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We consider the Griffith fracture model in two spatial dimensions, and prove existence of strong minimizers, with closed jump set and continuously differentiable deformation fields. One key ingredient, which is the object of the present paper, is a generalization of the decay estimate by De Giorgi, Carriero, and Leaci to the vectorial situation. This is based on replacing the coarea formula by a method to approximate SBD p functions with small jump set by Sobolev functions and is restricted to two dimensions. The other two ingredients are contained in companion papers and consist respectively in regularity results for vectorial elliptic problems of the elasticity type and in a method to approximate in energy GSBD p functions by SBV p ones.

Introduction

The study of brittle fracture in solids is based on the Griffith model, which combines elasticity with a term proportional to the surface opened by the fracture. In its variational formulation one minimizes

E[Γ, u] := ˆΩ\Γ 1 2 Ce(u) • e(u) + h(x, u) dx + 2βH n-1 (Γ ∩ Ω) (1.1)
over all closed sets Γ ⊂ Ω and all deformations u ∈ C 1 (Ω \ Γ, R n ) subject to suitable boundary and irreversibility conditions. Here Ω ⊂ R n is the reference configuration, the function h ∈ C 0 (Ω × R n ) represents external volume forces, e(u) = (∇u+∇u T )/2 is the elastic strain, C ∈ R (n×n)×(n×n) is the matrix of elastic coefficients, β > 0 the surface energy. The evolutionary problem of fracture can be modeled as a sequence of variational problems, in which one minimizes (1.1) subject to varying loads with a kinematic restriction representing the irreversibility of fracture, see [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF][START_REF] Bourdin | The variational approach to fracture[END_REF][START_REF] Maso | A model for the quasi-static growth of brittle fractures: existence and approximation results[END_REF].

Mathematically, (1.1) is a vectorial free discontinuity problem. Much better known is its scalar version, mechanically corresponding to the antiplane case, in which one replaces the elastic energy by the Dirichlet integral,

E MS [Γ, u] := ˆΩ\Γ 1 2 |Du| 2 + h(x, u) dx + 2βH n-1 (Γ∩Ω) , (1.2) 
and one minimizes over all maps u : Ω \ Γ → R. This scalar reduction coincides with the Mumford-Shah functional of image segmentation, and has been widely studied analytically and numerically [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs[END_REF][START_REF] David | Singular sets of minimizers for the Mumford-Shah functional[END_REF][START_REF] Bourdin | The variational approach to fracture[END_REF]. The relaxation of (1.2) leads naturally to the space of special functions of bounded variation, and is given by

E * MS [u] := ˆΩ 1 2 |∇u| 2 + h(x, u) dx + 2βH n-1 (J u ∩Ω) . (1.3) 
Here u belongs to the space SBV 2 (Ω), which is the set of functions such that the distributional gradient Du is a bounded measure and can be written as [u] the jump of u, J u the (n -1)-rectifiable jump set of u, which obeys H n-1 (J u ) < ∞, and ν u its normal. Existence of minimizers for the relaxed problem E * MS follows then from the general compactness properties of SBV 2 , see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs[END_REF] and references therein.

Du = ∇uL n + [u]ν u H n-1 J u with ∇u ∈ L 2 (Ω; R n ),
The breakthrough in the quest for an existence theory for the Mumford-Shah functional (1.2) came with the proof by De Giorgi, Carriero, and Leaci in 1989 [START_REF] De Giorgi | Existence theorem for a minimum problem with free discontinuity set[END_REF] that the jump set of minimizers is essentially closed, in the sense that minimizers of the relaxed functional E * MS obey

H n-1 (Ω ∩ J u ) = H n-1 (Ω ∩ J u ). (1.4) This permits to define Γ as the closure of J u , and then to use regularity of local minimizers of the Dirichlet integral on the open set Ω \ Γ to prove smoothness of u. The essential closedness of the jump set stated in (1.4) is a property satisfied by several variants of the energy in (1.3), in particular also by some defined on vector-valued SBV 2 (Ω, R N ) functions. More precisely, the integrands dealt with in literature depend on the full gradient with some additional structure conditions: they are either convex and depending (essentially) on the modulus of the gradient (cf. [START_REF] Carriero | S k -valued maps minimizing the L p -norm of the gradient with free discontinuities[END_REF][START_REF] Fonseca | Regularity results for anisotropic image segmentation models[END_REF][START_REF] Fusco | Regularity of minimizers for a class of anisotropic free discontinuity problems[END_REF]) or they are specific polyconvex integrands in two dimensions, i.e. n = 2 (cf. [START_REF] Acerbi | Regularity of minimizers for a class of membrane energies[END_REF][START_REF]Regularity results for equilibria in a variational model for fracture[END_REF]).

In this paper we study existence for (1.1) in two spatial dimensions; therefore the main difference with the results quoted above is the dependence of the bulk energy density on the linear elastic strain rather than on the full deformation gradient. Indeed, we assume that C is a symmetric linear map from R n×n to itself with the properties C(ξ -ξ T ) = 0 and Cξ • ξ ≥ c 0 |ξ + ξ T | 2 for all ξ ∈ R n×n . (1.5) This includes of course as a special case isotropic elasticity, Cξ • ξ = 1 4 λ 1 |ξ + ξ T | 2 + 1 2 λ 2 (Tr ξ) 2 , where λ 1 and λ 2 are the Lamé constants. Our main result is the following. Theorem 1.1. Let Ω ⊂ R 2 be a bounded Lipschitz set, g ∈ L ∞ (Ω; R 2 ), let C obey the positivity condition (1.5), β > 0, h(x, z) := κ|z -g(x)| 2 for some κ > 0. Then the functional (1.1) has a minimizer in the class

A := {(u, Γ) : Γ ⊂ Ω closed, u ∈ C 1 (Ω \ Γ; R 2 )}.
This result was announced in [START_REF]Existence result for the 2d stationary Griffith fracture model[END_REF]. We also consider a generalization of the basic model (1.1) with p-growth, which may be appropriate for the study of fracture models with nonlinear constitutive relations that account for damage and plasticity, see for example [START_REF] Hutchinson | A course on nonlinear fracture mechanics[END_REF]Sect. 10 and 11] and references therein. We replace the quadratic energy density and the lower order term by the functions

f µ (ξ) := 1 p Cξ • ξ + µ p /2 -µ p /2 , (1.6) h(x, z) := κ|z -g(x)| p ,
where µ ≥ 0 and κ > 0 are parameters and g ∈ L ∞ (Ω; R 2 ). We remark that for µ > 0 and for small strains ξ this energy reduces to linear elasticity,

f µ (ξ) = 1 2 µ p/2-1 Cξ • ξ + O(|ξ| 3
). For large ξ it behaves, up to multiplicative factors, as |ξ+ξ T | p , which is for example appropriate for models that describe plastic deformation at large strains. We obtain the following.

Theorem 1.2. Let Ω ⊂ R 2 be a bounded Lipschitz set, p ∈ (1, ∞), µ ≥ 0, κ, β > 0, g ∈ L ∞ (Ω; R 2 ) if p ∈ (1, 2] and g ∈ W 1,p (Ω; R 2 ) if p ∈ (2, ∞),
let C obey the positivity condition (1.5), and let f µ be as in (1.6). Then the functional

E p [Γ, u] := ˆΩ\Γ (f µ (e(u)) + κ|u -g| p )dx + 2βH 1 (Γ ∩ Ω) (1.7)
has a minimizer in the class

A p := {(u, Γ) : Γ ⊂ Ω closed, u ∈ C 1 (Ω \ Γ; R 2 )}. (1.8) Remark 1.3. The assumption g ∈ W 1,p (Ω; R 2 ) if p > 2
is probably of technical nature and depends on the elliptic regularity results discussed in Section 2.1.

In the last years several approaches have been proposed to show existence for E MS after the seminal paper by De Giorgi, Carriero, and Leaci [START_REF] De Giorgi | Existence theorem for a minimum problem with free discontinuity set[END_REF] in which the result has been first established (cp. [START_REF] Carriero | S k -valued maps minimizing the L p -norm of the gradient with free discontinuities[END_REF][START_REF] Fonseca | Regularity results for anisotropic image segmentation models[END_REF][START_REF] Maso | A variational method in image segmentation: existence and approximation results[END_REF][START_REF] Maddalena | Lower semicontinuity properties of functionals with free discontinuities[END_REF][START_REF] David | Singular sets of minimizers for the Mumford-Shah functional[END_REF][START_REF] Lellis | Density lower bound estimates for local minimizers of the 2d Mumford-Shah energy[END_REF][START_REF] Bucur | Monotonicity formula and regularity for general free discontinuity problems[END_REF], and [START_REF] Focardi | Fine regularity results for Mumford-Shah minimizers: porosity, higher integrability and the Mumford-Shah conjecture[END_REF] for a recent review). Here we follow the general strategy of proof by De Giorgi, Carriero, and Leaci [START_REF] De Giorgi | Existence theorem for a minimum problem with free discontinuity set[END_REF], although several new difficulties inherent to the dependence of the bulk energy density on the symmetrized gradient have to be faced.

We start off writing the relaxed formulation of (1.1), which for κ > 0 has a minimizer in the space GSBD p (Ω) since no L ∞ bound is imposed (see below for the precise definition of the functional setting). This space and its companion SBD p are, however, much less understood than the scalar analogues (G)SBV p , though in the last few years there have been several contributions in this direction [START_REF] Maso | Generalised functions of bounded deformation[END_REF][START_REF] Chambolle | Korn-Poincaré inequalities for functions with a small jump set[END_REF][START_REF]Which special functions of bounded deformation have bounded variation?[END_REF][START_REF]Integral representation for functionals defined on SBD p in dimension two[END_REF][START_REF]Approximation of fracture energies with p-growth via piecewise affine finite elements[END_REF][START_REF] Friedrich | A Korn-Poincaré-type inequality for special functions of bounded deformation[END_REF][START_REF]A Korn-type inequality in SBD for functions with small jump sets[END_REF][START_REF] Friedrich | Quasistatic crack growth in linearized elasticity[END_REF]. In particular, since apart from trivial cases the Chain rule formula does not hold in SBD p , the very definition of the generalized space GSBD p given in [START_REF] Maso | Generalised functions of bounded deformation[END_REF] requires a different approach with respect to the standard definition of GSBV p as the set of functions whose truncations belong to SBV p .

The proof given in [START_REF] De Giorgi | Existence theorem for a minimum problem with free discontinuity set[END_REF] of the closure condition (1.4) in the scalar case is based on a careful analysis of sequences of SBV p (quasi-)minimizers with vanishing jump energy, for which a priori no control of any Lebsgue norm is available. The idea to circumvent this difficulty and to gain compactness in SBV p introduced by De Giorgi, Carriero, and Leaci, however, makes substantial use of a Poincaré-type inequality for SBV functions that is proven via the coarea formula, which does not extend to the vectorial case. One key ingredient in our proof is then an approximation result for SBD p functions with small jump set with W 1,p functions, stated in Proposition 2.3 below, which permits to obtain an equivalent Poincaré-type inequality for SBD p functions, however restricted to two spatial dimensions (see [START_REF]Integral representation for functionals defined on SBD p in dimension two[END_REF] for the proof). We remark explicitly that this is the only issue in which we have to confine to two dimensions. Indeed, the other two key results of our approach have higher dimensional analogues. More precisely, for n ≥ 3 the full elliptic regularity of solutions to linear elasticity type systems stated in Theorem 2.2 has a partial regularity counterpart with an estimate on the Hausdorff dimension of the singular set (see for more details the comments in Section 2.1), and the strong approximation result of GSBD p functions with SBV p ∩ L ∞ ones in Theorem 2.4 holds without any dimensional limitation. Therefore an extension of the Poincaré-type inequality for SBD p functions to higher dimensions, would lead to corresponding generalizations of Theorems 1.1 and 1.2, at least for p = 2.

Going back to commenting the proof, we note that rather than extending the quoted Poincaré-type inequality for SBD p functions to GSBD p ones, we argue by approximating GSBD p functions by SBD p ones in energy. The latter issue is discussed in [START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF] for p = 2 and any dimension, see Section 2.2 below. The case of a general exponent p ∈ (1, ∞) is established in a companion paper [START_REF]Approximation of fracture energies with p-growth via piecewise affine finite elements[END_REF] without dimensional restrictions and requires a nontrivial modification of the original arguments in [11,[START_REF]An approximation result for special functions with bounded deformation[END_REF][START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF]. Since the SBD p -GSBD p approximation does not preserve the boundary values, one additionally needs to suitably combine the two approximation results care-fully.

Let us also stress that under the working assumption that g is bounded, by the maximum principle, i.e. by truncations, the fidelity term in the scalar case is a lower order perturbation that originates and justifies the more general regularity theory developed in literature for Mumford-Shah quasiminimizers. In the vector valued setting of interest here instead, for the above mentioned lack of truncation techniques, such a term plays a nontrivial role in the asymptotic analysis of sequences with infinitesimal jump energy and has to be taken into account (cf. Proposition 3.4).

In any case, the asymptotics of such sequences in the framework under investigation is related, similarly to the scalar setting, to minimizers of an elliptic problem. In the scalar case, standard elliptic regularity directly gives the necessary decay estimates for the energy (cf. [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs[END_REF][START_REF] Fonseca | Regularity results for anisotropic image segmentation models[END_REF]). The case of the system of linearized elasticity is also well-known in literature. Instead, for systems of linearized elasticity type with p = 2 the regularity is less standard, and we summarize the results we need in Section 2.1. Details and extensions to higher dimensions are discussed elsewhere [START_REF] Conti | A note on the Hausdorff dimension of the singular set of solutions to elasticity type systems[END_REF]. In particular, partial regularity with an explicit estimate on the Hausdorff dimension of the potential singular set are established in [START_REF] Conti | A note on the Hausdorff dimension of the singular set of solutions to elasticity type systems[END_REF]. We remark that it is a major open problem to prove or disprove full regularity in the case p = 2. Despite this, the mentioned Hausdorff dimension estimate is particularly relevant in view of the possible extensions of the existence of minimizers of the energy in (1.1) in higher dimensions.

Our main contribution is a statement on the regularity of weak local minimizers (cf. (3.2) for the precise definition). In particular, we show (see Theorem 3.11 below) that if u ∈ GSBD p (Ω) is a local minimizer for the weak formulation then H 1 (Ω ∩ J u \ J u ) = 0 and u ∈ C 1 (Ω \ J u ; R 2 ). The condition κ > 0 is only required for establishing the existence of a weak minimizer in GSBD p (Ω) via [START_REF] Maso | Generalised functions of bounded deformation[END_REF]Theorem 11.3].

Let us conclude the introduction by outlining the organization of the paper. We first provide the technical preliminaries: in Section 2.1 we state the needed elliptic decay estimates, then in Section 2.2 we introduce the spaces SBD p and GSBD p and discuss the quoted approximation results. In Section 3 we prove the density lower bound and essential closedness of the jump set for local minimizers. Finally, in Section 3.2 we prove the main results Theorem 1.1 and Theorem 1.2.

Preliminaries

Regularity for generalized linear elasticity systems

In this section we investigate the regularity properties of minimizers of elastic type energies. Despite several related contributions present in literature (see [START_REF] Fuchs | Variational methods for problems from plasticity theory and for generalized Newtonian fluids[END_REF][START_REF] Diening | Fractional estimates for nondifferentiable elliptic systems with general growth[END_REF][START_REF] Diening | L q theory for a generalized Stokes system[END_REF] and references therein), we have not found the exact statements needed for our purposes. We summarize here the results of interest, and provide elsewhere [START_REF] Conti | A note on the Hausdorff dimension of the singular set of solutions to elasticity type systems[END_REF] a self-contained proof of the elliptic decay estimates as well as of full and partial regularity for local minimizers according to the dimensional setting of the problem, following the techniques of [START_REF] Acerbi | Regularity for minimizers of nonquadratic functionals: the case 1 < p < 2[END_REF][START_REF] Diening | Fractional estimates for nondifferentiable elliptic systems with general growth[END_REF][START_REF] Diening | L q theory for a generalized Stokes system[END_REF][START_REF] Giaquinta | An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs[END_REF][START_REF] Giusti | Direct methods in the calculus of variations[END_REF].

We first present a decay property of the L p -norm of e(u), with u a local

minimizer of v → ´Ω f 0 (e(v))dx, i.e., ˆΩ f 0 (e(u))dx ≤ ˆΩ f 0 (e(v))dx, for all v ∈ W 1,p (Ω; R n ) satisfying {v = u} ⊂⊂ Ω.
Such a result is necessary to prove the density lower bound inequality in Section 3. Since in this paper the decay property will be applied to the blow-ups of minimizers, there are no lower order terms, therefore we state the result only for the functional with κ = µ = 0 (cf. [START_REF] Conti | A note on the Hausdorff dimension of the singular set of solutions to elasticity type systems[END_REF] for the proof given in the general case).

Proposition 2.1 ([15, Proposition 3.4]). Let n = 2, Ω ⊂ R 2 open, p ∈ (1, ∞). Let u ∈ W 1,p (Ω; R 2 ) be a local minimizer of v → ˆΩ f 0 (e(v))dx.
Then, for all γ ∈ (0, 2) there is a constant

c γ = c(γ, C, p) > 0 such that for all ρ < R ≤ 1 such that B R (x 0 ) ⊂ ⊂ Ω it holds ˆBρ(x0) f 0 (e(u))dx ≤ c γ ρ R 2-γ ˆBR (x 0 ) f 0 (e(u))dx .
In the quadratic case p = 2 it is well-known that the minimizer u is C ∞ (Ω; R n ) in any dimension as long as g is smooth (see for instance [START_REF] Giusti | Direct methods in the calculus of variations[END_REF]Theorem 10.14] or [START_REF] Giaquinta | An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs[END_REF]Theorem 5.14,Corollary 5.15]). Below we state a C 1,α regularity result in the two dimensional setting ( see [START_REF] Conti | A note on the Hausdorff dimension of the singular set of solutions to elasticity type systems[END_REF]Section 4] for the proof and for extensions to higher dimensions).

Theorem 2.2 ([15, Proposition 4.3]). Let n = 2, Ω ⊂ R 2 open, p ∈ (1, ∞) κ ≥ 0 and µ ≥ 0, g ∈ W 1,p (Ω; R 2 ) if p > 2, g ∈ L ∞ (Ω; R 2 ) if p ∈ (1, 2]. Let u ∈ W 1,p (Ω; R 2 ) be a local minimizer of v → ˆΩ f µ (e(v))dx+κ ˆΩ |v -g| p dx. Then, u ∈ C 1,α loc (Ω; R 2
) for all α ∈ (0, 1) if µ > 0, and for some α(p) ∈ (0, 1) if µ = 0.

Approximation of SBD p and GSBD p functions

We start by briefly collecting the main properties of GBD and GSBD p of interest to us. Let Ω be a bounded open set in R n . If u : Ω → R n is a Borel function, we say that x ∈ Ω is a point of approximate continuity for u if there is a ∈ R n such that for each ε > 0

lim r→0 1 r n L n (B r (x) ∩ {|u -a| ≥ ε}) = 0. (2.1)
We say that x is a jump point, and we write x ∈ J u , if there exist two distinct vectors a ± ∈ R n and a unit vector ν ∈ R n such that the approximate limit of the restriction of u to {y ∈ Ω :

±(y -x) • ν > 0} is a ± .
The space BD(Ω) of functions with bounded deformation in Ω and its subspace SBD(Ω) have been widely studied due to their role in the variational formulation of many problems in plasticity and fracture mechanics. Let us recall that the jump set J u of a function u ∈ BD(Ω) is countably (H n-1 , n -1)-rectifiable and that for H n-1 -a.e. x ∈ J u the function u has one-sided approximate limits u ± (x) with respect to a suitable direction ν u (x) normal to J u at x. We denote by S u the set of approximate discontinuity points, in the sense of the set of points where (2.1) does not hold. Moreover one can define the approximate symmetric gradient e(u) ∈ L 1 (Ω; R n×n ). For further details and properties see [START_REF] Temam | Problèmes mathématiques en plasticité[END_REF][START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF][START_REF] Babadjian | Traces of functions of bounded deformation[END_REF][START_REF] Philippis | On the structure of A-free measures and applications[END_REF][START_REF] Maso | Generalised functions of bounded deformation[END_REF].

The subspace SBD p (Ω), p > 1, contains all functions u ∈ BD(Ω) whose symmetric distributional derivative can be decomposed as

Eu = e(u)L n Ω + (u + -u -) ν u H n-1 J u ,
with e(u) ∈ L p (Ω; R n×n ) and H n-1 (J u ) < ∞. Fine properties and rigidity properties of SBD p have been highlighted in [START_REF] Bellettini | Compactness and lower semicontinuity properties in SBD(Ω)[END_REF]11,[START_REF] Chambolle | Piecewise rigidity[END_REF][START_REF] Chambolle | Korn-Poincaré inequalities for functions with a small jump set[END_REF][START_REF] Friedrich | A Korn-Poincaré-type inequality for special functions of bounded deformation[END_REF][START_REF]A Korn-type inequality in SBD for functions with small jump sets[END_REF][START_REF]Which special functions of bounded deformation have bounded variation?[END_REF].

The generalized space GSBD(Ω) introduced in [START_REF] Maso | Generalised functions of bounded deformation[END_REF] has proved to be the correct space where setting a number of problems in linearized elasticity, see [START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF][START_REF] Friedrich | Quasistatic crack growth in linearized elasticity[END_REF]. An L n -measurable function u : Ω → R n belongs to GSBD(Ω) if there exists a bounded positive Radon measure λ u ∈ M + b (Ω) such that the following condition holds for every ξ ∈ S n-1 : for H n-1 -a.e. y ∈ Ω ξ the function u ξ y defined by u ξ y (t) := u(y + tξ) • ξ belongs to SBV loc (Ω ξ y ), where Ω ξ y := {t ∈ R : y + tξ ∈ Ω}, and for every Borel set

B ⊂ Ω it satisfies ˆΩξ |Du ξ y |(B ξ y \ J 1 u ξ y ) + H 0 (B ξ y ∩ J 1 u ξ y ) dH n-1 ≤ λ u (B), (2.2) 
where J 1

u ξ y := {t ∈ J u ξ y : |[u ξ y ](t)| ≥ 1}. If u ∈ GSBD(Ω)
, the aforementioned quantities e(u) and J u are still well-defined, and are respectively integrable and rectifiable in the previous sense. In analogy to SBD p (Ω), the subspace GSBD p (Ω) includes all functions in GSBD(Ω) satisfying e(u) ∈ L p (Ω; R n×n ) and H n-1 (J u ) < ∞.

Next proposition states that a GSBD p -function with a small jump set can be approximated by Sobolev functions. This is a minor reformulation of the result of [START_REF]Integral representation for functionals defined on SBD p in dimension two[END_REF] (see [START_REF] Chambolle | Korn-Poincaré inequalities for functions with a small jump set[END_REF][START_REF] Friedrich | A Korn-Poincaré-type inequality for special functions of bounded deformation[END_REF][START_REF]A Korn-type inequality in SBD for functions with small jump sets[END_REF] for related works in SBD p ). Its proof is based on first covering the jump set with countably many balls with finite overlap and properties (i) and (ii), and then in each ball B constructing w as a piecewise affine approximation to u on a suitably chosen triangular grid, which refines towards ∂B in such a way that grid segments do not intersect J u , following a strategy developed in [START_REF] Conti | Rigidity and Gamma convergence for solid-solid phase transitions with SO(2) invariance[END_REF].

Proposition 2.3. Let p ∈ (1, ∞), n = 2. There exist universal constants c, η, ξ > 0 such that if u ∈ SBD p (B ρ ), ρ > 0, satisfies H 1 (J u ∩ B ρ ) < η (1 -s) ρ 2
for some s ∈ (0, 1), then there are a countable family F = {B} of closed balls overlapping at most ξ times of radius r B < (1 -s)ρ/2 and center x B ∈ B sρ , and a field w

∈ SBD p (B ρ ) such that (i) ηr B ≤ H 1 (J u ∩ B) ≤ 2ηr B for all B ∈ F; (ii) H 1 J u ∩ ∪ F ∂B = H 1 (J u ∩ B sρ ) \ ∪ F B = 0; (iii) w = u L 2 -a.e. on B ρ \ ∪ F B; (iv) w ∈ W 1,p (B sρ ; R 2 ) and H 1 (J w \ J u ) = 0; (v) for each B ∈ F one has w ∈ W 1,p (B; R 2 ) with ˆB |e(w)| p dx ≤ c ˆB |e(u)| p dx; (2.3)
and there exists a skew-symmetric matrix A such that

ˆBsρ\∪F B |∇u -A| p dx ≤ c ˆBρ |e(u)| p dx; (2.4) (vi) ∪ F B ⊂ B 1+s 2 ρ and F L 2 (B) ≤ c η ρ H 1 (J u ∩ B ρ ); (vii) if, additionally, u ∈ L ∞ (B ρ ; R 2 ) then w ∈ L ∞ (B ρ ; R 2 ) with w L ∞ (Bρ;R 2 ) ≤ u L ∞ (Bρ;R 2 ) .
The next result is an approximation in energy of GSBD p functions with SBV p functions, which was proven in [START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF] for p = 2 and for any dimension, building upon ideas developed in [11,[START_REF]An approximation result for special functions with bounded deformation[END_REF] for SBD 2 functions. The extension to p = 2 is discussed in details elsewhere [START_REF]Approximation of fracture energies with p-growth via piecewise affine finite elements[END_REF]. Let us only mention that despite we still follow the ideas in [11,[START_REF]An approximation result for special functions with bounded deformation[END_REF], in the nonquadratic case a different definition of the piecewise affine approximants is needed. Indeed, it requires the use of a different interpolation scheme and a different finite-element grid for the actual construction. 

]). Let Ω ⊂ R n be a bounded Lipschitz set, u ∈ GSBD p (Ω) ∩ L p (Ω; R n ). Then there is a sequence v j ∈ L ∞ ∩ SBV p (Ω; R n ) such that lim j→∞ e(v j )-e(u) L p (Ω;R n×n ) + v j -u L p (Ω;R n ) + H n-1 (J v j ) -H n-1 (J u ) = 0 .

Proof of existence of strong minimizers

We prove that weak minimizers (in GSBD p ) have an essentially closed jump set, and therefore can be identified with strong minimizers. The general strategy is similar to the one by De Giorgi, Carriero, and Leaci [START_REF] De Giorgi | Existence theorem for a minimum problem with free discontinuity set[END_REF]; the key new ingredients are the approximation results for GSBD p functions with Sobolev functions discussed in Section 2.2 and corresponding rigidity estimates for treating the lower-order term.

Density lower bound

In this section we assume that κ ≥ 0, β > 0, p > 1, g ∈ L ∞ (Ω; R n ), µ ≥ 0 are given, and that Ω ⊂ R n is a bounded, open, Lipschitz set. For all u ∈ GSBD(Ω) and all Borel sets A ⊂ Ω we define the functional

G(u, κ, β, A) := ˆA f µ (e(u))dx + κ ˆA |u -g| p dx + 2βH n-1 (J u ∩ A). (3.1)
By [START_REF] Maso | Generalised functions of bounded deformation[END_REF]Theorem 11.3] the global minimum problem for G has a solution in GSBD(Ω). Moreover, we say that u ∈ GSBD p (Ω) is a local minimizer of G(•, κ, β, Ω) provided

G(u, κ, β, Ω) ≤ G(v, κ, β, Ω), (3.2) 
for all v ∈ GSBD p (Ω) satisfying {v = u} ⊂⊂ Ω.

In order to prove the main result of the paper, Theorem 1.2, we use an

homogeneous version of G G 0 (u, κ, β, A) := ˆA f 0 (e(u))dx + κ ˆA |u| p dx + 2βH n-1 (J u ∩ A)
to get an appropriate decay estimate (Lemma 3.6) and then density lower bounds for the full energy G 0 and the jump energy alone (cf. Lemma 3.8 and Corollary 3.9 respectively). For convenience, we introduce for open sets A ⊂ Ω the deviation from minimality

Ψ 0 (u, κ, β, A) := G 0 (u, κ, β, A) -Φ 0 (u, κ, β, A), where Φ 0 (u, κ, β, A) := inf{G 0 (v, κ, β, A) : v ∈ GSBD(Ω), {v = u} ⊂ ⊂ A}. (3.3)
The functions f µ with µ > 0 and f 0 are both convex and with p-growth. The p-homogeneous function f 0 captures the asymptotic behavior of f µ at infinity,

f 0 (ξ) = lim t→∞ f µ (tξ) t p = 1 p (Cξ • ξ) p/2 . (3.4)
Before proceeding with the proofs we state an auxiliary result that will be repeatedly used in what follows (see [START_REF]Which special functions of bounded deformation have bounded variation?[END_REF]Lemma 4.3] for the elementary proof).

Lemma 3.1. Let ω ⊆ B r (y) satisfy L n (ω) ≤ 1 4 L n (B r (y)),
and let ϕ : R n → R n be an affine function. Then

L n (B r (y)) ϕ L ∞ (Br(y),R n ) ≤ c ϕ L 1 (Br(y)\ω,R n ) ,
where the constant c depends only on the dimension n.

We investigate first the compactness properties of sequences having vanishing jump energy.

Proposition 3.2. Let n = 2, p ∈ (1, ∞), B ρ ⊂ R 2 a ball, u h ∈ SBD p (B ρ ) and sup h ˆBρ f 0 (e(u h ))dx < ∞, H 1 (J u h ) → 0. (3.5)
Then there are a function u ∈ W 1,p (B ρ ; R 2 ), a subsequence h j , a sequence of affine functions a j : R 2 → R 2 with e(a j ) = 0, a sequence z j ∈ SBD p (B ρ ) with

(i) {z j = u h j } ⊂ ⊂ B ρ and L 2 ({z j = u h j }) → 0; (ii) |z j -a j | ≤ |u h j -a j | and |e(z j )| ≤ |e(u h j )| L 2 -a.e. on B ρ ; (iii) H 1 (J z j \ B ρ ) ≤ cH 1 (J u h j \ B ρ )
for every ρ < ρ < ρ and j large, where c is a universal constant; 

(iv) z j -a j → u L p loc (B ρ ; R 2 ). Moreover u h j -a j → u L 2 -
h ) = 0, Dw (s) h -Da (s) h L p (Bsρ;R 2×2 ) ≤ c e(w (s) h ) L p (Bsρ;R 2×2 ) ≤ c e(u h ) L p (Bρ;R 2×2 ) and w (s) h -a (s) h L p (Bsρ;R 2 ) ≤ cρ e(u h ) L p (Bρ;R 2×2 ) . Now notice that for h large L 2 (Bρ /2 ∩ {w (s) h = w ( 1 /2) h = u h }) ≥ 1 4 L 2 (B ρ
) in view of item (vi) in Proposition 2.3 and since H 1 (J u h ) → 0 as h ↑ ∞ (cf. (3.5)). Thus, Lemma 3.1 and the triangular inequality imply for h large

Da (s) h -Da ( 1 /2) h L p (Bsρ;R 2×2 ) ≤ c Da (s) h -Da ( 1 /2) h L p (Bρ /2 ∩{w (s) h =w (1/2) h =u h };R 2×2 ) ≤ c e(u h ) L p (Bρ;R 2×2 ) (3.7) 
and similarly a

( 1 /2) h -a (s) h L p (Bsρ;R 2 ) ≤ cρ e(u h ) L p (Bρ;R 2×2 ) . It follows that the sequence w (s) h -a ( 1 /2) h is bounded in W 1,p (B sρ ; R 2 )
and therefore has a subsequence (depending on s and not relabeled) which converges to some w (s) weakly in W 1,p (B sρ ; R 2 ), strongly in L q (B sρ ; R 2 ) for all q ∈ [1, p * ) and pointwise L 2 -a.e. on B sρ . Note that L 2 (∪ F s h B) ≤ c η ρH 1 (J u h ) for all s ∈ [ 1 /2, 1) by item (vi) in Proposition 2.3. Therefore, by (3.5) we conclude that w (s) = w (t) L 2 -a.e. on B sρ if 1 /2 ≤ s ≤ t < 1. Thus, we may define a limit function u on B ρ such that u = w (s) L 2 -a.e. on B sρ for all s ∈ [ 1 /2, 1). In particular, u ∈ W 1,p loc (B ρ ; R 2 ). Let B ∈ F s h . By the trace theorem,

w (s) h -a ( 1 /2) h L 1 (∂B ;R 2 ) ≤ c r B w (s) h -a ( 1 /2) h L 1 (B ;R 2 ) + c Dw (s) h -Da ( 1 /2) h L 1 (B ;R 2×2 ) .
Using Korn's inequality, Poincaré's inequality, and (2.3), we obtain that for each B there is an affine function a B such that

1 r B w (s) h -a B L p (B ;R 2 ) + Dw (s) h -Da B L p (B ;R 2×2 ) ≤ c e(u h ) L p (B ;R 2×2 ) .
Since the center of B is contained in B sρ , we have L 2 (B ∩ B sρ ) ≥ cL 2 (B ), and therefore, treating the affine function as in (3.7),

w (s) h -a ( 1 /2) h L p (B ;R 2 ) ≤ w (s) h -a B L p (B ;R 2 ) + c a B -a ( 1 /2) h L p (B ∩Bsρ;R 2 ) ≤ c w (s) h -a B L p (B ;R 2 ) + c w (s) h -a ( 1 /2) h L p (B ∩Bsρ;R 2 ) .
The same holds for Dw (s)

h -Da ( 1 /2) h
. We conclude

B ∈F s h 1 r B w (s) h -a ( 1 /2) h L p (B ;R 2 ) + Dw (s) h -Da ( 1 /2) h L p (B ;R 2×2 ) ≤ c e(u h ) L p (Bρ;R 2×2 )
and therefore, since r B ≤ ρ,

B ∈F s h w (s) h -a ( 1 /2) h L 1 (∂B ;R 2 ) ≤ cρ 2-2 /p e(u h ) L p (Bρ;R 2×2 ) .
We define z (s)

h := w (s)
h + (a

( 1 /2) h -w (s) h )χ ∪ F s h B . The previous estimates show that z (s) h -a ( 1 /2) h ∈ SBD p (B ρ ). Moreover, H 1 (J z (s) h ∩B sρ ) ≤ B∈F s h H 1 (∂B), e(z (s) h ) = e(u h )χ Bρ\∪ F s h B L 2 -a.e., so that the sequence z (s) h -a ( 1 /2) h
is bounded in SBD p (B sρ ). In addition, for all q ∈ (p, p * ) it holds

z (s) h -w (s) h L p (Bsρ;R 2 ) = a ( 1 /2) h -w (s) h L p (Bsρ∩∪ F s h B;R 2 ) ≤ L 2 (∪ F s h B) 1 /p-1 /q a ( 1 /2) h -w (s) h L q (Bsρ;R 2 ) .
Hence, z

h -w (s) h → 0 in L p (B sρ ; R 2 ) since L 2 (∪ F s h B) ≤ c(H 1 (J u h )) 2 for some universal constant c > 0. Therefore, z (s) h -a ( 1 /2) h (s) 
has a subsequence (depending on s) converging L p (B sρ ; R 2 ) and L 2 -a.e. on B sρ to u .

From e(z (s) h ) = e(w s h )χ Bρ\∪F s h one sees that e(z (s) h ) converges weakly in L p to e(u) . Hence, recalling that we have assumed the inferior limit in (3.6) to be a limit, by convexity and positivity of f 0 we obtain for all s ∈ [ 1 /2, 1) ˆBsρ f 0 (e(u))dx ≤ lim inf h→∞ ˆBsρ f 0 (e(z s h ))dx ≤ lim inf h→∞ ˆBsρ f 0 (e(u h ))dx, (3.8) where in the second step we used e(z s h ) = e(u h )χ Bsρ\∪F s h . From this we conclude that u ∈ W 1,p (B ρ ; R 2 ), and moreover the lower semicontinuity estimate in (3.6) follows at once being f 0 nonnegative.

Eventually, take a sequence s j ↑ 1, for every j ∈ N let h j be such that

z (s j ) h j -a 1 /2 h j -u L p (Bs j ρ;R 2 ) ≤ 1 /j, set z j := z (s j )
h j and a j := a

( 1 /2)
h j , then properties (i)-(iv) follow by construction. Finally, the sequence u h j -a j converges in measure to u by item (iii) in Proposition 2.3 and since L 2 (∪ F s j h j B) is infinitesimal as already noticed.

Remark 3.3. The result above extends to sequences u h ∈ GSBD p (B ρ ) ∩ L p (B ρ ; R 2 ) by using the approximation argument that will be employed in Proposition 3.4 below.

We investigate next the asymptotics of sequences with vanishing jump energy.

Proposition 3.4. Let n = 2, p ∈ (1, ∞). Let B r be a ball, u h ∈ GSBD p (B r ) and κ h ∈ [0, ∞), β h ∈ (0, ∞) be two sequences with κ h → 0 as h → ∞, and such that sup h G 0 (u h , κ h , β h , B r ) < ∞, and lim h→∞ Ψ 0 (u h , κ h , β h , B r ) = lim h→∞ H 1 (J u h ) = 0 .
Then there exists u ∈ W 1,p (B r ; R 2 ), a : R 2 → R 2 affine with e(a) = 0 and a subsequence h j such that (i) for all ρ ∈ (0, r)

lim j→∞ G 0 (u h j , κ h j , β h j , B ρ ) = ˆBρ f 0 (e(u))dx + ˆBρ |a| p dx; (ii) for all v ∈ u + W 1,p 0 (B r ; R 2 ) ˆBr f 0 (e(u))dx ≤ ˆBr f 0 (e(v))dx;
(iii) u h j -a j → u pointwise L 2 -a.e. on B r for some affine functions a j , e(u h j ) → e(u) in L p (B ρ ; R 2×2 ), β h j H 1 (J u h j ∩ B ρ ) → 0, and κ

1 /p h j u h j → a in L p (B ρ ; R 2 ) for all ρ ∈ (0, r). Proof. Theorem 2.4 provides v h ∈ SBV p ∩ L ∞ (B r ; R 2 ), for every h ∈ N, such that e(u h ) -e(v h ) L p (Br;R 2×2 ) + |H 1 (J u h ) -H 1 (J v h )| + u h -v h L p (Br;R 2 ) ≤ (h + β 2 h ) -1 . (3.9) In particular, for all ρ ∈ (0, r] lim sup h→∞ G 0 (u h , κ h , β h , B ρ ) = lim sup h→∞ G 0 (v h , κ h , β h , B ρ ), (3.10) 
and lim

h→∞ H 1 (J v h ) = 0 .
Hence, (v h ) h∈N satisfies (3.5) in Proposition 3.2. Let a h j and u be the functions obtained by Proposition 3.2, then v h j -a h j → u pointwise L 2 -a.e. on B r . Recall that Proposition 3.2 and (3.9) imply that ˆBρ f 0 (e(u))dx ≤ lim inf h→∞ ˆBρ f 0 (e(u h ))dx. (3.11) Additionally, up to extracting a further subsequence we may assume that u h j -a h j → u pointwise L 2 -a.e. on B r by (3.9). Here and henceforth we denote h j by h for simplicity. Since s → G 0 (u h , κ h , β h , B s ) is nondecreasing and uniformly bounded, by Helly's theorem we can extract a subsequence, not relabeled for convenience, such that the pointwise limit

lim h→∞ G 0 (u h , κ h , β h , B s ) =: Λ(s) (3.12)
exists finite for L 1 -a.e. s ∈ (0, r), and Λ is a nondecreasing function. Define I ⊆ (0, r) to be the set of radii where (3.12) holds true. Being (κ

1 /p h u h ) h bounded in L p (B r ; R 2 )
, it has a subsequence (not relabeled) converging to some a ∈ L p (B r ; R 2 ) weakly in L p (B r ; R 2 ). At the same time κ

1/p h (u h -a h ) → 0 pointwise L 2 -a.e. in B r , as κ h ↓ 0 as h → ∞, therefore (κ 1/p h a h ) h is bounded in L p (B r ; R 2
) by Lemma 3.1. Hence, by the Urysohn property, by the weak L p -convergence of (κ 1/p h u h ) h and by the equiintegrability of (κ

1 /p h (u h -a h )) h we obtain that in turn (κ 1/p h a h ) h converges weakly to ā in L p (B r ; R 2 ). Since κ 1/p
h a h are affine functions, and the space of affine functions is finite dimensional, convergence is actually strong, and a is affine on B r , with e(ā) = 0.

Fixed ρ ∈ I a continuity point of Λ satisfying (3.12) we apply Proposition 3.2 again to B ρ and obtain a subsequence of h not relabeled, a sequence (z 

(ρ) h ) h ∈ SBD p (B ρ ),
h ) = 0, such that v h -a (ρ) h → u (ρ) L 2 -a.e. on B ρ , z (ρ) h -a (ρ) h → u (ρ) in L p loc (B ρ ; R 2 ) and {z (ρ) h = v h } ⊂ ⊂ B ρ , for some u (ρ) ∈ W 1,p (B ρ ; R 2
). Thus, we may consider z (ρ) h as a function in SBD p (B r ) by extending it equal to v h on B r \ B ρ .

Next note that z

(ρ) h -a h → u in L p loc (B ρ ; R 2 )
, where a h and u are the globally chosen functions introduced above. This claim easily follows from the convergences v h -a h → u L 2 -a.e. on B r and v h -a (ρ) h → u (ρ) L 2a.e. on B ρ . Indeed, from these we deduce that a

(ρ) h -a h → u -u (ρ) in L p (B ρ ; R 2 ).
Hence, the claim follows at once by taking into account this and the convergence z

(ρ) h -a (ρ) h → u (ρ) in L p loc (B ρ ; R 2 ). Let v ∈ W 1,p (B r ; R 2 ) be such that {u = v} ⊂ ⊂ B ρ and let 0 < ρ < ρ < ρ < ρ < ρ < r, with ρ , ρ ∈ I and assume in addition that {u = v} ⊆ B ρ . Let ζ ∈ C ∞ c (B ρ ; [0, 1]), ϕ ∈ C ∞ c (B ρ ; [0, 1]) be cut-off functions such that ζ = 1 on B ρ , ϕ = 1 on B ρ , and ∇ζ L ∞ (B ρ ;R 2 ) ≤ 2(ρ -ρ ) -1 , ∇ϕ L ∞ (B ρ ;R 2 ) ≤ 2(ρ -ρ) -1 . Define u h := ζ(v + a h ) + (1 -ζ) ϕ z (ρ) h + (1 -ϕ)u h and note that u h = ζ(v + a h ) + (1 -ζ)z (ρ) h on B ρ ϕ z (ρ) h + (1 -ϕ)u h on B r \ B ρ .
Since {u h = u h } ⊂ ⊂ B ρ , by the very definition of Ψ 0 we have

G 0 (u h , κ h , β h , B ρ ) ≤ G 0 (u h , κ h , β h , B ρ ) + Ψ 0 (u h , κ h , β h , B r ). (3.13) 
We estimate separately the contributions on B ρ and B ρ \ B ρ for the first summand on the right hand side above as follows. First, for some c = c(p) > 0 we have

G 0 (u h , κ h , β h , B ρ ) ≤ G 0 (v + a h , κ h , β h , B ρ ) + c G 0 (v + a h , κ h , β h , B ρ \ B ρ ) + c G 0 (z (ρ) h , κ h , β h , B ρ \ B ρ ) + c (ρ -ρ ) p ˆBρ \B ρ |v + a h -z (ρ) h | p dx = ˆBρ f 0 (e(v))dx + κ h ˆBρ |v + a h | p dx + c ˆBρ \B ρ f 0 (e(v))dx + c κ h ˆBρ \B ρ |v + a h | p dx + c G 0 (z (ρ) h , κ h , β h , B ρ \ B ρ ) + c (ρ -ρ ) p ˆBρ \B ρ |v + a h -z (ρ) h | p dx.
Moreover, since {z

(ρ) h = v h } ⊂ ⊂ B ρ , and u h = z (ρ) h on B ρ \ B ρ we have G 0 (u h , κ h , β h , B ρ \ B ρ ) ≤c G 0 (z (ρ) h , κ h , β h , B ρ \ B ρ ) + c G 0 (u h , κ h , β h , B ρ \ B ρ ) + c (ρ -ρ) p ˆBρ \Bρ |v h -u h | p dx. Therefore, since u = v on B ρ \ B ρ we deduce that G 0 (u h , κ h , β h , B ρ ) ≤ ˆBρ f 0 (e(v))dx + κ h ˆBρ |v + a h | p dx +c ˆBρ \B ρ f 0 (e(v))dx + c κ h ˆBρ \B ρ |u + a h | p dx +c G 0 (z (ρ) h , κ h , β h , B ρ \ B ρ ) + c G 0 (u h , κ h , β h , B ρ \ B ρ ) + c (ρ -ρ ) p ˆBρ \B ρ |u + a h -z (ρ) h | p dx + c (ρ -ρ) p ˆBρ \Bρ |v h -u h | p dx. (3.14) 
Note that by (ii)-(iii) in Proposition 3.2 we have, for h sufficiently large,

G 0 (z (ρ) h , κ h , β h , B ρ \ B ρ ) ≤ c G 0 (v h , κ h , β h , B ρ \ B ρ ).
therefore (3.10), (3.12) and the choices of the radii ρ , ρ ∈ I yield lim sup h→∞ G 0 (z

(ρ) h , κ h , β h , B ρ \B ρ )+G 0 (u h , κ h , β h , B ρ \B ρ ) ≤ c(Λ(ρ)-Λ(ρ )).
Moreover, recalling the convergences

u h -v h → 0 in L p (B r ; R 2 ), z (ρ) h -a h → u L p (B ρ ; R 2 ), κ 1 /p h a h → a in L p (B r ; R 2 ) and κ h → 0 as h → ∞, we infer lim h→∞ κ h ˆBρ \B ρ |u + a h | p dx + 1 (ρ -ρ ) p ˆBρ \B ρ |u + a h -z (ρ) h | p dx + 1 (ρ -ρ) p ˆBρ \Bρ |v h -u h | p dx = ˆBρ \B ρ |a| p dx,
Hence, by taking the superior limit as h → ∞ in (3.13), in view of (3.14) and the last two inequalities we get

Λ(ρ) ≤ ˆBρ f 0 (e(v))dx + ˆBρ |a| p dx + c ˆBρ \B ρ f 0 (e(v))dx + c ˆBρ \B ρ |a| p dx + c(Λ(ρ) -Λ(ρ )).
On the other hand, the weak convergence of (κ for all v ∈ W 1,p (B r ; R 2 ) such that {u = v} ⊂ ⊂ B ρ and for L 1 a.e. ρ ∈ (0, r).

Clearly, a simple approximation argument yields that the inequality (3.17) holds for all v ∈ u + W 1,p 0 (B r ; R 2 ), i.e. item (ii) is established. Finally, setting v = u in (3.16), we deduce that for L 1 a.e. ρ ∈ (0, r) ˆBρ f 0 (e(u)) + |a| p dx = Λ(ρ).

Being the left-hand side there continuous as a function of ρ, Λ turns out to be continuous as well, and recalling its very definition and the monotonicity of the integral we conclude that convergence in (3.12) holds for all ρ ∈ (0, r), i.e. item (i) is established as well. Furthermore, from this and (3.16) above one deduces that equality holds in (3.15), and therefore that the convergence of e(u h ) and κ 1/p h u h is strong, which concludes the proof of (iii).

We are now ready to prove a fundamental decay property of G 0 by following the ideas in [START_REF] Carriero | S k -valued maps minimizing the L p -norm of the gradient with free discontinuities[END_REF]Lemma 3.9]. Nevertheless, we note explicitly that contrary to [10, Lemma 3.9] the lack of truncation arguments forces to take also into account the fidelity term in the decay process, since a priori we have no L ∞ bound on local minimizers. As part of the argument extends directly to higher dimension, we give a proof of the density lower bound that depends only on the decay property. However, the decay property has been proven using the regularity of Sobolev minimizers as well as Propositions 3.2 and 3.4, which have only been established in dimension n = 2. Definition 3.5. Let n ≥ 2, p ∈ (1, ∞), κ ≥ 0, β > 0. We say that the decay property holds for the functional G 0 in dimension n if the following is true. For any γ ∈ (0, 1) there is τ γ > 0 such that for all τ ∈ (0, τ γ ] there exist ε ∈ (0, 1), ϑ ∈ (0, 1), and R > 0, such that if u ∈ GSBD p (Ω) satisfies

H n-1 (J u ∩ B ρ (x)) ≤ ερ n-1 and G 0 (u, κ, β, B ρ (x)) ≤ (1+ϑ)Φ 0 (u, κ, β, B ρ (x))
for some B ρ (x) ⊂ ⊂ Ω with 0 < ρ < R, then G 0 (u, κ, β, B τ ρ (x)) ≤ τ n-γ G 0 (u, κ, β, B ρ (x)). In what follows c γ denotes the constant in Proposition 2.1 having chosen γ > 0, and c that of Lemma 3.1.

Proof of Lemma 3.6. Let τ γ > 0 be such that max{cγ /2 τ γ /2 γ , cp τ γ γ , τ γ } = 1 /2. By contradiction suppose the statement false. Then there would be τ ∈ (0, τ γ ] and three sequences ε h → 0, ϑ h → 0, ρ h → 0, a sequence u h ∈ GSBD p (Ω), and a sequence of balls B ρ h (x h ) ⊂ ⊂ Ω such that

H 1 (J u h ∩ B ρ h (x h )) = ε h ρ h , G 0 (u h , κ, β, B ρ h (x h )) = (1 + ϑ h )Φ 0 (u h , κ, β, B ρ h (x h )), with G 0 (u h , κ, β, B τ ρ h (x h )) > τ 2-γ G 0 (u h , κ, β, B ρ h (x h )).
We define

σ h := ρ h G 0 (u h , κ, β, B ρ h (x h )) and v h (y) := (σ h ρ h ) 1/p ρ h u h (x h + ρ h y) so that v h ∈ GSBD p (B 1 ) satisfies H 1 (J v h ) = ε h , G 0 (v h , κρ p h , βσ h , B 1 ) = 1, Ψ 0 (v h , κρ p h , βσ h , B 1 ) = ϑ h /(1 + ϑ h ), and 
G 0 (v h , κρ p h , βσ h , B τ ) > τ 2-γ . (3.18) 
By Proposition 3.4 there exist a subsequence h not relabeled, a function v ∈ W 1,p (B 1 ; R 2 ), and affine functions a h such that v h -a h → v L 2 -a.e. on B 1 , and for some affine function a with e(a) = 0 ˆBρ f 0 (e(v))dx +

ˆBρ |a| p dx = lim h→∞ G 0 (v h , κρ p h , βσ h , B ρ ) ≤ 1 (3.19)
for all ρ ∈ (0, 1), with v a minimizer of w → ´B1 f 0 (e(w))dx among all 

w ∈ v + W
G 0 (v h , κρ p h , βσ h , B τ ) = ˆBτ f 0 (e(v))dx + ˆBτ |a| p dx ≤cγ /2 τ 2-γ/2 + a p L ∞ (Bτ ;R 2 ) L 2 (B 1 )τ 2 ≤ cγ /2 τ γ/2 + cp τ γ τ 2-γ < τ 2-γ ,
where the last inequality follows by the definition of τ γ . This contradicts (3.18).

Remark 3.7. The conclusions of Proposition 2.1 actually hold without dimensional limitations (cf. [START_REF] Conti | A note on the Hausdorff dimension of the singular set of solutions to elasticity type systems[END_REF]Proposition 3.4]), but are clearly not enough to deduce in higher dimensions the decay property (cf. Definition 3.5).

We finally establish the density lower bound for the homogeneous energy G 0 and for the jump term. The proof of the next result follows the lines of [START_REF] Fonseca | Regularity results for anisotropic image segmentation models[END_REF]Lemma 4.3]. As this argument does not depend on dimension except for the decay property we formulate it for general n. We denote by J * u the set of points x ∈ J u with density one, namely

J * u := x ∈ J u : lim ρ→0 H n-1 (J u ∩ B ρ (x)) ω n-1 ρ n-1 = 1 , (3.20) 
where ω n-1 is the (n -1)-dimensional Lebesgue measure of the unit ball in R n-1 .

Lemma 3.8 (Density lower bound for

G 0 ). Let n ≥ 2, p > 1, κ ≥ 0, β > 0, µ ≥ 0, g ∈ L ∞ (Ω; R n ). Assume the decay property holds for G 0 in dimension n. If u ∈ GSBD p (Ω) is a local minimizer of G(•, κ, β, Ω) defined in (3.1)
, then there exist ϑ 0 and R 0 , depending only on n, p, C, κ, β, µ, and

g L ∞ (Ω;R n ) , such that if 0 < ρ < R 0 , x ∈ Ω ∩ J * u , and B ρ (x) ⊂ ⊂ Ω, then G 0 (u, κ, β, B ρ (x)) ≥ ϑ 0 ρ n-1 . (3.21) 
Proof. Let us first assume that x ∈ J * u .

Step 1. We choose γ = 1/4 in the decay property (Definition 3.5) and choose τ ∈ (0, 2 -16 ∧ τ1 /4 ), with τ1 /4 as in Definition 3.5. Let ε := ω n-1 ∧ ε(τ ), where ε(τ ) ∈ (0, 1), ϑ= ϑ(τ ) ∈ (0, 1), and R= R(τ ) > 0, are as in the decay property.

We claim that there exists a radius

R 1 = R 1 (n,τ, µ, p, g L ∞ (Ω;R n ) ) > 0 such that if G(u, κ, β, B ρ (x)) < β ερ n-1 (3.22)
for some 0 < ρ < R 1 , then one of the following inequalities holds

G(u, κ, β, B τ ρ (x)) < τ n-1 ρ n-1 /2 , (3.23) G(u, κ, β, B τ ρ (x)) < τ n-1 /2 G(u, κ, β, B ρ (x)). (3.24) 
We distinguish two cases. If

G(u, κ, β, B τ ρ (x)) < ρ n-1 /4 , (3.25) 
then (3.23) holds provided we choose R 1 ≤ τ 4(n-1) .

To deal with the remaining case we state two elementary inequalities: for any σ > 0 there is k σ > 1 (implicitly depending also on p) such that

|z + ζ| p ≤ (1 + σ)|z| p + k σ |ζ| p for all z, ζ ∈ R n (3.26) 
and 

f 0 (ξ) -µ p/2 ≤ f µ (ξ) ≤ (1 + σ)f 0 (ξ) + k σ µ p/2 for all ξ ∈ R n×n . ( 3 
G(u, κ, β, B τ ρ (x)) ≤ 2G 0 (u, κ, β, B τ ρ (x)) + k 1 (µ p/2 + g p L ∞ (Ω;R 2 ) )ρ n ω n . Since (3.25) does not hold, choosing R 1 ≤ R such that 8ω n k 1 (µ p/2 + g p L ∞ (Ω;R n ) )R 1/4 1 ≤ 1 (3.28) we obtain G(u, κ, β, B τ ρ (x)) ≤ 4G 0 (u, κ, β, B τ ρ (x)). (3.29) Suppose now that G 0 (u, κ, β, B ρ (x)) ≤ (1 + ϑ)Φ 0 (u, κ, β, B ρ (x)). ( 3 
L ∞ (Ω; R n ) yield G(u, κ, β, B τ ρ (x)) ≤ 4τ n-1 /4 G 0 (u, κ, β, B ρ (x)) ≤ 8τ n-1 /4 G(u, κ, β, B ρ (x)) + 4ω n (µ p /2 + k 1 g p L ∞ (Ω;R n ) )ρ n .
Since (3.25) is not satisfied, as above we can absorb the last term in the left-hand side by taking into account the condition in (3.28) to obtain

G(u, κ, β, B τ ρ (x)) ≤ 16τ n-1 /4 G(u, κ, β, B ρ (x)).
The proof of (3.24) is concluded since 16τ 1 /4 < 1.

Hence, we are left with proving (3.30) assuming that (3.25) is violated. To this aim we first fix σ = σ(τ ) ∈ (0, 1 /2) such that (1 + 2σ) 2 = 1 + ϑ. We finally deduce (3.30) from the latter inequality by taking the infimum on the class of admissible v introduced above (cp. the definition of Φ 0 in (3.3)).

Step 2. Fix R 2 > 0 such that

R 2 < R 1 ∧ (β ε) 2 ∧ τ, (3.36) 
where 0 < R 1 ≤ R satisfies (3.28), (3.33) and (3.35). For any ρ < R 2 set ρ i := τ i ρ, i ∈ N. Let us show by induction that (3.22) implies for all i ∈ N G(u, κ, β, B ρ i (x)) < β ερ n-1 i .

(3.37)

The first inductive step i = 0 is exactly (3.22). Suppose now that (3.37) holds for some i, then by Step 1 either (3.23) or (3.24) holds. In the former case by (3.36) we have

G(u, κ, β, B ρ i+1 (x)) < τ n-1 ρ n-1 /2 i = ρ 1 /2 i ρ n-1 i+1 < β ερ n-1 i+1 .
Instead, in the second instance by the inductive assumption we infer, since τ ≤ 1, G(u, κ, β, B ρ i+1 (x)) < τ n-1 /2 G(u, κ, β, B ρ i (x))<τ n-1 /2 β ερ n-1 i < β ερ n-1 i+1 .

Step 3. Let σ = σ(τ ) > 0 be as in (3.31), and fix R 0 > 0 such that R 0 ≤ βε 2ωnkσ(µ p/2 + g p L ∞ (Ω;R n ) ) ∧ R 2 , with R 2 defined in (3.36). We claim that for all ρ ∈ (0, R 0 ) G 0 (u, κ, β, B ρ (x)) ≥ ϑ 0 ρ n-1 

H n-1 (J u ∩ B ρ (x)) ω n-1 ρ n-1 ≤ ε 2ω n-1 < 1 
by the definition of ε, so contradicting (3.20). This concludes the proof of (3.38) for points in J * u . Finally, since the definitions of R 0 and ϑ 0 are independent of the particular point x ∈ J * u , (3.38) readily extends to Ω ∩ J * u and (3.21) is proven.

The density lower bound for the jump term of the energy follows straightforwardly.

Proof of the main results

We are finally ready to establish existence of strong minimizers for the Griffith static fracture model. For simplicity of notation we write the functional G appearing in (3.1) as G(•) = G(•, κ, β, Ω).

Proof of Theorem 1.2. By the compactness and lower semicontinuity result [START_REF] Maso | Generalised functions of bounded deformation[END_REF]Theorem 11.3], G has a minimizer u in GSBD(Ω). By Theorem 3.11 we obtain u ∈ C 1 (Ω \ J u ; R 2 ) so that E p (J u , u) = G(u), E p being defined in (1.7). Now, if Γ ⊂ Ω is closed and v ∈ W 1,p loc (Ω \ Γ; R 2 ) with E p (Γ, v) < ∞, then v ∈ GSBD(Ω) with H 1 (J v \ Γ) = 0, again arguing by slicing. We conclude that E p (J u , u) = G(u) ≤ G(v) ≤ E p (Γ, v).

The proof of Theorem 1.1 is analogous.

Theorem 2 . 4 (

 24 [START_REF]Approximation of fracture energies with p-growth via piecewise affine finite elements[END_REF] Theorem 3.1

  and a sequence a (ρ) h : R 2 → R 2 of affine functions with e(a (ρ)

Lemma 3 . 6 (

 36 Decay). The decay property holds in dimension n = 2 for any p ∈ (1, ∞), κ ≥ 0, β > 0.

. 27 )

 27 Using(3.27) and (3.26) with σ = 1, and the fact that g ∈ L ∞ (Ω; R n ), we get

. 30 )

 30 Then, by(3.22) and (3.30) the decay property, (3.27), (3.29) and g ∈

4 1 4 1/4 1 ( 3 . 35 )

 441335 [START_REF] Lellis | Density lower bound estimates for local minimizers of the 2d Mumford-Shah energy[END_REF],(3.27) and g ∈ L ∞ (Ω; R n ) we obtainG 0 (u, κ, β, B ρ ) ≤ (1 + σ)G(u, κ, β, B ρ ) + ω n (µ p /2 + k σ g p L ∞ (Ω;R n ) )ρ n ≤ (1 + 2σ)G(u, κ, β, B ρ ), (3.32) provided ω n (µ p /2 + k σ g p L ∞ (Ω;R n ) )R 1 /≤ σ.(3.33)Now, for any field v ∈ GSBD p (Ω) with {v = u} ⊂ ⊂ B ρ , being u a local minimizer of G, (3.26) and(3.27) giveG(u, κ, β, B ρ ) ≤ G(v, κ, β, B ρ ) ≤ (1 + σ)G 0 (v, κ, β, B ρ ) + ω n k σ (µ p/2 + g p L ∞ (Ω;R n ) )ρ n , as (3.25) is violated, we infer 1 -ω n k σ (µ p/2 + g p L ∞ (Ω;R n ) )R 1 /G(u, κ, β, B ρ ) ≤ (1 + σ)G 0 (v, κ, β, B ρ ).(3.34) We choose R 1 ∈ (0, R) such that (3.28), (3.33) and1 + σ 1 + 2σ ≤ 1 -ω n k σ (µ p/2 + g p L ∞ (Ω;R n ) )R1 are satisfied. Then (3.34) becomes G(u, κ, β, B ρ ) ≤ (1 + 2σ)G 0 (v, κ, β, B ρ ), so that recalling (3.32) and the choice of σ ∈ (0, 1 /2) made in (3.31), we get G 0 (u, κ, β, B ρ ) ≤ (1 + ϑ)G 0 (v, κ, β, B ρ ).

(3. 38 )

 38 with ϑ 0 := βε 2(1+σ) . By contradiction, if(3.38) does not hold, we find by(3.26),(3.27), and since ρ < R 0 G(u, κ, β, B ρ (x))≤ (1 + σ)G 0 (u, κ, β, B ρ (x)) + ω n k σ (µ p/2 + g p L ∞ (Ω;R n ) )ρ n < βερ n-1 .Hence(3.22) holds true, and therefore by Step 2 inequality (3.37) yields lim infρ→0 1 ρ n-1 G(u, κ, β, B ρ (x)) ≤ βε, in turn implying lim inf ρ→0

  Proof. Up to the extraction of a subsequence, we may assume that the inferior limit in (3.6) is actually a limit.For each h ∈ N and for any s ∈ [ 1 /2, 1) let w

			(s) h ∈ SBD p (B ρ ) and F s h
	be the function and the family of balls obtained by Proposition 2.3 applied
	to u h . By (2.3) and Korn's inequality we can choose affine functions a R 2 → R 2 such that e(a (s)	(s) h :
		a.e. on B ρ and		
	ˆBρ	f 0 (e(u))dx ≤ lim inf h→∞ ˆBρ	f 0 (e(u h ))dx .	(3.6)
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Corollary 3.9 (Density lower bound for the jump). Under the same assumptions as Lemma 3.8, there exist ϑ 1 and R 1 , depending only on n, p, C, κ, β, µ, and g L ∞ (Ω;R n ) , such that if 0 < ρ < R 1 , x ∈ Ω ∩ J * u , and B ρ (x) ⊂ ⊂ Ω, then H n-1 (J u ∩ B ρ (x)) ≥ ϑ 1 ρ n-1 .

(3.39)

Proof. Let x ∈ Ω∩J * u and B ρ (x) ⊂ ⊂ Ω. Denoting by ϑ 0 and R 0 the constants in Lemma 3.8, if ρ ∈ (0, R 0 ] we have both

by Lemma 3.8 itself, and the energy upper bound

The latter easily follows by the local minimality of u and comparing its energy with that of uχ Bρ(x)\B ρ-δ (x) and then letting δ ↓ 0. Moreover, by taking into account the first inequality in (3.27), we have that

Hence, for all ρ ∈ (0, 1 ∧ R 0 ] we conclude that

where c * depends on n, p, κ, β, µ, and g L ∞ (Ω;R n ) . We fix γ ∈ (0, 1), for example γ = 1/4 as above, and choose τ ∈ (0, τ γ ] in the decay property such that c * τ 1-γ < ϑ 0 . Let ε = ε(τ ) > 0, ϑ = ϑ(τ ) and R = R(τ ) > 0 be the constants provided by the decay property. We now show that

If (3.42) were false we would conclude using (3.40), the decay property and (3.41) for some ρ ∈ (0, R 1 ] that

contradicting the choice of τ .

Corollary 3.10. Under the same assumptions as Lemma 3.8, the set

Proof. Let x ∈ Ω u . Then there is ρ ∈ (0, R 0 ) with G 0 (u, κ, β, B ρ (x)) < ϑ 0 ρ n-1 , and therefore there is δ ∈ (0, ρ) such that

The inclusion B δ (x) ⊂ Ω u follows straightforwardly. Indeed, let y ∈ B δ (x), we have

Therefore Ω u is open. By Lemma 3.8 and the definition we immediately obtain

In dimension 2 the assumptions of Lemma 3.8 hold true and Sobolev minimizers are regular everywhere, therefore we may conclude the following result.

Let u ∈ GSBD p (Ω) be a local minimizer of G according to (3.2), then

Proof. Since GSBD p is defined via slices and Ω u is open, from H 1 (Ω u ∩J u ) = 0 we deduce u ∈ W 1,p loc (Ω u ; R 2 ). Thus, by elliptic regularity of Theorem 2.2 we obtain u ∈ C 1 (Ω u ; R 2 ). Hence, S u ⊆ Ω\Ω u and actually Ω∩S u ⊆ Ω\Ω u , as Ω u is open.

On the other hand, if x ∈ Ω \ J u , then u ∈ W 1,p (B ρ (x); R 2 ) for some ρ > 0, as GSBD p is defined via slices and again by elliptic regularity u ∈ C 1 (B ρ (x); R 2 ). Thus, x ∈ Ω u , and since J u ⊆ S u we conclude Ω \ Ω u = Ω ∩ S u = Ω ∩ J u .

Eventually, (3.43) is a straightforward consequence of (3.39) and [5, Theorem 2.56].