3.33) then follows from [28, Lemma 7.3].
Instead, if p € (1,2) by Proposition 3.3 choosing A = % — 1> 0 we estimate (3.35) as follows

c(k+1)
)

/ IV (¢2Viu(e(u))) [Pdz < / Vile() — (Vi(e(w))) g, (noy P
B, (z0) By (o)

K+1
LR
Bar (o)

r2

+cm§%€/ ‘u—g|pdx+mup/2r”_2+c
B4r($0)

k+1

<c
S 2

.
/B (@0) Vi(e(u)Pda + criro=t|lu— g||?, qn) + a2,
4r(To

with ¢ = ¢(n, p) > 0. Then, arguing as to deduce (3.37) we conclude that

/ Viu(e(u)Pda < e (=70,
B

- . ((/@4—1)/3

with ¢ = ¢(p,q,n) > 0. By choosing ¢ € (2,2*) such that n(1 —2/q) > 257, for sufficiently small
7, and for § =7/

Viale(w) 2dz + k17T [lu = glI7, oz + crn” ™),

4r(Z0)

24y P
[ Wew)Pde < 6% [ Wietu)Pdn + o (u = gl +07) . (339
Bagr(xg) By (z0)
The decay formula (3.33) then follows from [28, Lemma 7.3]. O

4 Partial regularity results

In the quadratic case p = 2 it is well-known that the minimizer u is C?(2;R") in any dimension
if g € C* (see for instance [28, Theorem 10.14] or [27, Theorem 5.13, Corollary 5.14]).

Below we establish C1'® regularity in the two dimensional setting and partial regularity in n
dimensions together with an estimate on the Hausdorff dimension of the corresponding singular
set. To our knowledge it is a major open problem in elliptic regularity to prove or disprove
everywhere regularity for elasticity type systems in the nonlinear case if n > 3 and p # 2.

4.1 Higher integrability

In this subsection we prove the first main ingredient for establishing both C*® regularity if n = 2
and partial regularity if n > 3 with an estimate of the Hausdorff dimension of the singular set:
the higher integrability for the gradient of V,,(e(u)), u > 0.

Proposition 4.1. Letn >2, p€ (1,00), k and pp > 0. Let u € WHP(Q;R™) be a local minimizer
of F . defined in (2.8) with g € L¥(Q;R™), s > p, if p € (1,2] and g € WIP(Q;R™) if p € (2, 00).
Then, V,(e(u)) € W/I}J’f(Q;R;‘yﬁl) for some q > 2. More precisely, there exist ¢ = q(n,p, k) > 2

and ¢ = ¢(n,p, k) > 0 such that if Bay(x9) CC N and p > 2

(]fmxo) [V (Vile(u)) |qu> ’ = C<]€;

] 4 \Va
+c(,€][ (Ju — g™ +|v(u_g)\%p)2dx) ,(41)
B27'(x0)

AT

2r (xU)
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with the exponent p and \g € [ﬁ, 1) introduced in Section 3.1, and if p € (1,2]

Udx g c
(f,,. [FOaceras) “<e(f,

a /a
—i—c(/i][ (Ju—gl”+ |Vu(e(u))|2+up/2)2da:) (4.2)
Bz (o)

1V (Vo)) Pz)

with ¢ = q(n,p, K, s) > 2 and ¢ = ¢(n,p, K, s) > 0.

Proof. Recalling that 2 is the Sobolev exponent of nQ—fQ, we may use the Caccioppoli’s type es-

timates (3.2) and (3.31), the former if p > 2 (with A = 1£22) and the latter if p € (1,2] (with
A = 0), to deduce by Poincaré-Wirtinger inequality for some ¢ = ¢(n,p) > 0

n42

n

7{9,\@0) |V (Vi(e()))Pde < e(1+ n)(][ \v(vu(e(u)mﬁdﬁ)

Bar(z0)

14X 1+Xg
pl

+*][ (Ju—glPC=) + |V (u — g)| "= "P)d,
By (z0)

if p> 2, and

n+2

]ir(xo) |V(Vu(€(u>))|2dl‘ <ec(l+ /@)(][ ‘V<Vu(€(u)))|"7f2dx> n

Bar(z0)

ten f (1t — g + [V (e(w) [ + 12)da
BQr(J;D)

if p € (1,2]. By taking into account that u € WLP(Q;R™), \g € (p%l, 1) and ﬁ(%) < p* and

that V,(e(u)) € VVlif(Q,R;’yXﬁ) (cf. Propositions 3.1 and 3.3), Gehring’s lemma with increasing

support (see for instance [28, Theorem 6.6]) yields higher integrability together with estimates
(4.1) and (4.2). A covering argument provides the conclusion. O

Remark 4.2. To apply Gehring’s lemma with increasing support in order to deduce higher inte-
grability in case p > 2 it is instrumental that we may choose A € (Ag,1) and the corresponding
exponent p(A) € (p,p*) in (3.2) (cf. the definition of p(-) in (3.1)).

We improve next the decay estimates in Proposition 3.4. This version is useful to prove the
density lower bound in [12] in the three dimensional setting. We do not provide the details since
the proof is the same of Proposition 3.4 and only takes further advantage of Proposition 4.1.

Corollary 4.3. Letn >3, p € (1,0), k and 1 > 0. Let u € WHP(Q; R™) be a local minimizer of
F e defined in (2.8) with g € L*(Q;R™) with s > p ifp € (1,2] and g € WHP(Q;R™) if p € (2, 00).

Then, there exists o = vyo(n, p, &), with y9 > 2, such that for all v € (0,7] there is a constant
¢ =c(y,p,n) > 0 such that if Br,(xo) C §, then for allp < R< Ry <1

1
| e Par <o (g5 [ Waletw)Pda+ onllu = glfynsgen)
B, (x0) Br(z0) ’
if p>2, and if p € (1,2],
1
[ WaetwnPde < e (g [ Wiletw) Pz + onlu = gl g0 + cnn™)
B, (o) RY JBa(a0) ’

with ¢ = ¢(vy,p,n, s) > 0.
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4.2 The 2-dimensional case

C1@ regularity in 2d readily follows from Proposition 4.1 (see also Remark 4.5).

Proposition 4.4. Letn =2, p € (1,00), k and u > 0. Let u € WHP(Q;R?) be a local minimizer
of Fy. defined in (2.8) with g € L*(;R?), s > p, if p € (1,2] and g € WHP(;R?) if p € (2, 00).
Then, u € Cla(Q R?) for all a € (0,1) if 1 < p <2 and u > 0 or if p > 2, and for some

loc

a(p) € (0,1) if l <p< 2 and p=0.
Proof. We recall that V,,(e(u)) € W, ’q(Q R2X2) for some ¢ > 2 in view of Proposition 4.1. There-

loc Sym

fore, by Morrey’s theorem V), (e(u)) € o T(Q;R2X2).

loc sym
Furthermore, being V,, an homeomorphism Wlth inverse of class C*(R?*2;R2*2) if p € (1,2]

and ¢ > 0 or if p > 2 and p > 0, and of class C’1 (R2X2 R2%2) if p > 2 and p = 0, we conclude
by Korn’s inequality that u € C’1 7 (Q; R?) for some oy, = a(p) € (0,1).

loc
To conclude the claimed C* regularity for all a € (0, 1), we recall first that u € W2"?(Q; R?)
(cf. Propositions 3.1 and 3.3). Actually, in the 2-dimensional setting u € VVI (0 RQ) in case
€ (1,2), as well. Indeed, |e(u)| € LS. () by Corollary 4.3, therefore we conclude at once from
Lemma 2.4 (cf. the argument leading to (3.32)). Hence, since f, € C*(RZ%2) if 1 < p < 2 and
@ > 0 orif p > 2, one can differentiate (3.4) and deduce that the weak gradient of e(u) is a
weak solution to a linear uniformly elliptic system with continuous coefficients. Schauder’s theory

provides the conclusion (cf. [27, Theorem 5.6 and 5.15]). O

Remark 4.5. Actually, u € C*(Q;R?) if g € CF(Q;R?) and u > 0 bootstrapping the previous
argument.

4.3 Partial regularity in the non-degenerate autonomous case

In this section we deal with the non-degenerate autonomous case, corresponding to p > 0 and kK =
0, by following the so called indirect methods for proving partial regularity (see [25]). Therefore,
the other main ingredient besides higher integrability of the gradient, is the following excess decay
lemma. We introduce the notation

&z, r) = f
B, (z)

for the excess of any v € WP(Q; R™). Recall that (e(v )B @) fB (@) €

Technical tools exploited in the proof of the excess decay are postponed to the Appendix A.
For a linearization argument there, the assumption p > 0 is crucial (cf. Theorem A.2).

Vi (e(v) - (e(v))Br(z)) ‘2 dy (4.3)

Proposition 4.6. Letn > 2, p € (1,00) and u > 0. Let u € WHP(Q;R™) be a local minimizer of
Fuo defined in (2.8).

Then, for every L > 0 there exists C = C(L) > 0 such that for every T € (0,1/4) there ewists

e =¢(1,L) > 0 such that if B.(z) C £,

’ (e(®)) g, 0)

<L and &y (x,r) <e,

then
Eu(x,Tr) < 0726‘;(33,7"). (4.4)
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Proof. Suppose by contradiction that there is L > 0 such that for all constants C' > 0 we can find
7 € (0,1/1) for which there exist By, (z5) C £ such that

§L7 éau(xharh):A%J/Ov

(G-
and
Ey(xn, Try) > CT2E (Th, 7). (4.5)

We shall conveniently fix the value of C' at the end of the proof to reach a contradiction.
Consider the field up : By — R"™ defined by

un(y) (w@n +ray) = @, @) = 10(T0) 5, () 9):

Y

and set Ay := (6(“))8” ()" Then, up to a subsequence we may assume that A, — A, and

][ IV, (Ane(un)) Pz = ][ V(o) — Ap)2de = Eu(an, ) = X2 (4.6)
By

B’V‘h,(xh)
Being u a local minimizer of .%, o defined in (2.8), uy, is in turn a local minimizer of
Fn(v) = Fr(e(v))dzx,
B1

with integrand
Fu(€) == A2 (fu(An + An8) = fu(An) = MV fu(An), €)).

Note that Zp,(up) < ¢L™(By) by (iii) in Lemma A.1 and (4.6), thus by Theorem A.2, (up)n
converges weakly to some function u., € WH2(By, R") in W1P 2(B;R"), and actually, by Corol-
lary A.4 we have for all r € (0,1)

lim A2 V(e (up, — uso))Pdz = 0. (4.7)
hTOO BT

Therefore, item (iii) in Lemma 2.5 and a scaling argument give for some constant ¢ = ¢(p) > 0
2
/\;Zéau(a:h,ﬂ“h) = )\,:2][ ‘Vu (/\h(e(uh) - (6(uh))B,)>‘ dx
B,
2 2
SC)\;QJ[ ’Vu (/\;Le(uh - uoo))‘ dx + C)\;QJ[ ‘VH (/\;L(e(uoo) — (e(uoo))BT))‘ dx
B, B,
2
+eA? ]{9 ‘Vu (Ah((e(uh))BT - (e(uoo))B )) ‘ dzx.

.

The very definition of V,,, item (v) in Lemma 2.5 and (4.7) yield

2
lim sup )\,:Qéau(xh,ﬂ“h) < CMP/2_1][ ‘e(uoo) - (e(uoo))B dz.
B

hToo

-
T

In particular,

lim sup )\gQéau(xh,Trh) < Cr? ,
h1oo

as U 18 the solution of a linear elliptic system (cf. Corollary A.3). Thus, by taking the constant
C > C, we reach a contradiction to (4.5). O
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We are finally ready to establish partial regularity and an estimate on the Hausdorff dimension
of the singular set in the non-degenerate autonomous case. The degenerate case, namely p = 0,
corresponding to the symmetrized p-laplacian, p # 2, is not included in our results. The non-
autonomous case will be treated next via a perturbation argument. We recall that in case p = 2
the solutions are actually smooth.

Before proceeding with the proof, we introduce some notation: for v € WHP(Q; R") let

2V =Lz eQ: liminf
™0 JB,. ()

Vilelw®) ~ (Vi) . )| v > o} R

= oo} . (4.9)

Theorem 4.7. Letn >3, p € (1,00) and u > 0. Let u € WHP(;R™) be a local minimizer of
Fuo defined in (2.8).
Then, there exists an open set Q, C Q such that u € Co%(Q; R™) for all o € (0,1). Moreover,

loc

and

»? .= {x € Q: limsup (Vu(e(v)))B @
rl0

dimy (2\ Q) < (n—¢q) VO,
where q¢ > 2 s the exponent in Proposition 4.1.

Proof. We shall show in what follows that under the standing assumptions the singular and regular
sets are given respectively by

Y,oo=2Pus® Q, =0\, (4.10)

By the higher integrability property established in Proposition 4.1, we know that V,,(e(u)) €
Wlif(Q;Rg‘ergL) for some q > 2. Therefore, ¥, = 0 if ¢ > n by Morrey’s theorem. Otherwise, if

B,.(z9) C Q, by Poincare’s inequality for all r € (0, dist(xq, 9))

2
][ dr < c(rq_”/
Br(zo0) B

Therefore, H" ¢ (E&l)) = 0 by standard density estimates (cf. [28, Proposition 2.7] or [2, Theo-

rem 2.56]), and dimy 222) < n — ¢ by standard properties of Sobolev functions (cf. [28, Theo-
rem 3.22]). In conclusion, dimy ¥, < n —gq.
Let us prove that €, is open and that u € C1*(Q,;R") for all a € (0,1). Let xg € Q,. First

note that sup,. [(V.(e(w))) (zo)' < 0o being zg € 2\ »

[VV(e(w) v "

Vi(e(u)) — (Vﬂ(e(u))>BT(Io)

r(zo0)

. Additionally, since

2

)

"y -+ elp) |(Vietw) 5,

Vi(e(u 2dy < ¢ Vi(e(u)) — (Vu(e(u
]ipw (e(w)) Py < e(p) ]{W)i (ew)) — (Vile(w)) . )
being zo € '\ 29) we conclude

liminf][ [V, (e(w))|*dy < oo. (4.11)
PO I B, (w0)

The last inequality and item (v) in Lemma 2.5 yield for some L > 0

lim inf |(e(u)) < L.

pd0 By (z0)
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In view of this, Lemma 2.5 (item (i) if p > 2 and item (ii) if p € (1, 2), respectively) and Lemma 2.6
yield that liminf, o &, (zo, p) = 0. Therefore, for all n > 0, ¢ belongs to the set

QL .= {x €N: ‘(e(u))B‘(x)‘ <L, &u(x,r)<n forsomere (O,dist(wﬁﬂ))} .

In particular, Q,C Upen Qﬁ’n@), for every n(L) > 0, and clearly each Qﬁ’"(L) C Q is open. We
claim that actually Q, = ULGNQﬁﬁ(L) for some 77(L) = 7(L, n,p, @) conveniently defined in what
follows. To this aim we distinguish the super-quadratic and sub-quadratic cases.

We start with the range of exponents p > 2. To check the claim fix any L € N and x¢ € QL7
with corresponding radius r, then we have for all 7 € (0,1/4)

‘(e(U))B”(wO) = ’(e(u))Br(W) + ’(e(u))Bw(ﬂﬂo) N (e(u))Br(o:o)
< (6(“))&(%) +7" ]{Br(mo) e(u) — (e(u))Br(m) dy
< |(€) g, (| + 7" (Bl ), (4.12)

where for the last inequality we have used item (iv) of Lemma 2.5 for p > 2. Moreover, if (7, L)
is the parameter provided by Proposition 4.6, and 0 < ) < &(7, L) we infer that

Eu(wo, Tr) < OT2Ey (0, 7). (4.13)

Having fixed any o € (0, 1) we choose 7 = 7(«, L) € (0,1/4) such that C72* < 1, with C = C(L) >
0 the constant in (4.4). Therefore, choosing 0 < n < e(r, L) A 7P we infer from (4.12) and (4.13)

[(e(W) B, @y < L+ 1, Eu(wo,7r) < 721798, (20, 7).
The latter is the basic step of an induction argument leading to
|(e<u))3ﬂr($0)‘ <L+1, &z, mr) < 72(1_a)jéau(x0,r) (4.14)

for all j € N. Note that from the last two inequalities we conclude readily that xy € €Q,,.

Hence we are left with showing (4.14). To this aim fix j € N, 5 > 2, and assume (4.14) true
for all 0 < k < j — 1 (as noticed the first induction step corresponding to j = 1 has already been
established above). Then, by (4.12) we get

Jj—1 -n
_ /o T p
l(e(w)B_; @)l < (e(w)B, (@) +77" Z (Eulzo, 1)) " < L+ T =) (&ulzo, ).
k=0

We get the first estimate in (4.14) provided 0 < 5 < e(7, L) A 77P(1 — 7°/#(1=2))P_ Finally, to get
the second inequality in (4.14) it suffices to assume in addition 0 < < (7, L + 1) and apply
Proposition 4.6. In conclusion, we set

(L) == e(r,L+ 1) Ae(r, L) AT"P(1 — 77/7(1=)yp (4.15)

(recall that 7 = 7(a, L)).
If p € (1,2) we only highlight the needed changes since the strategy of proof is completely
analogous. We start off noting that we have for some ¢ = ¢(p) > 0 (which may vary from line to
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line)

][ |e(u) _ (e(u))BP(mo)|pdy < C][ |Vu(€(u)) - VH((e(u))BP(xO)Z(L_Q) dy
B, (z0)

By (w0) (H + le(uw)]? + |(6(U))Bp(wo)|2) !

<e(f, 1) Vi) ) (f (e O+ e, o) o)

< luloo, ) (1 + elDm, ol + f,

160 ) H Gl D 4 0Bulanp) b5 f el — (€l0) o Pl
o (4.16)

(SIS

p(IO)
bl
2

) — (6(u)5, (o )

where we have used Lemma 2.4 in the first inequality, Holder’s inequality in the second, item (ii)
of Lemma 2.5 in the third, and Young’s inequality in the fourth. Therefore, we get

763 (o) le(u) = (e(w) B, (w0 |dy < (1" +[(e(u)) B, (@) IV + &(xo,p))%_%(éau(mw))%

for some constant ¢ = ¢(p) > 0. In turn, with fixed L € N and z¢ € QE7, for all 7 € (0,1/1) we
have instead of (4.12)

1

HSulwor)t (417)

Having fixed any o € (0,1) and choosing 7 = 7(a, L) € (0,1/2) such that C72% < 1, with
C = C(L) > 0 the constant in (4.4), we can establish inductively (4.14) provided we choose

|(e() B, (o) | < Ne(W) B, (o) | + 7" (W72 + LP + & (w0,7)) ¥

(L) :==e(r, L+ 1) Ae(r, L) AL A er® (u"? + LP + 1)1’% (1—717%)2, (4.18)

with ¢ = ¢(p) > 0.
Eventually, for any p € (1,00), V,(e(u)) € CO’I_a(Qﬁ’n(L);R"X") for all @ € (0,1) by Cam-

loc sym
panato’s theorem and (4.14). The conclusion for e(u) then follows at once from the fact that V,

is an homeomorphism with inverse of class C1(R™*"; R"*") if p > 2 and u > 0 orif p € (1,2]. O

4.4 Partial regularity in the non-degenerate case

In this section we prove partial regularity in the general non-degenerate case by following the so
called direct methods for regularity. To this aim, with given x, ;& > 0 and a local minimizer u on
WhP(Q;R") of the energy %, .(-), with fixed B,(z) C Q, we consider the minimizer w of the
corresponding autonomous functional (on the ball B, (x¢))

F .0 (v,Br(acO)) = / fule(v))dz (4.19)

By (z0)

on u + Wy (B, (), R™). This implies (e(u))Br(mo) = (e(w))BT(ZU).

Lemma 4.8. Letn > 3, p € (1,00), £ and p > 0, B.(x9) C Q. Let u be a local minimizer of
Fuk in (2.8) and w be defined as above.
Then, there exists a constant ¢ = c(n,p) > 0 such that for all symmetric matrices £ € R

/ [Viu(e(w)) = V,(©)Pdz < C/ Viu(e(w)) = V(&) Pda, (4.20)
B, (zo)

Br(ibo)
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and
/| Vo) = Vilew) Pl < e Fro(ws Brlzo) = Fuo(w. By () (4.21)

Moreover, we have
Ew(@o,1) < o EulTo,7) (4.22)

for some constant ¢y = g (n,p,,u,M) > 0, provided that |(e(u))B, (zq)] < M.

nxn
sym

Proof. Note that for all symmetric matrices &, n € R

1
Ju@) = ful&) = (Vfu(&),n = &) = /0 <v2fu(§ +tn—E&)n—8&,n— &1 —t)dt.
Therefore, from (2.3) and Lemmata 2.3, 2.4 we infer for some constant ¢ = ¢(p) > 0

C_1|Vu(77) - Vu(f)|2 < fum) = fu(§) = (Vfu(§)sn — &) < c|Viu(n) — V#(f)|2- (4.23)
Since for all ¢ € Wy P (B,.(x0); R")

/ (V1,(6), () = 0,
B, (z0)

from the minimality of w for .%, o(-, Br(x0)) and since u — w € WyP (€ R™) we get that
[, Gulelw) = (6~ (90) ew) =)o

< / (Fule) = £u(6) — (V14(6), e(w) — €))d,
B, (xo)

and (4.20) follows at once from (4.23).
For (4.21) we argue analogously: we use the minimality of w and the condition v — w €
WP (;R™), to infer for all ¢ € WP (B, (x0); R™)

/ (V f(e(w)), e())de = 0.
B, (z0)

The conclusion follows at once by (4.23).
Finally, to prove (4.22) we use Lemma 2.5 (item (i) if p > 2, item (ii) if p € (1,2)) and (4.20)
with € = (e(w)) B, (zo) = (e(w))B, (z4) to conclude that

Ew(x, 1) < c][

|Vu(e(w)) — VM(§)|2dw < c][ [V.(e(u)) — Vu(f)\de < c&yu(xo,1).
B (x0)

Br(zo)

for some constant ¢ = ¢(n, p, |(e(u))B’ (IO)|) > 0. O

We are now ready to extend the result of Section 4.3 to the non-autonomous case. Besides the
sets 25" introduced in (4.8) and v in (4.9), in the framework under examination it is necessary
to consider additionally the sets

¥ =Lreq: limsup][ [v(y) = (v) B, () [Fdy > 0
rl0 B, (z)

U {x € Q: limsup|(v)p, ()| = oo} ., (4.24)
rl0
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and

DSOS {;v € Q: limsup |[(Vv), ()| = oo} (4.25)
rl0

for all v € WHP(2;R™). Note that 2 is actually empty for exponents p > n. More generally we
shall carefully estimate the Hausdorff dimension of such a set using Sobolev embedding and the
results in Propositions 3.1 and 3.3.

Theorem 4.9. Let n >3, p € (1,00), k and u > 0, g € WHP N L®°(;R™) if p € (2,00) and
g€ L>®(;R™) ifp e (1,2]. Let u be a local minimizer on WHP(Q;R™) of ., . in (2.8).
Then, there exists an open set ), C Q such thatu € Cll’ﬂ (Q; R™) for all g € (0,1/2). Moreover,

ocC
dimay (2\ ) < (n— ) V0,
where q := q Ap* A2*, g > 2 being the exponent in Proposition j.1.

Proof of Theorem 4.9. In the current setting the singular and regular sets are defined respectively
by 8, = 2P U@ usP us and Q, =0\ ..

For the details of the estimation of the Hausdorff measures of the sets Zq(f ) s, i € {1,2}, we refer
to the discussion in Theorem 4.7. Here we simply recall that by taking into account that V,(e(u)) €
whaQ; RE) for some ¢ > 2 (cf. Proposition 4.1), we get dimH(Zq(})UEq(f)) < (n—q) V0. Instead,
for what concerns Eg)’s, i € {3,4}, asu € W2P"2(Q;R") (see Propositions 3.1 and 3.3), by Sobolev
embedding u € WP 2" (Q; R"), and then we deduce that dimH(Eq(f) U 254)) < (n—(*A2%)) VO
(cf. [28, Theorem 3.22]). In conclusion, the inequality dim (2 \ Q) < (n —q) Vv 0 follows.

Next, we claim that the set Q, is open and that u € CL7(Q,;R") for all 5 € (0,1/2). Let

loc
o € €, then we may find an infinitesimal sequence of radii r; and M > 0 such that

upay) v ( ]{3

lim inf &, (xo, ;) = 0. (4.27)
iToo

1/2
timsup (1(Vu), o | ( Vilelw)?dy) ") < M < o0, (426)
itoo Bm; (7«0) i (10)

and that

Given j € N, ¢, p € (0,1), and setting

. 1/11 1/2 .
Q= {o e (Vv (£ urdy) v (£ WitetnPar) " <
B, (x) B,.(z)
éu(z,7) < e for some r € (0, p A dist(z, 39))},

we conclude that zg € QM+ for all choices of ¢ and p as above. Clearly, each 2/:°* is open
and Q, C UjeNQﬂE(])’p(]) for every choice of €(j), p(j) € (0,1). The rest of the proof is devoted

to establish that U;en@"779) € Q. for suitable values of 2(j) and (j) to be defined in what
follows, and the claimed regularity for u on €.

To this aim let xo € QM7 for some M € N, €, p € (0,1), and r € (0, p A dist(z,09)) be a
radius corresponding to x¢ in the definition of Q)5+ i.e. such that

(V) B, ()| V (7{3 |u|pdy) N (]i
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r(20) ~(20)



Consider the minimizer w of (- By(0)) on u + Wy (B,(x0);R"). Since (e(w))p, (ny) =
(C(U))Br(zo), we get that

[(e(w)) B, @) | = [(€(W) B, (z0)| < (V) B, (20)| < M- (4.29)
Moreover, from the proof of Theorem 4.7 we know that there exists n(M) > 0 for which if
Ew(zo,m) < (M), (4.30)

then V,,(e(w)) € COY(B,(z0); RLX™) for every a € (0, 1), with

sym

Ew(zo,p) < ¢ (g)Qa@@w(xm T) (4.31)

for every p € (0,7), with ¢; = ¢1(p, ¢, M) > 0. Denoting by ¢y = c¢o(n, 1, p, M) > 0 the constant
in (4.22) we first choose € < %(n(M) An(M +1)).
Let us first check that for any o € (0, 1) there exist a constant ¢ = ¢(n, p, o, , M, ||g|| Lo (orm)) >
0, and a radius pg = po(n,p) € (0,1) satisfying the following: if r € (0, pg A dist(zg, 92))) we have
forall 7 >0
Eulxo, 1) < cT**E (20, 7) + T (4.32)

provided that € < g9 = eo(p, p, 7, M) < %(n(M) An(M+1)) (actually gg := %(n(M) An(M +1))

C

for p > 2). Note that from (4.28) and from the choice € < €y, inequalities (4.30) and (4.31) hold.
We divide the proof in different steps for ease of readability. We shall always distinguish the
case p > 2 from p € (1,2).

Step 1. Proof of (4.32) for p > 2.
If p > 2, by item (iii) in Lemma 2.5 we obtain
Vi (e(u) = (e(u) B, (20)) | <clViu(e(w) — (e(w)) 5, (o))
+c|Viu(e(w) — e(w))] + eV ((e(w)) B, (20) = (€(w)) B, (20))
for some ¢ = ¢(p) > 0. Thus, by items (i) and (v) in Lemma 2.5 we infer
Eu(xo, 1) < c&y(x0,7T) + C ][ V. (e(u — w))|dx
Brr(z0)

(4.31)
2V et 128, (20, 7) + ¢ f V(e — w)2de
BTT(xU)

(4.22)
< ¢y 7'2“6‘;(950, )+ co 7'_”][ [V (e(u — w))|2dgc7 (4.33)
B, (o)

with ¢g = ca(n,p, u, M) > 0. To estimate the last term we use (4.21) and the local minimality of
u for #,, . to find for some c3 = c3(n,p) > 0 that

/B ( )|Vu(€(u)) — Viu(e(w))Pdz < es(Fp,0(u, Br(w0)) — Fpuo0(w, Br(z0)))
= 5(Fn (s B (20)) — F e, By (20)) + 03/ (lw = gI" — Ju - gl?)de
By.(x0)

< 03/ (lw—glP — |u— g|)dz. (4.34)
By (z0)
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In view of the elementary inequality
z1]7 = |22P] < p(|21[P~" + 2P~ 1) |21 — 2o (4.35)

for all z; € R", together with Holder’s, Korn’s and Young’s inequalities, we may proceed as follows
(in all the LP(B,(z0); R¥) norms in the ensuing formula k € {n,n x n}, for the sake of notational
simplicity we write only LP):

[ (wegP = - g)de
Br(mo)

o) [ (P P g - wlde
By (zo

IN

-1 -1 -1
< c(p)(lw = ullp,” + llull7e” + gl ) llu — wl|z

< e(p) excom(lullfs" + gl7a") le(u = w) | ote(p)excomt® lle(u — w)|,

) o (" (. [ulPdy o+ L) + rlletu = w)l + 7 e(u = w7,

r(z0)

IN

< 4 CRorn (" T MP + 1lle(u — w)|[},) (4.36)

where ¢4 = ¢4(p) > 0, and we assumed without loss of generality that M > ||g||}~ (recall that
r < 1). Here ckorn = CKkorn(n,p) > 0 is the best constant in the first Korn’s inequality on the unit
ball. Then from (4.34) and (4.36) we find

/ V. (e(w)) — Vu(e(w))|2d1‘ < c3cy cKom(r”HMp +7r|e(u — w)||’£p) . (4.37)
Br(mﬂ)
Next, recalling that p > 2, by item (iv) in Lemma 2.5 we have

/ le(u — w)[Pdz < / 1V, (e(u) — e(w)) Pde, (4.38)

B (o) Br(mO)
and moreover by item (i) in the same Lemma 2.5
[ Waletw) — etw) P <es [ [Vale(w) = Vilew)) Pz
By.(x0) Br(z0)

for some constant c; = c5(p) > 0. Hence, from the latter inequality, (4.37) and (4.38), if r < pp <

(2¢3¢4C5CK0m ) 1, we find

2
][ \P (e(u) — e(w)) ?dz < —-c3c405CKorm MPrT .
B, (z0) w

n

In turn, from this and (4.33) we get

2
En(wo, ) < ca T**E, (w0, 1) + —Cac3C4C5CKomT " MPT, (4.39)
Wn,

for every T € (0, 1), provided € < %(U(M) An(M +1)). Inequality (4.32) then follows at once.

Step 2. Proof of (4.32) for p € (1,2).
First, we have for some constant ¢ = ¢(p) (cf. (4.17))

Nl=
Nl

[(€(u) 5, sy < 1(€()) 3, o) + €7 (172 + 1 (€(0)) 3, ) [P + Eulo, 7)) P2 (Eulo, 7)) *. (4.40)
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Thus if € <o := 1A C%T?n(ﬂph + MP 1)1 A %(ﬁ(M) An(M + 1)) we conclude that
l(e(w)B,, (z0)] <M + 1.

Hence, we may use item (ii) in Lemma 2.5 to get for some constant cg = c(p, M) > 0
Sula ) Seo f alelw) Valle)p. (o) Pl
r(To

Thus, by item (ii) in Lemma 2.5 and by Lemma 2.6, denoting by ¢7 = ¢7(n, p, u) > 0 the constant
there, we infer (recall that since € < én(M) inequalities (4.30) and (4.31) hold true)

Sulentr) Scoer . Valelw)) = (Videlw)) . o

B (z0)
< 3cges ]i o Vae) = (Vo)) P+ Gecer ]i o Wale(w) = Valelw) P
< 3cger ]i - |Vu(e(w)) — Vu((e(w))B”(zo)))de + 6cger ]i - |Vu(e(u)) — Vu(e(w))|2dﬂc
< 3c<p)c6C7f 1V, (e(w) — (e(w)),, (o)) *d + Gcger f IV (e(w)) = Vy(e(w))Pda
By (z0) By (z0)
— Be(p)eserulao, 7r) + 6]{3  Vae() = Vi)

(4.31)
<" 3e(p)eseres 2% 8y (w0, 1) + Gcgen f IV (e(w) — Via(e(w))|2da
B, (z0)

(4.22)
< ey T E (w0, 7) + exT " ][ IV (e(w) — Viu(e(w))[2dz (4.41)
BV,V(ZE())

with ¢g = ¢cs(n, p, u, M) > 0. The last term is bounded arguing exactly as in the superquadratic
case: from (4.34) and (4.36) we get (4.37) (recalling that ||g||r~ < M), i.e.,

/B o) [Viu(e(u) = Viu(e(w))*dz < cscackorn (r' " MP + rlle(u — w)][},) - (4.42)

Next, Lemma 2.3, Holder’s and Young’s inequalities imply for all p € (1,2)

/ le(u — w)|Pdx
B,-(Z[))

— V. (e(w))|?dz + ¢ (W12 - le(w) 2 de
< [ et < Vit P o [ (el + ) ) e,

where cg = c9(p) > 0. Hence from the latter inequality and (4.42) we find for r < pg(n,p) :=
(203C4CKorn)71

/B( Wa(e(w) = Va(elw) P

< 2¢3€C4CKorn (r1+”Mp + 097"][

o (1 + le(u)|? + |e(w)|2)p/2da:) . (4.43)
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Being u admissible to test the minimality of w, by (2.6) we have for some c19 = ¢19(p) > 0

it [ (el = e £ Fow, Bulan)) < Fuolus Belao) S cia [ (e(wl? + 1.
B, (z0)

B.,- (ZEo)

Since, if p € (1,2), item (iv) in Lemma 2.5 yields for some ¢;; = ¢11(p) >0

/ le(w)|Pdz < / Viu(e(w)Pda + ey pr™
B,-(Z())

B,- (wo)

we infer for some c¢19 = c12(n,p, ) >0

[t e@P + o)) o < ennrn + [
Br(x())

|Vu(e(u))\2d$) < cror™ (14 M2) .
B'r(af())

From this, (4.41) and (4.43) we get

2
Eu(wo, Tr) < cg T2 Ey (0, 7) + ——c3cacsCromT " (MP + cocia(1 + M?))r
provided 7 < pg A 1 A dist(xq, Q) with po(n,p) := (2cscsckom) ! Inequality (4.32) then follows
at once.

Having established (4.32) for every p € (1,00), we proceed as follows. Fix a > 1/2, and let
0 <6 <1k <a. Choose T =7(¢,a) € (0,1) such that e72~! < 1, where ¢ denotes the maximum
of the constants in (4.32) for the bounds M and M + 1 on the means. Thus, we have for all
T € (0,7)

Eu(xo, 1) < 78 (T0,7) +TT "1 (4.44)
We show next by induction that, with 7 as above, it is in fact possible to choose, in order, (M)

and p(M) (here we highlight only the M dependence, for more details see Steps 3 and 4) such
that for every j € N we have

1/p 9 1/2
Vs, ol V(f, ula) v (f WalewPy) < a1 )
B_;,.(z0) B_j,.(z0)
and
J—1
&y (xo, Tj’l’) < Tjé’u(:zzg, r)+ E’r*”(ijlr)% 27(1725)"3, (4.46)
k=0

provided that e <&, 7 <7 andr < p <p.

Given the latter inequalities for granted we conclude the proof. Indeed, by (4.45) and (4.46) it
follows that zp € ,, so that UjeNng(])’p(j) C Q,. Moreover, items (iii) and (v) in Lemma 2.5,
(4.46) and an elementary argument yield that

&y (wo,t) < @(

n

&y (o, )
r T (] — r1-2

tga) < ct?
) —_— b

for all t € (0,r), since § < 1/2 and r < 1, with ¢ = ¢(p,7,7,¢,0,) > 0. In addition, since
by continuity (4.44) holds for all points in a ball By(z¢) with the same constants if ¢t € (0,7 A
Ldist(zg, 9Q)), we deduce that u € C18(By(zg); R") for all B € (0,1/2). The result is thus proved.

Hence, to conclude we are left with showing the validity of (4.45) and of (4.46). As before we
distinguish the superquadratic from the subquadratic case.
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Step 3. Proof of (4.45) and (4.46).

Let us first prove the case p > 2. We start off deriving some useful estimates on the different
means in (4.45). Let j € N, j > 1, then by Korn’s inequality (denoting by cx = cx(n,p) > 0 the
best constant in such an inequality)

‘(VU)BT]'T(IO)‘ < ‘(VU)BTJ-71T($0)| + (T_n][ |V’U, - (VU)BTJ-,IT(.TO)FDdiE) /e

B_j—1,(x0)

_n 1/p
<1Vu)s s ol + (e f () ~ (), o)

B_j-1,(%0)

. 1 p
< (Vs oyl + (e "E o, 7 1r)) 7.

Therefore by a simple induction argument we conclude that

Jj—1
1 P
(VW) s, w0y < (V) g, (00| + 3 (cxm " E (w0, 7)) 7. (4.47)
k=0

Analogously, by using Lemma 2.5 (i), we have

(]{9 e )|V“(e(u))|2dx)l/2

< Vul(e)s 1, @)+ (Tﬁn ][

1/2
V(W) = Va((e()p, o))
B_j-1,(z0)

< V(e s, s an)| + (el )7 ", (o, 7 11)) 7,

provided that [(e(u))p_; , (z,)| < K. Therefore, using Lemma 2.5 (v) by induction

(]{3 ( )|VM(€(U))|2d$) 1/2 S |VM((€(u))Br(mo))| + Z (C(/J" K)T_ngu(an TkT))l/z’ (448)
ir\%o k=0

provided that |(e(u))p , (zo)| < K for all 0 <k < j — 1. Moreover, by Poincaré’s and by Korn’s
inequalities we obtain for a constant cxp = cxp(n,p) >0

1/p 1/p
(£ dwrae) "< (£ o @~ (Vo) e (2 = 20)Pda)
B, (o) B i (o)

1/1)
+ (][ |(U)BTJ'_1T(LE0) + (VU)BTj—lr(‘TO) ! (I - 1‘0)|pd$>
B_j,.(z0)

< ’7']717“(01(]37'7”][
B

< T]_1r<c%(P7_" ][
B_j—1,(z0)

l/p .
. (7[ [ulPdz) "+ | (V) ol
B_j—1,(z0)

/p .
Vu = (Vs o))+ Wity + 71V 5, a0

+i—1,.(z0)

le(u) — (e(u))Bijlr(%)‘pd@ 1

j=1./.2 —n J—1,.\\!/» P e J
<7 (e pT " Eu(T0, TV TIT)) P+ |ulPdx +77|(Vu)B (2ol

B_j-1,(z0)
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Hence, by induction we conclude that

(]iﬁr(mo) |u|pdx>1/1) < (]{B o |u|pdx)1/1)

+7‘Z (e p " Eulwo, 7)) +7~ZT’€+1| (VU)p (@l (4.49)
k=0

Let us then check the basic induction step j = 1 for (4.45). Indeed, note that for (4.46) it has
been established in Step 2 (see (4.32) and (4.44)). From (4.47) we find

(V) B, ()| < (V) B )| + (exT " Eul0,7)' 7" < M +1

provided that & < ci'7". Moreover, from (4.48) we have
2 /2 —n /2
(]i NLACO) dz) " < |V (), wo) | + (el M)T ™" Ey(0, 1) < M 41,
rr(Zo

provided that ¢ < ¢~ (u, M)7™. In addition, from (4.49)

l/p 1/
(][ |u‘de) < (C%{PT_"gu(l'O,r))l/ﬁ n (][ |u|de) +77[(Vu) B, (20)]
Brr(z0) By (z0)

< (C%PT*”é"u(:ro,r))l/p +M+7rM < M+1,

by choosing ¢ < 27Pc% p7" and r < (2M)~!. In conclusion, (4.45) is established for j = 1 and

T <T(M,a),if e < &1 =g Acg' ™™ A, M)T™ A 27Pc % and p < p1 = po A (2M) ™! (g9
and po have been defined in Step 1).

Let now j € N, j > 2, and assume by induction that (4.45) and (4.46) hold for all 0 < k < j—1.
Then for such values of k we have

cr— "

Eu (1‘077' r)<T (o@ (.%'0,7’) + m@—k—lr)m; (450)
and then .
J— 1/p [ ——, 1 —1,.\29/p
1y (Eulmg,r)) cT /e (T71r)
> (Eulwo, ) 7 < L 4 () (4.51)

k=0
Hence, having fixed 7 € (0,7], we may choose €3 = e2(e1,p,7) < €1 and pa = p2(£1,¢,p,0) < p1
such that if C :=ck Ve(u, M)V ckpV1and p < pa, € < g2 we find
j—1

(Cr™) 3" (Eulwo, 7)) < 1. (4.52)

k=0

In particular, the inductive hypothesis on (4.45), (4.47) and (4.52) yield
j—1
|(VU)BT”(10)| < M + (CKT_")I/"Z (5 (zo, T 7")) e < M +1. (4.53)
k=0

In turn, by the inductive assumption |(e(u))BTkT(w0)\ < M+1forall 0 <k <j—1,so that thanks
o0 (4.48) and (4.52), as 1/p A1/2 = 1/p, we infer

1/o 1 1/
(7[ o |Vu(e(u))|2d:1c) ! < M+ (c(p, M)T™™)2N (Eulwo, 7)) P <M+ 1. (4.54)
+3r\T0 0

<.
|

=
Il
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Finally, in view of (4.49) and (4.52) for = 1/p we get
j—1

v M M
/v / r
(]{BT“(J;O) \u|1’dac) <M +r(Epr ™" ,;:0 x077 r)) " 1 — < M + r(al + 1 _?).

(4.55)

Thus we have concluded (4.45) for the index j provided that & < g2 and p < pa2 A (g1 + £2&) 1.

Finally, we prove (4.46) for the index j as follows. From (4.51) we have &,(zo, 7/ 7!r) < ¢, so
that by the inductive hypothesis on the means it turns out that zg € QM1 with corresponding
radius 77 'r. Moreover, the choice € < %n(M—i— 1) and the definition of 7 (cf. the paragraph right
before (4.44)) imply that (4.44) itself hold with the radii 77~1r, 777 in place of r, 7r respectively.
Thus, using the inductive assumption on (4.46) for j — 1 we conclude

5u(x0,7jr) < T(g)u(l‘o,Tj_lr) +er iy

<.
|
—

<198, (zg, 1) + 67'7"(7']'717“)2‘s F(1=200k 4 Gr—n -1,

S
Il
— =

<198, (vo,r) +er (I )2y (120K
K

)

I
o

since 0 < 1/2.

The proof of (4.45) and (4.46) in the case p € (1,2) is quite similar. Hence, we will highlight
only the main differences. First, arguing as in (4.40) (cf. (4.16), (4.17)) and using Korn’s inequality
we have for some constant cx = ¢k (n,p)

(V) )| < 1(Vu)

B_j,(xo B_j-1,( a:o)|

e \'-‘
m\»—A

+CKT_n< G + I(VU)B i—1,(%0) | + &y (.ro,T] 1T)> (éau(xO’Tj_lr))%'

Thus, by induction we infer that
(VWb ; (@o)| < (VW) B, (20)l

i1 1_1 1
+CKT_nZ( p/2+|(VU)B v, (zo) "+ EulTo, T T))E ? (Eulwo, 7Mr))7. (4.56)
k=0

Analogously to the derivation of (4.48), by Lemma 2.5 (v) and (ii) we find

(£, WtetpPar) ™ < V(e )| + cln M=) (Bt 7). 45)

k=0

Again, by Poincaré and Korn’s inequalities we find for a constant cxp = cxp(n,p) > 0 (cf. the
derivation of (4.49) and (4.16))

1 P .
(][ |u|pdaj> ’ Srj_lr(c%{PT_"][
B_j (o) B j-1,(z0)
P v J
w(f, ) TS0 )

. » . 1
<rI b (chepm ™) (W () sy (ao)|” + Eulwo, 77 1r))

elw) ~ (e@))s,, o eolPdz)

T3 (u(wo, 7))

1

/p .
+ (][ [ulPdz) "+ T (Vu)p e -
B_j-1,(z0)
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Therefore, by induction we conclude that

1/p 1/p Jj—1
( ][ urdz) " < ( ][ ulPdz) " Y T (Va) s, e
B_j,.(z0) By (z0) k=0
2 = k(,» ko\\F~ 3 ko) 4
+r(cipm )Y T (o) by o) [P A Eulzo, 7)) T (Bulwo, 7)) (458)
k=0

From (4.56)-(4.58) we easily deduce the basic induction step for (4.45), provided that we choose
e < eo A (T2 (U2 4+ MP 4+ 1)1 A e, M)T? A 272 (cio™) P (/2 + MP 4 1)1 =27 and
p < poA(2M)~! (g9 and py have been defined in Step 2). The general induction step j € N, j > 2,
is now completely similar to the case p > 2. O

A Technical results

In this section we collect several technical tools we have used to settle partial regularity in the
autonomous case. We recall that for sequences of scalars A\, | 0 and of matrices Ay, — A we set

Fu(€) = A2 (fu(An + A€) — fu(An) — A(V fu(AR), ©)).
Let us prove some properties of F},.
Lemma A.1. Let p € (1,00) and p > 0, then
(i) Fu = Foo in LRV as b1 oo, where Fao(€) i= 3(V2fu(A)E, )

(i) there exists w : (0,+00) — (0,400) non-decreasing such that w(t) | 0 ast ] 0 and for every
§ € RE with Apl€] < 1 one has

Fi(€) 2 Foo(€) — w(Anl€] + [An — ADIEI%

(#i3) there exists a constant ¢ = c(p, M) > 1, with M > supy, |Ap|, such that for all £ € RZX"

Sym

1

SV < Fu(©) < IO
h h

(iv) there exists a constant c(p, ) > 0 such that for all €, n € R

Fn(€) = Fu(n) 255 [Viu(An + An€) = Vi (An + M)
h

n §h<Vfu(Ah +Ann) = VI (AR), (€ —n));

If, additionally, Ap|n| < p then for some constant c(p,u, M) > 0, with M > sup, |Ag|, we
have

c 1
En(€) = Fn(n) 2 15 [Va(An(€ ~ )+ )\*thu(Ah + Ann) = Vu(An), (€ —n)).
h
Proof. Tt suffices to take into account the representation formula

Ea(6) = / (V2. (An + nE)E ) (1 — t)dt (A1)
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to establish items (i) and (ii).
To prove (iii) first we notice the basic inequalities:

[ p+ M?
2(p+ M?)

where M > sup;, |Ap| and s € R. Thus, from (2.3), (A.1) and (A.2) we deduce if p € (2, 00)

(+[sEP) S p+|Ap+sEP <2 (n+1s€), (A.2)

/L+M2)%—1

: (W))g_lAhﬂvﬂ(Ah&)I? < F(6) < o2 A IVanE) P

e \2(u + M?2
for some constant ¢ > 0. The inequality on the left hand side follows by arguing as in Lemma 2.3.
Analogously, the case with p € (1,2) holds with opposite inequalities. Instead, if p = 2 (iii) is
trivial.
To prove (iv) a simple computation yields

1
Fp(€) — Fu(n) = /O (V2 fu(An + tAR(E = n)+Aun) (€ — n), (€ —n)(1 — t)dt
+ 2,V Fu(An + Ann) — VL (AR), (€ —n)).

Therefore, the first inequality follows from (2.3) and Lemmas 2.3, 2.4. Instead, the second in-
equality follows by estimating the first term on the right hand side as for (iii). O

Consider %), : LP(B1;R™) x A(B1) — [0, +00] defined by

Fo(u, A) = / Fi(e(w))dz (A.3)
A

if u € WHP(B1;R™), and +oo otherwise. Above, A(B;) is the class of all open subsets of By. We

shall write shortly %y, (u) for % (u, B1). Let uj be a local minimizer of .y, that is Zp(up) =

infuh+W01,p(Bl;Rn) Zr1,, and moreover assume that

][ updz = 0, Vupdr =0, and sup/ A2 V(e (up)) Pde < +oo. (A4)
B By hoJB

In view of (A.4) and item (v) in Lemma 2.5, it follows from Korn’s inequality for N-functions in
[17, Lemma 2.9] applied to |V, (+)|? (cf. item (v) in Lemma 2.5) that

Sup/ A V(AR V) Pdr < +oc. (A.5)
h B,

Moreover, by item (v) in Lemma 2.5 an application of Poincaré’s inequality for N-functions ([19,
Theorem 6.5]) yields
sup [ A2 Vu(Awu)|?de < +oo. (A.6)
h B1
where with abuse of notation we define V,, : R® — R" by the same formula used for matrices.
The ensuing result is instrumental to prove that actually (up)n converges to us, strongly in
WP (B R™).

loc

Theorem A.2. Let Z, : L?(B1;R") x A(B1) — [0, +00] be given by

1

Fulid) = 5 [ (P fub)etu).eta) da (A7)
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if u € WH2(B1;R") and +o0o otherwise.
If Z, are the functionals in (A.3) and (up)p is the sequence in (A.4), then after extracting a
subsequence (up)p, converges weakly in WP 2(B1;R™) to some function us, € WH2(By;R"),

ligr%inf Fn(up, Br) > Foo(Uoo, Br)  for all r € (0,1], (A.8)
and
lim sup .Z, (up, By) < Foo(too, By) for L' a.e. 7€ (0,1). (A.9)
hToo

Proof. First, we notice that, up to the extraction of a subsequence not relabeled for convenience,
there exists uo, € WP 2(By; R") such that (u);, converges weakly in WP 2(By; R™) to us, with

][ UoodT = ][ Vieodr = 0. (A.10)
Bl Bl

Indeed, for p > 2 from (A.4) we deduce that supy, [le(un)| r2(B,rn) < cp' "2, thus the Korn’s

inequality, Poincare¢ inequality, and the fact that uj, and its gradient have null mean value (cf.

(A.4)) provide the conclusion. We observe that (A.4) also implies that e(/\}lfz/ Pup,) is bounded in

LP(By; R™*™): hence, possibly after extracting a further subsequence, we can assume that /\;;2/ Pup,

converges weakly in W1P(B;; R") and pointwise almost everywhere to some function z. Since uy

converges pointwise to us, we deduce that z = 0, and in particular /\2_%uh — 0 in LP(B1;R™).
Instead, in case p € (1,2), we first note that as A, € (0,1) we have

/B Viletw)Pdz < [ 21V, (netun) P

so that (A.4) implies supy, |le(un)||zr(B,;mn) < +00. Arguing as in the previous case we establish
the claimed result.

Next, we prove separately (A.8) and (A.9) in the super-quadratic and in the sub-quadratic
case.
The super-quadratic case p > 2. We first prove the lower bound inequality for » € (0,1]. Set
E;, = {/\;1/2|6(uh)\ > 1}, then £"(Ep) | 0 and e(up)xps —e(uos) weakly in L?(By; R™ ") as
h 1 oo. Therefore, by (ii) in Lemma A.1

Fnlun, By) > /

Fp(e(up))dz > / (Foo(e(uh)) — w(A;L/2+|Ah - A|)|e(uh)|2)dx
B.NES

B,NEg

> / Foo(eun)xms )z — w(N/+]Ay, — A / le(un)|2dz,

r B

and thus by L? weak lower semicontinuity of .Z (-, B,) we conclude (A.8).
To prove the upper bound for all but countably many r € (0,1), we note that by Urysohn’s
property it suffices to show that for every subsequence hy, T 0o we can extract hy; T 0o such that

lim sup Zp, (Uhkj , Br) < Foo (oo, Br).
Jtoo

By Friederich’s theorem there exists z; € C°°(By; R") such that z; — us in W12(By; R™). Hence,
given hy 1 oo we can extract hy; such that

i X2 /B (IV2[P + |2[P)dz =0,
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and the measures v; := )\,;2] |V#()\hkje(uhkj))|2£”|_31 converge weakly* in B; to some finite
measure v.
Let now p € (0,7) be fixed, let ¢ € LipNC.(B,; [0, 1]) be such that ¢|p, = 1 and ||Vl L (B, rn) <
2(r — p)~! and set
wj = ¢z + (1= )un, -

Then, w; € Up,, + W&’Q(Bl;R") with w; — ueo in L?(By; R™). Therefore, by local minimality of
Upy, We get

3‘7%. (uhkjaBr) < yhkj (wj, By) = /

| P el + [ B etw))e

B \B,

Clearly, by generalized Lebesgue dominated convergence theorem

limsup/ P (e(z))d < / Fao (e(to0) ),
jToo B, ! B,
and by items (ii) and (iii) in Lemma 2.5

C
[ Buletwde < g [ Wl ew) e
B:\B, by, J Br\B,

kj
C
<o [ VaOhn e D+ Vo, ()P + Vi, Vi © (uny, = 23)))d
hy, J B:\B,
<ery(BAB) we [ (elzp)l + X el de
B,\B, "
c —
(r—p)P /B \B (‘uh""f — 7"+ )\zkf'uh’w —z|")dx.
r\Dp

Summarizing, if r € (0,1) and p € (0,) are chosen such that v(0B,) = v(0B,) = 0, recalling that
up = u, z; — w in L?(B1;R™), and that /\};2/”uh — 0, A,:_Zhjwj — 0 in LP(B1;R™), we have

1imsup/ Fy, (e(w;))dz < cv(B, \ B,) + c/ le(uso)|?dex.
jtee  JBAB, By \B,

Thus, if p; T 7, we conclude at once by an easy diagonalization argument.

The sub-quadratic case p < 2. We first prove that us, € WH2(By;R"). Set Ej, := {)\;L/2|e(uh)| >
1}, then L£L™(Ey) } 0 as h T 0o and

e 17 [ fetwn) e < I Vi), 0
h
Therefore, up to a subsequence not relabeled, (e(us)xge)n converges weakly in L*(By; R™*™) to
some function 9. Moreover, as for all p € L7-1 (By; R™M) oxpe — ¢ in Lﬁ(Bl;IR"X”)7 from
the weak convergence of (e(up))p to e(us) in LP(B1; R™*™) we conclude

/<ﬂ,w>dw=lim (e(un)xz» o)dz = lim [ {e(un), pxm; )de = / (e(uce), 9)dz,
B1 hTOO B1 v hTOO B1 v B1

in turn implying 9 = e(us) L™ a.e. in B;. Thus, by (A.10), Korn’s inequality yields that
Uso € WH2(By;R").
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The lower bound inequality in (A.8) for r € (0, 1] follows by arguing exactly as to derive it in
case p > 2.

If p € (1,2) the proof of (A.9) is similar to the super-quadratic case, though some additional
difficulties arise. With fixed r € (0, 1), by Urysohn’s property it is sufficient to show that for every
subsequence hy T oo we can extract hg, T oo such that

liI%sup fhkj (Uhkj , Br) < Foo(Uoo, Br).
oo
Given a sequence hj, T oo we can find a subsequence hj, and some finite measure v, such that the
measures vj; 1= )\;3 |Vll«()\hkj e(uhkj ))|?L"L By converge weakly* on By to v.
Let now p € (0,7) and ¢ € Lip N Cc(B,;[0,1]) be such that ¢|p, = 1 and [|[Vy| p=(p,rn) <
2(r — p)~! and set
Wj 1= Ploo + (1 — Lp)uhkj.

Then, w; € un,, + W01’2(Bl;R”) with w; = use in LP(B1;R™). Moreover,

Ty, (U, Br) < Py (wy, Br) :/

j | Fi el + | B fetwy)da,

B, \B,

Clearly, by Lebesgue dominated convergence theorem

limsup/ Fhk,(e(uoo))dxg/ Foo(e(uso))dz,
Jjtoo B, ! B,

and by item (iii) both in Lemma 2.5 and in Lemma A.1

C
[ Faletwde < 5 [ Wil ew) P
B,\B, i Br\B,
C C
< [ Wl elun, DPdo g [ VO el P
hkj B,,,\Bp hkj BT\B,)

c
+7/ Vin, (un, — uso))|?da
(r — p)Q)\}%kj BB, | #( hkj( hi; ))‘

Ijtz

< cvi(B,\ B, Ly rn——
< cvi(B,\ p)+C/BT\BP|6(UOO)| I+(r—p)2 hi; I

In order to estimate the last term we use a Lipschitz truncation in order to use Rellich’s theorem
separately on the part with quadratic growth and on the one with p-growth. Precisely, let E; :=
{/\;ij \V(uhkj — Uoo)| > 1}. Then there is a set F; with E; C F; C By such that )\hkj (uhkj — Uso)
is c-Lipschitz in By \ Fj and [21, Theorem 3, Section 6.6.3]

|F;| < c)\ij /E [V (un,, = to)[Pdx < C/E. VA, V(un, — Uso)) P < c)\%kj.

Let w; be a C/\;:klj -Lipschitz extension of Un,,, — uoo\Bl\Fj. We estimate

/B |Vw;|*dz < c)\;kzj |F}| +/ A;}i VA, Vun,, — Uoo))[2dz < c.
1

1\ Fj
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Therefore (w;); is bounded in W?(By; R™), and, since it converges (up to a subsequence) point-
wise almost everywhere to zero, it converges also strongly in L?(Bj;R"™) to zero. Consider now
the difference d; = Uy, — oo — Wy We estimate

/ \Vd;[Pdx < c/ IV (un,, — uoo)[Pdz + c|Fy|\, P
Bl J "]

E;

J

< c/ M E WV, V(= tioo)) P da + Ay P < e P
E J J

)

Therefore (Afll;_z/pdj)j is bounded in W1P(B;;R™) and converges in measure to zero, hence it
J

converges also strongly in LP(B1;R"™) to zero. We finally estimate, recalling that for p < 2 we
have [V, (&)* < (€] A IEIP),

N2 [ VaOhn, (= o)) < e
J B1 J

J

[ 1V o, )P

By

b N2 [ Wi o JPds < [ Jun, Pdo e [ 00 P
° F J J By J B, ° J

and see that each term in the right-hand side converges to zero.
Therefore, we deduce that
lim sup )\;2 I; =0.
jtoo

Thus, in conclusion provided r € (0,1) and p € (0,r) are such that v(9B,) = v(0B,) = 0 we have

lim sup/ Fy, (e(w;))dz < cv(B, \ B,) + c/ le(uoo)|?dex.
jtee  JBAB, By \B,

Thus, if p; 1 r, we conclude by an easy diagonalization argument. O
We next deduce that u, is actually the solution of a linear elliptic system.

Corollary A.3. The limit function us € W12(B1;R") satisfies

/B (V2 o (Aso)e(uns), e(9))diz = 0 (A11)

for all p € C(By;R™).

Proof. Being uy, a local minimizer of .%},, for all ¢ € C2°(B1;R™) it holds

N [ (T a4 Mnelun) = V(). () = 0.
B,
Consider the sets

Ef ={z € By : ne(un)| > i}, Ey ={z € By : [Ane(un)| < i}

By the weak convergence of (uy,);, to us in WHPA2(By; R™), we get

L"(EF) < ,u_"/QM/B IAne(un)|P 2de < AP (A.12)
1
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so that L"(E;}) = o(As) as h 1 co. Hence, we deduce that

At /E+ (Vfu(An + Ane(un)) = Vfu(An), e(p))dx

h

(2.7) ﬁn(E+) _92
< li b2 teAh Pl
- H}?Tillp (C An e /E:Lr |€(Uh)| l‘)

lim sup
hToo

) ®-1/p
< climsup )\fl_Q(E"(E;T)) /;,(/ |e(uh)|pdx)
htoo E}j

. 1—-2 " 1/ 9 9 (r=1)/p
<climsup ), ?(L"(E})) P(/E+ AV (Ane(up))| d:v)

hToo N
(A.4), (A.12) 2-2)A1
< climsup)\i PN 0,
h1oo

by taking into account item (iv) in Lemma 2.5 to infer the last but one inequality. Finally, note
that

A / (Vi (hn o+ Melun) — Vi (Ar), e(p))de

h

= [ ([ 9 httn o+ el el

then as (up), converges weakly to us in WHPA2(By;R™), A\pe(up) — 0 L™ a.e. on Bi, and as
fu€ C?(R2X™) if > 0, by the dominated convergence theorem we get

sym

T At [ (9 + Melun)) = V)l = [ (T Belun) (o)) o

h B

In turn, this last result provides the claimed local strong convergence.

Corollary A.4. Let (uy);, be the sequence in (A.4) converging weakly in WP 2(By;R™) to the
function us, € WH2(By;R™). Then, for all v € (0,1)

lim 2 V(e (up, — uso)2dz = 0.
hTOO Br

In particular, (up)p converges to oo in VVli’fAQ(Bl;R”),

Proof. Tt is sufficient to show the conclusion for all those r € (0,1) for which both inequalities
(A.8) and (A.9) in Theorem A.2 hold true. In such a case, we have

}lli)rm Fn(up, Br) = Foo(Uoo, Byr).

We observe that us € C*°(B1;R™) by Corollary A.3 and the regularity theory for linear elliptic
systems. Therefore for h sufficiently large we have Aple(us)| < p uniformly on B,. By item (iv)

Conti-Focardi-Iurlano-revised-sc.tex 43 [JaANUARY 30, 2019]



in Lemma A.1 we get

Fn(up, Br) — Fp(teo, Br) 20/ )\Z2|V/L(Ahe(uh — U )|?dx

r

o [Tl o)) — V), elun — o)
h JB,

:c/ A2 Vi (ne(un, — uso) [ dx
B,

+/Br<(/01 szM(Ah+t)\he(uoo))dt>e(uoo),e(uh —us))dz.

Since Fp (oo, Br) = Foo(tioo; Br) as h 1 0o, and

/01 VQfM(Ah + tAne(too))e(too )dt — /01 Vqu(Aoo)e(uoo)dt

in LgS (By; R™*™), we conclude by the weak convergence of (up)p, t0 Us in WHPA2(By; R™ ™). [
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