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A note on the Hausdorff dimension of the singular set of solutions to elasticity type systems

We prove partial regularity for minimizers to elasticity type energies in the nonlinear framework with p-growth, p > 1, in dimension n ≥ 3. It is an open problem in such a setting either to establish full regularity or to provide counterexamples. In particular, we give an estimate on the Hausdorff dimension of the potential singular set by proving that is strictly less than n -(p * ∧ 2), and actually n -2 in the autonomous case (full regularity is well-known in dimension 2).

The latter result is instrumental to establish existence for the strong formulation of Griffith type models in brittle fracture with nonlinear constitutive relations, accounting for damage and plasticity in space dimensions 2 and 3.

Introduction

In this paper we investigate partial regularity of local minimizers for a class of energies whose prototype is ˆΩ 1 p Ce(u) • e(u) + µ p /2 -µ p /2 dx + κ ˆΩ |u(x) -g(x)| p dx for u ∈ W 1,p (Ω; R n ), Ω ⊂ R n bounded and open, p ∈ (1, ∞) (see below for the precise assumptions on the relevant quantities). In addition, we establish an estimate on the Hausdorff dimension of the related singular set.

The main motivations for our study arise from Griffith's variational approach to brittle fracture. In such a model the equilibrium state of an elastic solid body deformed by external forces is determined by the minimization of an energy in which a bulk term and a surface one are in competition (see [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF][START_REF] Bourdin | The variational approach to fracture[END_REF][START_REF] Maso | A model for the quasi-static growth of brittle fractures: existence and approximation results[END_REF]). The former represents the elastic stored energy in the uncracked part of the body, instead the latter is related to the energy spent to create a crack, and it is typically proportional to the measure of the crack surface itself. As a model case, for p ∈ (1, ∞) and κ, µ ≥ 0 one looks for minimizers (Γ, u) of

E[Γ, u] := ˆΩ\Γ 1 p Ce(u) • e(u) + µ p /2 -µ p /2 dx + κ ˆΩ\Γ |u(x) -g(x)| p dx + 2βH n-1 (Γ ∩ Ω)
(1.1) over all closed sets Γ ⊂ Ω and all deformations u ∈ C 1 (Ω \ Γ; R n ) subject to suitable boundary and irreversibility conditions. Here Ω ⊂ R n is the reference configuration, the function κ|ξg(x)| p ∈ C 0 (Ω × R n ) represents external volume forces, e(u) = (∇u + ∇u T )/2 is the elastic strain, Conti-Focardi-Iurlano-revised-sc.tex 1

[ January 30, 2019] C ∈ R (n×n)×(n×n) is the matrix of elastic coefficients, β > 0 the surface energy. More precisely, the energy in (1.1) for p = 2 corresponds to classical Griffith's fracture model, while densities having p-growth with p = 2 may be instrumental for a variational formulation of fracture with nonlinear constitutive relations, accounting for damage and plasticity (see for example [START_REF] Hutchinson | A course on nonlinear fracture mechanics[END_REF] and references therein).

In their seminal work [START_REF] De Giorgi | Existence theorem for a minimum problem with free discontinuity set[END_REF], De Giorgi, Carriero and Leaci have introduced a viable strategy to prove existence of minimizers for the corresponding scalar energy,

E MS [Γ, u] := ˆΩ\Γ 1 p |Du| 2 + µ p /2 -µ p /2 dx + κ ˆΩ\Γ |u(x) -g(x)| p dx + 2βH n-1 (Γ∩Ω) , (1.2) 
better known for p = 2 as the Mumford and Shah functional in image segmentation (cf. the book [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] for more details on the Mumford and Shah model and related ones). From a mechanical perspective the scalar setting matches the case of anti-plane deformations u : Ω\Γ → R. Following a customary idea in the Calculus of Variations, the functional E MS is first relaxed in a wider space, so that existence of minimizers can be obtained. The appropriate functional setting in the scalar framework is provided by a suitable subspace of BV functions. Surface discontinuities in the distributional derivative of the deformation u are then allowed, they are concentrated on a (n -1)-dimensional (rectifiable) set S u . Then, existence for the strong formulation is recovered by establishing a mild regularity result for minimizers u of the weak counterpart: the essential closedness of the jump set S u , namely H n-1 (Ω ∩ S u \ S u ) = 0, complemented with smoothness of u on Ω \ S u . Given this, (u, S u ) turns out to be a minimizing couple for (1.1).

In the approach developed by De Giorgi, Carriero and Leaci in [START_REF] De Giorgi | Existence theorem for a minimum problem with free discontinuity set[END_REF], regularity issues for local minimizers of the restriction of E MS in (1.2) to Sobolev functions, such as decay properties of the L p norm of the corresponding gradient, play a key role for establishing both the essential closedness of S u for a minimizer u of (1.1) and the smoothness of u itself on Ω \ S u . Nowadays, these are standard subjects in elliptic regularity theory (cf. for instance the books [START_REF] Giaquinta | Multiple integrals in the calculus of variations and nonlinear elliptic systems[END_REF][START_REF] Giusti | Direct methods in the calculus of variations[END_REF][START_REF] Giaquinta | An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs[END_REF]).

Following such a streamline of ideas, in a recent paper [START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF] we have proved existence in the two dimensional framework for the functional in (1.1) for suitably regular g (see also [START_REF] Conti | Existence of minimizers for the 2d stationary Griffith fracture model[END_REF] that settles the case p = 2). In passing we mention that the domain of the relaxed functional is provided for the current problem by a suitable subset, SBD (actually GSBD), of the space BD (GBD) of functions with (generalized) bounded deformation (we omit the precise definitions since they are inessential for the purposes of the current paper and rather refer to [START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF][START_REF] Chambolle | Approximation of functions with small jump sets and existence of strong minimizers of Griffith's energy[END_REF]). More in details, our modification of the De Giorgi, Carriero, and Leaci approach rests on three main ingredients: the compactness and the asymptotic analysis of sequences in SBD having vanishing jump energy; the approximation in energy of general (G)SBD maps with more regular ones; and the decay and smoothness properties of local minimizers of the functional in (1.1) when restricted to Sobolev functions. The compactness issue is dealt with in [START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF] in the two dimensional case and in [START_REF] Chambolle | Approximation of functions with small jump sets and existence of strong minimizers of Griffith's energy[END_REF] in higher dimensions, in both papers for all p > 1. The asymptotic analysis is performed in [START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF] and holds without dimensional limitations. The approximation property holds in any dimension as well, it is established in the companion paper [START_REF] Conti | Approximation of fracture energies with p-growth via piecewise affine finite elements[END_REF] (see also the recent work [START_REF] Chambolle | A density result in GSBD p with applications to the approximation of brittle fracture energies[END_REF] for an improved version which requires no integrability assumptions on the displacements). Instead, the regularity properties of local minimizers of energies like 

Conti-Focardi-Iurlano-revised-sc.tex on W 1,p (Ω; R n ), n ≥ 2, for f µ satisfying suitable convexity, smoothness and growth conditions (see Section 2.1 for the details). We carry over the analysis in any dimension since the results of the current paper, together with the compactness property established in [START_REF] Chambolle | Approximation of functions with small jump sets and existence of strong minimizers of Griffith's energy[END_REF] mentioned above, imply a corresponding existence result for the minimizers of (1.1) in the physical dimension n = 3, for any p > 1, and for µ > 0 (see [START_REF]Compactness and lower semicontinuity in GSBD[END_REF] for the case of Dirichlet boundary conditions). In this respect it is essential for us to derive an estimate on the Hausdorff dimension of the (potential) singular set, and prove that it is strictly less than n -1. We recall that if p = 2 the regularity properties of the aforementioned local minimizers are well-known, so that the corresponding existence result for the minimizers of (1.1) follows straightforwardly from [START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF] in dimension n = 2 and from [START_REF] Chambolle | Approximation of functions with small jump sets and existence of strong minimizers of Griffith's energy[END_REF] in any dimension.

The starting point of our study is the equilibrium system satisfied by minimizers of (1.4) that reads as -div (∇f µ (e(u))) + κp|u -g| p-2 (u -g) = 0, (1.5) in the distributional sense on Ω. Variants of (1.5) have been largely studied in fluid dynamics (we refer to the monograph [START_REF] Fuchs | Variational methods for problems from plasticity theory and for generalized Newtonian fluids[END_REF] for all the details). In this context the system (1.5) with κ = 0 is coupled with a divergence-free constraint and represents a stationary generalized Stokes system. It describes a steady flow of a fluid when the velocity u is small and the convection can be neglected.

To our knowledge all contributions present in literature and concerning (1.5) are in this framework, apart from the case p = 2 which is classical, see for example [START_REF] Giaquinta | Multiple integrals in the calculus of variations and nonlinear elliptic systems[END_REF][START_REF] Giaquinta | An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs[END_REF][START_REF] Morrey | Multiple integrals in the calculus of variations[END_REF].

Under the divergence-free constraint and κ = 0, regularity of solutions has been established first for p ≥ 2 and every µ ≥ 0, see [START_REF] Fuchs | Variational methods for problems from plasticity theory and for generalized Newtonian fluids[END_REF][START_REF] Fuchs | On quasi-static non-Newtonian fluids with power-law[END_REF], then in the planar setting for 1 < p < 2 and every µ > 0, see [START_REF] Bildhauer | Variants of the Stokes problem: the case of anisotropic potentials[END_REF][START_REF] Bildhauer | A lemma on the higher integrability of functions with applications to the regularity theory of two-dimensional generalized Newtonian fluids[END_REF], and for µ ≥ 0, see [START_REF] Diening | Campanato estimates for the generalized Stokes system[END_REF] (the papers [START_REF] Bildhauer | Variants of the Stokes problem: the case of anisotropic potentials[END_REF][START_REF] Bildhauer | A lemma on the higher integrability of functions with applications to the regularity theory of two-dimensional generalized Newtonian fluids[END_REF] actually deal with the more general case of integrands satisfying p -q growth conditions, the latter with the case of growth in terms of N -functions). L q estimates for solutions to (1.5) with the divergence-free constraint have been obtained in the 3-dimensional setting in [START_REF] Diening | L q theory for a generalized Stokes system[END_REF] for every µ ≥ 0. Regularity up to the boundary for the second derivative of solutions is proved for p > 2 and µ > 0 in [START_REF] Beirão | On the global regularity for nonlinear systems of the p-Laplacian type[END_REF].

We stress explicitly that we have not been able to find in literature the mentioned estimate on the Hausdorff dimension of the singular set. Moreover, we also point out that the special structure of our lower order term does not fit the usual assumptions in literature (see for instance [START_REF]The singular set of minima of integral functionals[END_REF]Theorem 1.2] in the case of the p-laplacian). Despite this, it is possible to extend the results of this paper to a wider class of energies, as those satisfying for instance the conditions [31, (1.1)-(1.2)] building upon the ideas and techniques developed in [START_REF]The singular set of minima of integral functionals[END_REF][START_REF] Kristensen | Non-differentiable functionals and singular sets of minima[END_REF][START_REF]The singular set of Lipschitzian minima of multiple integrals[END_REF] (see also [START_REF] Mingione | Singularities of minima: a walk on the wild side of the calculus of variations[END_REF] for a complete report).

In conclusion, we provide here detailed proofs for the decay estimates (with κ, µ ≥ 0, see Proposition 3.4 and Corollary 4.3) and for full or partial regularity of solutions (the former for n = 2, the latter for n ≥ 3 and µ > 0, see Section 4). We stress that if n ≥ 3 it is a major open problem to prove or disprove full regularity even in the non degenerate, i.e. µ > 0, symmetrized p-laplacian case for p = 2. In these regards, if n ≥ 3 we provide an estimate of the Hausdorff dimension of the potential singular set that seems to have been overlooked in the literature. In particular, the potential singular set has dimension strictly less than n -1.

Finally, we resume briefly the structure of the paper. In Section 2 we introduce the notation and the (standard) assumptions on the class of integrands f µ . We also recall the basic properties of the nonlinear potential V µ , an auxiliary function commonly employed in literature for regularity results in the non quadratic case. In addition, we review the framework of shifted N -functions introduced in [START_REF] Diening | Fractional estimates for non-differentiable elliptic systems with general growth[END_REF], that provides the right technical tool for deriving Caccioppoli's type inequalities for energies depending on the symmetrized gradient. Caccioppoli's inequalities are the content of Section 3.1, as a consequence of those in Section 3.2 we derive the mentioned decay properties of the L 2 norm of V µ (e(u)). We remark that the Morrey type estimates in Section 3.2 and the improvement in Corollary 4.3 are helpful for the purposes of [START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF][START_REF] Chambolle | Approximation of functions with small jump sets and existence of strong minimizers of Griffith's energy[END_REF] only for n ∈ {2, 3} in view of Conti-Focardi-Iurlano-revised-sc.tex the decay rate established there. Partial regularity with an estimate on the Hausdorff dimension of the singular set are the objects of Section 4. More precisely, the higher integrability of V µ (e(u)) is addressed in Section 4.1, from this the full regularity of local minimizers in the two dimensional case easily follows by Sobolev embedding (cf. Section 4.2). Section 4.3 deals with the autonomous case κ = 0, for which we use a linearization argument in the spirit of vectorial regularity results (the needed technicalities for these purposes are collected in Appendix A). The non-autonomous case is then a consequence of a perturbative approach as in the classical paper [START_REF] Giaquinta | Differentiability of minima of nondifferentiable functionals[END_REF] (see Section 4.4).

Preliminaries

With Ω we denote an open and bounded Lipschitz set in R n , n ≥ 2. The Euclidean scalar product is indicated by •, • . We use standard notation for Lebesgue and Sobolev spaces. By s * we denote the Sobolev exponent of s if s ∈ [1, n), otherwise it can be any positive number strictly bigger than n.

If w ∈ L 1 (B; R n ), B ⊆ Ω, we set (w) B := B w(y)dy. (2.1)
In what follows we shall use the standard notation for difference quotients

s,h v(x) := 1 h (v(x + h s ) -v(x)), τ s,h v(x) := h s,h v(x), (2.2) 
if x ∈ Ω s,h := {x ∈ Ω : x + h s ∈ Ω} and 0 otherwise in Ω, where v : Ω → R n is any measurable map and s is any coordinate unit vector of R n .

Assumptions on the integrand

For given µ ≥ 0 and p > 1 we consider a function

f µ : R n×n sym → R satisfying (Reg) f µ ∈ C 2 (R n×n sym ) if p ∈ (1, 2) and µ > 0 or p ∈ [2, ∞) and µ ≥ 0, while f 0 ∈ C 1 (R n×n sym ) ∩ C 2 (R n×n sym \ {0}) if p ∈ (1, 2);
(Conv) for all p ∈ (1, ∞) and for all symmetric matrices ξ and η ∈ R n×n sym we have

1 c µ + |ξ| 2 p /2-1 |η| 2 ≤ ∇ 2 f µ (ξ)η, η ≤ c µ + |ξ| 2 p /2-1 |η| 2 , (2.3) 
with c = c(p) > 0, unless µ = |ξ| = 0 and p ∈ (1, 2). We further assume f µ (0) = 0 and Df µ (0) = 0.

Remark 2.1. The prototype functions we have in mind for applications to the mentioned Griffith fracture model are defined by

f µ (ξ) = 1 p Cξ • ξ + µ p /2 -µ p /2 , (2.4) 
for all µ ≥ 0 and p ∈ (1, ∞). Clearly (Reg) is satisfied, moreover we have

∇f µ (ξ) = Cξ • ξ + µ p /2-1

Cξ

(with ∇f 0 (0) = 0), and in addition

∇ 2 f µ (ξ) = Cξ • ξ + µ p /2-2 (p -2)Cξ ⊗ Cξ + (Cξ • ξ + µ)C (2.5)
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∇ 2 f 0 (0) = 0 if p ∈ (2, ∞), ∇ 2 f 0 (0) = C if p = 2, ∇ 2 f 0 (0) undefined if p ∈ (1,
α := (p -2)(Cξ • η) 2 + (Cξ • ξ + µ)(Cη • η).
Since C defines a scalar product on the space of symmetric matrices, Cauchy-Schwarz inequality

Cξ • η ≤ (Cξ • ξ) 1/2 (Cη • η) 1/2 yields for p ∈ (1, 2) α ≥ [(p -2)(Cξ • ξ) + (Cξ • ξ + µ)](Cη • η) ≥ (p -1)(Cξ • ξ + µ)(Cη • η),
the other inequality in (2.3) can be proved analogously.

Note that from (Conv) we deduce the p-growth conditions

c -1 (|ξ| 2 + µ) p /2-1 |ξ| 2 ≤ f µ (ξ) ≤ c(|ξ| 2 + µ) p /2-1 |ξ| 2 (2.6) and |∇f µ (ξ)| ≤ c(|ξ| 2 + µ) p /2-1 |ξ| (2.7)
for all ξ ∈ R n×n sym with c = c(p) > 0 (see also Lemma 2.3 below). Therefore, for all κ, µ ≥ 0, the functional F µ,κ :

W 1,p (Ω; R n ) → R given by F µ,κ (v) = ˆΩ f µ (e(v))dx + κ ˆΩ |v -g| p dx (2.8)
is well-defined.

The nonlinear potential V µ

In what follows it will also be convenient to introduce the auxiliary function V µ : R n×n → R n×n ,

V µ (ξ) := (µ + |ξ| 2 ) (p -2) /4 ξ,
with V 0 (0) = 0 (we do not highlight the p dependence for the sake of simplicity).

Remark 2.2. Note that |V 0 (ξ)| 2 = |ξ| p for every ξ ∈ R n×n , and for all µ > 0

|V µ (ξ)| 2 ≤ (µ + |ξ| 2 ) p /2 = |V µ (ξ)| 2 + µ(µ + |ξ| 2 ) p /2-1 ≤ c|V µ (ξ)| 2 + c µ p /2
(2.9)

with c = c(p) > 0.
The following two basic lemmas will be needed in this section (see [1, Lemma 2.1 and Lemma 2.2] and [START_REF] Giusti | Direct methods in the calculus of variations[END_REF]Lemma 8.3] for more details). Lemma 2.3. For every γ > -1 /2, r ≥ 0, and µ ≥ 0 we have

c 1 ≤ ´1 0 µ + |η + t(ξ -η)| 2 γ (1 -t) r dt (µ + |ξ| 2 + |η| 2 ) γ ≤ c 2 , (2.10 
)

for all ξ, η ∈ R k such that µ + |ξ| 2 + |η| 2 = 0, with c i = c i (γ, r) > 0.
Conti-Focardi-Iurlano-revised-sc.tex

[ January 30, 2019] Proof. If γ ≥ 0 the upper bound follows easily by |η + t(ξ -η)| 2 ≤ |η| 2 + |ξ| 2 and the monotonicity of (0, ∞) s → (µ + s) γ with c 2 = 1. To prove the lower bound we observe that if |ξ| ≤ |η| then

|η + t(ξ -η)| ≥ |η| -t|ξ| -t|η| ≥ 1 3 |η| ∀t ∈ [0, 1 /3],
which implies the other inequality with c 1 = c 1 (γ).

The lower bound for γ < 0 is analogous to the previous upper bound. The remaining upper bound requires an explicit computation and the integrability assumption γ > -1 /2, see [1, Lemma 2.1], which results in c 2 = 8 /(2γ + 1).

Lemma 2.4. For every γ > -1 /2 and µ ≥ 0 we have

c 3 |ξ -η| ≤ |(µ + |ξ| 2 ) γ ξ -(µ + |η| 2 ) γ η| (µ + |ξ| 2 + |η| 2 ) γ ≤ c 4 |ξ -η|, (2.11 
)

for all ξ, η ∈ R n such that µ + |ξ| 2 + |η| 2 = 0, with c i = c i (γ) > 0.
Proof. Assume µ > 0 and consider the smooth convex function h(ξ

) := 1 2(γ+1) (µ + |ξ| 2 ) γ+1 . For all ξ ∈ R n we have ∇h(ξ) = (µ + |ξ| 2 ) γ ξ, ∇ 2 h(ξ) = (µ + |ξ| 2 ) γ Id + 2γ ξ ⊗ ξ µ + |ξ| 2 .
Noting that for all ξ, η ∈ R n it holds

1 ∧ (1 + 2γ) |η| 2 ≤ ∇ 2 h(ξ)η, η (µ + |ξ| 2 ) γ ≤ 1 ∨ (1 + 2γ) |η| 2 ,
the conclusion follows easily from ∇h(ξ) -∇h(η) = ´1 0 ∇ 2 h(η + t(ξ -η))(ξ -η)dt and Lemma 2. If µ = 0 we can simply pass to the limit in formula (2.11) as µ ↓ 0, since c 3 and c 4 depend only on γ.

We collect next several properties of V µ instrumental for the developments in what follows.

Lemma 2.5. For all ξ, η ∈ R n×n and for all µ ≥ 0 we have

(i) if p ≥ 2: c|V µ (ξ -η)| ≤ |V µ (ξ) -V µ (η)
| for some c = c(p) > 0, and for all L > 0 there exists gives (µ

c = c(µ, L) > 0 such that |V µ (ξ) -V µ (η)| ≤ c|V µ (ξ -η)| if |η| ≤ L; (ii) if p ∈ (1, 2): |V µ (ξ -η)| ≥ c|V µ (ξ) -V µ (η)| for some c = c(p) > 0, and for all L > 0 there exists c = c(µ, L) > 0 such that |V µ (ξ -η)| ≤ c|V µ (ξ) -V µ (η)| if |η| ≤ L; (iii) |V µ (ξ + η)| ≤ c(p)(|V µ (ξ)| + |V µ (η)|) for all p ∈ (1, ∞); (iv) (2(µ ∨ |ξ| 2 )) p /2-1 |ξ| 2 ≤ |V µ (ξ)| 2 ≤ |ξ| p if p ∈ (1, 2), |ξ| p ≤ |V µ (ξ)| 2 ≤ 2 p /2-1 (µ p/2-1 |ξ| 2 + |ξ| p ) if p ≥ 2; (v) ξ → |V µ (ξ)| 2 is convex for all p ∈ [2, ∞); for all p ∈ (1, 2) we have (µ (2 -p) /2 + |ξ| 2-p ) -1 |ξ| 2 ≤ |V µ (ξ)| 2 ≤ c(p)(µ (2 -p) /2 + |ξ| 2-p ) -1 |ξ| 2 and ξ → (µ (2 -p) /2 + |ξ| 2-p ) -1 |ξ| 2 is convex.
(2 -p) /2 + |ξ| 2-p ) -1 |ξ| 2 ≤ |V µ (ξ)| 2 ≤ c(p)(µ (2 -p) /2 + |ξ| 2-p ) -1 |ξ| 2 . A direct computation finally shows that t → (µ (2 -p) /2 + t 2-p ) -1 t 2
is convex and monotone increasing on [0, +∞), and that it vanishes for t = 0. We conclude that ξ → (µ

(2 -p) /2 + |ξ| 2-p ) -1 |ξ| 2 is convex.
Finally, we state a useful property established in [START_REF] Diening | L q theory for a generalized Stokes system[END_REF]Lemma 2.8].

Lemma 2.6. For all µ ≥ 0 there exists a constant c = c(n, p, µ) > 0 such that for every u ∈

W 1,p (Ω; R n ) if B r (x 0 ) ⊂ Ω ˆBr(x0) V µ (e(u)) -V µ (e(u)) Br(x0) 2 dx ≤ ˆBr(x0) V µ (e(u)) -V µ (e(u)) Br(x0) 2 dx ≤ c ˆBr(x0) V µ (e(u)) -V µ (e(u)) Br(x0) 2 dx.

Shifted N -functions

We fix p ∈ (1, ∞) and µ ≥ 0, and, following [START_REF] Diening | Fractional estimates for non-differentiable elliptic systems with general growth[END_REF]Definition 22] for every a ≥ 0 we consider the function

φ a : [0, ∞) → R, φ a (t) := ˆt 0 µ + (a + s) 2 p /2-1 s ds. (2.12) 
A simple computation shows that φ a > 0 and, further,

φ a (t) ≤ cφ a (t)t for all t ≥ 0 (2.13)
(φ a turns out to be a N-function in the language of [START_REF] Diening | Fractional estimates for non-differentiable elliptic systems with general growth[END_REF]Appendix]). From the definition one easily checks that for all a, t ≥ 0 we have

φ a (t) ≤ 1 p µ + (a + t) 2 p /2 -(µ + a 2 ) p /2 . (2.14)
More precisely, for every t ≥ 0 we have

(µ + (a + t) 2 ) p /2-1 t 2 2 ≤ φ a (t) ≤ t p p if p ∈ (1, 2), (2.15) 
t p p ≤ φ a (t) ≤ (µ + (a + t) 2 ) p /2-1 t 2 2 if p ∈ [2, ∞). (2.16)
Conti-Focardi-Iurlano-revised-sc.tex

In addition, if p ∈ (1, 2), for every t ≥ 0 we have

φ a (t) ≤ (µ + a 2 ) p /2-1 t 2 2 .
(2.17)

A simple change of variables shows that the family {φ a } a≥0 satisfies the 2 and ∇ 2 conditions uniformly in a, that is for all a ≥ 0

λ p∧2 φ a (t) ≤ φ a (λ t) ≤ λ p∨2 φ a (t), (2.18) 
for all λ ≥ 1 and t ≥ 0. We define the polar of φ a in the sense of convex analysis by

φ * a (s) := sup t≥0 {st -φ a (t)} . (2.19)
By convexity and growth of φ a one sees that the supremum is attained at a t such that s = φ a (t). For all a ≥ 0 we have

λ p p-1 ∧2 φ * a (s) ≤ φ * a (λ s) ≤ λ p p-1 ∨2 φ * a (s), (2.20) 
for every λ ≥ 1 and for every t ≥ 0. In view of (2.18) and (2.20) above, Young's inequality holds uniformly in a ≥ 0: for all δ ∈ (0, 1] there exists C δ,p > 0 such that

s t ≤ δ φ * a (s) + C δ,p φ a (t) and s t ≤ δ φ a (t) + C δ,p φ * a (s) (2.21) 
for every s and t ≥ 0 and for all a ≥ 0 (see also [START_REF] Diening | Fractional estimates for non-differentiable elliptic systems with general growth[END_REF]Lemma 32]). Convexity of φ a implies

t 2 φ a t 2 ≤ φ a (t) ≤ t φ a (t) ∀t ≥ 0. (2.22) 
From φ * a (φ a (t)) = φ a (t)t -φ a (t), (2.22), (2.21) we infer that there is a constant c > 0 such that for all a ≥ 0

1 c φ a (t) ≤ φ * a (φ a (t)) ≤ c φ a (t), (2.23) 
for every t ≥ 0 (see also [16, formula (2.3)]). Finally, note that by the first inequality in Lemma 2.4 with exponent γ

= (p -2)/4 > -1/4 we have c|ξ -η| 2 (µ + |ξ| 2 + |η| 2 ) p/2-1 ≤ |V µ (ξ) -V µ (η)| 2
for every ξ, η ∈ R n×n . Furthermore, by the second inequality in (2.22),

φ |ξ| (|ξ -η|) ≤ c|ξ -η| 2 (µ + |ξ| 2 + |ξ -η| 2 ) p/2-1 ,
and therefore

φ |ξ| (|ξ -η|) ≤ c|V µ (ξ) -V µ (η)| 2 .
(2.24)

Basic regularity results

In this section we prove some regularity results on local minimizers of generalized linear elasticity systems. The ensuing Propositions 3.1 and 3.3 contain the main Caccioppoli's type estimates in the super-quadratic and sub-quadratic case, respectively. In turn, those results immediately entail a higher integrability result in any dimension that will be instrumental for establishing partial regularity together with an estimate of the Hausdorff dimension of the singular set (see Propositions 4.1 and Theorem 4.7), as well as for proving C 1,α regularity for minimizers in the Conti-Focardi-Iurlano-revised-sc.tex two dimensional case. Moreover, in the two and three dimensional setting useful decay properties that were needed in the proof of the density lower bound in [START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF] and [START_REF] Chambolle | Approximation of functions with small jump sets and existence of strong minimizers of Griffith's energy[END_REF] can be deduced from Propositions 3.1, 3.3, and 4.1 (cf. Proposition 3.4 and Corollary 4.3). We point out that if p ∈ [2, ∞) a more direct and standard proof can be provided that does not need the shifted N-functions φ a in (2.12). Instead, those tools seem to be instrumental for the sub-quadratic case. Therefore, for simplicity, we have decided to provide a common framework for both.

In what follows we will make extensive use of the difference quotients introduced in (2.2) and of the mean values in (2.1).

Caccioppoli's inequalities

We start off dealing with the super-linear case. For future applications to higher integrability (cf. Proposition 4.1) it is convenient to set, for p > 2,

p(λ) := λp(p -2) λ(p -1) -1 (3.1) for every λ ∈ ( 1 p-1 , 1]. For p > 2, p(•) is a decreasing function on ( 1 p-1 , 1] with p(1) = p and p → ∞ as λ → 1 p-1 . In addition, define λ 0 ∈ ( 1 p-1 , 1] to be such that p(λ 0 ) = p * , being p * := np n-p , if p ∈ (1, n), and λ 0 = 1
p-1 otherwise and p(λ 0 ) can be any positive exponent. If p = 2 we set λ = λ 0 = 1 and p(λ 0 ) = p * . In particular, by Sobolev embedding,

u ∈ L p(λ) (Ω; R n ) for all λ ∈ [λ 0 , 1]. Proposition 3.1. Let n ≥ 2, p ∈ [2, ∞), κ and µ ≥ 0, g ∈ W 1,p (Ω; R n ) and let u ∈ W 1,p (Ω; R n ) be a local minimizer of F µ,κ defined in (2.8). Then, V µ (e(u)) ∈ W 1,2 loc (Ω; R n×n sym ) and, in addition, u ∈ W 2,2 loc (Ω; R n ) if p > 2 for µ > 0, and if p = 2 for µ ≥ 0. More precisely, if λ ∈ [λ 0 , 1] there is a constant c = c(n, p, λ) > 0 such that for B 2r (x 0 ) ⊂ Ω ˆBr(x0) |∇ V µ (e(u)) | 2 dx ≤ c 1 + κ r 2 ˆB2r(x0) |V µ (e(u)) -(V µ (e(u))) B2r(x0) | 2 dx + c κr 2 p-1 ˆB2r(x0) |u -g| p(λ) + |∇(u -g)| λp dx. (3.2)
Proof. We begin with showing that there is a constant c = c(n, p) > 0 such that if B 2r (x 0 ) ⊂ Ω then for any matrix Q ∈ R n×n we have

ˆBr(x0) |∇(V µ (e(u)))| 2 dx ≤ c r 2 ˆB2r(x0)\Br(x0) φ |e(u)| (|∇u -Q|)dx + κ r 2 ˆB2r(x0) |∇u -Q| p dx + c κ r 2 p-1 ˆB2r(x0) |u -g| p + |∇(u -g)| p dx . (3.3)
In particular, on account of (2.16), we infer from

(3.3) that V µ (e(u)) ∈ W 1,2 (B r (x 0 )). A covering argument implies then that V µ (e(u)) ∈ W 1,2 loc (Ω; R n×n sym ). Local minimality yields that u is a solution of ˆΩ ∇f µ (e(u)), e(ϕ) dx + κ p ˆΩ |u -g| p-2 u -g, ϕ dx = 0 ∀ϕ ∈ W 1,p 0 (Ω; R n ). (3.4) Conti-Focardi-Iurlano-revised-sc.tex
We can use the test field

ϕ := s,-h ζ p ( s,h u -Q s ) , with ζ ∈ C ∞ c (B 2r (x 0 )), 0 ≤ ζ ≤ 1, ζ| Br(x0) ≡ 1 and |∇ζ| ≤ c/r to infer, for h sufficiently small, ˆΩ s,h ∇f µ (e(u)) , ζ p s,h (e(u)) dx = -p ˆΩ s,h ∇f µ (e(u)) , ζ p-1 ∇ζ ( s,h u -Q s ) dx -κ p ˆΩ s,h |u -g| p-2 (u -g) , ζ p ( s,h u -Q s ) dx. (3.5) Recalling that f µ ∈ C 2 (R n×n ) if p ≥ 2 for all µ ≥ 0 we compute s,h ∇f µ (e(u)) (x) = ˆ1 0 ∇ 2 f µ e(u) + th s,h (e(u)) s,h (e(u))dt =: A s,h (x) s,h (e(u))(x). (3.6)
By taking into account (3.6), equality (3.5) rewrites as

ˆΩ ζ p A s,h (x) s,h (e(u)), s,h (e(u) dx = -p ˆΩ ζ p-1 A s,h (x) s,h (e(u)), ∇ζ ( s,h u -Q s ) dx -κ p ˆΩ s,h |u -g| p-2 (u -g) , ζ p ( s,h u -Q s ) dx . (3.7) 
Setting

W s,h (x) := ˆ1 0 µ + |e(u)(x) + t τ s,h (e(u))(x)| 2 p /2-1 dt, the estimates in (2.3) give for all η ∈ R n×n sym 1 c W s,h (x)|η| 2 ≤ A s,h (x)η, η ≤ c W s,h (x)|η| 2 (3.8)
with c = c(p) > 0. Therefore, using (3.8) in (3.7) yields for some

c = c(p) > 0 ˆΩ ζ p W s,h (x)| s,h (e(u))| 2 dx ≤ c ˆΩ ζ p-1 W s,h (x)|∇ζ|| s,h (e(u))|| s,h u -Q s |dx -κ p ˆΩ s,h |u -g| p-2 (u -g) , ζ p ( s,h u -Q s ) dx . (3.9)
Proceeding as in (3.6), and using

|∇V µ (ξ)| ≤ c (µ + |ξ| 2 ) (p -2) /4 , we obtain | s,h V µ (e(u)) | ≤ c ˆ1 0 µ + |e(u)(x) + t τ s,h (e(u))(x)| 2 (p -2) /4 dt| s,h (e(u))| .
Using Jensen's inequality in this integral and then comparing with the definition of W s,h we infer from (3.9)

ˆΩ ζ p | s,h V µ (e(u)) | 2 dx ≤ c ˆΩ ζ p-1 W s,h (x)|∇ζ|| s,h (e(u))|| s,h u -Q s |dx -κ p ˆΩ s,h |u -g| p-2 (u -g) , ζ p ( s,h u -Q s ) dx .
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In turn, from this inequality and (2.10) we get for some c = c(p) > 0

ˆB2r(x0) ζ p |τ s,h V µ (e(u)) | 2 dx ≤ c r ˆB2r(x0)\Br(x0) ζ p-1 µ + |e(u)| 2 + |e(u)(x + he s )| 2 p /2-1 |τ s,h (e(u))||τ s,h u -hQ s |dx -κ p ˆB2r(x0) τ s,h |u -g| p-2 (u -g) , ζ p (τ s,h u -Qh s ) dx =: I 1 + I 2 . (3.10)
By considering the functions φ a , a ≥ 0, introduced in (2.12) above, the first term on the right hand side of the last inequality can be estimated by

I 1 = c r ˆB2r(x0)\Br(x0) ζ p-1 φ |e(u)| |τ s,h (e(u))| |τ s,h u -hQ s |dx.
Since ζ ∈ (0, 1], Young's inequality in (2.21) gives for every δ ∈ (0, 1) and for some c = c(p) > 0

I 1 (2.21) ≤ c δ ˆB2r(x0)\Br(x0) φ * |e(u)| ζ p-1 φ |e(u)| (|τ s,h (e(u))|) dx +C δ,p ˆB2r(x0)\Br(x0) φ |e(u)| 1 r |τ s,h u -hQ s | dx (2.20) ≤ c δ ˆB2r(x0)\Br(x0) ζ p φ * |e(u)| φ |e(u)| (|τ s,h (e(u))|) dx +C δ,p ˆB2r(x0)\Br(x0) φ |e(u)| 1 r |τ s,h u -hQ s | dx (2.23) ≤ c δ ˆB2r(x0)\Br(x0) ζ p φ |e(u)| |τ s,h (e(u))| dx +C δ,p ˆB2r(x0)\Br(x0) φ |e(u)| 1 r |τ s,h u -hQ s | dx.
By using estimate (2.24) in the last but one term from the latter inequality we get for some c = c(p) > 0

I 1 ≤ c δ ˆB2r(x0)\Br(x0) ζ p |τ s,h V µ (e(u)) | 2 dx +C δ,p ˆB2r(x0)\Br(x0) φ |e(u)| 1 r |τ s,h u -hQ s | dx. (3.11)
We now estimate the second term in (3.10). We preliminarily note that by Meyers-Serrin's theorem and the Chain rule formula for Sobolev functions the field w := |u -g| p-2 (u -g) belongs to W 1,p (A, R n ) for every Lipschitz open subset A ⊆ Ω. More precisely, we have

∇w L p (A,R n×n ) ≤ c u -g p-2 L p(λ) (A,R n ) ∇(u -g) L λp (A,R n×n ) , (3.12) 
for some constant c = c(n, p, λ) > 0, for all λ ∈ [λ 0 , 1] where p is the function defined in (3.1) and p = p p-1 (we recall that if p = 2 then λ = λ 0 = 1).
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Therefore, by (3.12), Hölder's and Young's inequalities we may estimate I 2 for h sufficiently small as follows

h -2 I 2 ≤ κ p s,h u -Q s L p (B2r(x0),R n ) ζ p s,h w L p (B2r(x0),R n ) ≤ κ p s,h u -Q s L p (B2r(x0),R n ) ∇w L p (B2r(x0),R n ) ≤ κ r 2 ˆB2r(x0) | s,h u -Q s | p dx + κ(p -1) r 2 p-1 ˆB2r(x0) |∇w| p dx ≤ κ r 2 ˆB2r(x0) | s,h u -Q s | p dx + c κ r 2 p-1 ˆB2r(x0) |u -g| p(λ) + |∇(u -g)| λp dx (3.13)
for some c = c(n, p, λ) > 0. Hence, from inequalities (3.10), (3.11) and (3.13) for δ = δ(p) > 0 sufficiently small we conclude that ˆBr(x0)

| s,h V µ (e(u)) | 2 dx ≤ c h 2 ˆB2r(x0)\Br(x0) φ |e(u)| 1 r |τ s,h u -hQ s | dx + κ r 2 ˆB2r(x0) | s,h u -Q s | p dx + c κ r 2 p-1 ˆB2r(x0) |u -g| p(λ) + |∇(u -g)| λp dx, (3.14) 
with c = c(n, p, λ) > 0. Finally, (2.18) and the last inequality for sufficiently small h yield for some 

c = c(n, p, λ) > 0 ˆBr(x0) | s,h V µ (e(u)) | 2 dx ≤ c r 2 ˆB2r(x0)\Br(x0) φ |e(u)| | s,h u -Q s | dx + κ r 2 ˆB2r(x0) | s,h u -Q s | p dx + c κ r
φ |e(u)| |∇u -(∇u) B2r(x0) | dx ≤ c ˆB2r(x0) φ |e(u)| |e(u) -(e(u)) B2r(x0) | dx. (3.16) 
This follows from Korn's inequality by using that if ψ a (t) := a p-2 t 2 +µ p /2-1 t 2 +t p then c -1 ψ a (t) ≤ φ a (t) ≤ c ψ a (t) for all t ≥ 0 and for some c = c(p) > 0. One inequality follows from (2.16), the other one is similar. Alternatively, (3.16) follows directly from Korn's inequality in Orlicz spaces for shifted N-functions (cf. [17, Lemma 2.9]).

Moreover, since for p ≥ 2 by the very definition of V µ and Lemma 2.4

|ξ -η| p ≤ |V µ (ξ -η)| 2 ≤ c(p)|V µ (ξ) -V µ (η)| 2 ∀ ξ, η ∈ R n×n , the standard Korn's inequality implies for some c = c(n, p) > 0 ˆB2r(x0) |∇u -(∇u) B2r(x0) | p dx ≤ c ˆB2r(x0) |e(u) -(e(u)) B2r(x0) | p dx ≤ c ˆB2r(x0) |V µ e(u) -(e(u)) B2r(x0) | 2 dx ≤ c ˆB2r(x0) |V µ (e(u)) -V µ (e(u) B2r(x0) )| 2 dx. (3.17)
Conti-Focardi-Iurlano-revised-sc.tex Thus, by combining (3.16) and (3.17) with (3.3), with Q := (∇u) B2r(x0) , we deduce ˆBr(x0)

|∇ V µ (e(u)) | 2 dx ≤ c r 2 ˆB2r(x0) φ |e(u)| |e(u) -(e(u)) B2r(x0) | dx + κ c r 2 ˆB2r(x0) |V µ (e(u)) -V µ ((e(u)) B2r(x0) )| 2 dx + c κ r 2 p-1 ˆB2r(x0) |u -g| p(λ) + |∇(u -g)| λp dx, (3.18) 
for some constant c = c(n, p, λ) > 0. Hence, by (2.24) we get from (3.18)

ˆBr(x0) |∇ V µ (e(u)) | 2 dx ≤ c 1 + κ r 2 ˆB2r(x0) |V µ (e(u))-V µ ((e(u)) B2r(x0) )| 2 dx+c κ r 2 p-1 ˆB2r(x0) |u-g| p(λ) +|∇(u-g)| λp dx ≤ c 1 + κ r 2 ˆB2r(x0) |V µ (e(u))-(V µ (e(u))) B2r(x0) | 2 dx+c κ r 2 p-1 ˆB2r(x0) |u-g| p(λ) +|∇(u-g)| λp dx.
The last inequality follows from Lemma 2.6.

In the sub-quadratic case we use a regularization argument following [START_REF] Diening | L q theory for a generalized Stokes system[END_REF]Theorem 3.2]. Indeed, even setting κ = 0, the same arguments as in Proposition for some c = c(n, p) > 0, which is not sufficient for our purposes. Recall that the Besov space

B p /2,2,∞ (A), A ⊂ R n open, is the space of maps v ∈ L 2 (A; R n×n ) such that [v] B p/2,2,∞ (A) := sup h |h| -p /2 n s=1 τ s,h v L 2 (A;R n×n ) < ∞.
Finally, we point out that the argument we use below requires only minimal assumptions on g, namely L p summability. We start off with establishing a technical result.

Lemma 3.2. Let n ≥ 2, p ∈ (1, 2], κ and µ ≥ 0, g ∈ L p (B 2r , R n ), and w ∈ C ∞ (B 2r ; R n ).
Let u be the minimizer of Proof. We first prove that u ∈ W 3,2 loc (B 2r , R n ). Given V ⊂⊂ B 2r , we set d := min{1, dist(V, ∂B 2r )} and take h ≤ d/2. For ρ ∈ (0, d/2) we consider the function

F L (v) := ˆB2r f µ (e(v))dx + κ ˆB2r |v -g| p dx + 1 2L ˆB2r |∇ 2 v| 2 dx (3.19) over the set of w+W 2,2 0 (B 2r , R n ). Then, u ∈ W 3,2 loc (B 2r , R n ) and there is a constant c = c(n, p) > 0 such that for all λ ≥ 0 1 L ˆBr |∇∆u| 2 dx + ˆBr |∇(V µ (e(u)))| 2 dx ≤ c Lr 4 ˆB2r\Br |∇u -(∇u) B2r | 2 dx + c Lr 2 ˆB2r\Br |∇ 2 u| 2 dx + c 1 + κ r 2 ˆB2r |V µ (e(u)) -(V µ (e(u))) B2r )| 2 dx + κ r
g(ρ) := sup 1 L ˆBρ(y) | s,h ∇ 2 u| 2 dx : y ∈ V .
Next we prove that there exists a constant c > 0 independent from h (but possibly depending on L) such that First note that

g(ρ) ≤ g(ρ ) 2 + c (ρ -ρ) 4 + c κ ρ -ρ , (3.21 
ˆBρ (y) ∇ 2 u, ∇ 2 ϕ dx = - ˆBρ (y) s,h ∇ 2 u, ζ∇ 2 s,h u + z dx,
where the function z satisfies

z L 2 (B ρ (y)) ≤ c (ρ -ρ) 2 u W 2,2 (B2r) .
Therefore by Young's inequality we obtain 

- ˆBρ (y) s,h ∇ 2 u, z dx ≤ 1 2 ˆBρ (y) | s,h ∇ 2 u| 2 dx + c (ρ -ρ) 4 u 2 W 2,2 ( 
ˆBρ (y) ∇ 2 u, ∇ 2 ϕ dx ≤ 1 2 ˆBρ (y) | s,h ∇ 2 u| 2 dx + c (ρ -ρ) 4 u 2 W 2,2 (B2r) - ˆBρ(y) | s,h ∇ 2 u| 2 dx. (3.24)
On the set (B 2r ) s,h (recall the notation introduced right after (2.2)) we define

α s (x) := ˆ1 0 ∇f µ (e(u(x + th s )))dt
Conti-Focardi-Iurlano-revised-sc.tex and observe that (for µ > 0)

s,h ∇f µ (e(u)) = 1 h ˆh 0 d dt ∇f µ (e(u(x + t s ))) dt = 1 h ˆh 0 ∂ s ∇f µ (e(u(x + t s ))) dt = 1 h ∂ s ˆh 0 ∇f µ (e(u(x + t s ))) dt = ∂ s α s . (3.25)
By continuity one obtains s,h ∇f µ (e(u)) = ∂ s α s also for µ = 0. Therefore we estimate 

ˆBρ (y) ∇f µ (e(u)), e(ϕ) dx = - ˆBρ ( 
ˆBρ (y) ∇f µ (e(u)), e(ϕ) dx ≤ c (ρ -ρ) 2 u W 1,p (B2r) α s L p (B ρ (y)) + c ρ -ρ u W 2,p (B2r) α s L p (B ρ (y)) ≤ c (ρ -ρ) 2 u W 2,p (B2r) µ 1/2 + |e(u)| p /p L p (B2r) . (3.27)
Eventually, by Hölder's inequality and the standard properties of difference quotients we can estimate the last term on the left hand side of (3.22) as follows: Conti-Focardi-Iurlano-revised-sc.tex

ˆB2r |u -g| p-2 u -g, ϕ dx ≤ u -g p-1 L p (B2r) 1 ρ -ρ ∇u L p (B2r) + ∇ 2 u L p (
| s,h ∇ 2 u| 2 dx ≤ 1 2 ˆBρ (y) | s,h ∇ 2 u| 2 dx + c (ρ -ρ) 4 + c κ ρ -ρ ,
for any Q ∈ R n×n . Let now ψ := n s=1 ∂ s (ζ q ∂ s (u -Qx)), where q ≥ 4, let ζ ∈ C ∞ c (B 3r/2 ; [0, 1]) obey ζ = 1 on B r and |∇ζ| ≤ c/r. Since u ∈ W 3,2
loc (B 2r , R n ), ψ can be strongly approximated in W 1,2 (B 2r , R n ) by smooth functions supported in B 3r/2 ; therefore we can use ϕ = ψ as a trial function in (3.29).

We now estimate the three terms in (3.29). We start from the second one, which we write as

I 2 := ˆB2r B, e(ψ) dx
where

B(x) := ∇f µ (e(u)) -∇f µ (e(Qx)) = ˆ1 0 ∇ 2 f µ (e(Qx) + te(ũ)(x))e(ũ)(x)dt
and ũ(x) := u(x) -Qx. We estimate, using (2.3) and Lemma 2.3,

|B| ≤ ˆ1 0 (µ + |e(Qx) + te(ũ)| 2 ) p/2-1 |e(ũ)|dt ≤ c(µ + |e(Qx)| 2 + |e(u)| 2 ) p/2-1 |e(ũ)| ≤ c(µ + (|e(Qx)| + |e(ũ)|) 2 ) p/2-1 |e(ũ)| = c φ |e(Qx)| (|e(ũ)|) for µ > 0. By continuity, |B| ≤ c φ |e(Qx)| (|e(ũ)|) holds also for µ = 0. We compute e(ψ) = n s=1 (∂ s ∇ζ q ) ∂ s ũ + ∇ζ q ∂ 2 s ũ + ∂ s (ζ q ∂ s e(ũ)) .
We estimate the three contributions to I 2 separately. Recalling the estimate for B, we obtain

|I 2,1 | ≤ ˆB2r\Br |B| cq 2 r 2 |∇ũ|dx ≤ cq 2 r 2 ˆB2r\Br φ |e(Qx)| (|e(ũ)|)|∇ũ|dx ≤ cq 2 r 2 ˆB2r\Br φ |e(Qx)| (|∇ũ|)|∇ũ|dx ≤ cq 2 r 2 ˆB2r\Br φ |e(Qx)| (|∇ũ|)dx
where we used monotonicity of φ a and (2.22). Using Korn's inequality for shifted N-functions (cf.

[17, Lemma 2.9] or (3.16)) and choosing Q := (∇u) B2r we conclude

|I 2,1 | ≤ cq 2 r 2 ˆB2r φ |e(Qx)| (|e(ũ)|)dx ≤ cq 2 r 2 ˆB2r |V µ (e(u)) -V µ (e(Qx))| 2 dx
where in the last step we used (2.24).

For the second one, we use that for any function v in W 2,2 loc one has

∂ 2 s v j = 2∂ s ([e(v)] sj ) -∂ j ([e(v)] ss ), (3.30) 
here [e(v)] hk denotes the entry of position (h, k) of the matrix e(v), to obtain

|I 2,2 | ≤ cq r ˆB2r\Br |B|ζ q-1 |∆ũ|dx ≤ cq r ˆB2r\Br φ |e(Qx)| (|e(ũ)|)ζ q-1 |∇e(ũ)|dx.
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|I 2,2 | ≤ cq r ˆB2r\Br φ |e(Qx)| (|e(ũ)|)ζ q-1 |e(ũ)| |∇e(ũ)|dx ≤δ ˆB2r\Br ζ q φ |e(Qx)| (|e(ũ)|)|∇e(ũ)| 2 dx + c r 2 ˆB2r\Br φ |e(Qx)| (|e(ũ)|)|e(ũ)| 2 dx ,
with c = c(δ, q) > 0 and δ ∈ (0, 1) to be chosen below. Hence, recalling

|∇V µ (ξ)| 2 ≥ c(µ+|ξ| 2 ) p /2-1 and φ a (|t -a|)|t -a| 2 ≤ c|V µ (t) -V µ (a)| 2 (see Lemma 2.
4 and the definition of φ a ), we infer

|I 2,2 | ≤ δ ˆB2r\Br ζ q |∇(V µ (e(u)))| 2 dx + c r 2 ˆB2r\Br |V µ (e(u)) -V µ (e(Qx))| 2 dx .
Finally, to deal with the last term I 2,3 we integrate by parts. Since ∂ s B = ∇ 2 f µ (e(u))∂ s e(u), recalling (2.3) and the definition of

V µ -I 2,3 = ˆB2r ζ q n s=1 ∇ 2 f µ (e(u))∂ s e(u), ∂ s e(u) dx ≥c ˆB2r ζ q (µ + |e(u)| 2 ) p/2-1 |∇e(u)| 2 dx ≥ c ˆB2r ζ q |∇(V µ (e(u)))| 2 dx , with c = c(p) > 0.
We now turn to the first term in (3.29),

I 1 := ˆB2r ∇∆u, ∇ψ dx .
Again we consider separately the contributions of the different components of ∇ψ,

∇ψ = n s=1 ∂ s ũ ⊗ (∂ s ∇ζ q ) + ∂ 2 s ũ ⊗ ∇ζ q + (∂ s ζ q )∂ s ∇ũ + ζ q ∂ 2 s ∇ũ .
The first term is controlled by

|I 1,1 | ≤ c r 2 ˆB2r\Br |∇∆u|ζ q-2 |∇ũ|dx ≤δ ˆB2r\Br ζ q |∇∆u| 2 dx + c r 4 ˆB2r\Br |∇ũ| 2 dx
for some c = c(q, δ) > 0, provided that q -2 ≥ q/2, namely q ≥ 4. The second and the third terms are controlled, for some c = c(q, δ) > 0, by

|I 1,2 + I 1,3 | ≤ c r ˆB2r\Br |∇∆u|ζ q-1 |∇ 2 ũ|dx ≤δ ˆB2r\Br ζ q |∇∆u| 2 dx + c r 2 ˆB2r\Br |∇ 2 ũ| 2 dx .
The fourth summand in I 1 is

I 1,4 := ˆB2r ζ q ∇∆u • ∇∆udx .
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We deal with the remaining term in (3.29)

I 3 := κ p ˆB2r |u -g| p-2 u -g, n s=1 ∂ s (ζ q ∂ s ũ) dx.
Hölder's and Young's inequalities together with (3.30) yield for some constant c = c(p, q) > 0

κ -1 I 3 ≤ r λp p-1 ˆB2r |u -g| p dx + c r (λ+1)p ˆB2r\Br |∇ũ| p dx + c r λp ˆB2r ζ q |∇e(u)| p dx.
Recalling that we have chosen Q = (∇u) B2r , apply Korn's inequality to obtain

κ -1 I 3,2 ≤ c r (λ+1)p ˆB2r |e(u) -e(Qx)| p dx.
From Lemma 2.4 we obtain

|ξ -η| p ≤ c|V (ξ) -V (η)| p (µ + |ξ| 2 + |η| 2 ) p(2 -p) /4
, using Young's inequality and Remark 2.2 we conclude that

κ -1 I 3,2 ≤ 1 r 2 ˆB2r |V µ (e(u)) -V µ (e(Qx))| 2 dx + c r 2λp 2-p ˆB2r (µ + |e(u)| 2 ) p /2 dx ≤ 1 r 2 ˆB2r |V µ (e(u)) -V µ (e(Qx))| 2 dx + c r 2λp 2-p ˆB2r |V µ (e(u))| 2 dx + µ p /2 r n .
with c = c(p) > 0. Furthermore, again by Lemma 2.4, Young's inequality and Remark 2.2 we have that

κ -1 I 3,3 ≤ δ ˆB2r ζ q |∇ V µ (e(u)) | 2 dx + c r 2λp 2-p ˆB2r |V µ (e(u))| 2 dx + µ p /2 r n .
for some c = c(δ, p) > 0. Therefore, we deduce that

κ -1 I 3 ≤ r λp p-1 ˆB2r |u -g| p dx + 1 r 2 ˆB2r |V µ (e(u)) -V µ (e(Qx))| 2 dx+ + δ ˆB2r ζ q |∇ V µ (e(u)) | 2 dx + c r 2λp 2-p ˆB2r |V µ (e(u))| 2 dx + µ p /2 r n .
Finally, we rewrite (3.29) as

1 L I 1,4 -I 2,3 ≤ 1 L |I 1,1 | + 1 L |I 1,2 + I 1,3 | + I 2,1 + I 2,2 + I 3 .
Choosing q ≥ 4 and δ ∈ (0, 1 /4], for some constant c = c(n, p) > 0 we have that

1 L ˆB2r ζ q |∇∆u| 2 dx + ˆB2r ζ q |∇ V µ (e(u)) | 2 dx ≤ c Lr 4 ˆB2r\Br |∇ũ| 2 dx + c Lr 2 ˆB2r\Br |∇ 2 ũ| 2 dx + c 1 + κ r 2 ˆB2r |V µ (e(u)) -V µ (e(Qx))| 2 dx + κ r λp p-1 ˆB2r |u -g| p dx + c κ r 2λp 2-p ˆB2r |V µ (e(u))| 2 dx + µ p /2 r n ,
and (3.20) follows at once from Lemma 2.6.
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We are now ready to prove the Caccioppoli's inequality in the sub-quadratic case.

Proposition 3.3. Let n ≥ 2, p ∈ (1, 2], κ and µ ≥ 0 and g ∈ L p (Ω; R n ). Let u ∈ W 1,p (Ω; R n ) be a local minimizer of F µ,κ defined in (2.8).

Then, V µ (e(u)) ∈ W 1,2 loc (Ω; R n×n sym ) and u ∈ W 2,p loc (Ω; R n ). More precisely, there is a constant c = c(n, p) > 0 such that if B 2r (x 0 ) ⊂ Ω and λ ≥ 0 Proof. By a simple translation argument we can assume x 0 = 0 without loss of generality. We consider the functionals F L defined in (3.19) and correspondingly we define

ˆBr(x0) |∇ V µ (e(u)) | 2 dx ≤ c 1 + κ r 2 ˆB2r(x0) |V µ (e(u)) -(V µ (e(u))) B2r(x0) | 2 dx + κ r λp p-1 ˆB2r ( 
F ∞ (v) := ˆB2r f µ (e(v))dx + κ ˆB2r |v -g| p dx .
Fix a sequence u l ∈ C ∞ (B 2r ; R n ) which converges strongly in W 1,p to u, and let u l,L be the minimizer of F L over the set of W 1,p (B 2r ; R n ) functions which coincide with u l on the boundary, correspondingly u * l for F ∞ . For a fixed l, let v be a smooth approximation to u * l with the same boundary data. Then

F L (v) → F ∞ (v) as L ↑ ∞. Since F L ≥ F ∞ , this implies that F L (u l,L ) → F ∞ (u * l ) as L ↑ ∞.
In particular, the sequence u l,L is a minimizing sequence for F ∞ , and since this functional is strictly convex it converges strongly in W 1,p to the unique minimizer u * l of F ∞ . Further,

L -1 ´B2r |∇ 2 u l,L | 2 dx → 0.
Using Lemma 3.2 with w = u l and taking the limit L ↑ ∞ in (3.20) we obtain

ˆBr |∇(V µ (e(u * l )))| 2 dx ≤ c 1 + κ r 2 ˆB2r |V µ (e(u * l )) -(V µ (e(u * l ))) B2r | 2 dx + κ r λp p-1 ˆB2r |u * l -g| p dx + c κ r 2λp 2-p ˆB2r |V µ (e(u * l ))| 2 dx + µ p /2 r n .
Finally, since u l → u strongly the sequence u * l + u -u l is also a minimizing sequence for F ∞ , and by strict convexity it converges strongly to the unique minimizer u.

We deduce that u * l → u strongly in W 1,p (B 2r ; R n ) and in the limit as l ↑ ∞ we conclude the proof of (3.31). Eventually, (3.32) follows by Hölder's inequality and Lemma 2.4.

Decay Estimates

As a first corollary of Propositions 3.1 and 3.3 we establish a decay property of the L 2 -norm of V µ (e(u)) needed to prove the density lower bound inequality in [START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF] in the two dimensional setting. The result shall be improved as a consequence of the higher integrability property in the next section (cf. Corollary 4.3).
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[January 30, 2019] Proposition 3.4. Let n ≥ 2, p ∈ (1, ∞), κ and µ ≥ 0. Let u ∈ W 1,p (Ω; R n ) be a local minimizer of F µ,κ defined in (2.8) with g ∈ L p (Ω; R n ) if p ∈ (1, 2] and g ∈ W 1,p (Ω; R n ) if p ∈ (2, ∞).
Then, for all γ ∈ (0, 2) there is a constant c = c(γ, p, n, κ) > 0 such that if

B R0 (x 0 ) ⊂ ⊂ Ω, then for all ρ < R ≤ R 0 ≤ 1 if p ≥ 2 it holds ˆBρ(x0) |V µ (e(u))| 2 dx ≤ cρ γ 1 R γ ˆBR (x0) |V µ (e(u))| 2 dx + cκ u -g p W 1,p (Ω;R n ) , (3.33 
) 

and if p ∈ (1, 2) it holds ˆBρ(x0) |V µ (e(u))| 2 dx ≤ cρ γ 1 R γ ˆBR (x0) |V µ (e(u))| 2 dx + cκ u -g p L p (Ω;R n ) + cκµ p /2 , (3.34) Proof. Let 4r ≤ R 0 , and ζ ∈ C ∞ c (B 2r (x 0 )) be such that 0 ≤ ζ ≤ 1, ζ| Br(x0) ≡ 1, |∇ζ| ≤ 2/r. Note that ζ 2 V µ (e(u)) ∈ W 1,2 0 (B 2r (x 0 ), R n×n sym ), therefore ˆB2r(x0) |∇ ζ 2 V µ (e(u)) | 2 dx ≤ 2 ˆB2r(x0) ζ 4 |∇V µ (e(u))| 2 dx + 8 ˆB2r(x0) ζ 2 |∇ζ| 2 |V µ (e(u))| 2 dx ≤ 2 ˆB2r(x0) |∇V µ (e(u))| 2 dx + 32 r 2
≤ c(1 + κ) r 2 ˆB4r(x0) |V µ (e(u))| 2 dx + cκr 2 p-1 u -g p W 1,p (Ω;R n ) , (3.36) with c = c(p, n) > 0.
Therefore, in view of Poincaré inequality and (3.36) we get for any τ ∈ (0, 1) and any q ∈ (2, 2 * ), with 2

* = 2n/(n -2) if n > 2, 2 * = ∞ if n = 2, ˆBτr(x 0 ) |V µ (e(u))| 2 dx ≤ c (τ r) n(1-2 /q) ˆB2r(x0) |ζ 2 V µ (e(u))| q dx 2 /q ≤ c τ n(1-2 /q) r 2 ˆB2r(x0) |∇ ζ 2 V µ (e(u)) | 2 dx ≤ c (1 + κ)τ n(1-2 /q) ˆB4r(x0) |V µ (e(u))| 2 dx + cκr 2p p-1 u -g p W 1,p (Ω;R n ) , (3.37)
with c = c(p, q, n) > 0. We choose q ∈ (2, 2 * ) such that n(1 -2/q) > 2+γ 2 , which is the same as q ∈ ( 4n 2n-2-γ , 2 * ). This is possible since γ ∈ (0, 2). Then, for sufficiently small τ , and for θ 

= τ /4 ˆB4θr(x 0 ) |V µ (e(u))| 2 dx ≤ θ 2+γ 2 ˆB4r(x0) |V µ (e(u))| 2 dx + cκr γ u -g p W 1,p (Ω;R n ) . ( 3 
(x0) |∇ ζ 2 V µ (e(u)) | 2 dx ≤ c(κ + 1) r 2 ˆB4r(x0) |V µ (e(u)) -(V µ (e(u))) B4r(x0) | 2 dx + cκr 2-p p-1 ˆB4r(x0) u -g| p dx + cκµ p /2 r n-2 + c κ + 1 r 2 ˆB4r(x0) |V µ (e(u))| 2 dx ≤ c κ + 1 r 2 ˆB4r(x0) |V µ (e(u))| 2 dx + c κ r 2-p p-1 u -g p L p (Ω;R n ) + c κµ p /2 r n-2 ,
with c = c(n, p) > 0. Then, arguing as to deduce (3.37) we conclude that

ˆBτr(x 0 ) |V µ (e(u))| 2 dx ≤ c τ n(1-2 /q) • • κ + 1 ˆB4r(x0) |V µ (e(u))| 2 dx + c κ r p p-1 u -g p L p (Ω;R n ) + cκµ p /2 r n ,
with c = c(p, q, n) > 0. By choosing q ∈ (2, 2 * ) such that n(1 -2/q) > 2+γ 2 , for sufficiently small τ , and for θ

= τ /4 ˆB4θr(x 0 ) |V µ (e(u))| 2 dx ≤ θ 2+γ 2 ˆB4r(x0) |V µ (e(u))| 2 dx + cκr γ u -g p L p (Ω;R n ) + µ p /2 . (3.39)
The decay formula (3.33) then follows from [START_REF] Giusti | Direct methods in the calculus of variations[END_REF]Lemma 7.3].

Partial regularity results

In the quadratic case p = 2 it is well-known that the minimizer u is C 2 (Ω; R n ) in any dimension if g ∈ C 1 (see for instance [START_REF] Giusti | Direct methods in the calculus of variations[END_REF]Theorem 10.14] or [27, Theorem 5.13, Corollary 5.14]). Below we establish C 1,α regularity in the two dimensional setting and partial regularity in n dimensions together with an estimate on the Hausdorff dimension of the corresponding singular set. To our knowledge it is a major open problem in elliptic regularity to prove or disprove everywhere regularity for elasticity type systems in the nonlinear case if n ≥ 3 and p = 2.

Higher integrability

In this subsection we prove the first main ingredient for establishing both C 1,α regularity if n = 2 and partial regularity if n ≥ 3 with an estimate of the Hausdorff dimension of the singular set: the higher integrability for the gradient of V µ (e(u)), µ ≥ 0.

Proposition 4.1. Let n ≥ 2, p ∈ (1, ∞), κ and µ ≥ 0. Let u ∈ W 1,p (Ω; R n ) be a local minimizer of F µ,κ defined in (2.8) with g ∈ L s (Ω; R n ), s > p, if p ∈ (1, 2] and g ∈ W 1,p (Ω; R n ) if p ∈ (2, ∞).
Then, V µ (e(u)) ∈ W 1,q loc (Ω; R n×n sym ) for some q > 2. More precisely, there exist q = q(n, p, κ) > 2 and c = c(n, p, κ) > 0 such that if B 2r (x 0 ) ⊂ ⊂ Ω and p > 2

Br(x0) |∇ V µ (e(u)) | q dx 1 /q ≤ c B2r(x0) |∇ V µ (e(u)) | 2 dx 1 /2 + c κ B2r(x0) |u -g| p( 1+λ 0 2 ) + |∇(u -g)| 1+λ 0 2 p q 2 dx 1 /q , (4.1)
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[January [START_REF] Kristensen | Non-differentiable functionals and singular sets of minima[END_REF]2019] with the exponent p and λ 0 ∈ [ 1 p-1 , 1) introduced in Section 3.1, and if p ∈ (1, 2]

Br(x0) |∇ V µ (e(u)) | q dx 1 /q ≤ c B2r(x0) |∇ V µ (e(u)) | 2 dx 1 /2 + c κ B2r(x0) |u -g| p + |V µ (e(u))| 2 + µ p /2 q 2 dx 1 /q (4.2)
with q = q(n, p, κ, s) > 2 and c = c(n, p, κ, s) > 0.

Proof. Recalling that 2 is the Sobolev exponent of 2n n+2 , we may use the Caccioppoli's type estimates (3.2) and (3.31), the former if p > 2 (with λ = 1+λ0

2 ) and the latter if p ∈ (1, 2] (with λ = 0), to deduce by Poincaré-Wirtinger inequality for some c = c(n, p) > 0

Br(x0) |∇ V µ (e(u)) | 2 dx ≤ c(1 + κ) B2r(x0) |∇ V µ (e(u)) | 2n n+2 dx n+2 n + c κr 2 p-1 B2r(x0) |u -g| p( 1+λ 0 2 ) + |∇(u -g)| 1+λ 0 2 p dx, if p > 2,
and

Br(x0) |∇ V µ (e(u)) | 2 dx ≤ c(1 + κ) B2r(x0) |∇ V µ (e(u)) | 2n n+2 dx n+2 n + c κ B2r(x0) |u -g| p + |V µ (e(u))| 2 + µ p /2 dx if p ∈ (1, 2]
. By taking into account that u ∈ W 1,p (Ω; R n ), λ 0 ∈ ( 1 p-1 , 1) and p( 1+λ0 2 ) < p * and that V µ (e(u)) ∈ W 1,2 loc (Ω; R n×n sym ) (cf. Propositions 3.1 and 3.3), Gehring's lemma with increasing support (see for instance [28, Theorem 6.6]) yields higher integrability together with estimates (4.1) and (4.2). A covering argument provides the conclusion. Remark 4.2. To apply Gehring's lemma with increasing support in order to deduce higher integrability in case p > 2 it is instrumental that we may choose λ ∈ (λ 0 , 1) and the corresponding exponent p(λ) ∈ (p, p * ) in (3.2) (cf. the definition of p(•) in (3.1)).

We improve next the decay estimates in Proposition 3.4. This version is useful to prove the density lower bound in [START_REF]Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF] in the three dimensional setting. We do not provide the details since the proof is the same of Proposition 3.4 and only takes further advantage of Proposition 4.1.

Corollary 4.3. Let n ≥ 3, p ∈ (1, ∞), κ and µ ≥ 0. Let u ∈ W 1,p (Ω; R n ) be a local minimizer of F µ,κ defined in (2.8) with g ∈ L s (Ω; R n ) with s > p if p ∈ (1, 2] and g ∈ W 1,p (Ω; R n ) if p ∈ (2, ∞).
Then, there exists γ 0 = γ 0 (n, p, κ), with γ 0 > 2, such that for all γ ∈ (0, γ 0 ] there is a constant

c = c(γ, p, n) > 0 such that if B R0 (x 0 ) ⊂ ⊂ Ω, then for all ρ < R ≤ R 0 ≤ 1 ˆBρ(x0) |V µ (e(u))| 2 dx ≤ cρ γ 1 R γ ˆBR (x0) |V µ (e(u))| 2 dx + cκ u -g p W 1,p (Ω;R n ) if p > 2, and if p ∈ (1, 2], ˆBρ(x0) |V µ (e(u))| 2 dx ≤ cρ γ 1 R γ ˆBR (x0) |V µ (e(u))| 2 dx + cκ u -g p L p (Ω;R n ) + cκµ p /2
with c = c(γ, p, n, s) > 0.
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≥ 0. Let u ∈ W 1,p (Ω; R 2 ) be a local minimizer of F µ,κ defined in (2.8) with g ∈ L s (Ω; R 2 ), s > p, if p ∈ (1, 2] and g ∈ W 1,p (Ω; R 2 ) if p ∈ (2, ∞).
Then, u ∈ C 1,α loc (Ω; R 2 ) for all α ∈ (0, 1) if 1 < p < 2 and µ > 0 or if p ≥ 2, and for some α(p) ∈ (0, 1) if 1 < p < 2 and µ = 0.

Proof. We recall that V µ (e(u)) ∈ W 1,q loc (Ω; R 2×2 sym ) for some q > 2 in view of Proposition 4.1. Therefore, by Morrey's theorem

V µ (e(u)) ∈ C 0,1-2 q loc (Ω; R 2×2 sym ). Furthermore, being V µ an homeomorphism with inverse of class C 1 (R 2×2 ; R 2×2 ) if p ∈ (1, 2]
and µ ≥ 0 or if p > 2 and µ > 0, and of class C 0, 2 p loc (R 2×2 ; R 2×2 ) if p > 2 and µ = 0, we conclude by Korn's inequality that u ∈ C 1,αp loc (Ω; R 2 ) for some α p = α(p) ∈ (0, 1). To conclude the claimed C 1,α regularity for all α ∈ (0, 1), we recall first that u ∈ W 2,p∧2 loc (Ω; R 2 ) (cf. Propositions 3.1 and 3.3). Actually, in the 2-dimensional setting u ∈ W 2,2 loc (Ω; R 2 ) in case p ∈ (1, 2), as well. Indeed, |e(u)| ∈ L ∞ loc (Ω) by Corollary 4.3, therefore we conclude at once from Lemma 2.4 (cf. the argument leading to (3.32)). Hence, since (3.4) and deduce that the weak gradient of e(u) is a weak solution to a linear uniformly elliptic system with continuous coefficients. Schauder's theory provides the conclusion (cf. [27, Theorem 5.6 and 5.15]).

f µ ∈ C 2 (R 2×2 sym ) if 1 < p < 2 and µ > 0 or if p ≥ 2, one can differentiate
Remark 4.5. Actually, u ∈ C k (Ω; R 2 ) if g ∈ C k (Ω; R 2
) and µ > 0 bootstrapping the previous argument.

Partial regularity in the non-degenerate autonomous case

In this section we deal with the non-degenerate autonomous case, corresponding to µ > 0 and κ = 0, by following the so called indirect methods for proving partial regularity (see [START_REF] Giaquinta | Multiple integrals in the calculus of variations and nonlinear elliptic systems[END_REF]). Therefore, the other main ingredient besides higher integrability of the gradient, is the following excess decay lemma. We introduce the notation

E v (x, r) := Br(x) V µ e(v) -e(v) Br(x) 2 dy (4.3) 
for the excess of any v ∈ W 1,p (Ω; R n ). Recall that e(v) Br(x) = ffl Br(x) e(v)dy. Technical tools exploited in the proof of the excess decay are postponed to the Appendix A. For a linearization argument there, the assumption µ > 0 is crucial (cf. Theorem A.2).

Proposition 4.6. Let n ≥ 2, p ∈ (1, ∞) and µ > 0. Let u ∈ W 1,p (Ω; R n ) be a local minimizer of F µ,0 defined in (2.8).
Then, for every L > 0 there exists C = C(L) > 0 such that for every τ ∈ (0, 1 /4) there exists

ε = ε(τ, L) > 0 such that if B r (x) ⊆ Ω, e(u) Br(x) ≤ L and E u (x, r) ≤ ε , then E u (x, τ r) ≤ C τ 2 E u (x, r). (4.4) 
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[ January 30, 2019] Proof. Suppose by contradiction that there is L > 0 such that for all constants C > 0 we can find τ ∈ (0, 1 /4) for which there exist

B r h (x h ) ⊂ Ω such that e(u) Br h (x h ) ≤ L, E u (x h , r h ) = λ 2 h ↓ 0, and E u (x h , τ r h ) > C τ 2 E u (x h , r h ). (4.5) 
We shall conveniently fix the value of C at the end of the proof to reach a contradiction. Consider the field u h : B 1 → R n defined by

u h (y) := 1 λ h r h u(x h + r h y) -(u) Br h (x h ) -r h ∇u Br h (x h ) • y ,
and set A h := e(u) Br h (x h ) . Then, up to a subsequence we may assume that A h → A ∞ and

B1 |V µ (λ h e(u h ))| 2 dx = Br h (x h ) |V µ (e(u) -A h )| 2 dx = E u (x h , r h ) = λ 2 h . (4.6) 
Being u a local minimizer of F µ,0 defined in (2.8), u h is in turn a local minimizer of

F h (v) = ˆB1 F h (e(v))dx, with integrand F h (ξ) := λ -2 h f µ (A h + λ h ξ) -f µ (A h ) -λ h ∇f µ (A h ), ξ . Note that F h (u h ) ≤ c L n (B 1
) by (iii) in Lemma A.1 and (4.6), thus by Theorem A.2, (u h ) h converges weakly to some function

u ∞ ∈ W 1,2 (B 1 , R n ) in W 1,p∧2 (B 1 , R n ),
and actually, by Corollary A. [START_REF] Bildhauer | Variants of the Stokes problem: the case of anisotropic potentials[END_REF] we have for all r ∈ (0, 1)

lim h↑∞ ˆBr λ -2 h |V µ (λ h e(u h -u ∞ ))| 2 dx = 0. (4.7) 
Therefore, item (iii) in Lemma 2.5 and a scaling argument give for some constant c = c(p) > 0

λ -2 h E u (x h , τ r h ) = λ -2 h Bτ V µ λ h (e(u h ) -e(u h ) Bτ ) 2 dx ≤c λ -2 h Bτ V µ λ h e(u h -u ∞ ) 2 dx + c λ -2 h Bτ V µ λ h (e(u ∞ ) -e(u ∞ ) Bτ ) 2 dx + c λ -2 h Bτ V µ λ h e(u h ) Bτ -e(u ∞ ) Bτ 2 dx.
The very definition of V µ , item (v) in Lemma 2.5 and (4.7) yield lim sup

h↑∞ λ -2 h E u (x h , τ r h ) ≤ cµ p /2-1 Bτ e(u ∞ ) -e(u ∞ ) Bτ 2 dx.
In particular, lim sup

h↑∞ λ -2 h E u (x h , τ r h ) ≤ Cτ 2 ,
as u ∞ is the solution of a linear elliptic system (cf. Corollary A.3). Thus, by taking the constant C > C, we reach a contradiction to (4.5). Moreover, from the proof of Theorem 4.7 we know that there exists η(M ) > 0 for which if
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E w (x 0 , r) < η(M ) , (4.30) 
then V µ (e(w)) ∈ C 0,α (B r (x 0 ); R n×n sym ) for every α ∈ (0, 1), with

E w (x 0 , ρ) ≤ c 1 ρ r 2α E w (x 0 , r) (4.31) 
for every ρ ∈ (0, r), with c 1 = c 1 (p, α, M ) > 0. Denoting by c 0 = c 0 (n, µ, p, M ) > 0 the constant in (4.22) we first choose ε < 1 c0 (η(M ) ∧ η(M + 1)). Let us first check that for any α ∈ (0, 1) there exist a constant c = c(n, p, α, µ, M, g L ∞ (Ω;R n ) ) > 0, and a radius ρ 0 = ρ 0 (n, p) ∈ (0, 1) satisfying the following: if r ∈ (0, ρ 0 ∧ dist(x 0 , ∂Ω))) we have for all τ > 0 E u (x 0 , τ r) ≤ c τ 2α E u (x 0 , r) + cτ -n r (4.32)

provided that ε < ε 0 = ε 0 (p, µ, τ, M ) ≤ 1 c0 (η(M ) ∧ η(M + 1)) (actually ε 0 := 1 c0 (η(M ) ∧ η(M + 1
)) for p ≥ 2). Note that from (4.28) and from the choice ε < ε 0 , inequalities (4.30) and (4.31) hold.

We divide the proof in different steps for ease of readability. We shall always distinguish the case p ≥ 2 from p ∈ (1, 2).

Step 1. Proof of (4. Conti-Focardi-Iurlano-revised-sc.tex

In view of the elementary inequality

|z 1 | p -|z 2 | p ≤ p(|z 1 | p-1 + |z 2 | p-1 )|z 1 -z 2 | (4.35)
for all z i ∈ R n , together with Hölder's, Korn's and Young's inequalities, we may proceed as follows (in all the L p (B ρ (x 0 ); R k ) norms in the ensuing formula k ∈ {n, n × n}, for the sake of notational simplicity we write only L p ):

ˆBr(x0) |w -g| p -|u -g| p dx ≤ c(p) ˆBr(x0) |w| p-1 + |u| p-1 + |g| p-1 |u -w|dx ≤ c(p) w -u p-1 L p + u p-1 L p + g p-1 L p u -w L p ≤ c(p) c Korn r u p-1 L p + g p-1
L p e(u -w) L p +c(p)c Korn r p e(u -w) p |V µ e(u) -e(w)

| 2 dx ≤ 2 ω n c 3 c 4 c 5 c Korn M p r .
In turn, from this and (4.33) we get

E u (x 0 , τ r) ≤ c 2 τ 2α E u (x 0 , r) + 2 ω n c 2 c 3 c 4 c 5 c Korn τ -n M p r, (4.39) 
for every τ ∈ (0, 1), provided ε < 1 c0 (η(M ) ∧ η(M + 1)). Inequality (4.32) then follows at once. Step 2. Proof of (4.32) for p ∈ (1, 2).

First, we have for some constant c = c(p) (cf. (4.17 Therefore, by induction we conclude that 

B τ j r (x0) |u| p dx 1 /p ≤ Br(x0) |u| p dx 1 /p + r j-1 k=0 τ k+1 |(∇u) B τ k r (x0) | + r (c 2 KP τ -n ) 1 /p j-1 k=0 τ k µ p /2 + |(e(u)) B τ k r (x0) | p + E u (x 0 , τ k r) 1 p -1 2 (E u (x 0 , τ k r)) 1 
∧ (c -1 K τ n ) 2 (µ p /2 + M p + 1) 1-2 /p ∧ c -1 (µ, M )τ n ∧ 2 -2 (c -2 KP τ n ) 2 /p (µ p /2 + M p + 1)
1-2 /p and ρ < ρ 0 ∧ (2M ) -1 (ε 0 and ρ 0 have been defined in Step 2). The general induction step j ∈ N, j ≥ 2, is now completely similar to the case p ≥ 2.

A Technical results

In this section we collect several technical tools we have used to settle partial regularity in the autonomous case. We recall that for sequences of scalars λ h ↓ 0 and of matrices A h → A we set

F h (ξ) := λ -2 h f µ (A h + λ h ξ) -f µ (A h ) -λ h ∇f µ (A h ), ξ .
Let us prove some properties of F h .

Lemma A.1. Let p ∈ (1, ∞) and µ > 0, then (i) F h → F ∞ in L ∞ loc (R n×n ) as h ↑ ∞, where F ∞ (ξ) := 1 2 ∇ 2 f µ (A)ξ, ξ ; (ii 
) there exists ω : (0, +∞) → (0, +∞) non-decreasing such that ω(t) ↓ 0 as t ↓ 0 and for every ξ ∈ R n×n sym with λ h |ξ| ≤ 1 one has

F h (ξ) ≥ F ∞ (ξ) -ω(λ h |ξ| + |A h -A|)|ξ| 2 ; (iii) there exists a constant c = c(µ, M ) > 1, with M ≥ sup h |A h |, such that for all ξ ∈ R n×n sym c -1 λ 2 h |V µ (λ h ξ)| 2 ≤ F h (ξ) ≤ c λ 2 h |V µ (λ h ξ)| 2 ;
(iv) there exists a constant c(p, µ) > 0 such that for all ξ, η ∈ R n×n sym

F h (ξ) -F h (η) ≥ c λ 2 h |V µ (A h + λ h ξ) -V µ (A h + λ h η)| 2 + 1 λ h ∇f µ (A h + λ h η) -∇f µ (A h ), (ξ -η) ; If, additionally, λ h |η| ≤ µ then for some constant c(p, µ, M ) > 0, with M ≥ sup h |A h |, we have F h (ξ) -F h (η) ≥ c λ 2 h |V µ (λ h (ξ -η))| 2 + 1 λ h ∇f µ (A h + λ h η) -∇f µ (A h ), (ξ -η) .
Proof. It suffices to take into account the representation formula

F h (ξ) = ˆ1 0 ∇ 2 f µ (A h + tλ h ξ)ξ, ξ (1 -t)dt (A.1) Conti-Focardi-Iurlano-revised-sc.tex if u ∈ W 1,2 (B 1 ; R n ) and +∞ otherwise.
If F h are the functionals in (A.3) and (u h ) h is the sequence in (A.4), then after extracting a subsequence (u h ) h converges weakly in W

1,p∧2 (B 1 ; R n ) to some function u ∞ ∈ W 1,2 (B 1 ; R n ), lim inf h↑∞ F h (u h , B r ) ≥ F ∞ (u ∞ , B r ) for all r ∈ (0, 1], (A.8) and lim sup h↑∞ F h (u h , B r ) ≤ F ∞ (u ∞ , B r )
for L 1 a.e. r ∈ (0, 1). (A.9)

Proof. First, we notice that, up to the extraction of a subsequence not relabeled for convenience, there exists

u ∞ ∈ W 1,p∧2 (B 1 ; R n ) such that (u h ) h converges weakly in W 1,p∧2 (B 1 ; R n ) to u ∞ with B1 u ∞ dx = B1 ∇u ∞ dx = 0. (A.10)
Indeed, for p ≥ 2 from (A.4) we deduce that sup h e(u h ) L 2 (B1;R n ) ≤ c µ 1-p /2 , thus the Korn's inequality, Poincarè inequality, and the fact that u h and its gradient have null mean value (cf. (A.4)) provide the conclusion. We observe that (A.4) also implies that e(λ 1-2 /p h u h ) is bounded in L p (B 1 ; R n×n ); hence, possibly after extracting a further subsequence, we can assume that λ 1-2 /p h u h converges weakly in W 1,p (B 1 ; R n ) and pointwise almost everywhere to some function z. Since u h converges pointwise to u ∞ , we deduce that z = 0, and in particular λ

1-2 /p h u h → 0 in L p (B 1 ; R n ). Instead, in case p ∈ (1, 2), we first note that as λ h ∈ (0, 1) we have ˆB1 |V µ (e(u h ))| 2 dx ≤ ˆB1 λ -2 h |V µ (λ h e(u h ))| 2 dx ,
so that (A.4) implies sup h e(u h ) L p (B1;R n ) < +∞. Arguing as in the previous case we establish the claimed result. Next, we prove separately (A.8) and (A.9) in the super-quadratic and in the sub-quadratic case. The super-quadratic case p > 2. We first prove the lower bound inequality for r ∈ (0, 1]. Set

E h := {λ 1 /2 h |e(u h )| ≥ 1}, then L n (E h ) ↓ 0 and e(u h )χ E c h e(u ∞ ) weakly in L 2 (B 1 ; R n×n ) as h ↑ ∞. Therefore, by (ii) in Lemma A.1 F h (u h , B r ) ≥ ˆBr∩E c h F h (e(u h ))dx ≥ ˆBr∩E c h F ∞ (e(u h )) -ω(λ 1 /2 h +|A h -A|)|e(u h )| 2 dx ≥ ˆBr F ∞ (e(u h )χ E c h )dx -ω(λ 1 /2 h +|A h -A|) ˆB1 |e(u h )| 2 dx,
and thus by L 2 weak lower semicontinuity of F ∞ (•, B r ) we conclude (A.8).

To prove the upper bound for all but countably many r ∈ (0, 1), we note that by Urysohn's property it suffices to show that for every subsequence

h k ↑ ∞ we can extract h kj ↑ ∞ such that lim sup j↑∞ F h k j (u h k j , B r ) ≤ F ∞ (u ∞ , B r ). By Friederich's theorem there exists z j ∈ C ∞ (B 1 ; R n ) such that z j → u ∞ in W 1,2 (B 1 ; R n ). Hence, given h k ↑ ∞ we can extract h kj such that lim j↑∞ λ p-2 h k j ˆB1 |∇z j | p + |z j | p dx = 0,
Conti-Focardi-Iurlano-revised-sc.tex and the measures ν j := λ -2

h k j |V µ λ h k j e(u h k j ) | 2 L n B 1 converge weakly * in B 1 to some finite measure ν.
Let now ρ ∈ (0, r) be fixed, let ϕ ∈ Lip∩C c (B r ; [0, 1]) be such that ϕ| Bρ = 1 and ∇ϕ L ∞ (B1;R n ) ≤ 2(r -ρ) -1 and set w j := ϕz j + (1 -ϕ)u h k j .

Then,

w j ∈ u h k j + W 1,2 0 (B 1 ; R n ) with w j → u ∞ in L 2 (B 1 ; R n ).
Therefore, by local minimality of u h k j we get

F h k j (u h k j , B r ) ≤ F h k j (w j , B r ) = ˆBρ F h k j (e(z j ))dx + ˆBr\Bρ F h k j (e(w j ))dx.
Clearly, by generalized Lebesgue dominated convergence theorem

lim sup j↑∞ ˆBρ F h k j (e(z j ))dx ≤ ˆBρ F ∞ (e(u ∞ ))dx,
and by items (ii) and (iii) in Lemma 2.5 ˆBr\Bρ

F h k j (e(w j ))dx ≤ c λ 2 h k j ˆBr\Bρ |V µ (λ h k j e(w j ))| 2 dx ≤ c λ 2 h k j ˆBr\Bρ |V µ (λ h k j e(u h k j ))| 2 + |V µ (λ h k j e(z j ))| 2 + |V µ (λ h k j ∇ϕ (u h k j -z j ))| 2 dx ≤ c ν j (B r \ B ρ ) + c ˆBr\Bρ |e(z j )| 2 + λ p-2 h k j |e(z j )| p dx + c (r -ρ) p ˆBr\Bρ |u h k j -z j | 2 + λ p-2 h k j |u h k j -z j | p dx.
Summarizing, if r ∈ (0, 1) and ρ ∈ (0, r) are chosen such that ν(∂B r ) = ν(∂B ρ ) = 0, recalling that u h → u, z j → u in L 2 (B 1 ; R n ), and that λ

1-2 /p h u h → 0, λ 1-2 /p h k j w j → 0 in L p (B 1 ; R n ), we have lim sup j↑∞ ˆBr\Bρ F h k j (e(w j ))dx ≤ c ν(B r \ B ρ ) + c ˆBr\Bρ |e(u ∞ )| 2 dx.
Thus, if ρ l ↑ r, we conclude at once by an easy diagonalization argument.

The sub-quadratic case p ≤ 2. We first prove that u

∞ ∈ W 1,2 (B 1 ; R n ). Set E h := {λ 1 /2 h |e(u h )| ≥ 1}, then L n (E h ) ↓ 0 as h ↑ ∞ and (µ + 1) p /2-1 ˆEc h |e(u h )| 2 dx ≤ λ -1 h V µ (λ h e(u h )) 2 L 2 (B1;R n ) .
Therefore, up to a subsequence not relabeled, (e(u h )χ E c h ) h converges weakly in L 2 (B 1 ; R n×n ) to some function ϑ. Moreover, as for all ϕ ∈ L

p p-1 (B 1 ; R n×n ), ϕχ E c h → ϕ in L p p-1 (B 1 ; R n×n ), from the weak convergence of (e(u h )) h to e(u ∞ ) in L p (B 1 ; R n×n ) we conclude ˆB1 ϑ, ϕ dx = lim h↑∞ ˆB1 e(u h )χ E c h , ϕ dx = lim h↑∞ ˆB1 e(u h ), ϕχ E c h dx = ˆB1 e(u ∞ ), ϕ dx,
in turn implying ϑ = e(u ∞ ) L n a.e. in B 1 . Thus, by (A.10), Korn's inequality yields that

u ∞ ∈ W 1,2 (B 1 ; R n ).
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[ January 30, 2019] The lower bound inequality in (A.8) for r ∈ (0, 1] follows by arguing exactly as to derive it in case p ≥ 2.

If p ∈ (1, 2) the proof of (A.9) is similar to the super-quadratic case, though some additional difficulties arise. With fixed r ∈ (0, 1), by Urysohn's property it is sufficient to show that for every subsequence

h k ↑ ∞ we can extract h kj ↑ ∞ such that lim sup j↑∞ F h k j (u h k j , B r ) ≤ F ∞ (u ∞ , B r ).
Given a sequence h k ↑ ∞ we can find a subsequence h kj and some finite measure ν, such that the measures ν j := λ -2 h k j |V µ (λ h k j e(u h k j ))| 2 L n B 1 converge weakly * on B 1 to ν.

Let now ρ ∈ (0, r) and ϕ ∈ Lip ∩ C c (B r ; [0, 1]) be such that ϕ| Bρ = 1 and ∇ϕ L ∞ (Br;R n ) ≤ 2(r -ρ) -1 and set w j := ϕu ∞ + (1 -ϕ)u h k j .

Then, w j ∈ u h k j + W 

+ c (r -ρ) 2 λ 2 h k j ˆBr\Bρ |V µ (λ h k j (u h k j -u ∞ ))| 2 dx Ij := ≤ c ν j (B r \ B ρ ) + c ˆBr\Bρ |e(u ∞ )| 2 dx + c (r -ρ) 2 λ -2 h k j I j .
In order to estimate the last term we use a Lipschitz truncation in order to use Rellich's theorem separately on the part with quadratic growth and on the one with p-growth. Precisely, let E j := {λ h k j |∇(u h k j -u ∞ )| > 1}. Then there is a set F j with E j ⊂ F j ⊂ B 1 such that λ h k j (u h k j -u ∞ ) is c-Lipschitz in B 1 \ F j and [21, Theorem 3, Section 6.6.3]

|F j | ≤ cλ p h k j ˆEj |∇(u h k j -u ∞ )| p dx ≤ c ˆEj |V µ (λ h k j ∇(u h k j -u ∞ ))| 2 dx ≤ cλ 2 h k j
.

Let w j be a cλ -1 h k j -Lipschitz extension of u h k j -u ∞ | B1\Fj . We estimate

ˆB1 |∇w j | 2 dx ≤ cλ -2 h k j |F j | + ˆB1\Fj λ -2 h k j |V µ (λ h k j ∇(u h k j -u ∞ ))| 2 dx ≤ c.
Conti-Focardi-Iurlano-revised-sc.tex Therefore (w j ) j is bounded in W 1,2 (B 1 ; R n ), and, since it converges (up to a subsequence) pointwise almost everywhere to zero, it converges also strongly in L 2 (B 1 ; R n ) to zero. Consider now the difference d j = u h k j -u ∞ -w j . We estimate

ˆB1 |∇d j | p dx ≤ c ˆEj |∇(u h k j -u ∞ )| p dx + c|F j |λ -p h k j ≤ c ˆEj λ -p h k j |V µ (λ h k j ∇(u h k j -u ∞ ))| 2 dx + cλ 2-p h k j ≤ cλ 2-p h k j
.

Therefore (λ Thus, if ρ l ↑ r, we conclude by an easy diagonalization argument.

We next deduce that u ∞ is actually the solution of a linear elliptic system.

Corollary A. By the weak convergence of (u h ) h to u ∞ in W 1,p∧2 (B 1 ; R n ), we get In turn, this last result provides the claimed local strong convergence.

L n (E + h ) ≤ µ -p /2∧1
Corollary A.4. Let (u h ) h be the sequence in (A.4) converging weakly in W 1,p∧2 (B 1 ; R n ) to the function u ∞ ∈ W 1,2 (B 1 ; R n ). Then, for all r ∈ (0, 1)

lim h↑∞ ˆBr λ -2 h |V µ (λ h e(u h -u ∞ )| 2 dx = 0.
In particular, (u h ) h converges to u ∞ in W 1,p∧2 loc

(B 1 ; R n ).
Proof. It is sufficient to show the conclusion for all those r ∈ (0, 1) for which both inequalities (A.8) and (A.9) in Theorem A.2 hold true. In such a case, we have

lim h↑∞ F h (u h , B r ) = F ∞ (u ∞ , B r ).
We observe that u ∞ ∈ C ∞ (B 1 ; R n ) by Corollary A.3 and the regularity theory for linear elliptic systems. Therefore for h sufficiently large we have λ h |e(u ∞ )| < µ uniformly on B r . By item (iv) 

ˆΩ 1 p

 1 Ce(u) • e(u) + µ p /2 -µ p /2 dx + κ ˆΩ |u(x) -g(x)| p dx (1.3) on W 1,p (Ω; R n ) arethe object of investigation in the current paper. More generally, we study smoothness of local minimizers of elastic-type energies F µ,κ (u) = ˆΩ f µ (e(u)) dx + κ ˆΩ |u -g| p dx,

3 with c 3 = 1 ∧

 31 (1 + 2γ) c 1 and c 4 = 1 ∨ (1 + 2γ) c 2 being c 1 and c 2 the constants there.

2 B

 2 3.1 lead only to a Besov type estimate. More precisely, the first part of the argument in Proposition 3.1 up to (3.11) included, holds for all p ∈ (1, ∞) (one only has to use ζ 2 instead of ζ p as a cutoff function). Thus, in case p ∈ (1, 2), arguing similarly to Proposition 3.1 one deduces the ensuing estimate [V µ (e(u))] p/2,2,∞ (Br(x0)) ≤ c r p ˆB2r(x0) µ + |∇u -(∇u) B2r(x0) | 2 p /2 dx,

λp p- 1 ˆB2r 13 [

 113 |u -g| p dx + c κ r 2λp 2-p ˆB2r |V µ (e(u))| 2 dx + µ p /2 r n . (3.20)Conti-Focardi-Iurlano-revised-sc.texJanuary 30, 2019] 

  )for ρ, ρ ∈ (0, d/2), ρ < ρ .Fix ρ, ρ as above, y ∈ V , and considerζ ∈ C ∞ c (B ρ (y)), with ζ = 1 on B ρ (y) and |∇ 2 ζ| ≤ c/(ρ -ρ)2 . We now test 1 L ˆB2r ∇ 2 u, ∇ 2 ϕ dx + ˆB2r ∇f µ (e(u)), e(ϕ) dx + κ p ˆB2r |u -g| p-2 u -g, ϕ dx = 0 , (3.22) holding for every ϕ ∈ C ∞ c (B 2r ; R n ), with the test function ϕ := s,-h (ζ s,h u) and we estimate each appearing term.

  for a constant c > 0 depending on n, p, k, L, the W 2,2 norm of u and the L p norm of g. Then, (3.21) follows at once since y ∈ V is arbitrary. By this, [28, Lemma 6.1], and the compactness of V we finally inferˆV | s,h ∇ 2 u| 2 dx ≤ c,with c independent from h, and therefore u ∈ W 3,2 loc (B 2r , R n ). Let us now prove(3.20). Using u ∈ W 3,2 loc (B 2r , R n ) and the fact that e(ϕ) has average zero for every ϕ ∈ W 1,2 0 (B 2r , R n ), we can rewrite (3.22) as 1 L ˆB2r ∇∆u, ∇ϕ dx = ˆB2r ∇f µ (e(u)) -∇f µ (e(Qx)), e(ϕ) dx + κ p ˆB2r |u -g| p-2 u -g, ϕ dx , (3.29)

  ˆB2r(x0)\Br(x0) |V µ (e(u))| 2 dx. (3.35) If p ≥ 2 by means of Proposition 3.1 with λ = 1 we further estimate as follows ˆB2r(x0) |∇ ζ 2 V µ (e(u)) | 2 dx ≤ c(1 + κ) r 2 ˆB4r(x0) |V µ (e(u)) -(V µ (e(u))) B4r(x0) | 2 dx |u -g| p(1) + |∇(u -g)| p dx + c r 2 ˆB2r(x0)\Br(x0) |V µ (e(u))| 2 dx

[Proposition 4 . 4 .

 44 January 30, 2019] 4.2 The 2-dimensional case C 1,α regularity in 2d readily follows from Proposition 4.1 (see alsoRemark 4.5). Let n = 2, p ∈ (1, ∞), κ and µ

  -Iurlano-revised-sc.tex Consider the minimizer w of F µ,0 (•, B r (x 0 )) on u + W 1,p 0 (B r (x 0 ); R n ). Since (e(w)) Br(x0) = (e(u)) Br(x0) , we get that |(e(w)) Br(x0) | = |(e(u)) Br(x0) | < |(∇u) Br(x0) | < M. (4.29)

  32) for p ≥ 2. If p ≥ 2, by item (iii) in Lemma 2.5 we obtain |V µ e(u) -(e(u)) Bτr(x0) | ≤c|V µ e(w) -(e(w)) Bτr(x0) | + c|V µ (e(u) -e(w))| + c|V µ (e(u)) Bτr(x0) -(e(w)) Bτr(x0) |for some c = c(p) > 0. Thus, by items (i) and (v) in Lemma 2.5 we inferE u (x 0 , τ r) ≤ c E w (x 0 , τ r) + c Bτr(x0) |V µ (e(u -w))| 2 dx (4.31) ≤ c c 1 τ 2α E w (x 0 , r) + c Bτr(x0) |V µ (e(u -w))| 2 dx (4.22) ≤ c 2 τ 2α E u (x 0 , r) + c 2 τ -n Br(x0) |V µ (e(u -w))| 2 dx ,(4.33)with c 2 = c 2 (n, p, µ, M ) > 0. To estimate the last term we use (4.21) and the local minimality of u for F µ,κ to find for somec 3 = c 3 (n, p) > 0 that ˆBr(x0) |V µ (e(u)) -V µ (e(w))| 2 dx ≤ c 3 F µ,0 (u, B r (x 0 )) -F µ,0 (w, B r (x 0 )) = c 3 F µ,κ (u, B r (x 0 )) -F µ,κ (w, B r (x 0 )) + c 3 ˆBr(x0) |w -g| p -|u -g| p dx ≤ c 3 ˆBr(x0) |w -g| p -|u -g| p dx. (4.34)

≤ c 4 c

 4 L p ≤ c(p) c Korn r n+1 Br(x0) |u| p dy + g p L ∞ + r e(u -w) p L p + r p e(u -w) p L p Korn r n+1 M p + r e(u -w) p L p (4.36) where c 4 = c 4 (p) > 0, and we assumed without loss of generality that M ≥ g p L ∞ (recall that r < 1). Here c Korn = c Korn (n, p) > 0 is the best constant in the first Korn's inequality on the unit ball. Then from (4.34) and (4.36) we find ˆBr(x0) |V µ (e(u)) -V µ (e(w))| 2 dx ≤ c 3 c 4 c Korn r n+1 M p + r e(u -w) p L p . (4.37) Next, recalling that p ≥ 2, by item (iv) in Lemma 2.5 we have ˆBr(x0) |e(u -w)| p dx ≤ ˆBr(x0) |V µ e(u) -e(w) | 2 dx , (4.38) and moreover by item (i) in the same Lemma 2.5 ˆBr(x0) |V µ e(u) -e(w) | 2 dx ≤ c 5 ˆBr(x0) |V µ (e(u)) -V µ (e(w))| 2 dx for some constant c 5 = c 5 (p) > 0. Hence, from the latter inequality, (4.37) and (4.38), if r ≤ ρ 0 ≤ (2c 3 c 4 c 5 c Korn ) -1 , we find Br(x0)

1 p - 1 2 2 . 31 [

 11231 ))|(e(u))Bτr(x0) | ≤ |(e(u)) Br(x0) | + cτ -n µ p /2 + |(e(u)) Br(x0) | p + E u (x 0 , r) E u (x 0 , r) 1 (4.40)Conti-Focardi-Iurlano-revised-sc.texJanuary 30, 2019] 

  conclusion provided r ∈ (0, 1) and ρ ∈ (0, r) are such that ν(∂B r ) = ν(∂B ρ ) = 0 we have lim sup j↑∞ ˆBr\Bρ F h k j (e(w j ))dx ≤ c ν(B r \ B ρ ) + c ˆBr\Bρ |e(u ∞ )| 2 dx.

3 . 1 h

 31 The limit function u ∞ ∈ W 1,2 (B 1 ; R n ) satisfies ˆB1 ∇ 2 f µ (A ∞ )e(u ∞ ), e(ϕ) dx = 0 (A.11) for all ϕ ∈ C ∞ c (B 1 ; R n ). Proof. Being u h a local minimizer of F h , for all ϕ ∈ C ∞ c (B 1 ; R n ) it holds λ -ˆB1 ∇f µ (A h + λ h e(u h )) -∇f µ (A h ), e(ϕ) dx = 0.Consider the setsE + h := {x ∈ B 1 : |λ h e(u h )| ≥ √ µ}, E - h := {x ∈ B 1 : |λ h e(u h )| < √ µ}.

h

  ∇f µ (A h + λ h e(u h )) -∇f µ (A h ), e(ϕ) dx = ˆB1 ∇ 2 f µ (A ∞ )e(u ∞), e(ϕ) dx.

  1,2 0 (B 1 ; R n ) with w j → u ∞ in L p (B 1 ; R n ). Moreover, F h k j (u h k j , B r ) ≤ F h k j (w j , B r ) = ˆBρ F h k j (e(u ∞ ))dx + ˆBr\Bρ F h k j (e(w j ))dx.Clearly, by Lebesgue dominated convergence theoremlim sup j↑∞ ˆBρ F h k j (e(u ∞ ))dx ≤ ˆBρ F ∞ (e(u ∞ ))dx,and by item (iii) both in Lemma 2.5 and in Lemma A.1ˆBr\Bρ F h k j (e(w j ))dx ≤ c λ 2 h k j ˆBr\Bρ |V µ (λ h k j e(w j ))| 2 dx ≤ c λ 2 h k j ˆBr\Bρ |V µ (λ h k j e(u h k j ))| 2 dx + c λ 2 h k j ˆBr\Bρ |V µ (λ h k j e(u ∞ ))| 2 dx

  j ) j is bounded in W 1,p (B 1 ; R n ) and converges in measure to zero, hence it converges also strongly in L p (B 1 ; R n ) to zero. We finally estimate, recalling that for p ≤ 2 we have|V µ (ξ)| 2 ≤ c(|ξ| 2 ∧ |ξ| p ), λ -2 h k j ˆB1 |V µ (λ h k j (u h k j -u ∞ ))| 2 dx ≤ cλ -2 h k j ˆB1 |V µ (λ h k j w h k j )| 2 dx + cλ -2 h k j ˆFj |V µ (λ h k j d h k j )| 2 dx ≤ c ˆB1 |w h k j | 2 dx + c |d h k j | p dxand see that each term in the right-hand side converges to zero. Therefore, we deduce that lim sup

	1-2/p
	h k j
	ˆB1
	λ p-2 h k j

d

  ˆB1|λ h e(u h )| p∧2 dx ≤ cλ p∧2 h , (A.12)Conti-Focardi-Iurlano-revised-sc.texso that L n (E + h ) = o(λ h ) as h ↑ ∞. Hence, we deduce that (A h + λ h e(u h )) -∇f µ (A h ), e(ϕ) dx |V µ (λ h e(u h ))| 2 dxby taking into account item (iv) in Lemma 2.5 to infer the last but one inequality. Finally, note that then as (u h ) h converges weakly to u ∞ in W 1,p∧2 (B 1 ; R n ), λ h e(u h ) → 0 L n a.e. on B 1 , and as f µ ∈ C 2 (R n×n sym ) if µ > 0, by the dominated convergence theorem we get

		lim sup h↑∞	λ -1 h ˆE+	
			(2.7) ≤ lim sup h↑∞ ≤ c lim sup λ p-2 c L n (E + h ) λ h h (L n (E + + cλ p-2 h 1 /p ˆE+ ˆE+ h |e(u h )| p dx |e(u h )| p-1 dx (p -1) /p h )) h↑∞ h ≤ c lim sup h h↑∞ λ 1-2 p h (L n (E + h )) 1 /p ˆE+ λ -2 h (p -1) /p
			(A.4), (A.12) ≤	c lim sup h↑∞	λ (2-2 p )∧1 h	= 0,
	λ -1 h ˆE-		
	lim h↑∞	λ -1 h ˆE-		

h ∇f µ h ∇f µ (A h + λ h e(u h )) -∇f µ (A h ), e(ϕ) dx = ˆEh ˆ1 0 ∇ 2 f µ (A h + tλ h e(u h ))dt e(u h

), e(ϕ) dx,
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We are finally ready to establish partial regularity and an estimate on the Hausdorff dimension of the singular set in the non-degenerate autonomous case. The degenerate case, namely µ = 0, corresponding to the symmetrized p-laplacian, p = 2, is not included in our results. The nonautonomous case will be treated next via a perturbation argument. We recall that in case p = 2 the solutions are actually smooth.

Before proceeding with the proof, we introduce some notation: for v ∈ W 1,p (Ω; R n ) let Σ (1) v := x ∈ Ω : lim inf r↓0 Br(x)

V µ (e(v(y))) -V µ (e(v)) Br(x)

and Σ (2) v := x ∈ Ω : lim sup r↓0

V µ (e(v)) Br(x) = ∞ . (4.9)

Theorem 4.7. Let n ≥ 3, p ∈ (1, ∞) and µ > 0. Let u ∈ W 1,p (Ω; R n ) be a local minimizer of F µ,0 defined in (2.8).

Then, there exists an open set Ω u ⊆ Ω such that u ∈ C 1,α loc (Ω u ; R n ) for all α ∈ (0, 1). Moreover,

where q > 2 is the exponent in Proposition 4.1.

Proof. We shall show in what follows that under the standing assumptions the singular and regular sets are given respectively by Σ u := Σ (1) u ∪ Σ (2) u ,

By the higher integrability property established in Proposition 4.1, we know that V µ (e(u)) ∈ W 1,q loc (Ω; R n×n sym ) for some q > 2. Therefore, Σ u = ∅ if q > n by Morrey's theorem. Otherwise, if B r (x 0 ) ⊆ Ω, by Poincarè's inequality for all r ∈ (0, dist(x 0 , ∂Ω))

V µ (e(u)) -V µ (e(u)) Br(x0) 2 dx ≤ c r q-n ˆBr(x0)

|∇V µ (e(u))| q dx 2 /q .

Therefore, H n-q Σ

(1) u ) = 0 by standard density estimates (cf. [START_REF] Giusti | Direct methods in the calculus of variations[END_REF]Proposition 2.7] or [2, Theorem 2.56]), and dim H Σ [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] u ≤ n -q by standard properties of Sobolev functions (cf. [START_REF] Giusti | Direct methods in the calculus of variations[END_REF]Theorem 3.22]). In conclusion, dim H Σ u ≤ n -q.

Let us prove that Ω u is open and that u ∈ C 1,α (Ω u ; R n ) for all α ∈ (0, 1). Let x 0 ∈ Ω u . First note that sup r | V µ (e(u)) Br(x0) | < ∞ being x 0 ∈ Ω \ Σ In view of this, Lemma 2.5 (item (i) if p ≥ 2 and item (ii) if p ∈ (1, 2), respectively) and Lemma 2.6 yield that lim inf ρ↓0 E u (x 0 , ρ) = 0. Therefore, for all η > 0, x 0 belongs to the set Ω L,η u := x ∈ Ω : e(u) Br(x) < L, E u (x, r) < η for some r ∈ (0, dist(x, ∂Ω)) .

In particular, Ω u ⊆ ∪ L∈N Ω L,η(L) u

, for every η(L) > 0, and clearly each Ω

for some η(L) = η(L, n, p, α) conveniently defined in what follows. To this aim we distinguish the super-quadratic and sub-quadratic cases.

We start with the range of exponents p ≥ 2. To check the claim fix any L ∈ N and x 0 ∈ Ω L,η u , with corresponding radius r, then we have for all τ ∈ (0,

where for the last inequality we have used item (iv) of Lemma 2.5 for p ≥ 2. Moreover, if ε(τ, L) is the parameter provided by Proposition 4.6, and 0 < η ≤ ε(τ, L) we infer that

Having fixed any α ∈ (0, 1) we choose τ = τ (α, L) ∈ (0, 1 /4) such that Cτ 2α < 1, with C = C(L) > 0 the constant in (4.4). Therefore, choosing 0 < η ≤ ε(τ, L) ∧ τ np we infer from (4.12) and (4.13)

The latter is the basic step of an induction argument leading to

for all j ∈ N. Note that from the last two inequalities we conclude readily that x 0 ∈ Ω u . Hence we are left with showing (4.14). To this aim fix j ∈ N, j ≥ 2, and assume (4.14) true for all 0 ≤ k ≤ j -1 (as noticed the first induction step corresponding to j = 1 has already been established above). Then, by (4.12) we get

We get the first estimate in (4.14

Finally, to get the second inequality in (4.14) it suffices to assume in addition 0 < η < ε(τ, L + 1) and apply Proposition 4.6. In conclusion, we set

(recall that τ = τ (α, L)).

If p ∈ (1, 2) we only highlight the needed changes since the strategy of proof is completely analogous. We start off noting that we have for some c = c(p) > 0 (which may vary from line to 

where we have used Lemma 2.4 in the first inequality, Hölder's inequality in the second, item (ii) of Lemma 2.5 in the third, and Young's inequality in the fourth. Therefore, we get

for some constant c = c(p) > 0. In turn, with fixed L ∈ N and x 0 ∈ Ω L,η u , for all τ ∈ (0, 1 /4) we have instead of (4.12)

Having fixed any α ∈ (0, 1) and choosing τ = τ (α, L) ∈ (0, 1 /4) such that Cτ 2α < 1, with C = C(L) > 0 the constant in (4.4), we can establish inductively (4.14) provided we choose ; R n×n sym ) for all α ∈ (0, 1) by Campanato's theorem and (4.14). The conclusion for e(u) then follows at once from the fact that V µ is an homeomorphism with inverse of class

Partial regularity in the non-degenerate case

In this section we prove partial regularity in the general non-degenerate case by following the so called direct methods for regularity. To this aim, with given κ, µ > 0 and a local minimizer u on W 1,p (Ω; R n ) of the energy F µ,κ (•), with fixed B r (x 0 ) ⊆ Ω, we consider the minimizer w of the corresponding autonomous functional (on the ball B r (x 0 ))

) and w be defined as above.

Then, there exists a constant c = c(n, p) > 0 such that for all symmetric matrices ξ ∈ R n×n
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Moreover, we have

for some constant

Therefore, from (2.3) and Lemmata 2.3, 2.4 we infer for some constant c = c(p) > 0

and (4.20) follows at once from (4.23). For (4.21) we argue analogously: we use the minimality of w and the condition u -w ∈ W 1,p 0 (Ω; R n ), to infer for all ϕ ∈ W 1,p 0 (B r (x 0 ); R n ) ˆBr(x0) ∇f µ (e(w)), e(ϕ) dx = 0.

The conclusion follows at once by (4.23). Finally, to prove (4.22) we use Lemma 2.5 (item (i

) and (4.20) with ξ = (e(u)) Br(x0) = (e(w)) Br(x0) to conclude that

We are now ready to extend the result of Section 4.3 to the non-autonomous case. Besides the sets Σ

(1) v introduced in (4.8) and Σ

(2) v in (4.9), in the framework under examination it is necessary to consider additionally the sets Σ (3) v := x ∈ Ω : lim sup

Conti-Focardi-Iurlano-revised-sc.tex and

v is actually empty for exponents p > n. More generally we shall carefully estimate the Hausdorff dimension of such a set using Sobolev embedding and the results in Propositions 3.1 and 3.3.

Then, there exists an open set

where q := q ∧ p * ∧ 2 * , q > 2 being the exponent in Proposition 4.1.

Proof of Theorem 4.9. In the current setting the singular and regular sets are defined respectively by Σ u := Σ

(1)

u and Ω u := Ω \ Σ u . For the details of the estimation of the Hausdorff measures of the sets Σ (i) u 's, i ∈ {1, 2}, we refer to the discussion in Theorem 4.7. Here we simply recall that by taking into account that V µ (e(u)) ∈ W 1,q loc (Ω; R n×n sym ) for some q > 2 (cf. Proposition 4.1), we get dim H (Σ

u ∪Σ

(2)

(Ω; R n ) (see Propositions 3.1 and 3.3), by Sobolev embedding u ∈ W 1,p * ∧2 * (Ω; R n ), and then we deduce that dim H (Σ [START_REF] Giusti | Direct methods in the calculus of variations[END_REF]Theorem 3.22]). In conclusion, the inequality dim H (Ω \ Ω u ) ≤ (n -q) ∨ 0 follows.

Next, we claim that the set Ω u is open and that u ∈ C 1,β loc (Ω u ; R n ) for all β ∈ (0, 1 /2). Let x 0 ∈ Ω u , then we may find an infinitesimal sequence of radii r i and M > 0 such that Given j ∈ N, ε, ρ ∈ (0, 1), and setting

we conclude that x 0 ∈ Ω M,ε,ρ u for all choices of ε and ρ as above. Clearly, each

for every choice of ε(j), ρ(j) ∈ (0, 1). The rest of the proof is devoted to establish that ∪ j∈N Ω j,ε(j),ρ(j) u

⊆ Ω u , for suitable values of ε(j) and ρ(j) to be defined in what follows, and the claimed regularity for u on Ω u .

To this aim let x 0 ∈ Ω M,ε,ρ u , for some M ∈ N, ε, ρ ∈ (0, 1), and r ∈ (0, ρ ∧ dist(x, ∂Ω)) be a radius corresponding to x 0 in the definition of Ω M,ε,ρ u , i.e. such that

(4.28)
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Hence, we may use item (ii) in Lemma 2.5 to get for some constant c we infer for some

From this, (4.41) and ( 4.43) we get

. Inequality (4.32) then follows at once.

Having established (4.32) for every p ∈ (1, ∞), we proceed as follows. Fix α > 1 /2, and let 0 < δ < 1 /2 < α. Choose τ = τ (c, α) ∈ (0, 1) such that c τ 2α-1 ≤ 1, where c denotes the maximum of the constants in (4.32) for the bounds M and M + 1 on the means. Thus, we have for all τ ∈ (0, τ ) E u (x 0 , τ r) ≤ τ E u (x 0 , r) + cτ -n r. (4.44)

We show next by induction that, with τ as above, it is in fact possible to choose, in order, ε(M ) and ρ(M ) (here we highlight only the M dependence, for more details see Steps 3 and 4) such that for every j ∈ N we have

and

Given the latter inequalities for granted we conclude the proof. Indeed, by (4.45) and (4.46) it follows that x 0 ∈ Ω u , so that ∪ j∈N Ω j,ε(j),ρ(j) u ⊆ Ω u . Moreover, items (iii) and (v) in Lemma 2.5, (4.46) and an elementary argument yield that

for all t ∈ (0, r), since δ < 1 /2 and r < 1, with c = c(p, τ, r, c, δ, ε) > 0. In addition, since by continuity (4.44) holds for all points in a ball B λ (x 0 ) with the same constants if t ∈ (0, r ∧ 1 2 dist(x 0 , ∂Ω)), we deduce that u ∈ C 1,β (B λ (x 0 ); R n ) for all β ∈ (0, 1 /2). The result is thus proved. Hence, to conclude we are left with showing the validity of (4.45) and of (4.46). As before we distinguish the superquadratic from the subquadratic case. Step 3. Proof of (4.45) and (4.46). Let us first prove the case p ≥ 2. We start off deriving some useful estimates on the different means in (4.45). Let j ∈ N, j ≥ 1, then by Korn's inequality (denoting by c K = c K (n, p) > 0 the best constant in such an inequality)

Therefore by a simple induction argument we conclude that

Analogously, by using Lemma 2.5 (i), we have

provided that |(e(u)) B τ j-1 r (x0) | ≤ K. Therefore, using Lemma 2.5 (v) by induction

provided that |(e(u)) B τ k r (x0) | ≤ K for all 0 ≤ k ≤ j -1. Moreover, by Poincaré's and by Korn's inequalities we obtain for a constant c KP = c KP (n, p) > 0
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Hence, by induction we conclude that

Let us then check the basic induction step j = 1 for (4.45). Indeed, note that for (4.46) it has been established in Step 2 (see (4.32) and (4.44)). From (4.47) we find 

provided that ε < c -1 (µ, M )τ n . In addition, from (4.49)

by choosing ε < 2 -p c 2 KP τ n and r < (2M ) -1 . In conclusion, (4.45) is established for j = 1 and

KP τ n and ρ < ρ 1 := ρ 0 ∧ (2M ) -1 (ε 0 and ρ 0 have been defined in Step 1).

Let now j ∈ N, j ≥ 2, and assume by induction that (4.45) and (4.46) hold for all 0 ≤ k ≤ j -1. Then for such values of k we have

(4.50) and then

Hence, having fixed τ ∈ (0, τ ], we may choose

In particular, the inductive hypothesis on (4.45), (4.47) and (4.52) yield

In turn, by the inductive assumption |(e(u)) B τ k r (x0) | ≤ M + 1 for all 0 ≤ k ≤ j -1, so that thanks to (4.48) and (4.52), as 1 /p ∧ 1 /2 = 1 /p, we infer Finally, in view of (4.49) and (4.52) for β = 1 /p we get

(4.55)

Thus we have concluded (4.45) for the index j provided that ε < ε 2 and ρ < ρ 2 ∧ (ε 1 + M 1-τ ) -1 . Finally, we prove (4.46) for the index j as follows. From (4.51) we have E u (x 0 , τ j-1 r) < ε, so that by the inductive hypothesis on the means it turns out that x 0 ∈ Ω M +1,ε,ρ u with corresponding radius τ j-1 r. Moreover, the choice ε < 1 c0 η(M + 1) and the definition of τ (cf. the paragraph right before (4.44)) imply that (4.44) itself hold with the radii τ j-1 r, τ j r in place of r, τ r respectively. Thus, using the inductive assumption on (4.46) for j -1 we conclude

The proof of (4.45) and (4.46) in the case p ∈ (1, 2) is quite similar. Hence, we will highlight only the main differences. First, arguing as in (4.40) (cf. (4.16), (4.17)) and using Korn's inequality we have for some constant c

.

Thus, by induction we infer that

Analogously to the derivation of (4.48), by Lemma 2.5 (v) and (ii) we find

Again, by Poincaré and Korn's inequalities we find for a constant c KP = c KP (n, p) > 0 (cf. the derivation of (4.49) and (4.16))
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To prove (iii) first we notice the basic inequalities: 

for some constant c > 0. The inequality on the left hand side follows by arguing as in Lemma 2.3. Analogously, the case with p ∈ (1, 2) holds with opposite inequalities. Instead, if p = 2 (iii) is trivial.

To prove (iv) a simple computation yields

Therefore, the first inequality follows from (2.3) and Lemmas 2.3, 2.4. Instead, the second inequality follows by estimating the first term on the right hand side as for (iii).

Consider F h : L p (B 1 ; R n ) × A(B 1 ) → [0, +∞] defined by where with abuse of notation we define V µ : R n → R n by the same formula used for matrices. The ensuing result is instrumental to prove that actually (u h ) h converges to u ∞ strongly in W 1,p∧2 loc (B 1 ; R n ).