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0 Abstract and basic information

In this paper we prove the null controllability of the heat equation in domains with a cylindrical

part and limited by a Lipschitz graph. The proof consists mainly on getting a Carleman estimate

which presents the usual absorption properties. The main difficulty we face is the loss of existence

of the usual weighted function in C2 smooth domains. In order to deal with this, we use its

cylindrical structure and approximate the system by the same system stated in regular domains.

Finally, we show some applications like the controllability of the semi-linear heat equation in

those domains.
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1 Introduction

The null controllability of the heat equation has been an interesting research topic in the last

40 years. Regarding this topic, in this paper we focus on domains; that is, on bounded connected

non-empty open sets of Rd. There are three main approaches in the literature:

• The first one uses the observability estimates of the wave equation to prove the null

controllability of the heat equation. This method dates back to 1973 (see [34]) and recently,

it has been used to get accurate bounds on the cost of the null controllability (see, for

instance, [31], [32], [37] and [10]).

• The second one is based on spectral inequalities and on properties of analytic functions.

The first time this approach is used for the heat equation was in 1995 in [27], where the

authors proved the controllability in C∞ domains. More recently, the null controllability

of the heat equation has been studied with these techniques when the control is located

in an arbitrary measurable set of positive measure (see, for instance, [38], [39] and [2]),

which is one of the advantages of this method. In addition, these results have recently

been extended to Lipschitz domains which are locally star-shaped (see [3]). As for other

parabolic equations, this method has been used recently to study the controllability of the

Stokes equation (see [6]) and higher order parabolic equations (see, for instance, [11] and

[12]).

• The third one is based on multiplying the adjoint function by an exponential weight and

using the PDE satisfied by the new function. Indeed, Fursikov and Imanuvilov proved with

this method in 1996 the controllability of the heat equation in C2 domains (see [19]) when

the control domain is an open set. This method is really flexible and it is the base to study

the controllability of countless parabolic differential equations, both linear and non-linear

(see, for instance, [19]). As a continuation of the work made in [19], Carleman estimates of

the heat equation have been established when the system is not regular, which proves the

null controllability of some related linear and non-linear systems. For instance, in [24] and

[16] the authors consider non-regular source terms. Moreover, in [15] and [23] the authors

study some boundary conditions which imply that the solution is not in L2(0, T ;H2(Ω)).

Additional examples are given in [9], [4] and [26], where the authors analyse parabolic

equations in which the diffusion coefficient is not continuous. Finally, it is well-known that

this method can be easily generalized to cubes or, more generally, to any cartesian product

of C2 domains (see, for instance, [20]).
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The main objective of this paper is to extend the method of Fursikov and Imanuvilov to

additional domains which are not C2 when there is a lack of regularity caused by the domain and

the control acts on an internal subdomain. In particular, we aim to get a Carleman inequality

with a source term. It is a relevant problem because, unlike in [3], this method allows us

to consider lower order terms with coefficients that just belong to L∞, and hence treat non-

linearities. We recall that the authors in [19] prove a Carleman inequality with the help of an

auxiliary function η which satisfies:

η ∈ C2
(
Ω
)
, η = 0 on ∂Ω, η > 0 in Ω, inf

Ω\ω
|∇η| > 0, (1.1)

for ω the control domain. Since in a Lipschitz domain the heat equation has a unique energy

solution, the existence of some Carleman estimate seems reasonable. However, two difficulties

arise:

• The first and main difficulty is that the construction of the function η given in [19] does

not work when Ω is not C2. Indeed, if Ω has corners and if ω is compactly included in Ω,

the three conditions in (1.1) are incompatible. The only solution known so far for other

domains (like cylinders) is to construct manually an auxiliary function which satisfies the

following assumptions (which are verified by any η satisfying (1.1)):

η ∈ C2
(
Ω
)
, ∂nη ≤ 0 on ∂Ω, inf

Ω\ω
|∇η| > 0, (1.2)

for n the outward unit normal vector on ∂Ω. In the case of cylinders, the construction of

η is done for instance as a sum of functions of different variables.

• The second difficulty is that [19] uses that the Laplacian behaves well in Ω in the sense

that DΩ(∆) ⊂ H2(Ω) continuously, for

DΩ(∆) := {w ∈ H1
0 (Ω) : ∆w ∈ L2(Ω)},

omitting the Ω if it is clear. However, when Ω is Lipschitz this is not always true, since

in a general Lipschitz domain the most we can ensure is that D(∆) ⊂ H3/2(Ω) contin-

uously. Indeed, the fact that D(∆) ⊂ H3/2(Ω) continuously is proved in [25], and for

all ε > 0 a counter-example of a domain Ωε for which there is w ∈ H1
0 (Ωε) such that

−∆w ∈ C∞
(
Ωε

)
but w 6∈ H3/2+ε(Ω) is given for instance in [21]. In particular, if u

is a solution of the backwards heat equation with Dirichlet boundary conditions, initial

value in H1
0 (Ω) and source term in L2((0, T ) × Ω), the most that we can expect is that

u ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;D(∆)). However, while doing the Carleman in [19] the

authors do some calculations with the second order derivatives, so they need that the reg-

ular solutions of the heat equation belong to L2(0, T ;H2(Ω)). One of the contributions of
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this paper on the Fursikov-Imanuvilov method is reducing the difficulty that the L2-norm

of the Laplacian is not equivalent to the H2-norm to the existence of a proper auxiliary

function. We do it in Section 2 by approximating the domain with regular subdomains.

As a first step to prove the null controllability of the heat equation by an internal control in

any Lipschitz domain, in this paper we prove the null controllability in pseudo-cylinders. By

pseudo-cylinder we mean the following:

Definition 1.1. We say that Ω ⊂ Rd+1 (d ≥ 1) is a pseudo-cylinder if there are B ⊂ Rd a C2

domain, U the composition of a rotation and a translation and H : B 7→ R+ a Lipschitz function

satisfying infBH > 0 such that:

Ω = U ({(x, z) : x ∈ B, z ∈ (0, H(x))}) . (1.3)

Moreover, we denote the cylindrical part by:

C := U

(
B×

(
0, inf

B
H

))
. (1.4)

If U = I (the identity endomorphism), we say that the cylinder is canonically oriented. In that

case, we have:

C = B×
(

0, inf
B
H

)
. (1.5)

Remark 1.2. If Ω is a pseudo-cylinder, we can split ∂Ω into three parts:

U (B× {0}) , L := U ({(x, z) : x ∈ ∂B, z ∈ (0, H(x))}) , T := U ({(x,H(x)) : x ∈ B}) .

If Ω is canonically oriented, those parts are given by:

B× {0}, L = {(x, z) : x ∈ ∂B, z ∈ (0, H(x))}, T = {(x,H(x)) : x ∈ B}.

Example 1.3. See Figure 1 for a canonically-oriented pseudo-cylinder in R2.

Remark 1.4. The pseudo-cylinders are relevant domains, for example, in fluid mechanics (see,

for instance, [33] and [22]).

In this paper we solve the previously presented difficulties for pseudo-cylinders and get some

Carleman estimates (see Proposition 3.2 and Proposition 3.6 below) which present the usual

absorption properties. However, as we explain in Comment 5 of Section 3.3, our method does

not work in every Lipschitz domain, so the general case remains an interesting open problem.
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Figure 1: A canonically oriented pseudo-cylinder.

Before presenting the main result of this paper we introduce the following notation:

Definition 1.5. Let Ω be any domain and let ω ⊂ Ω be a subdomain. We define as usual

Q := (0, T ) × Ω, Qω := (0, T ) × ω, Σ := (0, T ) × ∂Ω and n the outward unit normal vector

on ∂Ω. Similarly, if the domain is denoted by Ω̃, we define Q̃ := (0, T ) × Ω̃, Σ̃ := (0, T ) × ∂Ω̃

and ñ as the outward unit normal vector on ∂Ω̃. Moreover, we denote by ω ⊂⊂ Ω if ω is

compactly included in Ω. Finally, in order to shorten the notation we omit the “dt”, “dx” and

“dz” when we are integrating and the integrated variables can be easily deduced by looking at

the integration domain.

Now, we may state the main result of this paper:

Theorem 1.6. Let Ω be a pseudo-cylinder and ω ⊂ Ω be a subdomain. Then, there is C > 0

such that if T > 0, A ∈ (L∞(Q))d+1, a ∈ L∞(Q), and y0 ∈ L2(Ω), there is a control v ∈ L2(Qω)

such that the solution of the system:
yt −∆y +A · ∇y + ay = v1ω in Q,

y = 0 on Σ,

y(0, ·) = y0 on Ω,

satisfies y(T, ·) = 0, and such that the control satisfies the estimate:

‖v‖L2(Qω) ≤ CeCK(T,a,A)‖y0‖L2(Ω),
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for:

K(T, a,A) := 1 + T−1 + T‖a‖L∞(Q) + ‖a‖2/3L∞(Q) + (1 + T )‖A‖2(L∞(Q))d+1 .

Remark 1.7. Since the Laplacian is invariant under rotations (and translations), it suffices to

prove Theorem 1.6 when Ω is canonically oriented. Moreover, we remark that if we prove

Theorem 1.6 for some control domain ω̃, the conclusions of Theorem 1.6 are true for all ω ⊃ ω̃,

as it suffices to consider v = ṽ1ω̃, for ṽ the control supported in ω̃.

Using Theorem 1.6 we can get positive results about the controllability of the semi-linear heat

equation when the non-linearity depends only on y (see Comment 6 on Section 3.3 for a remark

about non-linearities depending on ∇y):
yt −∆y + f(y) = v1ω in Q,

y = 0 on Σ,

y(0, ·) = y0 on Ω.

(1.6)

Indeed, under weak non-linearities we have controllability to trajectories and approximate con-

trollability:

Corollary 1.8. Let Ω be a pseudo-cylinder, ω ⊂ Ω be a subdomain, T > 0 and y∗ ∈ C([0, T ];L2(Ω))

be a solution of (1.6) corresponding to some data (y0)∗ ∈ L2(Ω) and v∗ ∈ L∞(Qω). Assume

that f : R 7→ R is locally Lipschitz and satisfies almost everywhere in R:

|f ′(s)| ≤ C(1 + |s|1+4/d), (1.7)

and:

lim
|s|→∞

f(s)

|s| log3/2(1 + |s|)
= 0. (1.8)

Then, for all y0 ∈ L2(Ω) there is v ∈ L∞(Qω) such that the solution of (1.6) belongs to

C([0, T ];L2(Ω)) and satisfies y(T, ·) = y∗(T, ·).

Corollary 1.9. Let Ω be a pseudo-cylinder, ω ⊂ Ω be a domain, T > 0 and let us assume that

(1.6) has a solution y∗ ∈ C([0, T ];L2(Ω)) corresponding to some initial state in (y0)∗ ∈ L2(Ω)

and to some control function v∗ ∈ L∞(Qω). Assume that f is locally Lipschitz and satisfies (1.7)

almost everywhere in R and (1.8). Then, for all y1 ∈ L2(Ω) and all ε > 0 there is v ∈ L∞(Qω)

such that (1.6) has a solution in C([0, T ];L2(Ω)) satisfying:

‖y(T, ·)− y1‖ ≤ ε.

In order to see that Theorem 1.6 implies Corollaries 1.8 and 1.9 it suffices to follow step

by step the proof given in [18] for the case in which Ω is a C2 domain. Indeed, in order to
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see that results on Sobolev spaces used in [18] remain true when Ω is just Lipschitz, the reader

can consult for instance [1], [5] and [36]. In addition, we can find in [18] some facts about

controllability of the semi-linear heat equation which remain true in pseudo-cylinders, like that

(1.6) is not approximately controllable for f(s) =
∫ s

0 logp(1 + σ)dσ, p > 2 and ω ⊂⊂ Ω.

Remark 1.10. The results presented in this paper differ from [3] because of the following reasons:

• There are some pseudo-cylinders which are not locally star-shaped (see Appendix B); thus,

this is the first time that the null controllability of the heat equation is proved in these

domains. In addition, there are locally star-shaped domains which are not pseudo-cylinders

(for example, a disk or a pentagon). Of course, there also are pseudo-cylinders which are

locally star-shaped (for instance, the rectangle).

• The coefficient of the lower order terms in Theorem 1.6 can depend on t and x, whereas

in [3] the coefficients only depend on t.

• Thanks to the fact that we can establish controllability results for the heat equation with

coefficients that depend on t and x, we can prove controllability results for the semi-linear

heat equation, which is an open problem of [3].

• In [3] the control is located in an arbitrary measurable subset of strictly positive measure,

whereas in this paper the control is located in open subsets.

In this document we consider the following weights defined in Q:

αη :=
eλ

2m+1
2m

k − eλ(k+η)

tm(T − t)m
, ξη :=

eλ(k+η)

tm(T − t)m
, (1.9)

for m ≥ 1 a real constant, η some auxiliary C2
(
Ω
)

function (which, unlike it is usually done

in the literature, may take negative values) and k > 2(m + 1)‖η‖L∞(Ω) a real constant, all of

them to be fixed later. In (1.9) the subindex η might be omitted if it is clear. Moreover, if we

denote some function by η̃, we use the notation α̃ and ξ̃ to refer to αη̃ and ξη̃, respectively. We

recall that we have the following estimates for the weights given in (1.9), for some C > 0 that

is universal (independent of any variable like Ω, η, m, k, s, λ, ...):

|ξt|+ |αt| ≤ CmTξ(m+1)/m, |αtt| ≤ C(mξ(m+1)/m +m(m+ 1)T 2ξ(m+2)/m). (1.10)

Weights similar to (1.9) were first introduced in [19]. However, our version is more similar to the

one presented in [17], though we have done slight modifications to also consider the situations

in which η is not a positive function.
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Remark 1.11. We need k > 2(m + 1)‖η‖L∞(Ω) to assure that the numerator of α is strictly

positive, so that we can integrate by parts in the time variable with a null boundary term when

proving the Carleman inequality. Moreover, we also need it to prove (1.10).

Remark 1.12. These weights, stated as in (1.9), have the advantage that can be compared easily

when using two different auxiliary functions. In particular, if we have η1 and η2 defined in a

canonically oriented pseudo-cylinder, for any m ≥ 1, k > 2(m+ 1) max{‖η1‖L∞(Ω), ‖η2‖L∞(Ω)},
t ∈ (0, T ) and (x, z) ∈ Ω, we find:

ξη1(t, x, z) ≤ ξη2(t, x, z) if and only if η1(x, z) ≤ η2(x, z),

and:

−αη1(t, x, z) ≤ −αη2(t, x, z) if and only if η1(x, z) ≤ η2(x, z).

Let us explain briefly how to solve the two problems presented at the beginning of this section

on pseudo-cylinders:

• Concerning the construction of the auxiliary function, which is the main difficulty, we

consider different approaches depending on the control domain. If ω ⊂ Ω we use an

approach consisting of expressing η as a sum of two different variables, whereas if ω ⊂ Ω\C,

we “transmit” the estimate from one control domain to another with a second auxiliary

function. This is done in Section 3.

• As for dealing with the fact that D(Ω) 6⊂ H2(Ω), we just have to approximate Ω by C2

domains which are compatible with η (once η is constructed). This is explained in Section

2 for Lipschitz domains.

The rest of the paper is organised as follows: in Section 2 we explain how to deal with Ω

being just Lipschitz, in Section 3 we get the Carleman inequalities, in Appendix A we prove the

compatibility of the proposed auxiliary function with the domain and in Appendix B we show

that there are pseudo-cylinders which are not locally star-shaped.

2 A Carleman inequality for some Lipschitz domains

Let Ω be a Lipschitz domain. We define:

WΩ := L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)),

omitting the subindex Ω if it is clear. In addition, we define:
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Definition 2.1. Let Ω be a Lipschitz domain, let u0 ∈ L2(Ω) and let g ∈ L2(Q). Then, we denote

by:

S(Ω, u0, g)(t, x),

the only solution in W of: 
ut −∆u = g in Q,

u = 0 on Σ,

u(0, ·) = u0 on Ω.

(2.1)

Finally, we define the convergence of domains in the following way:

Definition 2.2. Let ε0 > 0, Ω be a domain and (Ωε)ε∈(0,ε0) be domains such that Ωε ⊂ Ω for all

ε ∈ (0, ε0). We say that Ωε →d Ω if:

lim
ε→0+

sup
Ω\Ωε

d(·, ∂Ω) = 0. (2.2)

Remark 2.3. If Ωε →d Ω, then Ωε converges to Ω in measure; that is, ‖1Ω\Ωε
‖L1(Rd) → 0, because

of the Dominated Convergence Theorem.

We have the following technical result:

Lemma 2.4. Let Ω be a Lipschitz domain, Ωε ⊂ Ω be some Lipschitz domains such that:

Ωε →d Ω,

u0 ∈ L2(Ω) and g ∈ L2(Q). Then,

S
(
Ωε, u

01Ωε , g1Ωε

)
1Ωε →L2(Q) S(Ω, u0, g). (2.3)

As far as we know, the proof of Lemma 2.4 is not available in the literature, so we give a

proof, whose originality we do not claim. For the proof of Lemma 2.4 we need the following

interpolation result, proved for instance in [30] and [29]:

Lemma 2.5. Let Ω be a Lipschitz domain. Then,

1. The injection W ⊂ L2(Q) is compact.

2. The injection W ⊂ C([0, T ];L2(Ω)) is continuous.

3. For all u,w ∈ W, we have 〈u(t, ·), w(t, ·)〉L2(Ω) ∈W 1,1(0, T ) and:

∂t
(
〈u(t, ·), w(t, ·)〉L2(Ω)

)
= 〈∂tu(t, ·), w(t, ·)〉H−1(Ω)×H1

0 (Ω) + 〈∂tw(t, ·), u(t, ·)〉H−1(Ω)×H1
0 (Ω).
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Proof of Lemma 2.4. In order to prove Lemma 2.4 we recall that for any Lipschitz domain Ω̃,

any ũ0 ∈ L2(Ω̃) and any g̃ ∈ L2(Q), S(Ω̃, ũ0, g̃) is characterized as the only element in WΩ̃ such

that:
∫ T

0

〈
∂tS(Ω̃, ũ0, g̃), φ

〉
H−1(Ω̃),H1

0 (Ω̃)
+
∫∫
Q̃∇S(Ω̃, ũ0, g̃) · ∇φ =

∫∫
Q̃ gφ ∀φ ∈ D(Q̃),

S(Ω̃, ũ0, g̃)(0, ·) = ũ0.
(2.4)

We define:

S0 := S(Ω, u0, g), Sε := S
(
Ωε, u

01Ωε , g1Ωε

)
1Ωε and Qε := (0, T )× Ωε,

for Ω, u0, g and Ωε as stated in Lemma 2.4. We recall that, since w 7→ w1Ωε is an isometric

embedding from WΩε to WΩ, we have Sε ∈ WΩ and the equality:

‖Sε‖WΩ
= ‖Sε‖WΩε

. (2.5)

Using the density of D(Qε) in WΩε we find the equality:

‖Sε(T, ·)‖2L2(Ωε) + 2

∫∫
Qε

|∇Sε|2 = 2

∫∫
Q
gSε + ‖u0‖2L2(Ωε).

In particular, if we use the Poincaré inequality on Ω and Cauchy-Schwarz, we obtain for a

constant C(diam(Ω)) > 0:

‖Sε‖L2(0,T ;H1
0 (Ωε)) ≤ C

(
‖g‖L2(Qε) + ‖u0‖L2(Ωε)

)
≤ C

(
‖g‖L2(Q) + ‖u0‖L2(Ω)

)
.

In addition, looking at (2.1)1 we obtain that ∂tSε ∈ L2(0, T ;H−1(Ωε)) and the existence of a

constant C(diam(Ω)) > 0 such that:

‖Sε‖WΩε
≤ C

(
‖g‖L2(Q) + ‖u0‖L2(Q)

)
.

Consequently, Sε is uniformly bounded in WΩ due to (2.5); thus, Sε has at least a weakly

convergent sequence in WΩ. Moreover, thanks to Item 1 of Lemma 2.5, we have that the

sequence is convergent in L2(Q).

In order to end the proof, it suffices to see that for all u ∈ WΩ such that there is a sequence

Sεi satisfying that Sεi ⇀ u in WΩ (with εi → 0), then u = S0. To get the equality, we prove

that u satisfies (2.4) for (Ω̃, ũ0, g̃) = (Ω, u0, g):

• In order to prove the variational condition of (2.4), we pick φ ∈ D(Q). We remark that

d(suppx φ, ∂Ω) > 0, for:

suppx φ := {x : ∃t ∈ [0, T ] : φ(t, x) 6= 0}.
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In particular, if i is sufficiently large, we have that suppx φ ⊂⊂ Ωεi . Consequently, by

(2.4)1 (for (Ω̃, ũ0, g̃) = (Ωεi , u
01Ωεi

, g1Ωεi
)) and by taking into account the support of φ,

we obtain for i large enough the equality:∫ T

0
〈∂tSεi , φ〉H−1(Ω),H1

0 (Ω) +

∫∫
Q
∇Sεi · ∇φ =

∫∫
Q
gφ.

Thus, if we take the weak limit in WΩ, we get that:∫ T

0
〈∂tu, φ〉H−1(Ω),H1

0 (Ω) +

∫∫
Q
∇u · ∇φ =

∫∫
Q
gφ.

Since φ is arbitrary, u satisfies (2.4)1.

• As for the initial condition of (2.4), we recall that because of Item 2 of Lemma 2.5,

w ∈ W 7→ w(0, ·) ∈ L2(Ω),

is a continuous operator. Therefore, since the weak limit is preserved by linear continuous

operators between Hilbert spaces, we have that Sεi(0, ·) ⇀ u(0, ·) in L2(Ω). Moreover,

Sεi(0, ·) = u01Ωεi
→ u0 in L2(Ω) by Remark 2.3. Consequently, from the uniqueness of

the weak limit we obtain that u(0, ·) = u0.

In order to prove a Carleman inequality for Ω, the approximation must be made not only by

C2 domains, but also these domains must be compatible with the function η in the following

way:

Definition 2.6. Let Ω be a domain, let ω ⊂ Ω be a subdomain and let η be a real valued function

satisfying:

η ∈ C2
(
Ω
)
, inf

Ω\ω
|∇η| > 0. (2.6)

We say that Ω̃ is a compatible open set with respect to Ω, ω and η if we have that:

Ω̃ is a Lipschitz open set such that ω ⊂ Ω̃ ⊂ Ω, (2.7)

DΩ̃(∆) ⊂ H2(Ω̃) continuously, (2.8)

∂ñη ≤ 0 on ∂Ω̃. (2.9)

Remark 2.7. It is possible for η to take negative values. Indeed, in [19] they do not need that

η ≥ 0 for proving the controllability of the heat equation with Dirichlet boundary conditions.

They need it, though, to prove the controllability of other systems, like the Stokes equation or

the heat equation with Neumann boundary conditions.
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Remark 2.8. One consequence of Definition 2.6 is that Ω̃ is connected. Indeed, if Ω̃i is a connected

component, then ω ∩ Ω̃i 6= ∅. Otherwise, because of (2.9) and (2.6)2 the maximum of η in Ω̃i

is not reached on the boundary (the tangential derivative of η is non-null), but again because

of (2.6)2 the maximum is not reached in the interior, getting an absurd. Consequently, all

the connected components of Ω̃ intersect ω. Since ω is connected, Ω̃ has only one connected

component, so Ω̃ is connected.

Remark 2.9. Every C2 domain satisfies (2.8). Moreover, there are some Lipschitz domains which

also satisfy it, like (0, 1)d or, in general, any cartesian product of C2 domains.

Let us now state the Carleman inequality for domains which satisfy (2.7)-(2.9):

Lemma 2.10. Let Ω be a Lipschitz domain, ω ⊂ Ω be a subdomain, η be a function satisfying

(2.6) and m ≥ 1. Then, there is C > 0 such that for all T > 0, Ω̃ satisfying (2.7)-(2.9),

g ∈ L2(Q̃), uT ∈ L2(Ω̃), k > 2(m + 1)‖η‖L∞(Ω), and for the weights defined in (1.9), we have

that:

s3λ4

∫∫
Q̃
e−2sαξ3|u|2 + sλ2

∫∫
Q̃
e−2sαξ|∇u|2 + s−1

∫∫
Q̃
e−2sαξ−1(|∆u|2 + |ut|2)

≤ C
(
s3λ4

∫∫
Qω

e−2sαξ3|u|2 +

∫∫
Q̃
e−2sα|g|2

)
, (2.10)

for any λ ≥ C, s ≥ C(Tm + T 2m) and for u the solution of:
−ut −∆u = g in Q̃,

u = 0 on Σ̃,

u(T, ·) = uT on Ω̃.

Proof. Lemma 2.10 is a direct consequence of the proof of the usual Carleman estimate, which

can be found for instance in [19] and [17]. We remark that since infΩ\ω |∇η| > 0, there exists a

domain ω0 ⊂⊂ ω which satisfies infΩ\ω0
|∇η| > 0. The only additional difficulty is to prove that

the constant C is independent of Ω̃. Indeed, the proofs presented in [19] and [17] show that C

depends continuously only on:

• ‖η‖
C2

(
Ω̃
) (which can be bounded by ‖η‖C2(Ω)),

• m (see (1.10)),

• infΩ̃\ω0
|∇η| (which can be inferiorly bounded by infΩ\ω0

|∇η| > 0),

• ω and ω0.
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Now we are ready to prove a Carleman inequality for domains that can be approximated

properly by regular domains:

Lemma 2.11. Let Ω be a Lipschitz domain, ω ⊂ Ω be a subdomain, η be a function satisfying

(2.6) and m ≥ 1. Let us suppose that there are ε0 > 0 and (Ωε)ε∈(0,ε0) satisfying (2.7)-(2.9) and

such that Ωε →d Ω. Then, there is C > 0 such that for all T > 0, g ∈ L2(Q), uT ∈ L2(Ω),

k > 2(m+ 1)‖η‖L∞(Ω), and for the weights defined in (1.9), we have that:

s3λ4

∫∫
Q
e−2sαξ3|u|2 + sλ2

∫∫
Q
e−2sαξ|∇u|2 + s−1

∫∫
Q
e−2sαξ−1(|∆u|2 + |ut|2)

≤ C
(
s3λ4

∫∫
Qω

e−2sαξ3|u|2 +

∫∫
Q
e−2sα|g|2

)
, (2.11)

for any λ ≥ C, s ≥ C(Tm + T 2m) and for u the solution of:
−ut −∆u = g in Q,

u = 0 on Σ,

u(T, ·) = uT on Ω.

(2.12)

In order to prove Lemma 2.11 we first get the estimate on the zero-order term, and then get

the higher order terms as in [15] and [16].

Proof. By Lemma 2.10 we have that for all m ≥ 1 there is C > 0 such that for all T > 0,

uT ∈ L2(Ω), g ∈ L2(Q), and ε ∈ (0, ε0):

s3λ4

∫∫
Q
e−2sαξ3|uε1Ωε |2 ≤ C

(
s3λ4

∫∫
Qω

e−2sαξ3|uε|2 +

∫∫
Q
e−2sα|g1Ωε |2

)
, (2.13)

for any λ ≥ C, s ≥ C(Tm + T 2m) and for:

uε(t, x) := S
(
Ωε, u

T 1Ωε , g(T − ·, ·)1Ωε

)
(T − t, x).

Considering Lemma 2.4, we can take the limit in (2.13) and get the estimate:

s3λ4

∫∫
Q
e−2sαξ3|u|2 ≤ C

(
s3λ4

∫∫
Qω

e−2sαξ3|u|2 +

∫∫
Q
e−2sα|g|2

)
. (2.14)

Next, multiplying (2.12)1 by sλ2e−2sαξu we get the term of ∇u. Indeed, integrating by parts

we get that:

sλ2

∫∫
Q
e−2sαξ|∇u|2 = sλ2

∫∫
Q
e−2sαgu−sλ3

∫∫
Q
e−2sαξ∇η·∇uu+2s2λ3

∫∫
Q
e−2sαξ2∇η·∇uu

− sλ2

2

∫∫
Q
e−2sαξt|u|2 + s2λ2

∫∫
Q
e−2sααtξ|u|2. (2.15)
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By doing weighted Cauchy-Schwarz estimates in (2.15) and considering (1.10) and (2.14) we get

for any λ ≥ C and s ≥ C(Tm + T 2m) that:

sλ2

∫∫
Q
e−2sαξ|∇u|2 ≤ C

(
s3λ4

∫∫
Qω

e−2sαξ3|u|2 +

∫∫
Q
e−2sα|g|2

)
. (2.16)

To continue with, we assume that uT ∈ H1
0 (Ω). Multiplying (2.12)1 by −s−1e−2sαξ−1ut we

obtain that:

s−1

∫∫
Q
e−2sαξ−1|ut|2

= −s−1

∫∫
Q
e−2sαξ−1gut −

1

2
s−1

∫∫
Q

(e−2sαξ−1)t|∇u|2 + s−1

∫∫
Q
∇(e−2sαξ−1) · ∇uut. (2.17)

We have used that the solutions of the heat equation with initial value in H1
0 (Ω) and source term

in L2(Q) belongs to the closure of H1(0, T ;H1
0 (Ω))∩L2(0, T ;D(∆)) with norm H1(0, T ;L2(Ω))∩

L2(0, T ;D(∆)) when Ω is Lipschitz. Using weighted Cauchy-Schwarz inequalities, (1.10) and

(2.16) we find for any λ ≥ C and s ≥ C(Tm + T 2m) that:

s−1

∫∫
Q
e−2sαξ−1|ut|2 ≤ C

(
s3λ4

∫∫
Qω

e−2sαξ3|u|2 +

∫∫
Q
e−2sα|g|2

)
. (2.18)

Finally, considering that −∆u = ut + g we obtain from (2.18) that:

s−1

∫∫
Q
e−2sαξ−1|∆u|2 ≤ C

(
s3λ4

∫∫
Qω

e−2sαξ3|u|2 +

∫∫
Q
e−2sα|g|2

)
. (2.19)

So, combining (2.14), (2.16), (2.18) and (2.19) we obtain (2.11) for all uT ∈ H1
0 (Ω). Finally, we

obtain (2.11) for all uT ∈ L2(Ω) by density.

Finally, we remark that we can extend the result presented in Lemma 2.11 to situations in

which there is a source term in L2(0, T ;H−1(Ω)) reproducing step by step the proof given in

[24] (the reader can consult for instance [1] and [5] to see that the results of the Sobolev spaces

used in [24] remain true when Ω is Lipschitz):

Proposition 2.12. Let Ω be a Lipschitz domain, ω ⊂ Ω be a subdomain, η be a function

satisfying (2.6) and m ≥ 1. Let us suppose that there are ε0 > 0 and (Ωε)ε∈(0,ε0) satisfying

(2.7)-(2.9) and such that Ωε →d Ω. Then, there is C > 0 such that for all T > 0, g ∈ L2(Q),

G ∈ (L2(Q))d, uT ∈ L2(Ω), k > 2(m+1)‖η‖L∞(Ω), and for the weights defined in (1.9), we have

that:

s3λ4

∫∫
Q
e−2sαξ3|u|2 + sλ2

∫∫
Q
e−2sαξ|∇u|2

≤ C
(
s3λ4

∫∫
Qω

e−2sαξ3|u|2 +

∫∫
Q
e−2sα|g|2 + s2λ2

∫∫
Q
e−2sαξ2|G|2

)
, (2.20)
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for any λ ≥ C, s ≥ C(Tm + T 2m) and for u the solution of:
−ut −∆u = g +∇ ·G in Q,

u = 0 on Σ,

u(T, ·) = uT on Ω.

(2.21)

Remark 2.13. As the source term in (2.21) is just in L2(0, T ;H−1(Ω)), we do not (and cannot)

have neither the Laplacian nor the time derivative on the left-hand side of (2.20).

Remark 2.14. The constant C in Lemma 2.11 and Proposition 2.12 is independent of the sequence

Ωε.

3 Proof of Theorem 1.6

This section is split in three parts: in Subsection 3.1 we prove Theorem 1.6 in the case ω ⊂ C,

in Subsection 3.2 we prove Theorem 1.6 in the case ω ⊂ Ω \ C, and in Subsection 3.3 we make

some comments about some technical motivations and possible extensions.

3.1 The case ω ⊂ C

Let Ω be a canonically oriented pseudo-cylinder (see Definition 1.1) and let ω ⊂ C. By taking

a smaller control domain if necessary, we can suppose that:

ω = B(x, r)× (z − r, z + r) ⊂⊂ C, (3.1)

for some r > 0 and some (x, z) ∈ Ω such that:

z < inf
B
H. (3.2)

We construct an auxiliary function η satisfying (2.6). Considering that B is C2 and (1.1),

there is ηB ∈ C2
(
B
)

satisfying:

ηB = 0 on ∂B, ηB > 0 in B, inf
B\B(x,r)

|∇ηB| > 0. (3.3)

One important consequence of (3.3) is the inequality:

sup
∂B

∂nB
ηB < 0. (3.4)

Indeed, using (3.3)1 we have that the tangential derivative of ηB is null on ∂B. Thus, using

(3.3)2 and that B(x, r) ⊂⊂ B, we obtain that ∂nB
ηB(x) 6= 0 for all x ∈ ∂B. Moreover, from

(3.3)1 and (3.3)2 we find that ∂nB
ηB(x) < 0 for all x ∈ ∂B, which implies (3.4) by compactness.
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Figure 2: A canonically oriented pseudo-cylinder with its auxiliary function.

So, we define in Ω:

η(x, z) := ηB(x)− c(z − z)2, (3.5)

for c a large positive constant to be fixed later on. It is evident that η ∈ C2
(
Ω
)
. As ∇η =

(∇ηB,−2c(z − z)), it follows from (3.1) and (3.3)3 the inequality:

inf
Ω\ω
|∇η| > 0.

Example 3.1. See Figure 2 for an illustration of a control domain and of ∇η in the pseudo-

cylinder introduced in Example 1.3.

With the above auxiliary function we obtain the following Carleman inequality:

Proposition 3.2. Let Ω be a canonically oriented pseudo-cylinder, ω be given by (3.1) and

m ≥ 1. Then, there exists c0(Ω, ω, ηB) > 0 such that if η is defined as in (3.5) with c ≥ c0, there

is C > 0 such that for all T > 0, A ∈ (L∞(Q))d+1, a ∈ L∞(Q), g ∈ L2(Q), G ∈ (L2(Q))d+1,

uT ∈ L2(Ω), k > 2(m+ 1)‖η‖L∞(Ω), and for the weights defined in (1.9), we have that:

s3λ4

∫∫
Q
e−2sαξ3|u|2 + sλ2

∫∫
Q
e−2sαξ|∇u|2

≤ C
(
s3λ4

∫∫
Qω

e−2sαξ3|u|2 +

∫∫
Q
e−2sα|g|2 + s2λ2

∫∫
Q
e−2sαξ2|G|2

)
, (3.6)
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for any λ ≥ C,

s ≥ C
(
Tm + T 2m(1 + ‖a‖2/3L∞(Q) + ‖A‖2(L∞(Q))d+1)

)
, (3.7)

and for u the solution of:
−ut −∆u−∇ · (Au) + au = g +∇ ·G in Q,

u = 0 on Σ,

u(T, ·) = uT on Ω.

(3.8)

In order to prove Proposition 3.2 we state the following technical result whose proof is

postponed to Appendix A.

Proposition 3.3. Let Ω be a canonically oriented pseudo-cylinder, ω be given by (3.1) and

ηB ∈ C2(B) satisfying (3.3). Then, there is c0(Ω, ω, ηB) > 0 such that if η is given by (3.5) with

c ≥ c0, there exist ε0(Ω, ω, ηB, c) > 0 and some domains (Ωε)ε∈(0,ε0) satisfying (2.7)-(2.9) and:

Ωε →d Ω. (3.9)

Proof of Proposition 3.2. Using Propositions 3.3 and 2.12, we obtain that for all λ ≥ C and

s ≥ C(Tm + T 2m):

s3λ4

∫∫
Q
e−2sαξ3|u|2 + sλ2

∫∫
Q
e−2sαξ|∇u|2

≤ C
(
s3λ4

∫∫
Qω

e−2sαξ3|u|2 +

∫∫
Q
e−2sα

(
|g|2 + |au|2

)
+ s2λ2

∫∫
Q
e−2sαξ2(|G|2 + |Au|2)

)
≤ C

(
s3λ4

∫∫
Qω

e−2sαξ3|u|2 +

∫∫
Q
e−2sα|g|2 + s2λ2

∫∫
Q
e−2sαξ2|G|2

+ ‖a‖2L∞(Q)T
6m

∫∫
Q
e−2sαξ3|u|2 + s2λ2‖A‖2L∞(Q)T

2m

∫∫
Q
e−2sαξ3|u|2

)
. (3.10)

Thus, taking λ ≥ C and s satisfying (3.7) we can absorb the the last two terms in the right-hand

side of (3.10).

Remark 3.4. It is a classical result (see, for instance, [35], [29], [19] and [18]) that Proposition

3.2 (taking m = 1) implies that Theorem 1.6 is true for all canonically oriented pseudo-cylinders

and all ω given by (3.1). By Remark 1.7 this implies Theorem 1.6 for all pseudo-cylinders and

all w ⊂ C.

3.2 The case ω ⊂ Ω \ C

Let Ω be a canonically oriented pseudo-cylinder and let ω ⊂ Ω \ C. For this case we suppose,

by making again the control domain smaller if necessary, that:

ω = B(x̃, r)× (z̃ − r, z̃ + r) ⊂⊂ Ω \ C, (3.11)
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Figure 3: A canonically oriented pseudo-cylinder with a control domain in Ω \ C.

for some (x̃, z̃) ∈ Ω \ C such that:

z̃ > inf
B
H,

and some:

r ∈
(

0, inf
B

H

4

)
, (3.12)

such that:

Ω̃ := B(x̃, 3r)× (0, z̃ + 3r) ⊂ Ω. (3.13)

In this case we cannot consider an auxiliary function similar to (3.5) because now we have that

T ∩ {(x, z) : z = z̃} 6= ∅. However, thanks to Proposition 3.2 our problem can be seen as a

problem of transmitting the estimate from one control domain to another. Indeed, we define:

ω∗ := B(x, r)× (z − r, z + r), (3.14)

for x := x̃ and z := 3r. Thus, considering also (3.12) we have that:

ω∗ = B(x̃, r)× (2r, 4r) ⊂⊂ Ω̃ ∩ C.

Example 3.5. See Figure 3 for an illustration of the pseudo-cylinder given in Example 1.3 when

ω ⊂⊂ Ω \ C.
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We fix m ≥ 1 and define η as in (3.5) with c ≥ c0(Ω, ω∗, ηB). We obtain by Proposition

3.2 a constant C > 0 such that for all T > 0, A ∈ (L∞(Q))d+1, a ∈ L∞(Q), g ∈ L2(Q),

G ∈ (L2(Q))d+1, uT ∈ L2(Ω), and k > 2(m+ 1)‖η‖L∞(Ω) we have that:

s3λ4

∫∫
Q
e−2sαξ3|u|2 + sλ2

∫∫
Q
e−2sαξ|∇u|2

≤ C
(
s3λ4

∫∫
Qω∗

e−2sαξ3|u|2 +

∫∫
Q
e−2sα|g|2 + s2λ2

∫∫
Q
e−2sαξ2|G|2

)
, (3.15)

for λ ≥ C, s satisfying (3.7) and u the solution of (3.8).

Next, we estimate the weighted L2(Qω∗)-norm by a weighted L2(Qω)-norm. To do this, we

consider a function whose maximum is in ω but which is large in ω∗. Specifically, we consider:

η̃(x, z) := −η̃1(|x− x̃|)− η̃2(z) + 2 sup
Ω
|η| , (3.16)

for η̃1 a positive C∞ function supported in (r/2,+∞) such that:
inf(r,+∞) η̃

′
1 > 0,

η̃1 < supΩ |η| /2 in (r/2, r),

η̃1 > 3 supΩ |η| in (2r, 3r),

(3.17)

and for η̃2 a positive C∞ function such that:

sup(0,z̃−r) η̃
′
2 < 0,

inf(z̃+r,z̃+3r) η̃
′
2 > 0,

η̃2 < supΩ |η| /2 in (2r, 4r),

η̃2 > 3 supΩ |η| in (0, r) ∪ (z̃ + 2r, z̃ + 3r).

(3.18)

We remark that η̃ ∈ C2
(

Ω̃
)

and satisfies:

∂nη̃ < 0 on ∂Ω̃, inf
Ω̃\ω
|∇η̃| > 0. (3.19)

Moreover, from (3.14), (3.17) and (3.18) we get that:η ≤ η̃ in ω∗,

η̃ ≤ η in Ω̃ \
(
B(x̃, 2r)× (r, z̃ + 2r)

)
.

(3.20)
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With the function η̃ we can define the weights α̃ and ξ̃ as in (1.9). Let us fix:

k > 2(m+ 1) max{‖η̃‖L∞(Ω), ‖η‖L∞(Ω)} = 2(m+ 1)‖η̃‖L∞(Ω). (3.21)

Thanks to (3.20) and Remark 1.12 we have that:ξ ≤ ξ̃; −α ≤ −α̃ in Qω∗ ,

ξ̃ ≤ ξ; −α̃ ≤ −α in (0, T )×
(

Ω̃ \
(
B(x̃, 2r)× (r, z̃ + 2r)

))
.

(3.22)

Next, we consider that u is the solution of (3.8) and that χ(x, z) is a positive regular cut-off

function such that:

supp(χ) ⊂⊂ Ω̃, χ = 1 in B(x̃, 2r)× (r, z̃ + 2r). (3.23)

Then, v := χu is the solution of:
−vt −∆v −∇ · (Av) + av = F (∇χ, u) + χg +∇ · (χG) in Q̃,

v = 0 on Σ̃,

v(T, ·) = χuT on Ω̃,

(3.24)

for:

F (∇χ, u) := −2∇χ · ∇u−∆χu− (∇χ ·A)u−∇χ ·G. (3.25)

Using Proposition 2.12 (Ω̃ satisfies (2.8) by Remark 2.9 and (2.9) by (3.19), so it suffices to

take Ωε = Ω̃), we have that there is C(η̃,m) > 0 such that if A ∈ (L∞(Q))d+1, a ∈ L∞(Q),

g ∈ L2(Q), G ∈ (L2(Q))d+1, uT ∈ L2(Ω), λ ≥ C and s ≥ C(Tm + T 2m):

s3λ4

∫∫
Q̃
e−2sα̃

(
ξ̃
)3
|v|2 + sλ2

∫∫
Q̃
e−2sα̃ξ̃|∇v|2 ≤ C

(
s3λ4

∫∫
Qω

e−2sα̃
(
ξ̃
)3
|χu|2

+

∫∫
Q̃
e−2sα̃|F (∇χ, u) + χg − av|2 + s2λ2

∫∫
Q̃
e−2sα̃

(
ξ̃
)2

(|χG−Av|2)

)
. (3.26)

After some easy absorptions and bounds we obtain, from (3.26) for λ ≥ C and s satisfying (3.7),

that:

s3λ4

∫∫
Q̃
e−2sα̃

(
ξ̃
)3
|χu|2 + sλ2

∫∫
Q̃
e−2sα̃ξ̃|∇(χu)|2

≤ C
(
s3λ4

∫∫
Qω

e−2sα̃
(
ξ̃
)3
|χu|2+

∫∫
Q̃
e−2sα̃(|χg|2+|F (∇χ, u)|2)+s2λ2

∫∫
Q̃
e−2sα̃

(
ξ̃
)2
|χG|2

)
.

(3.27)
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To continue with, as χ = 1 in ω and ω∗, χ ∈ D
(

Ω̃
)

, and we have (3.22)1, we may combine

(3.15) and (3.27) and get that:

s3λ4

∫∫
Q
e−2sαξ3|u|2+sλ2

∫∫
Q
e−2sαξ|∇u|2+s3λ4

∫∫
Q̃
e−2sα̃

(
ξ̃
)3
|χu|2+sλ2

∫∫
Q̃
e−2sα̃ξ̃|∇(χu)|2

≤ C
(
s3λ4

∫∫
Qω

e−2sα̃
(
ξ̃
)3
|u|2 +

∫∫
Q
e−2sα|g|2 +

∫∫
Q̃
e−2sα̃(|χg|2 + |F (∇χ, u)|2)

+ s2λ2

∫∫
Q
e−2sαξ2|G|2 + s2λ2

∫∫
Q̃
e−2sα̃(ξ̃)2|χG|2

)
. (3.28)

Next, we recall that χ ∈ C2
(
Ω
)
, that:

supp(∆χ), supp(∇χ) ⊂ Ω̃ \
(
B(x̃, 2r)× (r, z̃ + 2r)

)
,

and (3.22)2. These assertions imply that by taking λ ≥ C and s satisfying (3.7) the term of

F (∇χ, u) in the right-hand side of (3.28) can be absorbed. Thus, we get:

s3λ4

∫∫
Q
e−2sαξ3|u|2+sλ2

∫∫
Q
e−2sαξ|∇u|2+s3λ4

∫∫
Q̃
e−2sα̃

(
ξ̃
)3
|χu|2+sλ2

∫∫
Q̃
e−2sα̃ξ̃|∇(χu)|2

≤ C
(
s3λ4

∫∫
Qω

e−2sα̃
(
ξ̃
)3
|u|2 +

∫∫
Q
e−2sα|g|2 +

∫∫
Q̃
e−2sα̃|χg|2

+ s2λ2

∫∫
Q
e−2sαξ2|G|2 + s2λ2

∫∫
Q̃
e−2sα̃(ξ̃)2|χG|2

)
. (3.29)

Finally, let us state what we have proved:

Proposition 3.6. Let Ω be a canonically oriented pseudo-cylinder, ω be given by (3.11), Ω̃ be

given by (3.13), η be given by (3.5) (with x := x̃ and z := 3r), η̃ be given by (3.16), χ be given

by (3.23) and m ≥ 1. Then, there exists a constant C > 0 such that if T > 0, A ∈ (L∞(Q))d+1,

a ∈ L∞(Q), g ∈ L2(Q), G ∈ (L2(Q))d+1, uT ∈ L2(Ω), k satisfies (3.21), λ ≥ C and s satisfies

(3.7), we have (3.29) for the weights defined in (1.9) and u the solution of (3.8).

Remark 3.7. It is a classical result (see, for instance, [35], [29], [19] and [18]) that Proposition

3.6 (taking m = 1) implies that Theorem 1.6 is true for all canonically oriented pseudo-cylinders

and all ω given by (3.11). Together with Remarks 3.4 and 1.7, this result ends the proof of

Theorem 1.6 (up to proving Proposition 3.3).

3.3 Further comments

1. Boundary controllability. If Γ ⊂ T (see Remark 1.2) is a relatively open connected

subset we can easily prove the null controllability of the heat equation with a control

supported in Γ. Indeed, it suffices to extend the domain over Γ as in Figure 4 to some
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Figure 4: A canonically oriented pseudo-cylinder with a control domain Γ ⊂ T.

other pseudo-cylinder Ω̃, use the null controllability by means of an internal control of the

heat equation with Dirichlet boundary condition, consider the restriction of the value in

Γ and use the uniqueness of solutions by transposition of the heat equation. If Γ ⊂ L or

if Γ ⊂ B × {0} this method fails because the extended domain is not a pseudo-cylinder.

Thus, for those situations the boundary controllability problem remains open. Moreover, it

would also be interesting to obtain Carleman inequalities of the Fursikov-Imanuvilov’s type

for a control domain Γ ⊂ ∂Ω, which has a local boundary term of ∂nu in the right-hand

side of the Carleman estimate.

2. The Carleman estimate when A is more regular and G = 0. If we have that

∇ · A ∈ L∞(Q) and G = 0 we can add a term of a Laplacian and of a time derivative in

the Carleman estimates obtained in Propositions 3.2 and 3.6 by using Lemma 2.11 instead

of Proposition 2.12.

3. Validity of the partial results in any pseudo-cylinder. Even if we have stated

and proved the partial results (see Propositions 3.2, 3.3 and 3.6) in canonically oriented

pseudo-cylinders, these results hold in any pseudo-cylinder since the Laplacian operator is

invariant under rotations (and translations).

4. The dependence of c with respect to ηB. It seems impossible to approximate a

domain Ω by some subdomains Ωε satisfying (2.7)-(2.9) without having ∂nη ≤ 0 on ∂Ω

(though this is an interesting open question). This implies that if Ω is a pseudo-cylinder,
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if ω is given by (3.1) and if η is the auxiliary function defined in (3.5), we need to take c

large enough with respect to ηB. Indeed, let us compute ∂nη and verify that it is negative

on all the subsets of the boundary given by Remark 1.2.

• On B× {0} we have that ∂nη = −∂zη = −2cz < 0.

• On L we have by (3.4) that ∂nη = ∂nB
ηB < 0.

• On T we find that:

n (x,H(x)) =
1√

1 + |∇H(x)|2
(−∇H(x), 1).

Thus, on T the normal derivative is given by:

∂nη (x,H(x)) =
−∇H(x) · ∇ηB(x)− 2c(H(x)− z)√

1 + |∇H(x)|2
.

This implies that the condition:

c ≥
‖∇H‖L∞(B)‖∇ηB‖C(B)

2(infBH(x)− z)
, (3.30)

is necessary to ensure that ∂nη ≤ 0 on T (the denominator in (3.30) is not null by

(3.2)).

5. Problems when extending this method to Lipschitz domains. A problem that

remains open is the null controllability of the heat equation in any Lipschitz domain. A

natural attempt following the Fursikov-Imanuvilov approach is to split the domain into

a finite amount of pseudo-cylinders and a single compactly included C2 subdomain, and

then to apply a Carleman estimate in each subdomain (with the help of some cut-off

functions). To that end, we need to absorb what is in a neighbourhood L (see Remark

1.2) with estimates in some other pseudo-cylinders and then use the same technique as

Section 3.2 to pass from a finite number of control domains that are compactly contained

in Ω to a single control domain. This idea could work if we had a function η satisfying

(2.6) which is much bigger in the interior of the cylinders than close to L. However, it

seems incompatible with picking in (3.5) c large with respect to ηB.

6. Semi-linear heat equation. A problem that remains open is the controllability of the

semi-linear heat equation stated in pseudo-cylinders with a non-linearity acting also in the

first order term. Indeed, we cannot just follow the steps in [8] because they require for Ω

to be C2 when they prove that the Carleman estimate implies the null-controllability of

the semi-linear heat equation (more specifically, they use that D(∆) ⊂ H2(Ω) continuously

and the analogous results for Lp-spaces).
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A Proof of Proposition 3.3

We recall that Ω is a canonically oriented pseudo-cylinder, ω is given by (3.1) and η is given

by (3.5). Similarly, in this proof we use c and C to denote respectively small and large strictly

positive constants that may be different each time and only depend on Ω, ω and ηB, and ε is

taken as a small strictly positive parameter.

The structure of the proof is the following: first we present an auxiliary result from differential

geometry, second we introduce the regularized measure, third we approximate H (see Definition

1.1) by smaller regular functions, fourth we introduce some domains Ωε and prove that they

satisfy (3.9), fifth we prove that the domains Ωε satisfy (2.7) and (2.8) for all ε <<< ε0(Ω, ω),

and finally we assume that c >>> c0(Ω, ω, ηB) and ε <<< ε0(Ω, ω, ηB, c) and prove (2.9). We

recall that once the open sets Ωε satisfy (2.7)-(2.9), Remark 2.8 implies that they are connected.

In the proof we state that several things happen if c >>> c0(Ω, ω, ηB) and ε <<< ε0(Ω, ω, ηB, c).

We do not calculate explicitly the value of c0(Ω, ω, ηB) and of ε0(Ω, ω, ηB, c) the same way we

do not calculate explicitly the values of C or c. Indeed, note that the number of times that we

require such a bound is finite (as c0 and ε0 do not depend on the specific (x, z) but at most on a

finite division of subcases), so it suffices to consider the maximum of all the c0 and the minimum

of all the ε0.

Step 1: an auxiliary result. In order to construct these domains, we need the following basic

result from differential geometry, whose proof can be found for instance in [7]:

Lemma A.1. Let Ω̃ be a domain and let Φ : Ω̃ 7→ R be a C2 function such that Φ ≤ 0 on ∂Ω̃.

Then, for all θ > 0 satisfying Φ−1 (θ,+∞) 6= ∅ and:

Φ−1({θ}) ∩ (∇Φ)−1({0}) = ∅, (A.1)

we have that Φ−1(θ,+∞) is a C2 open set. Moreover, the boundary of Φ−1(θ,+∞) is given

by Φ−1({θ}). Finally, the outward normal unit vector, which we denote by nθ, satisfies on

Φ−1({θ}):

nθ(x) = − ∇Φ(x)

|∇Φ(x)|
. (A.2)

A first approach can be to use Lemma A.1 on the distance function from (x, z) to ∂Ω. Nonethe-

less, this is not possible because that function is not differentiable. On the one hand, even in

regular domains d(·, ∂Ω) may not be C1 in the interior (for instance, in the disk the distance to
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the boundary is not differentiable at its center). On the other hand, near T the function d(·, ∂Ω)

is not C1 when T is just Lipschitz. However, it is possible to construct a function which behaves

similarly to the distance. In particular, to face the first problem we regularize the distance with

the tools introduced in [28] and to face the second one we approximate H by regular functions.

Step 2: the regularized measure. We define the function:

d : x ∈ B 7→ d(x, ∂B),

and the sets:

Bε := d−1(ε,+∞). (A.3)

Since B is C2, we have for some ε̃(Ω) > 0 the following properties:

• d is a W 2,∞(d−1([0, ε̃])) function such that |∇d| = 1 in d−1([0, ε̃]).

• For all x ∈ d−1([0, ε̃]) there is a unique point P (x) such that:

d (x, P (x)) = d(x). (A.4)

Moreover, the function x 7→ P (x) is continuous in d−1([0, ε̃]).

The proof of these two assertions can be found for instance in [5, Section III.3]. Also, it can be

proved easily that for all ε <<< ε0(Ω) the set Bε is a domain satisfying:

∂Bε = d−1({ε}).

In order to regularize d in the interior we use the function introduced in [28], whose properties

can be consulted for instance in [5, Section III.3.3]. Indeed, we consider:

ρ : x ∈ B 7→ R,

which is defined as the only fixed point of τ 7→ G(x, τ), for:

G(x, τ) :=

∫
B(0,1)

d
(
x+

τ

2
x̃
)
ς(x̃)dx̃,

for ς a mollifier in Rd; that is, a positive function belonging to D(B(0, 1)) such that:∫
B(0,1)

ς(x)dx = 1.
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We have that ρ satisfies the following properties, which are proved for instance in [5, Section

III.3.3]:

ρ ∈W 2,∞ (B) ∩ C∞ (B) , (A.5)

ρ ≥ 0 in B and ρ = 0 if and only if x ∈ ∂B, (A.6)

1

2
≤ d(x)

ρ(x)
≤ 3

2
, ∀x ∈ B, (A.7)

∇ρ(x) = −nB(x), ∀x ∈ ∂B. (A.8)

Step 3: approximating H by smaller regular functions. We consider again ς a mollifier in Rd,
and we define ςε := ε−dς

( ·
ε

)
, which is supported in B(0, ε) and satisfies:∫

B(0,ε)
ςε(x)dx = 1. (A.9)

In addition, we define in Bε the function Hε := (1−
√
ε)H ∗ ςε, which is well-defined because

x ∈ Bε implies that B(x, ε) ⊂ B (see (A.3)). Furthermore, if x ∈ Bε:

Hε(x) =
(
1−
√
ε
) ∫

B(0,ε)
H(x− x̃)ςε(x̃)dx̃

≤
(
1−
√
ε
) (
H(x) + ε‖H‖W 1,∞(B)

) ∫
B(0,ε)

ςε(x̃)dx̃

= H(x)−
√
εH(x) + ε‖H‖W 1,∞(B) − ε3/2‖H‖W 1,∞(B). (A.10)

This follows from (A.9) and from the fact that for all x̃ ∈ B(0, ε) we have that:

H(x− x̃) = H(x)−
∫ 1

0
∇H(x− τ x̃) · x̃dτ ≤ H(x) + |x̃|‖H‖W 1,∞(B) ≤ H(x) + ε‖H‖W 1,∞(B).

So, since infBH > 0, from (A.10) we obtain for all ε <<< ε0(Ω) that:

Hε ≤ H in Bε. (A.11)

Remark A.2. We have included a term 1−
√
ε in the definition of Hε to have (A.11).

Similarly, we have for all x ∈ Bε the lower bound:

Hε(x) ≥
(
1−
√
ε
) (
H(x)− ε‖H‖W 1,∞(B)

)
. (A.12)

Indeed, this follows from (A.9) and from the fact that for all x̃ ∈ B(0, ε) we have that:

H(x− x̃) = H(x)−
∫ 1

0
∇H(x− τ x̃) · x̃dτ ≥ H(x)− |x̃|‖H‖W 1,∞(B) ≥ H(x)− ε‖H‖W 1,∞(B).
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One important consequence of (A.10) and (A.12) is the convergence:

inf
Bε

Hε → inf
B
H. (A.13)

A last important property of the functions Hε is that they are uniformly Lipschitz for ε <<<

ε0(Ω). Indeed, from Young’s convolution inequality and (A.9) we obtain that:

‖∇Hε‖L∞(Bε) =
(
1−
√
ε
)
‖ςε ∗ ∇H‖L∞(Bε) ≤ ‖∇H‖L∞(B). (A.14)

Step 4: approximating Ω by some regular domains Ωε. We define in Ω for all ε satisfying that

B2ε 6= ∅ the following functions:

Dε(x, z) := χε(x)ρ(x)(Hε(x)− z)z, ∀(x, z) ∈ Ω, (A.15)

for χε a positive C∞(Rd) cut-off function which takes values in [0, 1], supported in Bε and such

that χε = 1 in B2ε (for instance 1B(3/2)ε
∗ ςε/4).

Remark A.3. Since χε = 1 in B2ε we obtain from (A.15) that:

∇Dε(x, z) =
(
zρ(x)∇Hε(x) + z(Hε(x)− z)∇ρ(x), ρ(x) (Hε(x)− 2z)

)
, ∀(x, z) ∈ B2ε. (A.16)

We approximate Ω by:

Ωε := D−1
ε

(
ε‖H‖2L∞(B),+∞

)
,

which is well-defined if ε <<< ε0(Ω) (as in that case B2ε 6= ∅). We first prove (3.9). For that,

we fix ε <<< ε0(Ω), we also fix (x, z) ∈ Ω \ Ωε and we get a bound of d((x, z), ∂Ω). Since

(x, z) ∈ Ω \ Ωε, we have that Dε(x, z) ≤ ε‖H‖2L∞(B), which implies that:

min{χε(x), ρ(x), (Hε(x)− z), z} ≤ ε1/4‖H‖2L∞(B),

so we are in at least one of the following cases:

• If χε(x) ≤ ε1/4‖H‖2L∞(B), then from ε <<< ε0(Ω) we have that x 6∈ B2ε, which implies

that:

d((x, z), ∂Ω) ≤ d(x) ≤ 2ε. (A.17)

• If ρ(x) ≤ ε1/4‖H‖2L∞(B), we have by (A.7) that:

d((x, z), ∂Ω) ≤ d(x) ≤ 3

2
ε1/4‖H‖2L∞(B). (A.18)

• If Hε(x)− z ≤ ε1/4‖H‖2L∞(B), using (A.10) we have that:

d((x, z), ∂Ω) ≤ d((x, z),T) = H(x)−z = (H(x)−Hε(x))+Hε(x)−z ≤ ε1/4‖H‖2L∞(B)+C
√
ε.

(A.19)
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• If z ≤ ε1/4‖H‖2L∞(B) we have that:

d((x, z), ∂Ω) ≤ d((x, z),B× {0}) ≤ ε1/4‖H‖2L∞(B). (A.20)

So, from (A.17)-(A.20) we obtain for all ε <<< ε0(Ω) and (x, z) ∈ Ω \ Ωε that:

d((x, z), ∂Ω) ≤ Cε1/4,

which implies (3.9).

Step 5: proof of the regularity of the domains Ωε. Next, let us prove that if ε <<< ε0(Ω, ω)

the open sets Ωε satisfy (2.7) and (2.8). Indeed, if ε <<< ε0(Ω, ω) we have by (3.9) that:

sup
Ω\Ωε

d(·, ∂Ω) < d(ω, ∂Ω),

which implies that ω ⊂ Ωε. Consequently, we only have to prove that if ε <<< ε0(Ω) the

domains Ωε are C2 (see Remark 2.9), which we will prove by using Lemma A.1. So we fix

ε <<< ε0(Ω) and check that the domain Ωε satisfies the requirements of Lemma A.1:

First, it is clear that Dε is a function which belongs to C2
(
Ω
)

(ρ ∈ C2(supp(χε)) by (A.5)).

Moreover, it satisfies Dε ≤ 0 on ∂Ω. Indeed, we consider (A.15) and the division of the boundary

as stated in Remark 1.2:

• If (x, z) ∈ B× {0}, then Dε(x, z) = 0.

• If (x, z) ∈ L, then x ∈ ∂B, so χε(x) = 0 (by the support of χε), so Dε(x, z) = 0.

• If (x, z) ∈ T, then z = H(x). If Dε(x, z) 6= 0 we have that x ∈ supp(χε) ⊂ Bε, so

Hε(x) ≤ H(x) by (A.11), so Dε(x, z) < 0; otherwise, Dε(x, z) = 0. Consequently, if

(x, z) ∈ T we have Dε(x, z) ≤ 0.

Thus, to apply Lemma A.1 it remains to check that:

D−1
ε

(
ε‖H‖2L∞(Ω)

)
∩ (∇Dε)

−1({0}) = ∅. (A.21)

For that purpose we fix (x, z) ∈ Ω satisfying:

Dε(x, z) = ε‖H‖2L∞(B), ∂zDε(x, z) = 0, (A.22)

and prove that ∇xDε(x, z) 6= 0.
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We first remark that from (A.22)1 we have that:

x ∈ B2ε. (A.23)

Indeed, from (A.11) we obtain that:

χε(x)(Hε(x)− z)z ≤
‖H‖2L∞(B)

4
,

which implies by (A.22)1 that:

ρ(x) ≥ 4ε, (A.24)

which implies using (A.7) that:

d(x) ≥ 2ε,

that is, (A.23).

From (A.16) and (A.22)2 we get that z = Hε(x)/2. Hence, from (A.23) and (A.22)1 we have

the equality:

ρ(x) =
4ε‖H‖2L∞(B)

H2
ε (x)

, (A.25)

which implies together with (A.16) the equality:

∇Dε(x, z) =

(
2ε‖H‖2L∞(B)

Hε(x)
∇Hε(x) +

H2
ε (x)

4
∇ρ(x), 0

)
.

So, because of (A.13) and (A.14) the previous equality turns into:

∇Dε(x, z) =

(
O(ε) +

H2
ε (x)

4
∇ρ(x), 0

)
. (A.26)

So, from (A.26), (A.25), ε <<< ε0(Ω), (A.13), (A.5), (A.7) and (A.8) we obtain that (A.22)

implies that ∇xDε(x, z) 6= 0, which proves (A.21).

Consequently, thanks to Lemma A.1, if ε <<< ε0(Ω), we have that Ωε is C2 and:

∂Ωε = D−1
ε (ε‖H‖2L∞(B)). (A.27)

Remark A.4. In order to prove (A.23) we have only used (A.22)1 and that ε <<< ε0(Ω).

Consequently, if ε <<< ε0(Ω), considering (A.27), (A.23) and that B2ε ⊂ χ−1
ε ({1}) we find

that:

ρ(x)(Hε(x)− z)z = ε‖H‖2L∞(B), ∀(x, z) ∈ ∂Ωε. (A.28)

Similarly, if ε <<< ε0(Ω) and (x, z) ∈ ∂Ωε, using (A.2), (A.16) and (A.23) we obtain that:

nε(x, z) = − ∇Dε(x, z)

|∇Dε(x, z)|
=

(
− zρ(x)∇Hε(x)− z(Hε(x)− z)∇ρ(x), ρ(x) (2z −Hε(x))

)
|
(
− zρ(x)∇Hε(x)− z(Hε(x)− z)∇ρ(x), ρ(x) (2z −Hε(x))

)
|
,

(A.29)

where nε denotes the outward unit normal vector on ∂Ωε.
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Step 6: the domains Ωε satisfy (2.9). Considering (A.29) and (3.5), we have to prove that if

c >>> c0(Ω, ω, ηB), ε <<< ε0(Ω, ω, ηB, c) and (x, z) ∈ ∂Ωε, we have that:

−zρ(x)∇Hε(x) ·∇ηB(x)−z(Hε(x)−z)∇ρ(x) ·∇ηB(x)−2ρ(x)(2z−Hε(x))c(z−z) ≤ 0. (A.30)

Intuitively, the proof consists on using that ∂Ωε is near ∂Ω and that nε somehow approximates

n. Indeed, we follow different (but a finite number of) approaches depending if we are close to

B × {0}, L or T (see Remark 1.2 for the notation). This is necessary because η and nε have

different behaviours in different parts of the boundary (they do not present any symmetry), so

considering only (A.24) does not suffice and we have to be more precise.

Rigorously, we fix first c ≥ co(Ω, ω, ηB), second ε <<< ε0(Ω, ω, ηB, c) and third (x, z) ∈ ∂Ωε,

for c0 and ε0 to be obtained during the proof. We prove (A.30) for those values. As stated before,

we follow different (but a finite number of) approaches depending on (x, z). A first partition of

the boundary is the following:∂Ωε,b := ∂Ωε ∩ {(x, z) : z ∈ (0, Hε(x)/2]},

∂Ωε,t := ∂Ωε ∩ {(x, z) : z ∈ (Hε(x)/2, Hε(x))}.
(A.31)

Case 1: if (x, z) ∈ ∂Ωε,b. From ε <<< ε0(Ω), (A.31)1, (A.28), and (A.11) we obtain that:

ε‖H‖L∞(B) ≤ zρ(x) ≤
2ε‖H‖2L∞(B)

infBε Hε
. (A.32)

Thanks to (A.13), from ε <<< ε0(Ω) we have the inequality:

1

infBε Hε
≤ 2

infBH
;

so if we define:

κ1 := ‖H‖L∞(B), κ2 :=
4‖H‖2L∞(B)

infBH
, (A.33)

we have that (A.32) and ε <<< ε0(Ω) imply that:

κ1ε ≤ zρ(x) ≤ κ2ε. (A.34)

So, either ρ(x) ≤ √κ2ε or z ≤ √κ2ε is obtained. We study both cases separately, since in the

first one (x, z) is near L, whereas in the second one (x, z) is near B× {0}.
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Case 1.1: if (x, z) ∈ ∂Ωε,b and if ρ(x) ≤ √κ2ε. Due to (A.34) we have the bound:

z ≥ κ1

√
κ−1

2 ε. (A.35)

We first focus on the sign of:

−zρ(x)∇Hε(x) · ∇ηB(x)− z(Hε(x)− z)∇ρ(x) · ∇ηB(x).

From (A.34) we obtain the estimate:

|zρ(x)∇Hε(x) · ∇ηB(x)| ≤ Cε. (A.36)

Moreover, we have the equality (see (A.4)):

− z(Hε(x)− z)∇ρ(x) = z(Hε(x)− z)nB (P (x)) + z(Hε(x)− z) (−nB (P (x))−∇ρ(x)) . (A.37)

Recalling (A.4)-(A.8), from ε <<< ε0(Ω) we obtain the estimate:

| − nB (P (x))−∇ρ(x)| = |∇ρ(P (x))−∇ρ(x)|

≤ ‖ρ‖W 2,∞(B)|P (x)− x| = ‖ρ‖W 2,∞(B)d(x) ≤ 3

2
‖ρ‖W 2,∞(B)ρ(x). (A.38)

So, combining (A.38) and (A.34) we get the bound:

|z(Hε(x)− z) (−nB (P (x))−∇ρ(x)) · ∇ηB(x)| ≤ C|zρ(x)| ≤ Cε. (A.39)

Finally, we have the equality:

z(Hε(x)− z)nB (P (x)) · ∇ηB(x) = z(Hε(x)− z)nB (P (x)) · ∇ηB(P (x))

+ z(Hε(x)− z)nB (P (x)) · (−∇ηB(P (x)) +∇ηB(x)) . (A.40)

Since ηB ∈ C2
(
B
)
, arguing similarly to (A.38) we obtain the estimate:

|z(Hε(x)− z)nB (P (x)) · (−∇ηB(P (x)) +∇ηB(x)) | ≤ Cε. (A.41)

Moreover, if we take into account (A.35), (A.31)1, (A.13) and (3.4) we have the bound:

z(Hε(x)− z)nB (P (x)) · ∇ηB(P (x)) ≤ −c
√
ε. (A.42)

Consequently, if we combine (A.36)-(A.42), we find that:

− zρ(x)∇Hε(x) · ∇ηB(x)− z(Hε(x)− z)∇ρ(x) · ∇ηB(x) ≤ Cε− c
√
ε. (A.43)
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Let us now analyze the term:

−2ρ(x)(2z −Hε(x))c(z − z) = 2ρ(x)(Hε(x)− 2z)c(z − z).

• On the one hand, if z ≤ z (see (3.1) for the definition of z), we have that (see (A.31)1):

2ρ(x)(Hε(x)− 2z)c(z − z) ≤ 0,

which, together with (A.43) implies (A.30) since ε <<< ε0(Ω, ω, ηB).

• On the other hand, if z ≥ z, we get from (A.34) the inequality:

ρ(x) ≤ Cε. (A.44)

Thus, we obtain the estimate:

|2ρ(x)(Hε(x)− 2z)c(z − z)| ≤ Ccε. (A.45)

Therefore, if we combine (A.43) and (A.45), we get the bound:

− zρ(x)∇Hε(x) · ∇ηB(x)− z(Hε(x)− z)∇ρ(x) · ∇ηB(x)− 2ρ(x)(2z −Hε(x))c(z − z)

≤ C(1 + c)ε− c
√
ε,

which implies (A.30) since ε <<< ε0(Ω, ω, ηB, c).

Remark A.5. Note that for some control domains there are (x, z) ∈ ∂Ωε,b satisfying ρ(x) ≤ √κ2ε

and (A.44). In fact, (A.44) provides us some additional information because
√
ε >>> ε for ε

small. Moreover, this does not suppose a contradiction with (A.24) because it just means that

C > 4 in (A.44).

Case 1.2: if (x, z) ∈ ∂Ωε,b and if z ≤ √κ2ε. We first remark that ε <<< ε0(Ω, ω) implies:

z ≤
√
κ2ε ≤

z

4
≤ infBH

4
. (A.46)

This can be done because κ1, κ2 and z are strictly positive constants that only depend on Ω

and ω (see (A.33) and (3.1)). Moreover, we have from (A.34) that:

ρ(x) ≥ κ2

√
κ−1

1 ε. (A.47)

If we use (A.34), (A.14), (A.11), that z ≤ √κ2ε, (A.5), that ηB ∈ C2
(
B
)
, (A.47), (A.46) and

(A.13), we obtain from ε <<< ε0(Ω, ω) the inequality:

− zρ(x)∇Hε(x) · ∇ηB(x)− z(Hε(x)− z)∇ρ(x) · ∇ηB(x)− 2ρ(x)(2z −Hε(x))c(z − z)

≤ Cε+ Cε1/2 − ccε1/2.

Consequently, as c >>> c0(Ω, ω, ηB) and ε <<< ε0(Ω, ω, ηB, c), we have (A.30).
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Case 2: if (x, z) ∈ ∂Ωε,t. As for ∂Ωε,t the situation is very similar. Indeed, from (A.28) we

find the bounds:

κ1ε ≤ (Hε(x)− z)ρ(x) ≤ κ2ε, (A.48)

for κ1 and κ2 defined in (A.33). As before, we distinguish the cases ρ(x) ≤ √κ2ε and Hε(x)−z ≤
√
κ2ε. The first one concerns the points near L, whereas the second one concerns the points

near T.

Case 2.1: if (x, z) ∈ ∂Ωε,t and if ρ(x) ≤ √κ2ε. Due to (A.48) we have the bound:

Hε(x)− z ≥ κ1

√
κ−1

2 ε. (A.49)

Arguing as in the case 1.1, we get the estimate:

− z(Hε(x)− z)∇ρ(x) · ∇ηB(x) ≤ Cε− cε1/2. (A.50)

In order to continue, as before, we make a distinction depending on how close z is to Hε(x):

• We start with the subcase:

z ≥ max

{√
z

infBH
,
2

3

}
Hε(x). (A.51)

We obtain from (3.2) and ε <<< ε0(Ω, ω) the inequality:

Hε(x) ≥ 4

√
z

infBH
H(x). (A.52)

Thanks to (A.51), (A.52) and ε <<< ε0(Ω, ω), we have the lower bound:

z ≥ 4

√
(z)3 inf

B
H =

4

√
infBH

z
z. (A.53)

So, combining (A.51), (A.13), (A.53) and (3.2) and that ε <<< ε0(Ω, ω), we obtain the

inequality:

− 2ρ(x)(2z −Hε(x))c(z − z) ≤ −ccρ(x). (A.54)

Moreover, we clearly have the estimate:

− zρ(x)∇Hε(x) · ∇ηB(x) ≤ Cρ(x). (A.55)

Thus, we get from c >>> c0(Ω, ω, ηB), ρ ≥ 0, (A.54) and (A.55) the upper bound:

− zρ(x)∇Hε(x) · ∇ηB(x)− 2ρ(x)(2z −Hε(x))c(z − z) ≤ 0. (A.56)

Hence, combining (A.50) and (A.56) we get (A.30) from ε <<< ε0(Ω, ω, ηB).
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• Let us now suppose that:

z < max

{√
z

infBH
,
2

3

}
Hε(x). (A.57)

Considering (A.48) and (A.13) we have that:

ρ(x) < Cε. (A.58)

Thus, we find the estimate:

− zρ(x)∇Hε(x) · ∇ηB(x)− 2ρ(x)(2z −Hε(x))c(z − z) < Ccε. (A.59)

So, from (A.50), (A.59) and ε <<< ε0(Ω, ω, ηB, c) we obtain (A.30).

Remark A.6. Again, note that for some control domains there are (x, z) ∈ ∂Ωε,t satisfying

ρ(x) ≤ √κ2ε and (A.58). In fact, (A.58) provides us some additional information because
√
ε >>> ε for ε small. Moreover, this does not suppose a contradiction with (A.24) because it

just means that C > 4 in (A.58).

Case 2.2: if (x, z) ∈ ∂Ωε,t and if Hε(x)− z ≤ √κ2ε. We have from (A.48) the inequality:

ρ(x) ≥ κ1

√
κ−1

2 ε. (A.60)

Moreover, from (A.14), Hε(x)− z ≤ √κ2ε and (A.60) we find the upper bound:

− zρ(x)∇Hε(x) · ∇ηB(x)− z(Hε(x)− z)∇ρ(x) · ∇ηB(x) ≤ C
(
ρ(x) + ε1/2

)
≤ Cρ(x). (A.61)

In addition, since Hε(x)− z ≤ √κ2ε and ε <<< ε0(Ω, ω) we have that:

z > max

{√
infBε Hε

z
z,

2

3
Hε(x)

}
. (A.62)

Indeed, because of (A.13), Hε(x)− z ≤ √κ2ε and ε <<< ε0(Ω) we have that:

z ≥ Hε(x)−
√
κ2ε ≥ Hε(x)− 1

6
inf
B
H ≥ Hε(x)− 1

3
inf
Bε

Hε(x) ≥ 2

3
Hε(x).

Similarly, as a consequence of (A.13), (3.2) and ε <<< ε0(Ω, ω) we have that:

z ≥ Hε(x)−
√
κ2ε ≥ inf

Bε

Hε −
√
κ2ε ≥ inf

Bε

Hε −
1

2

(
1−

√
z

infBH

)
inf
B
H

≥ inf
Bε

Hε −

(
1−

√
z

infBε Hε

)
inf
Bε

Hε =

√
z

infBε Hε
inf
Bε

Hε =

√
infBε Hε

z
z.

So, from (A.62), (A.13) and (3.2) we find that:

− 2ρ(x)(2z −Hε(x))c(z − z) ≤ −ccρ(x). (A.63)

Consequently, from (A.61), (A.63) and c >>> c0(Ω, ω, ηB) we obtain (A.30).
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B The existence of a pseudo-cylinder which is not locally star-

shaped

We show in this section the existence of a pseudo-cylinder in R2 which is not locally star-

shaped. The structure of this section is the following: first we recall the definition of locally

star-shaped as stated in [3], but adapted to our notation, second we construct the pseudo-

cylinder, and thirdly we prove that it is not locally star-shaped.

Definition B.1. A Lipschitz domain Ω is locally star-shaped if for all p ∈ ∂Ω there is rp > 0 and

qp ∈ Ω such that |p− qp| < rp and B(qp, rp) ∩ Ω is star-shaped with center in qp.

Remark B.2. As a consequence of [3, Remark 3.5] we can choose rp as small as needed. This

implies that a locally star-shaped domain can also be defined as a Lipschitz domain Ω such that

for all p ∈ ∂Ω and all r > 0 there is some r̃ ∈ (0, r) and q ∈ Ω satisfying |p − q| < r̃ and that

B(q, r̃) ∩ Ω is star-shaped with center in q.

We define:

Ω = {(x, z) : x ∈ (0, 1), z ∈ (H̃(x), 3)},

for

H̃(x) := 6

∫ x

0
h(s)ds, for h(x) :=

∑
i∈N∗

1[1/3i,2/3i)(x)−
∑
i∈N∗

1[2/3i,1/3i−1)(x).

We have that Ω clearly is a pseudo-cylinder (take U(x, z) = (x, 3 − z), B = (0, 1) and H(x) =

3 − H̃(x) in Definition 1.1, as inf(0,1)H(x) = H(2/3) = 3 − 2 = 1). See Figure 5 for an

approximate illustration of Ω near each point
(

2
3i+2 ,

2
3i+1

)
, for i ∈ N∗.

Remark B.3. H̃ is a positive Lipschitz function which satisfies for all i ∈ N∗ that H̃(x) =

− 2
3i−1 + 6x in [1/3i, 2/3i) and:

H̃(x) =
2

3i−2
− 6x, ∀x ∈ [2/3i, 1/3i−1). (B.1)

Thus, its local minimums are taken at x = 0 and x = 3−i for all i ∈ N (with H̃(3−i) = 0). In

addition, its local maximums are taken at x = 2 ·3−i, for all i ∈ N∗ (with H̃(2 ·3−i) = 3 ·(2 ·3−i)).
In fact, H̃(x) ≤ 3x for all x ∈ [0, 1], being equal if and only if x = 0 or x = 2 · 3−i, for all i ∈ N∗.

In order to prove that Ω is not locally star-shaped we show that for all q ∈ B(0, 1/3)∩Ω there

is a segment ` of length |q| with one end in q and such that ` ∩ Ω is not connected. This shows

that the alternative definition given in Remark B.2 is not satisfied for p = (0, 0) and r = 1/3.

Hence, we fix q = (xq, zq) ∈ B(0, 1/3) ∩ Ω and follow different approaches depending on q:
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Figure 5: A pseudo-cylinder which is not locally star-shaped (approximate figure).
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Case 1: if zq < 3xq (see q1 in Figure 5). If zq < 3xq, we consider (xq > 0 because q ∈ Ω):

` =

{(
x,
zq
xq
x

)
: x ∈ [0, xq]

}
.

Clearly, ` is of length |q| and one of its ends is q. In addition, we have that ` leaves and enters

Ω an infinite number of times, as we have for all i ∈ N∗ that:

zq
xq
· (3−i) > 0 = H̃(3−i),

zq
xq
· (2 · 3−i) < 3 · (2 · 3−i) = H̃(2 · 3−i),

so ` ∩ Ω is not connected.

Case 2: if zq ≥ 3xq and if there is i ∈ N∗ such that zq ∈ [2/3i+1, 2/3i) and zq <
2
3i
− 6xq (see

q2 in Figure 5). Under these hypotheses the point q is in the following triangle:

T1,i :=

{
(x, z) ∈ R2 : z ≥ 2

3i+1
, x > 0, z <

2

3i
− 6x

}
, (B.2)

whose vertices are: {(
0,

2

3i+1

)
,

(
2

3i+2
,

2

3i+1

)
,

(
0,

2

3i

)}
. (B.3)

A consequence of (B.2) is that:

T1,i ⊂
{

(x, z) : x <
2

3i+2

}
. (B.4)

Let us first prove that:

d

(
q,

(
2

3i+2
,

2

3i+1

))
< |q|. (B.5)

We remark that for all (x, z) ∈ T1,i we have that:

d2

(
(x, z),

(
2

3i+2
,

2

3i+1

))
=

(
2

3i+2
− x
)2

+

(
z − 2

3i+1

)2

= x2 + z2 − 4

3i+2
x− 4

3i+1
z +

4

32i+4
+

4

32i+2
:= |(x, z)|2 + G1(x, z). (B.6)

Therefore, proving (B.5) reduces to finding the maximum of G1 on T1,i, which is a simplex. Since

G1 is an affine function, it is well-known that the maximum is reached on the vertices, which in

this case are given by (B.3). Since:

G1

(
0,

2

3i+1

)
= − 32

32i+4
, G1

(
2

3i+2
,

2

3i+1

)
= − 40

32i+4
, G1

(
0,

2

3i

)
= − 176

32i+4
. (B.7)

we obtain from (B.6) and (B.7) that d2
(
(x, z),

(
2

3i+2 ,
2

3i+1

))
< |(x, z)|2 for all (x, z) ∈ T1,i, which

in particular implies (B.5).
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We define:

` := {(x, g(x)) : |(x, g(x))− q| ≤ |q|, x ≥ xq} , for g(x) := −
zq − 2

3i+1

2
3i+2 − xq

(x− xq) + zq. (B.8)

We have that g is well-defined because of (B.4). In fact, ` is the segment with one end in q and

containing
(

2
3i+2 ,

2
3i+1

)
because of (B.5) and because g

(
2

3i+2

)
= 2

3i+1 . Moreover, we recall that:(
2

3i+2
,

2

3i+1

)
⊂ ∂Ω ⊂ R2 \ Ω.

In addition, using (B.2)3 and (B.4) we obtain that:

2
3i+1 − zq

2
3i+2 − xq

>
2

3i+1 − 2
3i

+ 6xq
2

3i+2 − xq
= −

4
3i+1 − 6xq

2
3i+2 − xq

= −6. (B.9)

Considering that in a neighbourhood of
(

2
3i+2 ,

2
3i+1

)
the set ∂Ω is a segment of slope −6 (see

(B.1) for i+ 2 instead of i) and (B.9), we get by continuity for some εq > 0 small enough that:(
2

3i+2
+ εq, g

(
2

3i+1
+ εq

))
∈ ` ∩ Ω.

Consequently, ` is a segment of length |q|, with one end in q and such that `∩Ω is not connected.

Case 3: if zq ≥ 3xq and if there is i ∈ N∗ such that zq ∈ [2/3i+1, 2/3i) and zq ≥ 2
3i
− 6xq (see

q3 in Figure 5). Under these hypotheses q is in the triangle:

T2,i :=

{
(x, z) : z <

2

3i
, z ≥ 2

3i
− 6x, z ≥ 3x

}
\
{(

2

3i+1
,

2

3i

)}
, (B.10)

whose vertices are given by:{(
0,

2

3i

)
,

(
2

3i+2
,

2

3i+1

)
,

(
2

3i+1
,

2

3i

)}
.

It can be deduced from (B.10) that:

T2,i ⊂
{

(x, z) : z >
2

3i+1

}
. (B.11)

We remark that the horizontal distance of the points in the line z = 2
3i
− 6x with respect to

the line z = 2
3i−1 − 6x is given by 2

3i+1 (both lines are parallel). This implies that the vertical

distance of q to the line z = 2
3i−1 − 6x is bounded by 2

3i+1 . Moreover, because of (B.11) we have

that |(x, z)| > 2
3i+1 for all (x, z) ∈ T2,i. Thus, the segment ` = {(x, zq) : x ∈ [xq, xq + |q|]} is of

length |q|, one of its ends is q, and satisfies that `∩Ω is not connected, as
(

2
3i+1 , zq

)
∈ `∩(R2 \Ω)

and
(

1
3i
− zq

6 + εq, zq
)
∈ ` ∩ Ω for some εq > 0 small enough (see (B.1) for i+ 1 instead of i).

Remark B.4. The construction given in this section can clearly be generalized to higher dimen-

sions.
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