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Abstract
Recommending appropriate items to users is crucial in many e-commerce platforms. One common
approach consists in selecting the N most relevant items for each user. To achieve this, recom-
mender systems rely on various kinds of information, like item and user features, past interest
of users for items and trust between users. Current systems generally use only one or two such
pieces of information, which limits their performance. In this paper, we design and implement
GraFC2T2, a general graph-based framework to easily combine various kinds of information for
top-N recommendation. It encodes content-based features, temporal and trust information into a
graph model, and uses personalized PageRank on this graph to perform recommendation. Experi-
ments are conducted on Epinions and Ciao datasets, and comparisons are done with systems based
on matrix factorization and deep learning using F1-score, Hit ratio and MAP evaluation metrics.
The results show that combining different kinds of information generally improves recommenda-
tion. This shows the relevance of the proposed framework.

Keywords
Top-N Recommendation; Graph; Collaborative Filtering; Content; Temporal information; Trust;
PageRank; Link streams

I INTRODUCTION
Many e-commerce platforms have large and fast growing sets of items to present to users. For
instance, Amazon had a total of 53.38 millions books as on January 10th, 20181. Such huge

1https://www.scrapehero.com/many-products-amazon-sell-january-2018/
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quantities of products make it challenging for users to search and find interesting items for them.
Then, they often rely on the help provided by recommender systems.

Various approaches co-exist, the most classical ones being rating prediction and top-N recom-
mendation (Steck, 2013). Rating prediction estimates the rating value that a user is likely to give
to items. Top-N recommendation ranks items for a given user and selects the N most interest-
ing ones, for a given N . Many research works are dedicated to rating prediction. This requires
explicit rating data whereas, in many platforms dedicated for instance to e-commerce, ratings
are not available, and recommender systems have to deal with implicit data such as users’ pur-
chase, browsing and streaming history. In such situations, top-N recommendation can still be
carried out (Cremonesi et al., 2010).

In addition to the previous remark, top-N recommender systems are everywhere from on-line
shopping websites to video portals (Christakopoulou and Karypis, 2016). For all these reasons,
we focus here on top-N recommendation problem from positive implicit feedback, a problem
already considered in many papers such as Rendle et al. (2009); Ning and Karypis (2011); Shi
et al. (2012) and Guo et al. (2017).

One of the main families of techniques, called Collaborative Filtering (CF), takes benefit from
correlations between user interests. Initially, CF recommender systems focused only on user-
item interactions (Konstan et al., 1997; Herlocker et al., 1999; Sarwar et al., 2001) and did not
integrate side information among the following list: item features like the genre of a movie
or the author of a song, context of interactions like location, timestamps or weather, and trust
between users. Since such side information strongly influences user choices (for instance, users
may listen to a new song because they like the singer), performances of such systems may
be limited. In addition, side information helps solving problems like cold start and data spar-
sity (Burke, 2002; Adomavicius and Tuzhilin, 2005; Massa and Avesani, 2007; Campos et al.,
2014).

For these reasons, much effort was devoted to the inclusion of side information into CF tech-
niques. For instance, hybrid systems incorporate item features in order to combine CF and
content-based filtering (CBF) (Burke, 2002; Chen et al., 2016; Shu et al., 2018). Likewise, a
winning team of the Netflix competition (Koren et al., 2009; Koren, 2009) included temporal
information into a CF system in order to track the dynamics of user interests and increase rec-
ommendation accuracy. Including trust information in order to take into account the fact that
people tend to adopt items already chosen by trusted friends is also possible (Papagelis et al.,
2005; Massa and Avesani, 2007; Guo et al., 2017).

Some previous works consider only one type of side information, and therefore fail to capture
the combined influence of several types of side information on user interests. Others works
suggest that progress in this direction may significantly improve recommendation, and combine
two kinds of side information into CF (Ning and Karypis, 2012; Yu et al., 2014; Strub et al.,
2016; Nzekon Nzeko’o et al., 2017). However, to the best of our knowledge, none of these
approaches include content-based features, users’ preferences temporal dynamics and trust re-
lationships between users simultaneously.

Our goal in this paper is to propose a general graph-based recommender framework that makes
it easy to combine variety of side information. However, recommender systems are used in
very diverse situations, which makes the design of a fully general system out of reach. We
therefore made several assumptions which, although very general, do not apply to some con-
texts. First, we focus on top-N recommendation task because it is prevalent in many on-line
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shopping recommender systems like video portals. In addition, we considered the situations
where the recommender system aims at offering each user a product that he/she has not yet se-
lected in the past. In some situations, clients may repeatedly buy the same product, but this is a
quite different problem. We also we assumed that recent activities are more important than older
ones, a situation known as concept drift. This is often but not always true in practice; interest in
a given kind of product may for instance be periodic, like for birthday gifts or seasonal needs.
Extending our work in this direction is promising, when data is available. Finally, we consider
positive links only (that typically represent a purchase), as this is the most prevalent case in
practice; considering more subtle feedback from users, and in particular negative feedback, is a
very promising direction for future work.

Contribution
In this paper, we propose GraFC2T2, a general graph-based framework for top-N recommen-
dation combining content-based features, temporal information, and trust into a personalized
PageRank system. The design of this framework is very modular in order to make it easy to
include other side information and/or replace personalized PageRank by another graph-based
method. Thanks to GraFC2T2, it becomes easy to explore the benefit of using various kinds
of side information, and then to find appropriate parameters for combining them for particular
applications. We conduct experiments on Epinions and Ciao datasets to illustrate the use of
GraFC2T2, and we show that it outperforms state-of-the-art thanks to the increased use of side
information.

Figure 1 summarizes the global architecture of GraFC2T2, made of two big parts: the recom-
mender graph construction, and the use of this graph to perform recommendation. The rec-
ommender graph encodes available information by combining a basic graph, which we detail
in Section II, with methods to capture content-based features and edge weight capturing time
information, which we detail in Section III. Then, we use the obtained recommender graph to
perform recommendation, with a trust-aware personalized PageRank detailed in Section IV.

Notice that our framework makes it possible to explore wide sets of modeling choices, as well
as to incorporate additional possibilities if needed. We illustrate this on two real-world datasets
from Epinions and Ciao in Sections V and VI. Section VII discusses related work.

This work builds upon our previous paper (Nzekon Nzeko’o et al., 2017), which extends the
Session-based Temporal Graph proposed by Xiang et al. (2010) by adding time-weight and
content-based information. On the other hand, the data representation that we use is the link
stream formalism, presented by Latapy et al. (2018). This model allowed us to propose the Link
Stream Graph (Nzekon Nzeko’o et al., 2019).

We provide an online implementation of our framework2 in order to help other researchers and
practitioners to conduct experiments on their own datasets, and to test the relevance of new
ideas and features.

II DATA MODELING
We consider a set U of users, a set I of items, and a time interval T , and we assume that we
observed the past interest of users in U for items in I during T . We model this data by a bipartite
link stream L = (T, U, I, E) where E ⊆ T × U × I is a set of links: each link (t, u, i) in E
represents a purchase (u bought product i at time t), an interest in a cultural item (like movie

2https://github.com/nzekonarmel/GraFC2T2
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Figure 1: The global architecture of GraFC2T2, our general purpose graph-based recommender frame-
work. Recommender graphs are built from three components: a basic graph that models user-item re-
lations, content-based features that enrich basic graph, and link time-weight function that penalizes old
edges, see Sections II and III. Then, we perform top-N recommendation over this graph using user trust
and personalized PageRank, see Section IV.

watching or song listening), or another user-item relational event, depending on the application
context. See Viard et al. (2016); Latapy et al. (2018) for a full description of the link stream
formalism. In the following, we will illustrate definitions with the guiding example of Figure 2.
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Figure 2: Guiding example: we consider the link stream L = (T,U, I, E) in which the set of users
is U = {u1, u2}, the set of items is I = {i1, i2, i3, i4}, the observation period is T = [t1, t6], and
E = {(t1, u1, i1), (t1, u2, i3), (t2, u1, i2), (t2, u2, i3), (t3, u2, i4), (t4, u1, i3), (t5, u2, i4), (t6, u1, i2)}.
This means for instance that user u1 was interested in item i2 at time t2.
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2.1 Classical bipartite graph
We first consider the most classical recommender graph introduced in the literature (Huang
et al., 2004; Baluja et al., 2008), that we denote by BIP. It is a directed bipartite graph (U, I, E ′)
where U and I are the set of users and items defined above, and E ′ ⊆ U × I is the set of links
defined by E ′ = {(u, i) : ∃t ∈ T, (t, u, i) ∈ E}. In other words, u is linked to i in BIP if user u
was interested in item i during the observation period. Figure 3a displays the BIP graph for the
guiding example.

2.2 Session-based temporal graph
In a first attempt to capture time information, we then consider Session-based Temporal Graphs
proposed by Xiang et al. (2010), that we denote by STG.

This graph encodes time information using a set S of session nodes defined as follows. First,
for a given ∆, the observation interval T is divided into |T |

∆
time slices Tk = [(k− 1) ·∆, k ·∆]

of equal duration ∆. Then, S contains the couples (u, Tk) such that there exists a link (t, u, i)
in E with t ∈ Tk. In other words, each user leads to a session node (u, Tk) in S for each time
interval Tk during which this user was active.

This finally leads to the definition of STG as a tripartite graph (U, I, S, E ′′) with U , I , and S
defined above, and E ′′ = E ′ ∪ {((u, Tk), i) : ∃t ∈ Tk, (t, u, i) ∈ E}. In other words, we add to
BIP the nodes in S, and a link between each session node (u, Tk) and the items selected by user
u during time slice Tk. Figure 3b shows the STG representation for the guiding example.

Notice that in the original model Xiang et al. (2010), any link from u to i has a weight 1 and
any link from i to u has a weight η, where η is a parameter. For simplicity, we do not consider
this parameter here (or, equivalently, η = 1), but it may easily be added if needed.

2.3 Link stream graph
In order to capture time information while avoiding the drawbacks of choosing a time window
size ∆ like for STG, we introduce the following link stream graph, that we denote by LSG
(Nzekon Nzeko’o et al., 2019).

This graph is first defined by a set of nodes representing users and items over time: {(t, u) :
∃i, (t, u, i) ∈ E} ∪ {(t, i) : ∃u, (t, u, i) ∈ E}. In other words, each user u is represented by
the nodes (t, u) such that a link involves u in L a time t, and each item is represented similarly.

We then define the set of links {((t, u), (t, i)) : (t, u, i) ∈ E} ∪ {((t, u), (t′, u)) : ∃i, (t, u, i) ∈
E, t′ = min{x : x > t and ∃i′, (x, u, i′) ∈ E} ∪ {((t, i), (t′, i)) : ∃u, (t, u, i) ∈ E, t′ =
min{x : x > t and ∃u′, (x, u′, i) ∈ E}. In other words, each user node (t, u) is linked to both
the item nodes (t, i) such that (t, u, i) ∈ E and to the next user node representing u. Item nodes
are linked similarly. See Figure 3c for an illustration on our guiding example.

III ADDING CONTENT-BASED FEATURES AND TIME-WEIGHT FUNCTIONS
Once a basic recommender graph is built as explained in previous section, the GraFC2T2 frame-
work adds elements to capture content-based and temporal features. Again, we propose several
choices, and we present them below.
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Figure 3: Classical bipartite graph, Session-based temporal graph and Link stream graph obtained from
our guiding example. The weight of each edge is 1.

3.1 Content-based features
Let C be the set of all possible content-based features and let g(i) ⊆ C be the subset of content-
based features associated with item i, for any i. One element of g(i) can be the category, the
brand or the color of item i. Following the method proposed in (Nguyen et al., 2008; Yu et al.,
2014; Nzekon Nzeko’o et al., 2017), we model these features by content nodes that we link to
item nodes in basic recommender graphs.

In the cases of BIP and STG, we add a content node c for each content-based feature c in C,
and we link each item node i to the content node c for each c in g(i). For LSG, we add a content
node (t, c) for each (t, i) in the basic graph such that c is in g(i), and we link (t, c) to (t, i). We
call this inclusion of content-based features CI because it adds links only between content and
item nodes. See Figure 4.

We also propose a strategy linking content nodes to both item and user nodes, that we call CIU.
The idea is to link user nodes to the content nodes of the items they are interested in. Therefore,
in addition to CI additions, CIU adds to BIP a link (u, c) between each user node u and content
node c whenever there is an item node linked to both u and c; to STG a link between each
session node (u, Tk) and content node c whenever there is an item node linked to both (u, Tk)
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Figure 4: Inclusion of nodes and links representing content-based features with the CI strategy, for each
basic recommender graph.

and c; and to LSG a link between each user node (t, u) and content node (t, c) whenever there
is an item node linked to both. See Figure 5.
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Figure 5: Inclusion of nodes and links representing content-based features with the CIU strategy, for
each basic recommender graph.

Compared to CI, the CIU method increases the influence of content-based features linked to
items that the target user has already selected in the past. In other words, the CIU method do a
better promotion of items that have the same features as the choices of the target user.

3.2 Time-weight functions
Until now, we modeled time information directly within the structure of STG and LSG graphs,
but their edge weights give a static view of previous user interests. Since such interests evolve
over time, as pointed out for instance by Ding and Li (2005), this is not sufficient. We therefore
follow the methodology proposed in that paper, consisting in adding time-dependent weights to
the links of recommender graphs.

The idea is to give a high weight to recent links, and to decrease this weight with their age: the
weight at time t of any link (a, b) whose most recent appearance time is te ≤ t, is of the form
wt(a, b) = f(t − te) · w(a, b), where f() is a decay function. Many different decay functions
may make sense, and we designed GraFC2T2 to make it easy to integrate those functions. We
consider here the two following classical choices.
• Our first example is the exponential decay function (EDF) illustrated in Figure 6a: f(x) =
e−x·ln(2)/τ0 , where τ0 is the radioactivity half life; after a delay of τ0, the link weight is
divided by 2.
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• We also consider the logistic decay function (LDF) illustrated in Figure 6b: f(x) =
1−1/(e−K(x−τ0)+1) whereK is the steepness of the curve and τ0 is the sigmoid midpoint;
if x = τ0 then f(x) = 0.5.

(a) Exponential decay function, EDF (b) Logistic decay function, LDF

Figure 6: Edge time-weight functions.

IV RECOMMENDATION WITH PERSONALIZED PAGERANK AND TRUST
Once a recommender graph is built with a combination of choices proposed in previous sec-
tions, we are ready to perform top-N recommendation from this graph. We present below the
personalized PageRank approach and an extension to include the concept of trust between users.

4.1 Personalized PageRank
Personalized PageRank algorithm is defined by Page et al. (1999) for node ranking in graphs
so that nodes can be ranked efficiently in order of importance. The first application was on web
pages, especially in the Google search engine. Then this algorithm has been widely used in
recommender systems because of the good prediction quality obtained (Gori et al., 2007; Kim
and El Saddik, 2011; Şora, 2015).

Following this last observation, Xiang et al. (2010) proposed the Temporal Personalized Ran-
dom Walk (TPRW) to compute recommendations on STG. It was defined to tackle temporal
recommendation using the personalization idea of Haveliwala (2002), corresponding to the fol-
lowing formula:

PR = α ·M · PR + (1− α) · d (1)

Where PR is PageRank vector that contains the importance of each node at the end of the
propagation process that we want to compute; M is the transition matrix of the considered
graph; α is the damping factor; and d is the personalization vector indicating which nodes the
random walker will jump to after a restart. In other words, d allows to initialize the weight
of source nodes. This process favors the recommendation of products that are close to source
nodes: items close to source nodes with large weights in vector d, are favored (see below).

For a given user u at time t, we define the personalized temporal vector d as follows, depending
on the type of basic graph:
• for BIP, the walker always restarts from u: d(u) = 1 and d(v) = 0 if v 6= u;
• for STG, the walker either restarts from u or from its most recent session node (u, Tk):
d(u) = β, d(u, Tk) = 1− β, d(v) = 0 if v 6= u and v 6= (u, Tk);
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• for LSG, the walker always restarts from the most recent temporal node representing u,
(t′, u): d(t′, u) = 1 and d(t′′, v) = 0 if (t′′, v) 6= (t′, u).

Then, we run PageRank over the recommender graph to compute the interest of each user u for
item i at time t, and output the N items with highest interest (in LSG, the interest for item i is
the sum of interests for (t, i), for all t).

4.2 Trust integration
Trust relationships are interesting for improving recommendation, especially for cold users and
cold items (users or items for which very limited information is available). Some systems incor-
porate trust information explicitly specified by users (Jamali and Ester, 2009; Guo et al., 2017;
Pan et al., 2017), but since such explicit information is rarely available, several approaches in-
fer implicit trust (Pitsilis and Marshall, 2004; Papagelis et al., 2005; Hwang and Chen, 2007;
Lathia et al., 2008). In this section, we describe how to include these both types of trust in our
framework.

We assume trust relationships are modeled for each user u by a set TRu of users trusted by u,
and that trust(u, v) gives the trust level of u for all v in TRu, with

∑
v∈TRu

trust(u, v) = 1.
We denote the method where explicit trust relationships are given by ET (Explicit Trust). We
also use an implicit trust metric based on similarity measures as proposed by Papagelis et al.
(2005) and denote this method by IT (Implicit Trust). In this method, TRu = U is the set of
all users, and trust(u, v) = |Iu ∩ Iv|/|Iu ∪ Iv| is the Jaccard similarity between users u and v.
Note that other similarity measures may be used, such as cosine index.

We then update the personalized temporal vector d definition as follows (with the same notations
as in the initial definition above):
• for BIP, d(u) = 1−γ, d(v) = (γ ·trust(u, v))/|TRu| if v ∈ TRu and d(v) = 0 otherwise;
• for STG, we share the jumping probability β between u and its trusted users: d(u) =
β · (1 − γ), d(v) = (β · γ · trust(u, v))/|TRu| for all v ∈ TRu; and we share the
probability 1 − β between u most recent session node and the ones of trusted users:
d(u, Tk) = (1− β) · (1− γ), d(v, Tv) = (1− β) · γ · trust(u, v)/|TRu| where v ∈ TRu

and (v, Tv) is the most recent session node of v. We set all other entries of d to 0.
• for LSG, d(tk, u) = 1− γ, d(tv, v) = γ · trust(u, v)/|TRu| if v ∈ TRu and (tv, v) is the

most recent node representing v, and all other entries of d are 0.

V EXPERIMENTAL SETUP
Previous sections defined our general graph-based framework GraFC2T2, that gives wide levels
of freedom for selecting and combining its various components into a top-N recommender
system. These component capture several kinds of side information, in particular content-based,
temporal, and trust features. In this section, we describe an experimental setup that we use in
the next section to evaluate our framework. This setup consists in two real-world datasets,
an evaluation method relying on three metrics, and a parameter selection method to optimize
results.
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5.1 Datasets
We use publicly available datasets extracted from product reviews Epinions and Ciao3 (Tang
et al., 2012), where users can write reviews and give their opinions on a wide category of
products like Home, Health, Computers and Media. We model each dataset as a set of review
tuples (u, i, c, r, t) meaning that user u has assigned the rating r ∈ {0, 1, 2, 3, 4, 5} to item i
at time t, with c being a content-based feature of item i. The explicit trust networks of these
datasets are considered such that for each user u, the set TRu is given for the ET method. Table
1 provides key information on these datasets: start and end dates, as well as numbers of distinct
users, items, content-based features, ratings, explicit trust relationships, ratings density and trust
relationships density.

Start date End date ‖U‖ ‖I‖ ‖C‖ Ratings Trust δr δt
Epinions 2010-01-01 2010-12-31 1 843 15 899 24 17 722 4 867 0.06% 0.14%
Ciao 2007-01-01 2010-12-31 879 6 005 6 8 109 23 121 0.15% 3.00%

Table 1: Basic data statistics

Since our framework does not use ratings but only positive links between users and items, we
discard all tuples such that the rating it contains is lower than 2.5 or the average rating of
involved user.

5.2 Evaluation
Evaluating recommender systems is a difficult task. In this paper, we use three classical met-
rics for top-N recommendations: F1-score (F1), Hit Ratio (HR) and Mean Average Precision
(MAP) (Baeza-Yates and Ribeiro-Neto, 2011). Higher values of these metrics indicate better
recommendation performance.

F1-score is a trade-off between ranking precision and recall such that optimizing F1-score is
more robust than optimizing precision or recall. Precision is the fraction of good recommenda-
tions over all recommended items and recall is the fraction of good recommendations over all
relevant items to recommend. For one user u,

Precision =
hitN(u)

N
, (2)

Recall =
hitN(u)

Inew(u)
(3)

and

F1 = 2 · Precision×Recall
Precision+Recall

= 2 · hitN(u)

Inew(u) +N
, (4)

where N is the length of recommendation list, hitN(u) denotes the number of good recommen-
dations to u in the top-N items and Inew(u) is the set of new items to recommend to u. For all
users the equation of F1-score is:

F@N =

∑
u∈U 2× hitN(u)∑
u∈U(Inew(u) +N)

. (5)

3https://www.cse.msu.edu/˜tangjili/trust.html
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Hit Ratio is the fraction of users to whom the recommender system has made at least one good
recommendation over all users:

H@N =

∑
u∈U(hitN(u) > 0)

|U |
. (6)

Mean Average Precision considers the order of items in the top-N recommendation in order to
give better evaluation scores to results that recommend better items first:

M@N =

∑
u∈U APN(u)

|U |
, (7)

where

APN(u) =
1

hitN(u)

N∑
k=1

hitk(u)

k
× h(k) (8)

is the average precision of top-N recommendations done to user u and h(k) = 1 if the k-th
recommended item is a good recommendation and 0 otherwise.

These metrics evaluate a given top-N recommendation. Since we actually can’t perform recom-
mendations on live users, we perform evaluation on past data described above. Following the
classical method established by previous works (Li and Tang, 2008; Lathia et al., 2009; Campos
et al., 2014; Nzekon Nzeko’o et al., 2017), we partition data according to k + 1 time windows
of equal duration, and we use them as follow. For each of the k first slices:
• we build recommender graphs that correspond to data of this slice and all previous slices

(training set),
• we compute top-N recommendations for users who have selected at least one new item

in the next time slice (test set),
• we compute for each evaluation metric M the numerator Mnumk

and the denominator
Mdenok of its definition, given above.

Once we have the values ofMnumk
andMdenok of each of the k first windows, we combine them

into the Time Averaged (TA) value of the metric under concern:

TA(M) =

∑
kMnumk∑
kMdenok

. (9)

This leads to a time-averaged value of F1-score, Hit ratio and MAP, that we all use for evalu-
ation. Indeed, evaluation metrics can be in disagreement (Gunawardana and Shani, 2009), and
so using several metrics is essential to obtain accurate insight on result quality.

In our experiments, we set k to 7 in order to have large enough data slices and meaningful
averages. We consider exploring the role of this parameter, as well as the use of more advanced
evaluation metrics, as future work.
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5.3 Parameter estimation
For each basic graph type, GraFC2T2 defines and implements 27 possible combinations of side
information modelings, see Figure 1. Our priority is to explore the behaviors and differences
of all these variants, and so we did our best to keep the number of other parameters reason-
able. Still, the different version of recommender systems encoded in GraFC2T2 call for several
parameter selection.

Exhaustive search for the best values is out of reach, and many subtle techniques exist to explore
the parameter space in search for good values. Since this search is not the focus of this paper,
we use a simple approach called Randomized Search Cross-Validation (more advanced methods
may easily be included in our framework, though) (Bergstra and Bengio, 2012). This method
randomly selects parameter values in a predefined set of possible values, usually designed to
span well the whole set of values. Here, we use 50 such random settings, sampled in the set
defined by Table 2.

Parameter meaning Predefined values
∆ STG session duration 7, 30, 90, 180, 365, 540, 730 days
β STG long-term preference 0.1, 0.3, 0.5, 0.7, 0.9
τ0 half life of EDF and LDF 7, 30, 90, 180, 365, 540, 730 days
K decay slope of LDF 0.1, 0.5, 1, 5, 10, 50, 100
γ influence of trusted users 0.05, 0.1, 0.15, 0.3, 0.5, 0.7, 0.9
α damping factor for PageRank 0.05, 0.1, 0.15, 0.3, 0.5, 0.7, 0.9

Table 2: Predefined values of parameters

VI EXPERIMENTAL RESULTS
This section presents extensive experimentations on our GraFC2T2 framework, in order to study
its performances in practice, to explore the contribution of each side information in these cases,
and to compare obtained results to state-of-the-art recommender systems.

6.1 Performances of GraFC2T2
Table 3 presents the results we obtained for Top-10 item recommendation for Epinions and
Ciao datasets. We chose N = 10 as for instance Deshpande and Karypis (2004), Xiang et al.
(2010) and Bernardes et al. (2015), and other values we tested gave similar results as one may
see in the appendix (Section B). In these tables, each column corresponds to a metric and a
basic recommender graph, and each row corresponds to a combination of side information
added to this recommender graph. Each cell contains the value of the evaluation metric for the
recommender graph made of basic graph in column and side information in row. White color
of cell corresponds to the best result and dark color indicates lower performance.

We summarize the insight obtained from these results in Table 4. For each basic recommender
graph (vertically) and each evaluation metric (horizontally), we selected the three recommender
graphs that achieve the best performances and we display on the corresponding row the perfor-
mances obtained on the basic graph (without side information), the best obtained performances
(with side information), the improvement percentage, and the name of the corresponding ver-
sion of recommender graph with side information.

All best improvements thanks to side information in GraFC2T2 are at least 46% for Epinions
and at least 41% for Ciao. Table 4 also shows that the best combination of side information
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-
ET
IT
EDF
LDF
CI
CIU
EDF-ET
EDF-IT
LDF-ET
LDF-IT
CI-ET
CI-IT
CIU-ET
CIU-IT
CI-EDF
CI-LDF
CIU-EDF
CIU-LDF
CI-EDF-ET
CI-EDF-IT
CI-LDF-ET
CI-LDF-IT
CIU-EDF-ET
CIU-EDF-IT
CIU-LDF-ET
CIU-LDF-IT

EPINIONS BIP STG LSG
2.18 2.0 1.14
1.81 1.86 1.14
2.17 2.42 1.61
3.74 3.32 2.25
3.16 2.63 2.26
2.53 3.0 0.86
3.29 3.51 0.66
2.77 3.32 1.77
3.88 4.43 2.74
2.12 2.63 1.58
3.1 2.77 3.29
2.44 3.03 0.92
3.12 3.14 1.77
3.03 3.51 0.66
3.89 3.72 1.99
4.88 4.84 0.91
4.91 3.56 1.1
4.51 6.48 0.7
5.29 4.49 0.9
3.84 4.73 0.98
4.85 4.47 1.69
3.02 3.39 0.92
3.81 4.02 3.41
4.75 6.13 0.7
6.34 7.66 1.99
4.06 3.78 0.7
5.69 4.49 3.68

F1@10
BIP STG LSG

5.17 4.77 4.24
4.64 4.64 4.11
5.44 5.44 5.31
6.1 5.97 5.7
5.97 5.31 5.97
5.97 6.23 3.32
6.37 6.63 2.79
5.44 5.84 5.04
7.03 7.16 6.37
4.91 5.31 4.77
6.1 6.5 7.16
5.84 6.23 3.45
6.37 6.37 5.44
6.1 6.63 2.79
7.03 7.03 5.44
7.69 6.9 3.32
7.03 6.5 3.98
7.69 7.69 2.92
7.16 6.76 3.58
6.63 6.76 3.45
7.43 6.76 5.31
5.97 6.37 3.45
6.76 6.63 7.29
7.16 7.43 2.92
7.82 7.96 5.44
6.63 6.63 2.92
7.82 7.03 7.03

HR@10
BIP STG LSG

2.23 2.17 1.71
2.04 2.07 1.66
2.29 2.34 2.24
2.31 2.35 2.32
2.24 2.09 2.54
2.48 2.73 1.74
2.66 2.88 1.66
2.13 1.97 2.09
2.64 2.57 2.42
2.03 2.1 2.13
2.98 2.98 3.01
2.28 2.67 1.74
2.49 2.66 2.15
2.43 2.9 1.66
2.79 2.88 2.25
3.06 2.73 1.74
2.61 2.67 1.75
3.23 3.03 1.66
2.89 2.85 1.72
2.44 2.46 1.74
2.8 2.7 2.17
2.28 2.66 1.74
3.0 3.0 2.66
2.64 2.95 1.66
3.32 3.18 2.27
2.48 2.78 1.66
3.18 3.07 3.17

MAP@10

-
ET
IT
EDF
LDF
CI
CIU
EDF-ET
EDF-IT
LDF-ET
LDF-IT
CI-ET
CI-IT
CIU-ET
CIU-IT
CI-EDF
CI-LDF
CIU-EDF
CIU-LDF
CI-EDF-ET
CI-EDF-IT
CI-LDF-ET
CI-LDF-IT
CIU-EDF-ET
CIU-EDF-IT
CIU-LDF-ET
CIU-LDF-IT

CIAO BIP STG LSG
1.18 1.48 1.45
1.08 1.44 1.5
2.18 1.92 2.25
1.63 1.7 2.0
2.02 1.74 3.27
1.25 2.14 1.25
2.38 4.56 1.24
1.17 1.47 1.41
2.13 3.08 2.37
1.18 1.49 1.5
2.66 2.76 2.76
1.39 1.66 1.51
2.41 2.25 2.84
2.02 4.0 1.31
2.76 4.21 2.96
2.58 3.15 1.66
3.38 2.91 2.37
3.46 4.46 1.44
7.74 5.79 2.11
1.86 2.11 1.63
3.42 3.54 2.9
1.66 2.67 1.74
4.56 4.89 2.64
2.69 4.79 1.53
4.62 5.1 2.88
2.73 6.42 1.45
5.07 6.11 2.51

F1@10
BIP STG LSG

5.26 5.63 6.53
5.08 5.44 6.72
7.62 7.62 7.26
6.35 5.99 7.44
7.26 7.44 9.26
6.53 6.35 5.26
7.08 8.53 4.9
5.26 5.81 6.53
9.98 9.44 7.26
5.44 5.63 6.72
8.53 8.53 8.71
5.99 6.17 5.63
7.8 7.8 8.53
6.9 8.53 5.08
8.53 8.53 8.35
7.62 8.17 6.17
8.35 8.89 7.62
8.71 9.26 5.44
9.98 9.8 6.9
7.26 6.72 5.99
9.8 9.8 7.99
6.35 7.08 5.81
10.7 11.3 8.53
8.53 9.26 5.63
10.3 10.5 8.35
8.35 9.98 5.44
11.1 11.1 9.07

HR@10
BIP STG LSG
1.9 1.99 2.24
1.74 1.9 2.17
2.39 2.39 2.28
2.03 2.26 2.34
2.63 2.84 3.51
2.04 2.14 1.7
2.39 3.01 1.48
1.68 2.1 2.18
3.04 2.84 2.32
1.81 2.01 2.18
2.91 2.96 2.66
1.97 2.06 1.72
2.47 2.42 2.43
2.27 3.12 1.5
2.82 2.96 2.44
2.33 2.76 1.77
2.87 2.86 2.85
3.24 3.29 1.65
3.46 3.31 2.68
2.27 2.37 1.81
3.09 3.14 2.46
1.98 2.12 1.77
3.19 3.16 3.16
2.76 3.09 1.65
3.32 3.37 2.38
2.29 3.34 1.64
3.34 3.35 3.18

MAP@10

Table 3: Epinions and Ciao - Performance with optimal settings. Each cell contains the value of an
evaluation metric for the recommender graph made of basic graph in column and side information in
row. White color of cell corresponds to the best result and dark color indicates lower performance
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1
2
3

F@10

No
Epinions Dataset

2.18 6.34 190% CIU-EDF-IT
2.18 5.69 160% CIU-LDF-IT
2.18 5.29 142% CIU-LDF

Basic Best Imp. BIP-Best
BIP

2.0 7.66 282% CIU-EDF-IT
2.0 6.48 223% CIU-EDF
2.0 6.13 206%CIU-EDF-ET

Basic Best Imp. STG-Best
STG

1.14 3.68 221% CIU-LDF-IT
1.14 3.41 197% CI-LDF-IT
1.14 3.29 187% LDF-IT

Basic Best Imp. LSG-Best
LSG

1
2
3

H@10
5.17 7.82 51% CIU-EDF-IT
5.17 7.82 51% CIU-LDF-IT
5.17 7.69 48% CI-EDF

4.77 7.96 66% CIU-EDF-IT
4.77 7.69 61% CIU-EDF
4.77 7.43 55% CIU-EDF-ET

4.24 7.29 71% CI-LDF-IT
4.24 7.16 68% LDF-IT
4.24 7.03 65% CIU-LDF-IT

1
2
3

M@10
2.23 3.32 48% CIU-EDF-IT
2.23 3.23 45% CIU-EDF
2.23 3.18 42% CIU-LDF-IT

2.17 3.18 46% CIU-EDF-IT
2.17 3.07 41% CIU-LDF-IT
2.17 3.03 39% CIU-EDF

1.71 3.17 85% CIU-LDF-IT
1.71 3.01 76% LDF-IT
1.71 2.66 55% CI-LDF-IT

1
2
3

F@10

No
Ciao Dataset

1.18 7.74 556% CIU-LDF
1.18 5.07 330% CIU-LDF-IT
1.18 4.62 291% CIU-EDF-IT

Basic Best Imp. BIP-Best
BIP

1.48 6.42 332%CIU-LDF-ET
1.48 6.11 311% CIU-LDF-IT
1.48 5.79 290% CIU-LDF

Basic Best Imp. STG-Best
STG

1.45 3.27 125% LDF
1.45 2.96 104% CIU-IT
1.45 2.9 99% CI-EDF-IT

Basic Best Imp. LSG-Best
LSG

1
2
3

H@10
5.26 11.1 110% CIU-LDF-IT
5.26 10.7 103% CI-LDF-IT
5.26 10.3 96% CIU-EDF-IT

5.63 11.3 100% CI-LDF-IT
5.63 11.1 96% CIU-LDF-IT
5.63 10.5 87% CIU-EDF-IT

6.53 9.26 41% LDF
6.53 9.07 38% CIU-LDF-IT
6.53 8.71 33% LDF-IT

1
2
3

M@10
1.9 3.46 82% CIU-LDF
1.9 3.34 76% CIU-LDF-IT
1.9 3.32 74% CIU-EDF-IT

1.99 3.37 69% CIU-EDF-IT
1.99 3.35 68% CIU-LDF-IT
1.99 3.34 67% CIU-LDF-ET

2.24 3.51 57% LDF
2.24 3.18 42% CIU-LDF-IT
2.24 3.16 41% CI-LDF-IT

Table 4: Best recommender graphs - Comparison of the three best recommender graph combinations
with the associated basic graph. We display the obtained improvement percentage.

for Epinions is CIU-EDF-IT for BIP and STG basic graphs and CIU-LDF-IT for LSG basic
graph. For Ciao, good results are obtained with CIU-LDF-IT for all basic graphs. These results
clearly confirm the relevance of graphs extended simultaneously with content, time and trust
information.

6.2 Impact of side information
We now give details on the impact of side information and their combination in GraFC2T2.
This is context dependent, as observed behaviors vary with datasets; one may however easily
test the GraFC2T2 framework with his/her own datasets and discover the best choices for the
case under concern. The discussion provided here is mostly an illustration of this.

When we consider the basic graphs with no side information, in the case of Epinions, BIP gives
the best results for all evaluation metrics. Instead, LSG gives the best Hit ratio and MAP, while
STG gives the best F1-score in the case of Ciao.

If we include only one kind of side information, we observe that explicit trust (ET) does not
improve the results, but implicit trust (IT) does for all basic graphs. The insertion of time-weight
always produces improvements. Finally, content-based features increase performances for BIP
and STG but not for LSG. For Epinions, the best graph with one kind of side information is
BIP-EDF in F1-score and STG-CIU in Hit ratio and MAP. In Ciao, the best one is LSG-LDF
in Hit ratio and MAP, and STG-CIU is the best in F1-score. This shows that the impact of a
unique kind of side information highly depends on the basic graph and on the data.

Recommendations using two kinds of side information perform significantly better than with
only one kind of side information. For instance, in the Epinions case, performances increase
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from 3.74% to 6.48% in F1-score, from 6.63% to 7.69% in Hit ratio and from 2.88% to 3.23%
in MAP. Combining time-weight with implicit trust performs better than time-weight and trust
taken separately. Similarly, combining content-based features with implicit trust is better than
content-based features or trust taken separately, but generally less interesting than combining
time-weight and implicit trust. Combining content-based features and time-weight usually pro-
duces better improvements for BIP and STG but no improvement for LSG. In Epinions, BIP-CI-
EDF and BIP-CIU-EDF perform best. In Ciao, BIP-CIU-LDF is always better. This confirms
the relevance of graphs that integrate content-based features and time, like time-weight content-
based STG proposed by Nzekon Nzeko’o et al. (2017).

Using three kinds of side information does not greatly improve the best performances achieved
with two kinds of side information. For instance, in Epinions, the performances increase from
6.48 to 7.66% in F1-score, from 7.69 to 7.96% in Hit ratio and 3.23 to 3.32% in MAP. Nev-
ertheless, Table 4 shows that recommender graphs with three kinds of side information are by
far the most frequent among the best ones. For this reason, we recommend the use of content-
based, time and trust information simultaneously in order to increase the chances to achieve
good results.

6.3 Best values of parameters
In this section, we focus only on recommender graphs with CIU-EDF-IT and CIU-LDF-IT
combination that are most common in the best performance in Table 4. We have made the
following observations:
• In Epinions dataset, for the combination CIU-EDF-IT, ∆ = 7, β = 0.5, τ0 = 90 for

BIP and STG and 180 for LSG, γ ∈ {0.15, 0.3} for BIP and STG and 0.9 for LSG, and
α = 0.9. For the combination CIU-LDF-IT, ∆ = 365, β = 0.7, τ0 ∈ {30, 90} for BIP
and STG and 7 for LSG, K = 0.5 for BIP, 100 for STG and 5 for LSG, γ ∈ {0.1, 0.15}
for BIP and STG and 0.9 for LSG, and α ∈ {0.7, 0.9};
• In Ciao dataset, for the combination CIU-EDF-IT, ∆ = 180, β = 0.3, τ0 = 180, γ = 0.9

and α = 0.9. For the combination CIU-LDF-IT, ∆ = 540, β = 0.1, τ0 = 365 for BIP
and STG and 180 for LSG, K = 10 for BIP and STG and 100 for LSG, γ ∈ {0.7, 0.9},
and α = 0.9;

The values of these parameters indicate that in Epinions, the weights of the data used (edge
weights) decrease faster than in Ciao; τ0 is small in Epinions {7, 30, 90} and is larger in
Ciao {180, 365}. Regarding trust, γ is still high in Ciao {0.7, 0.9} and is smaller in Epin-
ions {0.1, 0.15, 0.3} which shows that the influence of implicit trust is more important in Ciao.
However, this influence must always be great for the graph LSG {0.9} in all datasets.

6.4 Comparison with state-of-the-art systems without side information
We now compare the performances of GraFC2T2 with those of some state-of-the-art top-N
recommender systems that don’t take into account side information. The considered models
are: Most-Popular-Item (MPI) that computes the ranking score of an item by its popularity; the
ranking oriented collaborative filtering, user-based (UBCF) and item-based (IBCF) collabora-
tive filtering (Karypis, 2001; McLaughlin and Herlocker, 2004); some recommender systems
for positive implicit feedback scenarios, Bayesian Personalized Ranking (BPR) (Rendle et al.,
2009), Sparse linear methods for top-N recommender systems (SLIM) (Ning and Karypis,
2011), collaborative less-is-more filtering (CLiMF) (Shi et al., 2012) and Matrix factorization
with Alternating Least Squares (ALS) (Hu et al., 2008).
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We use Randomized Search Cross-Validation to have good performances of the considered rec-
ommender systems. For UBCF and IBCF models, 10 settings are generated such that the neigh-
borhood size k ∈ {10, 20, 30, 40, 50, 80, 100, 150, 200, 500}. For BPR, SLIM, CLIMF and ALS
models, 50 settings are generated such that the number of latent factors l ∈ {10, 20, 30, 50,
100, 200, 500}, learning rate and all regularization bias are taken in {0.0001, 0.0005, 0.001,
0.005, 0.01, 0.05}.

Table 5 presents the best results obtained for these recommender systems that don’t take into
account side information and those obtained with our framework. This shows that GraFC2T2
outperforms these systems and illustrates the relevance of a general framework in which various
kinds of side information can be added to improve recommendations.

MPI UBCF IBCF BPR SLIM CLIMF ALS GraFC2T2
F@10 1.79 0.30 0.70 0.15 0.82 1.97 2.27 7.66

Epinions H@10 4.91 1.46 2.79 0.80 2.92 5.17 4.91 7.96
M@10 2.07 0.61 1.29 0.45 1.16 2.15 2.26 3.32
F@10 2.26 0.31 0.94 0.22 1.49 3.38 2.10 7.74

Ciao H@10 7.62 1.63 4.17 1.27 5.08 8.71 6.90 11.3
M@10 2.62 0.59 1.65 0.56 2.09 3.06 2.46 3.51

Table 5: Experiment results on Epinions and Ciao datasets for Top-10. Performances are given in per-
centage and best ones are highlighted in bold.

A future step in our research is to compare the results obtained by GraFC2T2 to those produce
by state-of-the-art systems that include side information. We have already observed that the
results produced by GraFC2T2 are comparable to those presented by Xiao et al. (2017) where
both item and social visibilities are modeled. Moreover, we have also made a comparison with
Trust aware Denoising Auto Encoder (TDAE) technique based on deep learning (Pan et al.,
2017). The results for Epinions (M@10 = 1.32%) and Ciao (M@10 = 3.07%) confirm the
relevance of GraFC2T2.

Notice that the most basic, non-personalized approach MPI is able to achieve better results
compared to BPR, SLIM, UBCF and IBCF. This indicates that users tend to consume popular
items. This is not the first work in which MPI is better than BPR or other matrix factorization
models, Zhao et al. (2014) and Guo et al. (2017) have made the same observation.

VII RELATED WORK
As we already said, many contributions improve collaborative filtering (CF) recommender sys-
tems with the inclusion of side information, and we used several ideas proposed in these previ-
ous works. In the rest of this section, we shortly review key related references.

7.1 Trust-based recommender systems
CF usually suffers from data sparsity and cold start problems, which may be solved in part
with user trust. For instance, Papagelis et al. (2005) used trust inference by transitive asso-
ciations between users in a social network. Ma et al. (2017) use explicit trust and distrust to
improve clustering-based CF recommendation, while Guo et al. (2014) merge ratings of trusted
neighbors to infer probable preferences of other users, and identify similar users for item rec-
ommendations.
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In some cases, trust can be explicitly provided by users, as do Massa and Avesani (2007), but
in other ones, this information is not given and it can be inferred from user behaviors. For
example, (Papagelis et al., 2005) use Pearson correlation to compute implicit trust using ratings
dataset and in cases where there is only implicit data, measure like Jaccard and Cosine can be
used. In other works, trust enhancement is done by trust propagation on trust network where
the weight of an link (u, u′) is the trust of u to u′ Deng et al. (2014).

Note that work on influencers can also be considered here, as there is a trust relationship be-
tween influencers and their followers (Liu et al., 2015; Grafström et al., 2018). Our framework
is able to integrate the impact of influencers in the same way as trust between users. The main
difference is who influences who and how much. Once you have the answers to these questions,
the customization of PageRank is done according to these answers. The impact of influencers
or influencer-based recommendation is not studied in this work, but it is a good issue for future
work.

The concept of influence is a good example of other side information that may be included in our
system (Liu et al., 2015; Grafström et al., 2018). Similarly to trust (although these two concepts
are different) influence may be used to customize PageRank, once it is correctly quantified. For
instance, influence may be seen as a trust relationship between influencers and their followers.

7.2 Time aware recommender systems
Most recommender systems that take temporal aspects into account are based on concept drift:
older information is less important than recent information for predicting future user purchases.
For this reason, Ding and Li (2005) proposed the use of the time-weight decay functions we
used in this paper, in order to assign greater weight to the most recent ratings in similarity com-
putations. In addition, Gaillard and Renders (2015) propose a incremental matrix completion
method, that automatically allows the factors related to both users and items to adapt ”on-line”
to concept drift hypothesis. Going further, Liu et al. (2010) propose an online incremental CF
in which a decay function is used for similarity computations and another one is used for rating
prediction. Time-weight functions are also used in other studies as by Koren (2009); Karahodža
et al. (2015) and Nzekon Nzeko’o et al. (2017).

Other approaches to concept drift assume that the importance of information used for recom-
mendations is ephemeral, e.g. Lathia et al. (2009) divide time into slices and use data only
within a single slice. Such recommender systems therefore focus on user short-term prefer-
ences. It however seems that some preferences are stable and persist over time, and so that old
information should also be included. For this reason, some works (Xiang et al., 2010; Li et al.,
2007) capture both short-term preferences and long-term preferences and combine them in the
recommendation process. For example, Xiang et al. (2010) propose STG to incorporate tem-
poral aspects by separately modeling long-term preferences and short-term preferences within
a graph model.
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7.3 Content-based recommender systems
These systems aim at recommending items similar to the ones the user liked in the past. A
way to achieve this, developed by Lops et al. (2011), is to match features associated to user
preferences with those of items. Then, recommendation is performed in three steps: extracting
relevant features from items, build user preference profiles based on item features, and finally
select new items that fit user preferences. This approach is used in several domains such as
recommendation of books (Mooney and Roy, 2000) and recommendation of web pages (Pazzani
et al., 1996).

Using content-based features may improve CF techniques by allowing more details on user
favorite item features and increase the possibility to reach items that have not been selected in
the past by other users. Some works indeed show that these hybrid recommender systems solve
weaknesses of both approaches (Balabanović and Shoham, 1997; Basu et al., 1998; Burke,
2002).

Recent work on content-based approaches are dedicated to the Social Book Search (SBS). The
SBS Lab investigates book search in scenarios where users search with more than just a query,
and look for more than objective metadata. It has two tracks. The first one is a Suggestion
Track aiming at developing test collections for evaluating ranking effectiveness of book retrieval
and recommender systems. The second one is an Interactive Track aimed at developing user
interfaces that support users through each stage during complex search tasks and to investigate
how users exploit professional metadata and user-generated content (Koolen et al., 2015).

7.4 Graph-based recommender systems
The simplest graph-based recommender system rely on the classical bipartite graph (BIP) in
which only user-item links are used. Most used algorithms are based on random walk (Baluja
et al., 2008), like Injected Preference Fusion (Xiang et al., 2010) and PageRank which is used
in this paper; they compute a probability to reach items from the user under concern, and rec-
ommend the ones with highest probability.

Graph-based systems may be seen as CF systems, and so one may use the same idea as in hy-
brid recommender systems to improve them (Burke, 2002). Nguyen et al. (2008) achieve this by
adding a third node type: content nodes. The resulting graph ignores temporal aspects, though.
To improve this, Yu et al. (2014) propose the Topic-STG which incorporate content-based fea-
tures and the temporal dynamic of STG. However these graphs handle each link regardless of its
age, which contradicts the concept drift assumption. This is why we propose the Time-weight
and content-based STG (Nzekon Nzeko’o et al., 2017), where old links have a lower weight
than recent ones. Up to our konwledge, none of these graph-based works takes advantage of
content-based, time and trust information simultaneously.

We note that, despite the fact that recommender graphs are not much studied compared to
model-based techniques such as matrix factorization or neural networks, they remain relevant.
For example Pixie recommender system proposed by Eksombatchai et al. (2018) is the recent
scalable graph-based real-time system developed and deployed at Pinterest. Given a set of user-
specific pins as a query, Pixie selects in real-time from billions of possible pins that are most
related to the query. To generate recommendations, Eksombatchai et al. develop Pixie Random
Walk algorithm that uses the Pinterest object graph of 3 billion nodes and 17 billion edges. This
has been made possible thanks to the technological evolution of Random Access Memories.
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CONCLUSION
Our main goal with this paper was to show that including several side information improves the
quality of recommender graphs built for top-N recommendation task. For this purpose, we de-
signed and implemented GraFC2T2, a recommender graph framework which makes it easy to
explore various approaches for modeling and combining many features of interests for recom-
mendation. In particular, GraFC2T2 extends classical bipartite graphs, session-based temporal
graphs and link stream graphs by integrating content-based features, time-weight functions, and
user trust into a personalized PageRank system.

The experiments we conducted on Epinions and Ciao datasets with F1-score, Hit ratio and
MAP evaluation metrics show that best performances are always reached by graphs that in-
tegrate at least two side information and that graphs with time-weight always outperform the
others. The resulting improvements are of at least 41%. Moreover, comparison with state-
of-the-art matrix factorization and classical user-based and item-based collaborative filtering
methods confirms the relevance of GraFC2T2 framework for top-N recommendation. Good
improvements obtained in recommender graphs by integration of side information do not guar-
antee such improvement for other types of recommender systems such as matrix factorization
and neural network. We therefore consider inclusion of content-based, time and trust informa-
tion simultaneously in such system as a key perspective.
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Balabanović M., Shoham Y. (1997). Fab: content-based, collaborative recommendation. Communications of the
ACM 40(3), 66–72. doi:10.1145/245108.245124.

Baluja S., Seth R., Sivakumar D., Jing Y., Yagnik J., Kumar S., Ravichandran D., Aly M. (2008). Video suggestion
and discovery for youtube: taking random walks through the view graph. In 17th international conference on
World Wide Web, pp. 895–904. ACM. doi:10.1145/1367497.1367618.

Basu C., Hirsh H., Cohen W. (1998). Recommendation as classification: Using social and content-based informa-
tion in recommendation. In Aaai/iaai, pp. 714–720.

Bergstra J., Bengio Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning
Research 13, 281–305.
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Koolen M., Bogers T., Gäde M., Hall M., Huurdeman H., Kamps J., Skov M., Toms E., Walsh D. (2015). Overview
of the CLEF 2015 social book search lab. In International conference of the cross-language evaluation forum
for European languages, Volume 9283 of Lecture Notes in Computer Science, pp. 545–564. doi:10.1007/978-

J. of Interd. Method. and Issues in Science
Open-access journal: http://jimis.episciences.org

20 c©JIMIS, Creative Commons
Volume: 5 - Year: 2019, DOI: 10.18713/JIMIS-300519-5-2

https://doi.org/10.1016/j.eswa.2014.07.012
http://dx.doi.org/10.1016/j.eswa.2014.07.012
https://doi.org/10.1145/963770.963776
http://dx.doi.org/10.1145/963770.963776
https://doi.org/10.1145/1099554.1099689
http://dx.doi.org/10.1145/1099554.1099689
https://doi.org/10.1145/3178876.3186183
https://doi.org/10.1145/3178876.3186183
http://dx.doi.org/10.1145/3178876.3186183
https://doi.org/10.1007/978-3-319-16354-3_35
http://dx.doi.org/10.1007/978-3-319-16354-3_35
https://www.aaai.org/Papers/IJCAI/2007/IJCAI07-444.pdf
https://www.aaai.org/Papers/IJCAI/2007/IJCAI07-444.pdf
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1214105&dswid=-5609
https://dl.acm.org/citation.cfm?id=1755883
https://doi.org/10.1016/j.knosys.2013.12.007
https://doi.org/10.1016/j.knosys.2013.12.007
http://dx.doi.org/10.1016/j.knosys.2013.12.007
https://doi.org/10.1016/j.knosys.2017.01.027
https://doi.org/10.1016/j.knosys.2017.01.027
http://dx.doi.org/10.1016/j.knosys.2017.01.027
https://doi.org/10.1145/511446.511513
http://dx.doi.org/10.1145/511446.511513
https://doi.org/10.1145/312624.312682
https://doi.org/10.1145/312624.312682
http://dx.doi.org/10.1145/312624.312682
https://doi.org/10.1109/ICDM.2008.22
http://dx.doi.org/10.1109/ICDM.2008.22
https://doi.org/10.1145/963770.963775
https://doi.org/10.1145/963770.963775
http://dx.doi.org/10.1145/963770.963775
https://doi.org/10.1007/978-3-540-73325-6_105
http://dx.doi.org/10.1007/978-3-540-73325-6_105
https://doi.org/10.1145/1639714.1639745
http://dx.doi.org/10.1145/1639714.1639745
https://doi.org/10.1109/MIPRO.2015.7160469
https://doi.org/10.1109/MIPRO.2015.7160469
http://dx.doi.org/10.1109/MIPRO.2015.7160469
https://doi.org/10.1145/2043932.2043945
http://dx.doi.org/10.1145/2043932.2043945
https://doi.org/10.1145/245108.245126
https://doi.org/10.1145/245108.245126
http://dx.doi.org/10.1145/245108.245126
https://doi.org/10.1007/978-3-319-24027-5_51
https://doi.org/10.1007/978-3-319-24027-5_51
http://dx.doi.org/10.1007/978-3-319-24027-5_51
http://dx.doi.org/10.1007/978-3-319-24027-5_51
http://jimis.episciences.org
https://doi.org/10.18713/JIMIS-300519-5-2


3-319-24027-5 51.

Koren Y. (2009). Collaborative filtering with temporal dynamics. In 15th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 447–456. doi:10.1145/1557019.1557072.

Koren Y., Bell R., Volinsky C. (2009). Matrix factorization techniques for recommender systems. Computer 42(8),
30–37. doi:10.1109/MC.2009.263.

Latapy M., Viard T., Magnien C. (2018). Stream graphs and link streams for the modeling of interactions over
time. Social Network Analysis and Mining 8, 61. doi:10.1007/s13278-018-0537-7.

Lathia N., Hailes S., Capra L. (2008). Trust-based collaborative filtering. In IFIP International Conference on
Trust Management, Volume 263 of IFIP The International Federation for Information Processing, pp. 119–134.
Springer. doi:10.1007/978-0-387-09428-1 8.

Lathia N., Hailes S., Capra L. (2009). Temporal collaborative filtering with adaptive neighbourhoods. In 32nd in-
ternational ACM SIGIR conference on Research and development in information retrieval, pp. 796–797. ACM.
doi:10.1145/1571941.1572133.

Li L., Yang Z., Wang B., Kitsuregawa M. (2007). Dynamic adaptation strategies for long-term and short-
term user profile to personalize search. In Asia-Pacific Web Conference / International Conference on Web-
Age Information Management, Volume 4505 of Lecture Notes in Computer Science, pp. 228–240. Springer.
doi:10.1007/978-3-540-72524-4 26.

Li Y., Tang J. (2008). Expertise search in a time-varying social network. In 9th International Conference on
Web-Age Information Management, pp. 293–300. IEEE. doi:10.1109/WAIM.2008.100.

Liu N. N., Zhao M., Xiang E., Yang Q. (2010). Online evolutionary collaborative filtering. In 4th ACM conference
on Recommender systems, pp. 95–102. ACM. doi:10.1145/1864708.1864729.

Liu S., Jiang C., Lin Z., Ding Y., Duan R., Xu Z. (2015). Identifying effective influencers based on trust
for electronic word-of-mouth marketing: A domain-aware approach. Information sciences 306, 34–52.
doi:10.1016/j.ins.2015.01.034.

Lops P., De Gemmis M., Semeraro G. (2011). Content-based recommender systems: State of the art and trends.
In Recommender systems handbook, Chapter 3, pp. 73–105. Springer. doi:10.1007/978-0-387-85820-3 3.

Ma X., Lu H., Gan Z., Zeng J. (2017). An explicit trust and distrust clustering based collabora-
tive filtering recommendation approach. Electronic Commerce Research and Applications 25, 29–39.
doi:10.1016/j.elerap.2017.06.005.

Massa P., Avesani P. (2007). Trust-aware recommender systems. In ACM Conference on Recommender systems,
pp. 17–24. ACM. doi:10.1145/1297231.1297235.

McLaughlin M. R., Herlocker J. L. (2004). A collaborative filtering algorithm and evaluation metric that accurately
model the user experience. In 27th annual international ACM SIGIR conference on Research and development
in information retrieval, pp. 329–336. ACM. doi:10.1145/1008992.1009050.

Mooney R. J., Roy L. (2000). Content-based book recommending using learning for text categorization. In 5th
ACM conference on Digital libraries, pp. 195–204. ACM. doi:10.1145/336597.336662.

Nguyen D. P., Le Q. T., Tu M. P. (2008). A graph-based method for combining collaborative and content-
based filtering. In Pacific Rim International Conference on Artificial Intelligence, pp. 859–869. Springer.
doi:10.1007/978-3-540-89197-0 80.

Ning X., Karypis G. (2011). Slim: Sparse linear methods for top-n recommender systems. In 11th IEEE Interna-
tional Conference on Data Mining, pp. 497–506. IEEE. doi:10.1109/ICDM.2011.134.

Ning X., Karypis G. (2012). Sparse linear methods with side information for top-n recommendations. In 6th ACM
conference on Recommender systems, pp. 155–162. ACM. doi:10.1145/2365952.2365983.

Nzekon Nzeko’o A. J., Tchuente M., Latapy M. (2017). Time Weight Content-Based Extensions of Temporal
Graphs for Personalized Recommendation. In 13th International Conference on Web Information Systems and
Technologies.

Nzekon Nzeko’o A. J., Tchuente M., Latapy M. (2019). Link Stream Graph for Temporal Recommendations. In
Colloquium of Mathematics and Computer Science.

Page L., Brin S., Motwani R., Winograd T. (1999). The PageRank citation ranking: Bringing order to the web.

J. of Interd. Method. and Issues in Science
Open-access journal: http://jimis.episciences.org

21 c©JIMIS, Creative Commons
Volume: 5 - Year: 2019, DOI: 10.18713/JIMIS-300519-5-2

http://dx.doi.org/10.1007/978-3-319-24027-5_51
http://dx.doi.org/10.1007/978-3-319-24027-5_51
https://doi.org/10.1145/1557019.1557072
http://dx.doi.org/10.1145/1557019.1557072
https://doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1109/MC.2009.263
https://doi.org/10.1007/s13278-018-0537-7
https://doi.org/10.1007/s13278-018-0537-7
http://dx.doi.org/10.1007/s13278-018-0537-7
https://doi.org/10.1007/978-0-387-09428-1_8
http://dx.doi.org/10.1007/978-0-387-09428-1_8
https://doi.org/10.1145/1571941.1572133
http://dx.doi.org/10.1145/1571941.1572133
https://doi.org/10.1007/978-3-540-72524-4_26
https://doi.org/10.1007/978-3-540-72524-4_26
http://dx.doi.org/10.1007/978-3-540-72524-4_26
https://doi.org/10.1109/WAIM.2008.100
http://dx.doi.org/10.1109/WAIM.2008.100
https://doi.org/10.1145/1864708.1864729
http://dx.doi.org/10.1145/1864708.1864729
https://doi.org/10.1016/j.ins.2015.01.034
https://doi.org/10.1016/j.ins.2015.01.034
http://dx.doi.org/10.1016/j.ins.2015.01.034
https://doi.org/10.1007/978-0-387-85820-3_3
http://dx.doi.org/10.1007/978-0-387-85820-3_3
https://doi.org/10.1016/j.elerap.2017.06.005
https://doi.org/10.1016/j.elerap.2017.06.005
http://dx.doi.org/10.1016/j.elerap.2017.06.005
https://doi.org/10.1145/1297231.1297235
http://dx.doi.org/10.1145/1297231.1297235
https://doi.org/10.1145/1008992.1009050
https://doi.org/10.1145/1008992.1009050
http://dx.doi.org/10.1145/1008992.1009050
https://doi.org/10.1145/336597.336662
http://dx.doi.org/10.1145/336597.336662
https://doi.org/10.1007/978-3-540-89197-0_80
https://doi.org/10.1007/978-3-540-89197-0_80
http://dx.doi.org/10.1007/978-3-540-89197-0_80
https://doi.org/10.1109/ICDM.2011.134
http://dx.doi.org/10.1109/ICDM.2011.134
https://doi.org/10.1145/2365952.2365983
http://dx.doi.org/10.1145/2365952.2365983
https://hal.archives-ouvertes.fr/hal-01500348/
https://hal.archives-ouvertes.fr/hal-01500348/
https://arxiv.org/abs/1904.12576
http://ilpubs.stanford.edu:8090/422/
http://jimis.episciences.org
https://doi.org/10.18713/JIMIS-300519-5-2


Technical report, Stanford InfoLab.

Pan Y., He F., Yu H. (2017). Trust-aware Collaborative Denoising Auto-Encoder for Top-N Recommendation.
arXiv cs.IR, 1703.01760.

Papagelis M., Plexousakis D., Kutsuras T. (2005). Alleviating the sparsity problem of collaborative filtering using
trust inferences. In Trust management, Volume 3477 of Lecture Notes in Computer Science, pp. 224–239.
Springer. doi:10.1007/11429760 16.

Pazzani M. J., Muramatsu J., Billsus D. (1996). Syskill & Webert: Identifying interesting web sites. In 13th AAAI
national conference on Artificial intelligence, pp. 54–61.

Pitsilis G., Marshall L. F. (2004). A model of trust derivation from evidence for use in recommendation systems.
Technical report, University of Newcastle upon Tyne, School of Computing Science.

Rendle S., Freudenthaler C., Gantner Z., Schmidt-Thieme L. (2009). BPR: Bayesian personalized ranking from
implicit feedback. In 25th conference on uncertainty in artificial intelligence, pp. 452–461. AUAI Press.

Sarwar B., Karypis G., Konstan J., Riedl J. (2001). Item-based collaborative filtering recommendation algorithms.
In 10th international conference on World Wide Web, pp. 285–295. ACM. doi:10.1145/371920.372071.

Shi Y., Karatzoglou A., Baltrunas L., Larson M., Oliver N., Hanjalic A. (2012). CLiMF: learning to maximize
reciprocal rank with collaborative less-is-more filtering. In 6th ACM conference on Recommender systems, pp.
139–146. ACM. doi:10.1145/2365952.2365981.

Shu J., Shen X., Liu H., Yi B., Zhang Z. (2018). A content-based recommendation algorithm for learning resources.
Multimedia Systems 24(2), 163–173. doi:10.1007/s00530-017-0539-8.
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B APPENDIX
In this section, we present the results obtained for top-20, -50 and -100. The section is divided in two parts: the first
one presents performances obtained for all combinations of side information and basic graphs of the framework;
the second highlights the 3 best combinations, according to basic graph and evaluation metric.

These two parts confirm observations made on top-10 results in the Section VI. For example, recommender graphs
that integrate simultaneously content-based, users’ preferences temporal dynamic and trust relationship between
users, are usually the best. Thus, we recommend the simultaneous integration of these three side information in
order to increase the chances to achieve good performances.
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-
ET
IT
EDF
LDF
CI
CIU
EDF-ET
EDF-IT
LDF-ET
LDF-IT
CI-ET
CI-IT
CIU-ET
CIU-IT
CI-EDF
CI-LDF
CIU-EDF
CIU-LDF
CI-EDF-ET
CI-EDF-IT
CI-LDF-ET
CI-LDF-IT
CIU-EDF-ET
CIU-EDF-IT
CIU-LDF-ET
CIU-LDF-IT

EPINIONS BIP STG LSG
1.56 1.59 1.11
1.31 1.49 1.05
1.73 1.77 1.39
2.7 2.15 2.55
1.88 1.68 1.53
1.95 2.15 0.76
2.16 2.36 0.63
1.8 1.68 2.46
2.47 2.5 2.43
1.39 1.57 1.21
1.92 1.95 2.18
1.67 2.12 0.79
2.05 2.19 1.49
2.07 2.12 0.64
2.19 2.35 1.53
3.25 2.88 0.81
2.57 2.38 0.85
3.45 2.93 0.67
3.02 2.39 0.74
2.6 2.58 0.81
3.25 3.26 1.52
1.98 2.17 0.86
2.63 2.3 2.09
2.92 2.85 0.67
3.44 3.33 1.48
2.43 2.34 0.67
2.81 2.51 1.93

F1@20
BIP STG LSG

8.22 8.22 7.16
7.43 7.96 6.9
8.75 9.02 8.89
10.6 9.55 10.6
8.89 8.49 8.49
9.28 9.68 5.44
9.95 10.1 4.64
8.75 8.62 10.3
9.95 10.1 10.3
7.69 8.22 7.56
9.55 9.81 10.5
8.49 9.55 5.57
9.95 10.1 8.75
9.68 9.95 4.64
10.1 10.1 9.15
11.7 11.1 5.7
10.6 9.68 5.97
11.8 11.3 5.04
11.0 10.6 5.31
10.5 10.7 5.7
11.3 11.4 8.89
9.15 9.68 5.97
10.5 10.2 9.81
11.0 10.9 5.04
11.7 11.5 9.02
10.1 10.5 5.04
10.7 10.5 9.42

HR@20
BIP STG LSG

2.38 2.4 1.84
2.18 2.24 1.8
2.51 2.49 2.41
2.62 2.56 2.61
2.38 2.23 2.67
2.64 2.98 1.89
2.9 3.13 1.73
2.36 2.15 2.41
2.84 2.67 2.64
2.17 2.24 2.32
3.12 3.12 3.06
2.4 2.83 1.9
2.63 2.8 2.35
2.67 3.13 1.73
2.9 3.13 2.43
3.33 2.97 1.9
2.76 2.83 1.9
3.45 3.26 1.79
3.01 3.09 1.82
2.7 2.71 1.9
3.03 2.99 2.4
2.42 2.83 1.9
3.15 3.14 2.77
2.87 3.11 1.79
3.55 3.41 2.46
2.73 3.01 1.74
3.29 3.24 3.26

MAP@20

Table 6: Epinions Dataset - Performances with optimal settings for Top-20.

-
ET
IT
EDF
LDF
CI
CIU
EDF-ET
EDF-IT
LDF-ET
LDF-IT
CI-ET
CI-IT
CIU-ET
CIU-IT
CI-EDF
CI-LDF
CIU-EDF
CIU-LDF
CI-EDF-ET
CI-EDF-IT
CI-LDF-ET
CI-LDF-IT
CIU-EDF-ET
CIU-EDF-IT
CIU-LDF-ET
CIU-LDF-IT

EPINIONS BIP STG LSG
1.06 1.08 0.91
0.95 1.05 0.87
1.16 1.16 0.97
1.25 1.28 1.04
1.14 1.15 0.99
1.55 1.48 0.56
1.59 1.53 0.48
1.09 1.11 0.89
1.36 1.34 0.97
0.97 1.08 0.87
1.18 1.16 0.98
1.43 1.47 0.56
1.49 1.47 0.89
1.49 1.49 0.48
1.51 1.55 0.91
1.74 1.66 0.58
1.67 1.51 0.6
1.63 1.77 0.55
1.59 1.55 0.54
1.72 1.63 0.59
1.52 1.66 0.88
1.56 1.52 0.56
1.49 1.49 0.93
1.52 1.75 0.55
1.62 1.73 0.91
1.47 1.55 0.51
1.52 1.53 0.97

F1@50
BIP STG LSG

15.3 15.4 13.9
14.2 15.1 13.5
16.0 16.4 14.7
17.1 16.4 15.4
16.0 16.0 14.7
19.0 18.4 9.68
19.0 18.6 8.62
15.5 15.5 14.2
17.5 16.8 15.0
14.6 15.4 13.5
16.6 16.4 14.9
18.2 18.3 9.68
18.4 18.4 14.2
18.3 18.6 8.49
18.6 18.6 14.6
19.9 19.9 9.95
19.6 18.7 10.1
19.4 19.9 9.81
19.0 19.0 9.95
19.8 19.8 9.95
18.8 19.9 14.2
19.0 18.8 9.68
18.6 18.6 14.5
18.7 19.9 9.81
19.6 19.8 14.6
18.2 19.0 9.42
18.7 18.8 15.1

HR@50
BIP STG LSG
2.5 2.55 2.03
2.3 2.4 1.99
2.52 2.63 2.55
2.64 2.71 2.7
2.5 2.4 2.72
2.87 3.15 1.93
3.01 3.26 1.83
2.43 2.33 2.52
2.83 2.74 2.73
2.28 2.4 2.38
3.09 3.09 3.07
2.63 3.05 1.93
2.77 3.03 2.41
2.76 3.27 1.83
3.07 3.29 2.5
3.29 3.06 1.94
2.89 3.05 1.95
3.5 3.36 1.84
3.2 3.33 1.92
2.71 2.93 1.94
3.1 2.99 2.46
2.65 3.06 1.93
3.14 3.14 2.82
3.02 3.29 1.83
3.65 3.48 2.54
2.83 3.18 1.84
3.36 3.45 3.27

MAP@50

Table 7: Epinions Dataset - Performances with optimal settings for Top-50.
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-
ET
IT
EDF
LDF
CI
CIU
EDF-ET
EDF-IT
LDF-ET
LDF-IT
CI-ET
CI-IT
CIU-ET
CIU-IT
CI-EDF
CI-LDF
CIU-EDF
CIU-LDF
CI-EDF-ET
CI-EDF-IT
CI-LDF-ET
CI-LDF-IT
CIU-EDF-ET
CIU-EDF-IT
CIU-LDF-ET
CIU-LDF-IT

EPINIONS BIP STG LSG
0.7 0.72 0.67
0.69 0.68 0.66
0.74 0.77 0.66
0.77 0.77 0.67
0.71 0.72 0.67
0.89 0.91 0.39
0.87 0.92 0.39
0.71 0.7 0.65
0.76 0.79 0.67
0.71 0.69 0.66
0.75 0.79 0.66
0.87 0.88 0.39
0.88 0.88 0.58
0.86 0.92 0.39
0.89 0.92 0.59
0.92 0.98 0.42
0.89 0.88 0.42
0.91 1.03 0.4
0.89 0.94 0.41
0.91 0.95 0.42
0.92 0.95 0.58
0.88 0.89 0.41
0.88 0.88 0.57
0.91 1.02 0.39
0.91 1.02 0.59
0.88 0.94 0.39
0.89 0.92 0.59

F1@100
BIP STG LSG

22.5 22.4 21.9
22.3 22.0 21.5
23.3 23.6 21.9
22.9 23.3 21.9
22.5 22.3 21.9
26.3 26.3 14.3
26.0 27.5 14.3
22.1 22.0 21.2
23.5 23.9 22.3
22.4 21.9 21.5
23.6 23.9 21.9
25.9 25.7 14.3
26.1 26.5 20.0
25.9 27.5 14.3
26.5 27.3 20.2
26.8 27.6 15.1
26.3 26.0 15.1
26.3 28.5 14.5
26.3 27.6 15.0
26.5 27.2 15.0
26.7 27.2 20.0
25.7 25.7 14.6
26.1 26.5 20.0
26.1 28.5 14.3
27.2 28.5 20.2
26.0 27.6 14.3
26.5 27.3 20.3

HR@100
BIP STG LSG

2.54 2.59 2.13
2.35 2.43 2.09
2.6 2.68 2.61
2.66 2.66 2.72
2.54 2.42 2.65
2.84 3.13 1.83
3.03 3.35 1.82
2.44 2.33 2.54
2.9 2.77 2.77
2.33 2.42 2.36
3.1 3.1 3.02
2.6 2.96 1.83
2.78 2.93 2.48
2.85 3.36 1.82
3.15 3.35 2.52
3.29 3.15 1.85
2.88 2.95 1.89
3.58 3.34 1.83
3.12 3.33 1.9
2.71 2.89 1.84
3.2 3.06 2.49
2.61 2.95 1.83
3.16 3.16 2.82
2.94 3.21 1.82
3.73 3.44 2.55
2.79 3.17 1.82
3.37 3.43 3.26

MAP@100

Table 8: Epinions Dataset - Performances with optimal settings for Top-100.

-
ET
IT
EDF
LDF
CI
CIU
EDF-ET
EDF-IT
LDF-ET
LDF-IT
CI-ET
CI-IT
CIU-ET
CIU-IT
CI-EDF
CI-LDF
CIU-EDF
CIU-LDF
CI-EDF-ET
CI-EDF-IT
CI-LDF-ET
CI-LDF-IT
CIU-EDF-ET
CIU-EDF-IT
CIU-LDF-ET
CIU-LDF-IT

CIAO BIP STG LSG
1.61 1.93 1.71
1.36 1.69 1.61
3.08 2.72 2.2
2.24 2.35 2.51
2.05 1.99 2.7
3.13 3.58 1.03
2.93 4.39 0.87
2.01 2.01 1.69
3.15 2.69 2.34
1.44 1.69 1.61
2.82 2.82 2.6
2.59 3.25 1.09
3.35 3.47 2.76
3.78 4.39 1.03
3.64 4.71 3.27
4.81 3.95 1.48
4.27 3.92 1.54
4.37 4.19 1.32
3.43 4.55 1.39
2.19 3.78 1.47
4.18 3.86 2.95
2.7 3.33 1.24
4.87 4.92 3.38
3.7 4.38 1.32
3.84 4.56 3.39
4.2 4.5 1.21
5.06 4.36 3.28

F1@20
BIP STG LSG

9.26 9.98 10.2
8.71 9.26 9.98
13.1 12.9 11.8
11.1 11.4 12.3
10.2 10.2 13.2
12.2 12.3 7.44
13.2 14.5 6.72
10.7 10.3 11.4
14.2 13.8 12.0
8.71 9.26 9.98
12.3 12.5 12.3
11.6 12.2 7.8
13.4 14.0 12.7
14.0 14.5 7.26
14.5 14.7 13.4
15.1 13.8 9.26
14.9 14.2 10.3
15.8 14.7 8.17
15.2 15.4 9.62
13.8 13.6 9.07
15.4 14.9 13.1
11.6 13.1 8.71
15.1 14.5 13.8
15.8 14.5 8.17
16.0 15.8 13.6
14.5 15.4 8.35
16.0 15.8 14.5

HR@20
BIP STG LSG

2.13 2.25 2.44
1.96 2.13 2.35
2.76 2.75 2.51
2.28 2.56 2.65
2.74 3.0 3.78
2.37 2.45 1.75
2.8 3.43 1.55
2.0 2.36 2.41
3.27 3.11 2.56
2.02 2.22 2.36
3.06 3.25 2.81
2.3 2.39 1.88
2.87 2.83 2.68
2.73 3.51 1.63
3.13 3.39 2.66
2.77 3.01 1.84
3.29 3.21 2.92
3.66 3.6 1.84
3.62 3.68 2.82
2.76 2.78 1.93
3.41 3.42 2.76
2.31 2.44 2.01
3.44 3.48 3.45
3.24 3.42 1.84
3.63 3.64 2.69
2.79 3.69 1.69
3.59 3.69 3.49

MAP@20

Table 9: Ciao Dataset - Performances with optimal settings for Top-20.
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-
ET
IT
EDF
LDF
CI
CIU
EDF-ET
EDF-IT
LDF-ET
LDF-IT
CI-ET
CI-IT
CIU-ET
CIU-IT
CI-EDF
CI-LDF
CIU-EDF
CIU-LDF
CI-EDF-ET
CI-EDF-IT
CI-LDF-ET
CI-LDF-IT
CIU-EDF-ET
CIU-EDF-IT
CIU-LDF-ET
CIU-LDF-IT

CIAO BIP STG LSG
1.46 1.55 1.51
1.58 1.52 1.47
1.69 1.72 1.62
1.74 1.74 1.81
1.47 1.62 1.77
2.27 2.18 0.97
2.37 2.65 0.88
1.63 1.59 1.59
1.98 1.79 1.7
1.59 1.58 1.47
1.9 1.69 1.65
2.34 2.07 0.98
2.53 2.29 1.57
2.27 2.66 0.88
2.52 2.86 1.58
2.45 2.36 1.26
2.56 2.23 1.17
2.57 2.71 1.03
2.62 2.78 1.13
2.63 2.34 1.29
2.6 2.44 1.59
2.31 2.21 0.99
2.51 2.42 1.64
2.69 2.69 1.07
2.82 2.69 1.61
2.55 2.72 1.08
2.99 2.88 1.61

F1@50
BIP STG LSG

19.4 19.6 19.8
19.6 19.2 20.0
20.9 21.1 20.5
21.4 20.7 20.9
19.4 20.3 20.9
22.1 22.5 15.2
24.0 24.9 14.3
20.3 20.9 20.7
22.1 21.8 21.2
19.6 19.6 20.0
21.8 20.5 20.5
23.0 23.0 15.4
23.6 22.7 20.5
24.0 24.7 14.2
24.7 25.8 21.2
23.0 24.0 18.9
23.4 22.9 17.6
24.0 25.4 16.5
24.0 24.7 16.9
24.1 23.8 18.9
24.5 24.1 20.7
23.4 23.8 15.4
23.8 23.8 21.1
24.3 25.8 16.9
25.4 25.4 21.4
23.8 25.2 16.7
24.9 24.9 20.9

HR@50
BIP STG LSG

2.34 2.5 2.74
2.2 2.43 2.67
2.92 2.84 2.73
2.56 2.78 2.86
2.91 3.0 3.97
2.55 2.71 1.92
3.03 3.67 1.72
2.24 2.65 2.73
3.39 3.23 2.81
2.25 2.54 2.68
3.18 3.29 2.99
2.51 2.68 1.92
2.98 2.91 2.76
2.98 3.75 1.74
3.26 3.62 2.88
2.98 3.18 2.02
3.45 3.29 3.12
3.87 3.87 2.07
3.74 3.82 3.01
3.01 3.04 2.05
3.53 3.56 2.94
2.63 2.75 2.05
3.61 3.56 3.61
3.42 3.7 2.07
3.69 3.73 2.91
3.0 3.86 1.93
3.69 3.76 3.51

MAP@50

Table 10: Ciao Dataset - Performances with optimal settings for Top-50.

-
ET
IT
EDF
LDF
CI
CIU
EDF-ET
EDF-IT
LDF-ET
LDF-IT
CI-ET
CI-IT
CIU-ET
CIU-IT
CI-EDF
CI-LDF
CIU-EDF
CIU-LDF
CI-EDF-ET
CI-EDF-IT
CI-LDF-ET
CI-LDF-IT
CIU-EDF-ET
CIU-EDF-IT
CIU-LDF-ET
CIU-LDF-IT

CIAO BIP STG LSG
1.11 1.15 1.06
1.08 1.15 1.03
1.16 1.15 1.07
1.25 1.27 1.18
1.23 1.14 1.17
1.54 1.51 0.96
1.58 1.57 0.89
1.21 1.27 1.11
1.22 1.26 1.09
1.11 1.15 1.03
1.14 1.18 1.07
1.57 1.52 0.98
1.52 1.53 1.09
1.57 1.56 0.9
1.48 1.5 1.09
1.66 1.56 1.01
1.6 1.49 1.0
1.73 1.74 0.9
1.56 1.5 0.89
1.71 1.54 1.01
1.57 1.54 1.16
1.55 1.55 0.98
1.49 1.5 1.15
1.84 1.76 0.91
1.74 1.73 1.1
1.59 1.57 0.9
1.52 1.51 1.13

F1@100
BIP STG LSG

27.9 28.3 27.8
27.9 28.1 27.4
28.7 28.7 27.9
30.5 31.0 29.9
29.6 28.5 29.2
33.8 33.4 26.7
34.3 34.5 25.8
29.2 30.3 28.3
28.9 30.1 27.9
28.7 28.7 27.6
27.9 29.2 27.9
33.9 33.4 26.5
33.2 33.4 29.9
34.8 35.2 25.8
33.4 34.1 29.2
34.5 33.6 28.5
34.5 33.6 27.2
35.0 35.9 26.5
34.5 34.3 26.0
34.5 33.6 29.2
33.0 33.4 29.8
33.9 33.4 26.5
32.7 33.8 30.5
35.8 35.9 26.9
34.7 35.8 29.6
34.7 34.7 25.8
33.2 34.5 30.5

HR@100
BIP STG LSG

2.39 2.49 2.64
2.25 2.36 2.56
2.88 2.85 2.73
2.46 2.64 2.86
2.96 3.05 3.94
2.62 2.74 2.02
3.08 3.51 1.72
2.18 2.57 2.62
3.37 3.22 2.78
2.32 2.47 2.57
3.22 3.31 3.02
2.58 2.65 2.04
2.97 2.91 2.83
3.03 3.6 1.8
3.23 3.47 2.85
2.92 3.13 2.14
3.37 3.32 3.18
3.83 3.76 2.17
3.7 3.81 2.98
2.91 2.98 2.12
3.41 3.55 2.85
2.63 2.71 2.16
3.58 3.59 3.5
3.33 3.66 2.17
3.64 3.68 2.89
3.04 3.72 1.98
3.75 3.79 3.46

MAP@100

Table 11: Ciao Dataset - Performances with optimal settings for Top-100.
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1
2
3

F@20

No
Epinions Dataset

1.56 3.45 121% CIU-EDF
1.56 3.44 120% CIU-EDF-IT
1.56 3.25 109% CI-EDF-IT

Basic Best Imp. BIP-Best
BIP

1.59 3.33 109% CIU-EDF-IT
1.59 3.26 105% CI-EDF-IT
1.59 2.93 84% CIU-EDF

Basic Best Imp. STG-Best
STG

1.11 2.55 129% EDF
1.11 2.46 121% EDF-ET
1.11 2.43 118% EDF-IT

Basic Best Imp. LSG-Best
LSG

1
2
3

H@20
8.22 11.8 43% CIU-EDF
8.22 11.7 41% CI-EDF
8.22 11.7 41% CIU-EDF-IT

8.22 11.5 40% CIU-EDF-IT
8.22 11.4 38% CI-EDF-IT
8.22 11.3 37% CIU-EDF

7.16 10.6 48% EDF
7.16 10.5 46% LDF-IT
7.16 10.3 44% EDF-ET

1
2
3

M@20
2.38 3.55 49% CIU-EDF-IT
2.38 3.45 45% CIU-EDF
2.38 3.33 40% CI-EDF

2.4 3.41 41% CIU-EDF-IT
2.4 3.26 35% CIU-EDF
2.4 3.24 34% CIU-LDF-IT

1.84 3.26 77% CIU-LDF-IT
1.84 3.06 66% LDF-IT
1.84 2.77 50% CI-LDF-IT

1
2
3

F@50

No
Epinions Dataset

1.06 1.74 64% CI-EDF
1.06 1.72 61% CI-EDF-ET
1.06 1.67 57% CI-LDF

Basic Best Imp. BIP-Best
BIP

1.08 1.77 62% CIU-EDF
1.08 1.75 61% CIU-EDF-ET
1.08 1.73 59% CIU-EDF-IT

Basic Best Imp. STG-Best
STG

0.91 1.04 14% EDF
0.91 0.99 9% LDF
0.91 0.98 7% LDF-IT

Basic Best Imp. LSG-Best
LSG

1
2
3

H@50
15.3 19.9 30% CI-EDF
15.3 19.8 29% CI-EDF-ET
15.3 19.6 28% CI-LDF

15.4 19.9 29% CI-EDF
15.4 19.9 29% CIU-EDF
15.4 19.9 29% CI-EDF-IT

13.9 15.4 10% EDF
13.9 15.1 8% CIU-LDF-IT
13.9 15.0 7% EDF-IT

1
2
3

M@50
2.5 3.65 45% CIU-EDF-IT
2.5 3.5 40% CIU-EDF
2.5 3.36 34% CIU-LDF-IT

2.55 3.48 36% CIU-EDF-IT
2.55 3.45 35% CIU-LDF-IT
2.55 3.36 31% CIU-EDF

2.03 3.27 61% CIU-LDF-IT
2.03 3.07 51% LDF-IT
2.03 2.82 38% CI-LDF-IT

1
2
3

F@100

No
Epinions Dataset

0.7 0.92 30% CI-EDF-IT
0.7 0.92 30% CI-EDF
0.7 0.91 29% CIU-EDF-IT

Basic Best Imp. BIP-Best
BIP

0.72 1.03 44% CIU-EDF
0.72 1.02 42% CIU-EDF-ET
0.72 1.02 42% CIU-EDF-IT

Basic Best Imp. STG-Best
STG

0.67 0.67 0% -
0.67 0.67 0% LDF
0.67 0.67 0% EDF-IT

Basic Best Imp. LSG-Best
LSG

1
2
3

H@100
22.5 27.2 20% CIU-EDF-IT
22.5 26.8 18% CI-EDF
22.5 26.7 18% CI-EDF-IT

22.4 28.5 27% CIU-EDF
22.4 28.5 27% CIU-EDF-ET
22.4 28.5 27% CIU-EDF-IT

21.9 22.3 1% EDF-IT
21.9 21.9 0% -
21.9 21.9 0% IT

1
2
3

M@100
2.54 3.73 46% CIU-EDF-IT
2.54 3.58 41% CIU-EDF
2.54 3.37 33% CIU-LDF-IT

2.59 3.44 32% CIU-EDF-IT
2.59 3.43 32% CIU-LDF-IT
2.59 3.36 29% CIU-ET

2.13 3.26 53% CIU-LDF-IT
2.13 3.02 41% LDF-IT
2.13 2.82 32% CI-LDF-IT

Table 12: Epinions Dataset - Best recommender graphs for Top-20, -50 and -100. Comparison of the
three best recommender graph combinations with the associated basic graph.

J. of Interd. Method. and Issues in Science
Open-access journal: http://jimis.episciences.org

27 c©JIMIS, Creative Commons
Volume: 5 - Year: 2019, DOI: 10.18713/JIMIS-300519-5-2

http://jimis.episciences.org
https://doi.org/10.18713/JIMIS-300519-5-2


1
2
3

F@20

No
Ciao Dataset

1.61 5.06 215% CIU-LDF-IT
1.61 4.87 202% CI-LDF-IT
1.61 4.81 199% CI-EDF

Basic Best Imp. BIP-Best
BIP

1.93 4.92 155% CI-LDF-IT
1.93 4.71 144% CIU-IT
1.93 4.56 136% CIU-EDF-IT

Basic Best Imp. STG-Best
STG

1.71 3.39 98% CIU-EDF-IT
1.71 3.38 97% CI-LDF-IT
1.71 3.28 91% CIU-LDF-IT

Basic Best Imp. LSG-Best
LSG

1
2
3

H@20
9.26 16.0 72% CIU-EDF-IT
9.26 16.0 72% CIU-LDF-IT
9.26 15.8 70% CIU-EDF

9.98 15.8 58% CIU-EDF-IT
9.98 15.8 58% CIU-LDF-IT
9.98 15.4 54% CIU-LDF

10.2 14.5 42% CIU-LDF-IT
10.2 13.8 35% CI-LDF-IT
10.2 13.6 33% CIU-EDF-IT

1
2
3

M@20
2.13 3.66 72% CIU-EDF
2.13 3.63 70% CIU-EDF-IT
2.13 3.62 70% CIU-LDF

2.25 3.69 64% CIU-LDF-ET
2.25 3.69 64% CIU-LDF-IT
2.25 3.68 63% CIU-LDF

2.44 3.78 54% LDF
2.44 3.49 42% CIU-LDF-IT
2.44 3.45 41% CI-LDF-IT

1
2
3

F@50

No
Ciao Dataset

1.46 2.99 104% CIU-LDF-IT
1.46 2.82 93% CIU-EDF-IT
1.46 2.69 83% CIU-EDF-ET

Basic Best Imp. BIP-Best
BIP

1.55 2.88 85% CIU-LDF-IT
1.55 2.86 84% CIU-IT
1.55 2.78 79% CIU-LDF

Basic Best Imp. STG-Best
STG

1.51 1.81 20% EDF
1.51 1.77 17% LDF
1.51 1.7 12% EDF-IT

Basic Best Imp. LSG-Best
LSG

1
2
3

H@50
19.4 25.4 30% CIU-EDF-IT
19.4 24.9 28% CIU-LDF-IT
19.4 24.7 27% CIU-IT

19.6 25.8 31% CIU-IT
19.6 25.8 31% CIU-EDF-ET
19.6 25.4 29% CIU-EDF

19.8 21.4 8% CIU-EDF-IT
19.8 21.2 7% EDF-IT
19.8 21.2 7% CIU-IT

1
2
3

M@50
2.34 3.87 65% CIU-EDF
2.34 3.74 60% CIU-LDF
2.34 3.69 57% CIU-LDF-IT

2.5 3.87 54% CIU-EDF
2.5 3.86 54% CIU-LDF-ET
2.5 3.82 52% CIU-LDF

2.74 3.97 44% LDF
2.74 3.61 31% CI-LDF-IT
2.74 3.51 28% CIU-LDF-IT

1
2
3

F@100

No
Ciao Dataset

1.11 1.84 66% CIU-EDF-ET
1.11 1.74 57% CIU-EDF-IT
1.11 1.73 56% CIU-EDF

Basic Best Imp. BIP-Best
BIP

1.15 1.76 52% CIU-EDF-ET
1.15 1.74 51% CIU-EDF
1.15 1.73 50% CIU-EDF-IT

Basic Best Imp. STG-Best
STG

1.06 1.18 11% EDF
1.06 1.17 10% LDF
1.06 1.16 9% CI-EDF-IT

Basic Best Imp. LSG-Best
LSG

1
2
3

H@100
27.9 35.8 27% CIU-EDF-ET
27.9 35.0 25% CIU-EDF
27.9 34.8 24% CIU-ET

28.3 35.9 26% CIU-EDF
28.3 35.9 26% CIU-EDF-ET
28.3 35.8 26% CIU-EDF-IT

27.8 30.5 9% CI-LDF-IT
27.8 30.5 9% CIU-LDF-IT
27.8 29.9 7% EDF

1
2
3

M@100
2.39 3.83 60% CIU-EDF
2.39 3.75 57% CIU-LDF-IT
2.39 3.7 55% CIU-LDF

2.49 3.81 52% CIU-LDF
2.49 3.79 52% CIU-LDF-IT
2.49 3.76 51% CIU-EDF

2.64 3.94 49% LDF
2.64 3.5 32% CI-LDF-IT
2.64 3.46 31% CIU-LDF-IT

Table 13: Ciao Dataset - Best recommender graphs for Top-20, -50 and -100. Comparison of the three
best recommender graph combinations with the associated basic graph.
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