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0 Abstract and basic information

In this paper we prove the null controllability of the heat equation in domains which have

a cylindrical part and which are limited by a Lipschitz graph. The proof consists mainly on

getting a Carleman estimate, which presents the usual absorptions properties. In order to face

the difficulty that the domain is just Lipschitz, we use its cylindrical structure and approximate

the system by the same system stated in regular domains.
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1 Introduction

The null controllability of the heat equation has been an interesting research topic in the last

40 years. Throughout this paper we use the term “domain” to refer to a bounded connected

non-empty open set. The most general proof is given in [9], where the authors introduce a

Carleman estimate to prove the null controllability of the heat equation in a C2 domain. There

are other proofs, which require additional assumptions on the domain or on the data, but in

which the error in estimating the cost of the control is reduced (see for example [16], [21] and

[5]).

As a continuation of the work made in [9], Carleman estimates of the heat equation have

been established when the system is not regular, which prove the null controllability of some

related linear and non-linear systems. For instance, in [13] and [7] the authors consider non-

regular source terms. Moreover, in [6] and [12] the authors study some boundary conditions

which imply that the solution is not in L2(0, T ;H2(Ω)). Additional examples are given in [4],

[1] and [15], where the authors analyse parabolic equations in which the diffusion coefficient is

not continuous.

To the best of our knowledge, a lack of regularity that has not been studied is whenever the

domain is not C2. It is well-known that the method in [9] can be easily generalized to cubes or,

more generally, to any cartesian product of C2 domains. Nonetheless, as far as we know, the

general case of a Lipschitz domain has not been studied. As a first step on that direction, in this

paper we prove the null controllability of the heat equation by an internal control in domains

that are pseudo-cylinders. By pseudo-cylinder we mean the following:

Definition 1.1. We say that Ω ⊂ Rd+1 (d ≥ 1) is a pseudo-cylinder if there is B ⊂ Rd a C2

domain and if there is a Lipschitz function H : B 7→ R+ satisfying infBH > 0 such that:

Ω = {(x, z) : x ∈ B, z ∈ (0, H(x))}. (1.1)

Moreover, we denote the cylindrical part by:

C := B×
(

0, inf
B
H

)
. (1.2)

Remark 1.2. If Ω is a pseudo-cylinder, we can split ∂Ω into three parts:

B× {0}; L := {(x, z) : x ∈ ∂B, z ∈ (0, H(x))}; T := {(x,H(x)) : x ∈ B}.

Before presenting the main result, we recall the usual notation:
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Definition 1.3. Let Ω be any domain and let ω ⊂ Ω be a subdomain. We define as usual

Q := (0, T )× Ω, Qω := (0, T )× ω, Σ := (0, T )× ∂Ω and n the outwards unit normal vector on

∂Ω. Similarly, if the domain is denoted by Ω̃, we define Q̃ := (0, T )× Ω̃, Σ̃ := (0, T )× ∂Ω̃ and

ñ the outwards unit normal vector on ∂Ω̃.

Now we may state the main result:

Theorem 1.4. Let Ω be a pseudo-cylinder. Then, for any subdomain ω ⊂ Ω there is C > 0

such that for all T > 0 and y0 ∈ L2(Ω) there is a force f ∈ L2(Qω) such that the solution of the

system: 
yt −∆y = f1ω in Q,

y = 0 on Σ,

y(0, ·) = y0 on Ω,

satisfies y(T, ·) = 0, and such that the force satisfies the estimate:

‖f‖L2(Qω) ≤ CeCT
−1‖y0‖L2(Ω).

Note that Theorem 1.4 extends the result given by Furkisov and Imanuvilov in [9] to some

Lipschitz domains which are relevant, for example, in fluid mechanics (see for instance [20]

and [11]). Indeed, the authors in [9] prove that for any C2 domain the heat equation is null

controllable with an internal control. To this end, they prove a Carleman inequality with the

help of an auxiliary function η which satisfies:

η ∈ C2
(
Ω
)
; η = 0 on ∂Ω; η > 0 in Ω; inf

Ω\ω
|∇η| > 0. (1.3)

Since in a Lipschitz domain the heat equation has a unique energy solution, the existence of

some Carleman estimate seems reasonable. However, two difficulties arise:

• The first one is that the construction of the function η given in [9] does not work when

Ω is not C2. Indeed, if Ω has corners and if ω is compactly included in Ω, the three

conditions in (1.3) are incompatible. The only solution known so far for other domains

(like cylinders) is to construct manually an auxiliary function which satisfies the following

assumptions (which are verified by any η satisfying (1.3)):

η ∈ C2
(
Ω
)
; ∂nη ≤ 0 on ∂Ω; inf

Ω\ω
|∇η| > 0. (1.4)

The construction of η is done for instance as a sum of functions of different variables,

which is our approach when ω ⊂ C. As for the case ω ⊂ Ω \C, we “transmit” the estimate

from one control domain to another.
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• The second difficulty is that in [9] it is used that the Laplacian behaves well in Ω in the

sense that if u ∈ H1
0 (Ω) is such that −∆u ∈ L2(Ω), then u ∈ H2(Ω). However, when Ω

is Lipschitz this is not always true, since in a general Lipschitz domain the most we can

ensure is that u ∈ H3/2(Ω). Indeed, the fact that u ∈ H3/2(Ω) is proved in [14], and,

for all ε > 0 a counter-example of a domain Ωε for which there is u ∈ H1
0 (Ωε) such that

−∆u ∈ C∞
(
Ωε

)
, but u 6∈ H3/2+ε(Ω) is given for instance in [10]. In particular, if ϕ is a

solution of the backwards heat equation with Dirichlet boundary conditions, the most that

we can expect is that ϕ ∈ H1(0, T ;L2(Ω))∩L2(0, T ; (H3/2 ∩H1
0 )(Ω)) with −∆ϕ ∈ L2(Q).

Solving the difficulty that in our domain the L2-norm of the Laplacian is not equivalent to

the H2-norm is a contribution with respect to the literature on parabolic control theory.

In this paper we solve both difficulties for pseudo-cylinders and get some Carleman estimates

(see Proposition 2.1 and Proposition 2.14 below) which present the usual absorption properties.

However, as we explain in Section 2.3, our method does not work in any Lipschitz domain, so

the general case remains as an interesting open problem.

In this document we consider the following weights:

αη(t, x, z) :=
eλ

m+1
m

k − eλ(k+η(x,z))

tm(T − t)m
, ξη(t, x, z) :=

eλ(k+η(x,z))

tm(T − t)m
, (1.5)

for m ≥ 1, η some auxiliary C2
(
Ω
)

function such that infΩ\ω |∇η| > 0 and k > m‖η‖L∞(Ω), all

of them to be fixed later. In (1.5) the subindex η might be omitted if it is clear. Moreover, if

we denote some function by η̃, we use the notation α̃ and ξ̃ to refer to αη̃ and ξη̃ respectively.

We recall that we have the following estimates for the weights given in (1.5), for some constants

C > 0 that are universal (independent of any variable like η, m, Ω, ...):

|ξt|+ |αt| ≤ CmTξ(m+1)/m; |αtt| ≤ C(mξ(m+1)/m +m(m+ 1)T 2ξ(m+2)/m). (1.6)

Weights similar to (1.5) were first introduced in [9]. However, our version is equivalent to the

one presented in [8], where the authors consider k‖η‖L∞(Ω) instead of k in the definition of (1.5),

and their k must satisfy k > m.

Remark 1.5. We need k > m‖η‖L∞(Ω) to prove (1.6) and to assure that the numerator of α is

strictly positive, so that we can integrate by parts in the time variable with a null boundary

term when proving the Carleman inequality.

Remark 1.6. These weights, stated as in (1.5), have the advantage that can be compared very

easily when using two different auxiliary functions. Indeed, if we have η1 and η2, for any m ≥ 1,

for any k > mmax{‖η1‖L∞(Ω), ‖η2‖L∞(Ω)}, for any t ∈ (0, T ) and for any (x, z) ∈ Ω, we find:
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ξη1(t, x, z) ≤ ξη2(t, x, z) if and only if η1(x, z) ≤ η2(x, z),

and:

−αη1(t, x, z) ≤ −αη2(t, x, z) if and only if η1(x, z) ≤ η2(x, z).

The rest of the paper is organised as follows: first, in Section 2 we prove Theorem 1.4; secondly,

in Section 3 and in Appendix A we prove some technical results which have been postponed.

2 Proof of Theorem 1.4

This section is split in three parts: first, in Subsection 2.1 we prove Theorem 1.4 in the case

ω ⊂ C; second, in Subsection 2.2 we prove Theorem 1.4 in the case ω ⊂ Ω \ C; finally, in

Subsection 2.3 we make some comments about the proof.

2.1 The case ω ⊂ C

In this subsection we first construct the auxiliary function η and then prove the corresponding

Carleman estimate.

2.1.1 Construction of the auxiliary function

We recall that Ω is a pseudo-cylinder and that C is given by (1.2). Let us construct an auxiliary

function η satisfying (1.4). By taking a smaller control domain if necessary, we can suppose that

ω is compactly included in Ω and that:

ω = B(x, r)× (z − r, z + r), (2.1)

for some (x, z) ∈ Ω and for some r > 0. Since ω ⊂ C, we have that:

z < inf
B
H. (2.2)

Considering that B is C2 and (1.3), there is ηB ∈ C2
(
B
)

satisfying:

ηB = 0 on ∂B; ηB > 0 in B; inf
B\B(x,rω)

|∇ηB| > 0. (2.3)

One important consequence of (2.3) is the inequality:

sup
∂B

∂nB
ηB < 0. (2.4)
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So, we define:

η(x, z) := ηB(x)− c(z − z)2, (2.5)

for c a positive constant to be fixed later on. It is evident that η ∈ C2
(
Ω
)
. As ∇η =

(∇ηB,−2c(z − z)), it follows from (2.3)3 the inequality:

inf
Ω\ω
|∇η| > 0.

Finally, it can be checked that for c large enough we have ∂nη ≤ 0 on ∂Ω, though this last

property is not used directly (see Section 2.3 for a more detailed explanation).

With the above auxiliary function we obtain the following Carleman inequality:

Proposition 2.1. Let Ω be a pseudo-cylinder, let ω ⊂ C, and let m ≥ 1. Then, there exists

c0(Ω, ω, ηB) > 0 such that if η is defined as in (2.5) for c ≥ c0, there is C > 0 such that for

all T > 0, for all k > m‖η‖L∞(Ω), for all uT ∈ L2(Ω), for all g ∈ L2(Q), and for the weights

defined in (1.5), we have that:

s3λ4

∫∫
Q
e−2sαξ3|u|2 + sλ2

∫∫
Q
e−2sαξ|∇u|2 ≤ C

(
s3λ4

∫∫
Qω

e−2sαξ3|u|2 +

∫∫
Q
e−2sα|g|2

)
,

(2.6)

for any s ≥ C(Tm + T 2m), for any λ ≥ C and for u the solution of:
−ut −∆u = g in Q,

u = 0 on Σ,

u(T, ·) = uT on Ω.

(2.7)

Remark 2.2. It is a classical result (see for instance [22], [18] and [9]) that Proposition 2.1 (taking

m = 1) implies that Theorem 1.4 is true for any ω ⊂ C.

Proposition 2.1 is proved in the next subsection. The proof consists on approximating Ω by

some domains Ωε, on applying known Carleman estimates on the solution of the heat equation

stated in Ωε, and on taking limits in those estimates.

2.1.2 Proof of Proposition 2.1

Let us now prove Proposition 2.1. We use the notation:

WΩ := L2(0, T ;H1(Ω)) ∩H1(0, T ;H−1(Ω)),

omitting the subindex Ω if it is clear. Moreover, we define:
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Definition 2.3. Let Ω be a Lipschitz domain, let u0 ∈ L2(Ω) and let g ∈ L2(Q). Then, we define:

S(Ω, u0, g)(t, x),

as the only solution in W of: 
ut −∆u = g in Q,

u = 0 on Σ,

u(0, ·) = u0 on Ω.

(2.8)

Finally, we define the convergence of domains in the following way:

Definition 2.4. Let Ω and (Ωε)ε>0 be Lipschitz open sets such that Ωε ⊂ Ω for all ε > 0. We

say that Ωε →d Ω if:

lim
ε→0+

sup
x∈Ω\Ωε

d(x, ∂Ω) = 0. (2.9)

Remark 2.5. If Ωε →d Ω, then Ωε converges to Ω in measure; that is, ‖1Ω\Ωε
‖L1(Rd) → 0, because

of the Dominated Convergence Theorem.

We have the following technical result:

Lemma 2.6. Let Ω be a Lipschitz domain, let Ωε ⊂ Ω be some Lipschitz domains such that

Ωε →d Ω, let u0 ∈ L2(Ω) and let g ∈ L2(Q). Then,

S
(
Ωε, u

01Ωε , g1Ωε

)
1Ωε →L2(Q) S(Ω, u0, g). (2.10)

Remark 2.7. The corresponding result for the backwards heat equation holds.

As far as we know, the proof of Lemma 2.6 is not available in the literature, so a proof, whose

originality we do not claim, is given in Appendix A. Indeed, the proof of Lemma 2.6 consists on

taking limits in the variational solution, which is done with the following interpolation result,

proved for instance in [19] and [18]:

Lemma 2.8. Let Ω be a Lipschitz domain. Then,

1. The injection W ⊂ L2(Q) is compact.

2. The injection W ⊂ C0([0, T ];L2(Ω)) is continuous.

3. For all u, v ∈ W, we have 〈u(t, ·), v(t, ·)〉L2(Ω) ∈W 1,1(0, T ) and:

∂t
(
〈u(t, ·), v(t, ·)〉L2(Ω)

)
= 〈∂tu(t, ·), v(t, ·)〉H−1(Ω)×H1

0 (Ω) + 〈∂tv(t, ·), u(t, ·)〉H−1(Ω)×H1
0 (Ω).
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In order to prove Proposition 2.1 the approximation of Ω must be made not only by C2

domains, but also these domains must be compatible with the function η in the following way:

Definition 2.9. Let Ω be a domain, let ω ⊂ Ω be a subdomain, and let η be a real value function

satisfying:

η ∈ C2
(
Ω
)

; inf
Ω\ω
|∇η| > 0. (2.11)

We say that Ω̃ is a compatible open set with respect to Ω, ω and η if we have that:

Ω̃ is a Lipschitz open set such that ω ⊂ Ω̃ ⊂ Ω, (2.12)

for all u ∈ H1
0 (Ω̃) such that ∆u ∈ L2(Ω̃) we have that u ∈ H2(Ω̃) continuously, (2.13)

∂ñη ≤ 0 on ∂Ω̃. (2.14)

Remark 2.10. One consequence of Definition 2.9 is that Ω̃ is connected. Indeed, if Ω̃i is a

connected component, then ω ∩ Ω̃i 6= ∅. Otherwise, because of (2.14) and (2.11)2 the maximum

of η in Ω̃i is not reached on the boundary (the tangential derivative of η is non-null), but again

because of (2.11)2 the maximum is not reached in the interior, getting an absurd. Consequently,

all the connected components of Ω̃ intersect ω. Since ω is connected, Ω̃ has only one connected

component; so Ω̃ is connected.

Remark 2.11. Every C2 domain satisfies (2.13). Moreover, there are some Lipschitz domains

which also satisfy it, like (0, 1)d or, in general, like the cartesian product of C2 domains.

Let us now state the Carleman inequality for domains which satisfy (2.12)-(2.14):

Proposition 2.12. Let Ω be a Lipschitz domain, let ω ⊂ Ω be a subdomain, let η be a function

satisfying (2.11) and let m ≥ 1. Then, there is C > 0 such that for all T > 0, for all k >

m‖η‖L∞(Ω), for all Ω̃ satisfying (2.12)-(2.14), for all uT ∈ L2(Ω̃), for all g ∈ L2(Q̃), and for

the weights defined in (1.5), we have that:

s3λ4

∫∫
Q̃
e−2sαξ3|u|2 + sλ2

∫∫
Q̃
e−2sαξ|∇u|2 + s−1

∫∫
Q̃
e−2sαξ−1(|∆u|2 + |ut|2)

≤ C
(
s3λ4

∫∫
Qω

e−2sαξ3|u|2 +

∫∫
Q̃
e−2sα|g|2

)
, (2.15)

for any s ≥ C(Tm + T 2m), for any λ ≥ C and for u the solution of:
−ut −∆u = g in Q̃,

u = 0 on Σ̃,

u(T, ·) = uT on Ω̃.
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Proof. Proposition 2.12 is a direct consequence of the proof of the usual Carleman estimate,

which can be found for instance in [9] and [8]. We remark that since infΩ\ω |∇η| > 0, there

exists and we fix a domain ω0 which is compactly included in ω and satisfies infΩ\ω0
|∇η| > 0.

The only additional difficulty is to prove that the constant C is independent of Ω̃. However,

their proof shows that C depends continuously only on:

• ‖η‖
C2

(
Ω̃
) (which can be bounded by ‖η‖C2(Ω)),

• m (see (1.6)),

• infΩ̃\ω0
|∇η| (which can be bounded inferiorly by infΩ\ω0

|∇η| > 0),

• ω and ω0.

Finally, before proving Proposition 2.1 we state the following technical result whose proof is

postponed to Section 3:

Proposition 2.13. Let Ω be a pseudo-cylinder and let ω be given by (2.1). There exists

c0(Ω, ω, ηB) > 0 such that if η is given by (2.5) for c ≥ c0, there exist some ε0(Ω, ω, ηB, c) > 0

and some domains (Ωε)ε∈(0,ε0) satisfying (2.12)-(2.14), and such that Ωε →d Ω.

Proof of Proposition 2.1. We consider Ω, ω, m and η as in the hypothesis of Proposition 2.1,

and (Ωε)ε∈(0,ε0) given by Proposition 2.13. Then, by Proposition 2.12 we have that for all m ≥ 1

there is C > 0 such that for all T > 0, for all uT ∈ L2(Ω), for all g ∈ L2(Q), for the weights

defined in (1.5) and for all ε ∈ (0, ε0):

s3λ4

∫∫
Q
e−2sαξ3|uε1Ωε |2 ≤ C

(
s3λ4

∫∫
Qω

e−2sαξ3|uε|2 +

∫∫
Q
e−2sα|g1Ωε |2

)
, (2.16)

for any s ≥ C(Tm + T 2m), for any λ ≥ C and for:

uε(t, x) := S
(
Ωε, u

T 1Ωε , g(T − ·, ·)1Ωε

)
(T − t, x).

Considering also Lemma 2.6, we can take the limit in (2.16) and get the estimate:

s3λ4

∫∫
Q
e−2sαξ3|u|2 ≤ C

(
s3λ4

∫∫
Qω

e−2sαξ3|u|2 +

∫∫
Q
e−2sα|g|2

)
. (2.17)
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Finally, multiplying (2.7)1 by sλ2e−2sαξu we get the term of ∇u as in [6]. Indeed, integrating

by parts we get that:

sλ2

∫∫
Q
e−2sαξ|∇u|2 = sλ2

∫∫
Q
e−2sαgu−sλ3

∫∫
Q
e−2sαξ∇η·∇uu+2s2λ3

∫∫
Q
e−2sαξ2∇η·∇uu

− sλ2

2

∫∫
Q
e−2sαξt|u|2 + s2λ2

∫∫
Q
e−2sααtξ|u|2. (2.18)

So, by doing weighted Cauchy-Schwarz estimates in (2.18), and considering also (1.6) and (2.17),

we get (2.6).

2.2 The case ω ⊂ Ω \ C

We recall that the definition of C is given in (1.2). For this case we suppose, by making again

the control domain smaller if necessary, that:

ω = B(x̃, r)× (z̃ − r, z̃ + r),

for some:

z̃ > inf
B
H,

and some:

r ∈
(

0, inf
B

H

4

)
, (2.19)

such that:

Ω̃ := B(x̃, 3r)× (0, z̃ + 3r) ⊂ Ω.

In this case we cannot consider an auxiliary function similar to (2.5) because now we have that

T ∩ {(x, z) : z = z̃} 6= ∅. However, thanks to Proposition 2.1 our problem can be viewed as a

problem of transmitting the estimate from one control domain to another.

Indeed, we define:

ω∗ := B(x̃, r)× (2r, 4r),

which because of (2.19) satisfies that ω∗ ⊂ Ω̃ ∩ C. We fix m ≥ 1, and define η as in (2.5) for

some c ≥ c0(Ω, ω∗, ηB) (and for x := x̃ and z := 3r). We obtain by Proposition 2.1 a constant

C > 0 such that for all T > 0, uT ∈ L2(Ω), g ∈ L2(Q) and k > m‖η‖L∞(Ω), we have that:

s3λ4

∫∫
Q
e−2sαξ3|u|2 + sλ2

∫∫
Q
e−2sαξ|∇u|2 ≤ C

(
s3λ4

∫∫
Qω∗

e−2sαξ3|u|2 +

∫∫
Q
e−2sα|g|2

)
,

(2.20)

for s ≥ C(Tm + T 2m), λ ≥ C and u the solution of (2.7).
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Next, we estimate the weighted L2(Qω∗)-norm by a weighted L2(Qω)-norm. To do this, we

consider a function whose maximum is in ω but which is large in ω∗. In particular, we consider:

η̃(x, z) := −η̃1(|x− x̃|)− η̃2(z) + 2 sup
Ω
|η| ,

for η̃1 a positive C∞ function supported in (r/2,+∞) such that:
inf(r,+∞) η̃

′
1 > 0,

η̃1 < supΩ |η| /2 in (0, r),

η̃1 > 3 supΩ |η| in (2r, 3r),

(2.21)

and for η̃2 a positive C∞ function such that:
infR\(z̃−r,z̃+r) |η̃′2| > 0,

η̃2 < supΩ |η| /2 in (2r, 4r),

η̃2 > 3 supΩ |η| in (0, r) ∪ (z̃ + 2r, z̃ + 3r).

(2.22)

We remark that η̃ ∈ C2
(

Ω̃
)

and satisfies:

∂nη̃ < 0 on ∂Ω̃, inf
C\ω
|∇x,z η̃| > 0. (2.23)

Moreover, from (2.21) and (2.22) we get that:η ≤ η̃ in ω∗,

η̃ ≤ η in Ω̃ \
(
B(x̃, 2r)× (r, z̃ + 2r)

)
.

(2.24)

With the function η̃, we can define the weights α̃ and ξ̃ as in (1.5). Let us fix:

k > mmax{‖η̃‖L∞(Ω), ‖η‖L∞(Ω)}.

Thanks to (2.24) and Remark 1.6 we have that:ξ ≤ ξ̃; −α ≤ −α̃ in Qω∗ ,

ξ̃ ≤ ξ; −α̃ ≤ −α in (0, T )×
(

Ω̃ \
(
B(x̃, 2r)× (r, z̃ + 2r)

))
.

(2.25)

Next, let us consider χ(x, z) a positive regular cut-off function such that supp(χ) ⊂ Ω̃ and

χ = 1 in B(x̃, 2r)× (r, z̃ + 2r). Then, v := χu is the solution of:
−vt −∆v = −2∇χ · ∇u−∆χu+ χg in Q̃,

v = 0 on (0, T )× ∂Ω̃,

v(T, ·) = χuT on Ω̃.

(2.26)
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By using Proposition 2.12 (Ω̃ satisfies (2.13) by Remark 2.11), we have that there is C(η̃,m) > 0

such that if uT ∈ L2(Ω), g ∈ L2(Q), s ≥ C(Tm + T 2m) and λ ≥ C:

s3λ4

∫∫
Q̃
e−2sα̃

(
ξ̃
)3
|χu|2 ≤ C

(
s3λ4

∫∫
Qω

e−2sα̃
(
ξ̃
)3
|χu|2

+

∫∫
Q̃
e−2sα̃| − 2∇χ · ∇u−∆χu+ χg|2

)
. (2.27)

To continue with, as χ = 1 in ω, χ ∈ D
(

Ω̃
)

, and (2.25)1 we may combine (2.20) and (2.27)

and get that:

s3λ4

∫∫
Q
e−2sαξ3|u|2 + s3λ4

∫∫
Q̃
e−2sα̃

(
ξ̃
)3
|χu|2 + sλ2

∫∫
Q
e−2sαξ|∇u|2

≤ C
(
s3λ4

∫∫
Qω

e−2sα̃
(
ξ̃
)3
|u|2 +

∫∫
Q

(
e−2sα|g|2 + e−2sα̃|χg|2

)
+

∫∫
Q̃
e−2sα̃| − 2∇χ · ∇u−∆χu|2

)
. (2.28)

Next, we recall that χ ∈ C2
(
Ω
)
, that:

supp(∆χ), supp(∇χ) ⊂ Ω̃ \
(
B(x̃, 2r)× (r, z̃ + 2r)

)
,

and (2.25)2. Thus, by taking s and λ large enough the last term in the right-hand side of (2.28)

is absorbed, so we get:

s3λ4

∫∫
Q
e−2sαξ3|u|2 + s3λ4

∫∫
Q̃
e−2sα̃

(
ξ̃
)3
|χu|2 + sλ2

∫∫
Q
e−2sαξ|∇u|2

≤ C
(
s3λ4

∫∫
Qω

e−2sα̃
(
ξ̃
)3
|u|2 +

∫∫
Q

(
e−2sα|g|2 + e−2sα̃|χg|2

))
. (2.29)

Finally, let us state what we have proved:

Proposition 2.14. Let Ω be a pseudo-cylinder, ω ⊂ Ω \ C be a subdomain and m ≥ 1. Then,

there exists a constant C(Ω, ω,m) > 0 and a constant k0(Ω, ω) > 0 such that, if uT ∈ L2(Ω),

g ∈ L2(Q), T > 0, k ≥ k0m, s ≥ C(Tm + T 2m) and λ ≥ C, we have (2.29) for u the solution of

(2.7).

Remark 2.15. It is a classical result (see for instance [22], [18] and [9]) that Proposition 2.14

(taking m = 1) implies that Theorem 1.4 is true for any ω ⊂ Ω \ C. Together with Remark 2.2,

it ends the proof of Theorem 1.4 (up to proving Proposition 2.13).
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2.3 Further comments

• If g is just a zero-order term of u, for s and λ large enough it can be absorbed by the

left-hand side of (2.29). Moreover, using all the information (a extended version of (2.27)),

g can also be absorbed if it is a first-order term of u. Therefore, the Carleman estimate

obtained by this method presents the usual absorption properties.

• The method explained in this section also works by symmetry if we consider H < 0 such

that supH < 0, a structure which appears naturally in fluid mechanics.

• It seems impossible to approximate some domain Ω by some subdomains Ωε satisfying

(2.12)-(2.14) without having ∂nη < 0 on ∂Ω. This implies that if Ω is a pseudo-cylinder,

if ω is given by (2.1) and if η is the auxiliary function defined in (2.5), no matter who Ωε

are, we need to take c large enough with respect to ηB. Indeed, let us compute ∂nη and

verify that it is strictly negative on all the subsets of the boundary given by Remark 1.2.

On B× {0} we have that ∂nη = −∂zη = −2cz < 0. Moreover, on L we have by (2.4) that

∂nη = ∂nB
ηB < 0. However, on T we find that:

n (x,H(x)) =
1√

1 + |∇H(x)|2
(−∇H(x), 1).

Thus, on T the normal derivative is given by:

∂nη (x,H(x)) =
−∇H(x) · ∇ηB(x)− 2c(H(x)− z)√

1 + |∇H(x)|2
.

This implies that the condition:

c >
‖∇H‖L∞(B)‖∇ηB‖C0(B)

2(infBH(x)− z)
, (2.30)

is necessary to ensure that ∂nη < 0 on T (the denominator in (2.30) is not null by (2.2)).

• A problem that remains open is the null controllability of the heat equation in any Lipschitz

domain. A natural attempt is first, to split the domain into a finite amount of pseudo-

cylinders and a single compactly included C2 subdomain; and then, to apply a Carleman

estimate in each subdomain (with the help of some cut-off functions). To that end, we

need to absorb what is next to L (see Remark 1.2) with estimates in some other pseudo-

cylinders and then use the technique of Section 2.2 to pass from a finite number of control

domains that are compactly contained in Ω to a single control domain. This idea could

work if we have a function η satisfying (2.11) which is much bigger in the interior of the

cylinders than close to L. However, it seems incompatible with picking in (2.5) c large

with respect to ηB.
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3 Proof of Proposition 2.13

In this section we first construct the open sets Ωε, and then prove that for c >>> c0(Ω, ω, ηB)

and ε <<< ε0(Ω, ω, ηB, c) the open sets Ωε satisfy (2.12)-(2.14). We recall that Ω, ω and η are

defined in the statement of Proposition 2.13 and that, once the open sets Ωε satisfy (2.12)-(2.14),

Remark 2.10 implies that they are connected. Moreover, ε is always taken as a strictly positive

parameter. Similarly, throughout this proof we use c and C to denote respectively small and

large strictly positive constants that may be different each time and only depend on Ω, ω and

ηB.

3.1 Introducing the open sets Ωε

In order to construct these domains, we need the following basic result from differential ge-

ometry, whose proof can be found for instance in [3]:

Lemma 3.1. Let Ω̃ be a domain and let Φ : Ω̃ 7→ R be a positive function that belongs to C2
(

Ω̃
)

and such that Φ = 0 on ∂Ω̃. Then, if θ > 0 such that Φ−1 (θ,+∞) 6= ∅ and such that:

Φ−1({θ}) ∩ (∇Φ)−1({0}) = ∅, (3.1)

we have that Φ−1(θ,+∞) is a C2 open subset whose boundary is given by Φ−1({θ}). Moreover,

the outwards normal unit vector is given, for all x ∈ Φ−1({θ}), by:

nθ(x) = − ∇Φ(x)

|∇Φ(x)|
. (3.2)

The first natural approach is to use Lemma 3.1 where Φ(x, z) is the distance from (x, z) to

∂Ω. Nonetheless, this is not possible because the distance is not differentiable. On the one hand,

near T the distance is not C1 when T is just Lipschitz. On the other hand, even for regular

domains the distance may not be C1 in the interior (for instance, in the disk the gradient of the

distance to the boundary is not differentiable in its center). However, it is possible to construct

a function which behaves similarly to the distance. In particular, to face the first problem we

approximate H by regular functions Hε, and to face the second one we regularize the distance

with the tools introduced in [17].

We define the function:

d : x ∈ B 7→ d(x, ∂B),

and the domain:

Bε := d−1(ε,+∞).
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Since B is C2, we have for some ε0(Ω) > 0 the following properties:

• d is a C2(d−1([0, ε0])) function such that |∇d| = 1 in d−1([0, ε0]).

• For all x ∈ d−1([0, ε0]) there is a unique point P (x) such that:

d (x, P (x)) = d(x). (3.3)

Moreover, the function x 7→ P (x) is continuous in d−1([0, ε0]).

• The open set Bε is a non-empty connected C2 manifold and its boundary is given by:

∂Bε = d−1(ε).

The proof of the first two assertions can be found for instance in [2, Section III.3]. The third

one is a classical result that follows from Lemma 3.1 and the previous two assertions.

In order to regularize H we consider ς a mollifier in Rd; that is, a positive function belonging

to D(B(0, 1)) such that
∫
B(0,1) ς = 1. As usual, we define ςε := ε−dς

( ·
ε

)
. In addition, we define

in Bε the function Hε := (1−
√
ε)H ∗ ςε, which is well defined because x ∈ Bε implies that

B(x, ε) ⊂ B. Furthermore, if x ∈ Bε:

Hε(x) =
(
1−
√
ε
) ∫

B(0,ε)
H(x− x̃)ςε(x̃)dx̃

≤
(
1−
√
ε
) (
H(x) + ε‖H‖W 1,∞(B)

) ∫
B(0,ε)

ςε(x̃)dx̃

= H(x)−
√
εH(x) + ε‖H‖W 1,∞(B) − ε3/2‖H‖W 1,∞(B). (3.4)

So, since infBH > 0, we have for ε <<< ε0(Ω) that:

Hε ≤ H in Bε. (3.5)

Similarly, we have for x ∈ Bε the lower bound:

Hε(x) ≥
(
1−
√
ε
) (
H(x)− ε‖H‖W 1,∞(B)

)
. (3.6)

One important consequence of (3.4) and (3.6) is the limit:

inf
Bε

Hε → inf
B
H. (3.7)

A last important property of Hε is that it is uniformly Lipschitz. Indeed:

‖∇Hε‖L∞(Bε) =
(
1−
√
ε
)
‖ςε ∗ ∇H‖L∞(Bε) ≤ ‖∇H‖L∞(B). (3.8)
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In order to regularize d in the interior we use the function introduced in [17], whose properties

can be consulted for instance in [2, Section III.3.3]. Indeed, we consider ρ(x), which is defined

as the only fixed point of τ 7→ G(x, τ), for:

G(x, τ) :=

∫
B(0,1)

d
(
x+

τ

2
x̃
)
ς(x̃)dx̃,

for ς again a mollifier. We have that ρ satisfies the following properties, which are proved for

instance in [2, Section III.3.3]:

ρ ∈ C2
(
B
)
, (3.9)

ρ ≥ 0 in B and ρ = 0 if and only if x ∈ ∂B, (3.10)

1

2
≤ d(x)

ρ(x)
≤ 3

2
∀x ∈ B, (3.11)

∇ρ(x) = −nB(x) ∀x ∈ ∂B. (3.12)

So, bearing the regularized distance in mind we introduce the functions:

Dε(x, z) := χε(x)ρ(x)(Hε(x)− z)z,

for ε <<< ε0(Ω) such that B2ε0 6= ∅, and for χε a positive C∞ cut-off function which takes

values in [0, 1] such that χε = 1 in B2ε and supported in Bε (for instance 1B(3/2)ε
∗ ςε/4). The

function Dε is clearly a positive function which belongs to C2
(
Ω
)
. So, we approximate Ω by:

Ωε := D−1
ε

(
ε‖H‖2L∞(B),+∞

)
,

for ε <<< ε0(Ω). In order to see that the open sets Ωε are C2 domains we will use Lemma 3.1

for:

Ω̃ε := {(x, z) : x ∈ Bε, z ∈ (0, Hε(x))}.

The fact that Dε = 0 on ∂Ωε is trivial. Moreover, it follows from (3.11) that Ωε →d Ω. Thus,

to apply Lemma 3.1 we just have to check that ε <<< ε0(Ω), (x, z) ∈ Ω̃ε, and Dε(x, z) =

ε‖H‖2L∞(B) imply that ∇Dε 6= 0.

We first remark that if Dε(x, z) = ε‖H‖2L∞(B), we have that x ∈ B2ε. Indeed, from (see

(3.5)):

χε(x)(Hε(x)− z)z ≤
‖H‖2L∞(B)

4
,

we obtain that:

ρ(x) ≥ 4ε,
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which implies using (3.11) that:

d(x) ≥ 2ε;

that is:

x ∈ B2ε. (3.13)

In particular, from χε = 1 in B2ε, we deduce that if Dε(x, z) = ε‖H‖2L∞(B), then:

∇Dε(x, z) =
(
z (ρ(x)∇Hε(x) + (Hε(x)− z)∇ρ(x)) , ρ(x) (Hε(x)− 2z)

)
. (3.14)

We now prove that Dε(x, z) = ε‖H‖2L∞(B) and ∂zDε(x, z) = 0 imply that ∇xDε(x, z) 6= 0.

From (3.14) and ∂zDε(x, z) = 0 we get that z = Hε(x)/2. Hence, we have the equality:

ρ(x) =
4ε‖H‖2L∞(B)

H2
ε (x)

,

which implies the equality:

∇Dε(x, z) =

(
Hε(x)

2

(
4ε‖H‖2L∞(B)

H2
ε (x)

∇Hε(x) +
Hε(x)

2
∇ρ(x)

)
, 0

)
.

So, because of (3.7)-(3.12), we have that for ε <<< ε0(Ω) the equalities Dε(x, z) = ε‖H‖2L∞(B)

and ∂zDε(x, z) = 0 imply that ∇xDε(x, z) 6= 0.

Summing up, for ε <<< ε0(Ω), we have that Ωε is C2. Moreover, using (3.13), (3.2) and

(3.14), we obtain for all (x, z) ∈ ∂Ωε that:

nε(x, z) = − ∇Dε(x, z)

|∇Dε(x, z)|
=

(
− z (ρ(x)∇Hε(x) + (Hε(x)− z)∇ρ(x)) , ρ(x) (2z −Hε(x))

)
|
(
− z (ρ(x)∇Hε(x) + (Hε(x)− z)∇ρ(x)) , ρ(x) (2z −Hε(x))

)
|
,

(3.15)

where nε denotes the outwards unit normal vector on ∂Ωε.

3.2 The open sets Ωε satisfy (2.12)-(2.14)

The last thing to prove in Proposition 2.13 is that for c >>> c0(Ω, ω, ηB) and for ε <<<

ε0(Ω, ω, ηB, c) we have that ∂nεη ≤ 0 on ∂Ωε. Thanks to (3.15) and (2.5), we have to prove that

on ∂Ωε:

|∇Dε(x, z)|∂nεη(x, z) = −zρ(x)∇Hε(x) · ∇ηB(x)− z(Hε(x)− z)∇ρ(x) · ∇ηB(x)

− 2ρ(x)(2z −Hε(x))c(z − z) < 0. (3.16)
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Intuitively, the idea is that ∂Ωε is near ∂Ω and that nε somehow approximates n. Doing this

rigorously implies splitting ∂Ωε into several subsets depending if we are close to B× {0}, L or

T (see Remark 1.2 for the notation). In particular, we split the boundary into:∂Ωε,b := ∂Ωε ∩ {(x, z) : z ∈ (0, Hε(x)/2]},

∂Ωε,t := ∂Ωε ∩ {(x, z) : z ∈ (Hε(x)/2, Hε(x))}.
(3.17)

Case 1: (x, z) ∈ ∂Ωε,b. The fact that Dε(x, z) = ε‖H‖2L∞(B) (recall (3.13) and (3.5)) implies

for ε <<< ε0(Ω) that:

ε‖H‖L∞(B) ≤ zρ(x) ≤
2ε‖H‖2L∞(B)

infBε Hε
. (3.18)

Thanks to (3.7) we have for ε <<< ε0(Ω) the inequality:

1

infBε Hε
≤ 2

infBH
;

so if we define:

c1 := ‖H‖L∞(B), c2 :=
4‖H‖2L∞(B)

infBH
, (3.19)

we have that (3.18) turns into:

c1ε ≤ zρ(x) ≤ c2ε. (3.20)

So, either z ≥ √c1ε or ρ(x) ≥ √c1ε is obtained. We study both cases separately, since in the

first one we are near L; whereas in the second one we are near B× {0}.

Case 1.1: (x, z) ∈ ∂Ωε,b and z ≥ √c1ε. Due to (3.20) we have the bound:

ρ(x) ≤ c2

√
c−1

1 ε. (3.21)

We first focus on the sign of:

(−zρ(x)∇Hε(x)− z(Hε(x)− z)∇ρ(x)) · ∇ηB(x).

From (3.20) we obtain the estimate:

|zρ(x)∇Hε(x) · ∇ηB(x)| ≤ Cε. (3.22)

Moreover, we have the equality (see (3.3)):

− z(Hε(x)− z)∇ρ(x) = z(Hε(x)− z)nB (P (x)) + z(Hε(x)− z) (−nB (P (x))−∇ρ(x)) . (3.23)
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Recalling (3.9)-(3.12) and (3.3) we obtain for ε <<< ε0(B) the estimate:

| − nB (P (x))−∇ρ(x)| = |∇ρ(P (x))−∇ρ(x)|

≤ ‖ρ‖W 2,∞(Ω)|P (x)− x| = ‖ρ‖W 2,∞(Ω)d(x) ≤ 3

2
‖ρ‖W 2,∞(Ω)ρ(x). (3.24)

So, combining (3.24) and (3.20) we get the bound:

|z(Hε(x)− z) (−nB (P (x))−∇ρ(x)) · ∇ηB(x)| ≤ C|zρ(x)| ≤ Cε. (3.25)

Finally, we have the equality:

z(Hε(x)− z)nB (P (x)) · ∇ηB(x) = z(Hε(x)− z)nB (P (x)) · ∇ηB(P (x))

+ z(Hε(x)− z)nB (P (x)) · (−∇ηB(P (x)) +∇Bη(x)) . (3.26)

Since ηB ∈ C2
(
B
)
, arguing similarly to (3.24) we obtain the estimate:

|z(Hε(x)− z)nB (P (x)) · (−∇ηB(P (x)) +∇ηB(x)) | ≤ Cε. (3.27)

Moreover, if we take into account (2.4), since z ≥ √c1ε we have the bound:

z(Hε(x)− z)nB (P (x)) · ∇ηB(P (x)) ≤ −c
√
ε. (3.28)

Consequently, if we combine (3.22)-(3.28), we find for ε <<< ε0(Ω, ω, ηB) that:

(−zρ∇Hε − z(Hε − z)∇ρ) · ∇ηB ≤ Cε− c
√
ε < 0. (3.29)

Let us now analyse the term:

2ρ(x)(Hε(x)− 2z)c(z − z).

On the one hand, if z ≤ z (see (2.1) for the definition of z), we have that (see (3.17)1):

2ρ(x)(Hε(x)− 2z)c(z − z) ≤ 0,

which, together with (3.29) implies (3.16). On the other hand, if z ≥ z, we get from (3.20) the

inequality:

ρ(x) ≤ c2ε

z
. (3.30)

Thus, we obtain the estimate:

|2ρ(x)(Hε(x)− 2z)c(z − z)| ≤ Ccε. (3.31)

Thus, if we combine (3.29) and (3.31), we get for ε <<< ε0(Ω, ω, ηB, c) the bound:

∂nεη(x, z) ≤ C(1 + c)ε− c
√
ε

|∇Dε(x, z)|
< 0;

that is, we get (3.16).
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Case 1.2: (x, z) ∈ ∂Ωε,b and ρ(x) ≥ √c1ε. We first remark from (3.20) that we have for

ε <<< ε0(ω,Ω) that:

z ≤ c2

√
c−1

1 ε ≤ z

4
≤ infBH

4
. (3.32)

If we use (3.20), (3.8), (3.5), (3.32)1, (3.9), that ηB ∈ C2
(
B
)
, (3.32)2 and (3.32)3 and (3.7) in

(3.16), we obtain for ε <<< ε(Ω) the inequality:

|∇Dε(x, z)|∂nεη(x, z) ≤ Cε+ Cε1/2 − ccε1/2.

Consequently, for c >>> c0(Ω, ω, ηB) and for ε <<< ε0(Ω, ω, ηB, c) we have (3.16).

Case 2: (x, z) ∈ ∂Ωε,t. As for ∂Ωε,t the situation is very similar. Indeed, from Dε(x, z) =

ε‖H‖2L∞(B), we find the bounds:

c1ε ≤ (Hε(x)− z)ρ(x) ≤ c2ε, (3.33)

for c1 and c2 defined in (3.19). We again distinguish the cases Hε(x)−z ≥ √c1ε and ρ(x) ≥ √c1ε.

The first one concerns the points near L, whereas the second one concerns the points near T.

Case 2.1: (x, z) ∈ ∂Ωε,t and Hε(x)− z ≥ √c1ε. Due to (3.33) we have the bound:

ρ(x) ≤ c2

√
c−1

1 ε. (3.34)

Arguing as before, we get the estimate:

− z(Hε(x)− z)∇ρ(x) · ∇ηB(x) ≤ Cε− cε1/2. (3.35)

In order to continue, as before, we make a distinction depending on how close z is to Hε(x) and

taking into account (2.2).

We start with the subcase:

z ≥ max

{√
z

infBH
,
2

3

}
Hε(x). (3.36)

We trivially have for ε <<< ε0(Ω) the inequality:

Hε ≥ 4

√
z

infBH
H. (3.37)

Thanks to (3.36) and (3.37) we have for ε <<< ε0(Ω) the lower bound:

z ≥ 4

√
(z)3 inf

B
H =

4

√
infBH

z
z. (3.38)
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So, combining (3.36), (3.38) and (2.2) we obtain for all ε <<< ε0(Ω) the inequality:

− 2ρ(x)(2z −Hε(x))c(z − z) ≤ −ccρ(x). (3.39)

Moreover, we clearly have the estimate:

− zρ(x)∇Hε(x) · ∇ηB(x) ≤ Cρ(x). (3.40)

Thus, for c >>> c0(Ω, ω, ηB), using that ρ ≥ 0, we get from (3.39) and (3.40) the upper bound:

− zρ(x)∇Hε(x) · ∇ηB(x)− 2ρ(x)(2z −Hε(x))c(z − z) ≤ 0. (3.41)

Hence, combining (3.35) and (3.41) we get (3.16) for ε <<< ε0(Ω, ω, ηB).

Let us now suppose that:

z < max

{√
z

infBH
,
2

3

}
Hε(x).

Considering (3.33) we have that ρ(x) < cε. Thus, we find the estimate:

− zρ(x)∇Hε(x) · ∇ηB(x)− 2ρ(x)(2z −Hε(x))c(z − z) < Ccε. (3.42)

So, combining (3.35) and (3.42), we obtain (3.16) for ε <<< ε0(Ω, ω, ηB, c).

Case 2.2: (x, z) ∈ ∂Ωε,t and ρ(x) ≥ √c1ε. We have from (3.33) the inequality:

Hε(x)− z ≤ c2

√
c−1

1 ε. (3.43)

So, we find the upper bound:

(−zρ(x)∇Hε(x)− z(Hε(x)− z)∇ρ(x)) · ∇ηB(x) ≤ C
(
ρ(x) + ε1/2

)
. (3.44)

Moreover, since (3.43) implies for ε <<< ε0(Ω) that z >
√
z infBH and since:

2ρ(x) ≥
√
c1ε+ ρ(x),

we have the estimate:

− 2ρ(x)(2z −Hε(x))c(z − z) ≤ −cc
(
ρ(x) + ε1/2

)
. (3.45)

Consequently, combining (3.44) and (3.45), we obtain (3.16) under the hypothesis of the case

2.2 for c >>> c0(Ω, ω, ηB) and for ε <<< ε0(Ω).
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A Proof of Lemma 2.6

In order to prove Lemma 2.6 we recall that for any Lipschitz domain Ω, for any u0 ∈ L2(Ω)

and for any g ∈ L2(Q), S(Ω, u0, g) is characterized as the only element in WΩ such that:
∫ T

0

〈
∂tS(Ω, u0, g), φ

〉
H−1(Ω),H1

0 (Ω)
+
∫
Q∇S(Ω, u0, g) · ∇φ =

∫
Q gφ ∀φ ∈ D(Q),

S(Ω, u0, g)(0, ·) = u0.
(A.1)

From now on, let us fix Ω, u0, g and Ωε as stated in Lemma 2.6. We define:

S := S(Ω, u0, g), Sε := S
(
Ωε, u

01Ωε , g1Ωε

)
1Ωε and Qε := (0, T )× Ωε.

We recall that, since v 7→ v1Ωε is an injection from WΩε to WΩ, we have Sε ∈ WΩ and the

equality:

‖Sε‖WΩ
= ‖Sε‖WΩε

. (A.2)

By density of D(Qε) in WΩε we find the equality:

‖Sε(T, ·)‖2L2(Ωε) + 2

∫∫
Qε

|∇Sε|2 = 2

∫∫
Q
gSε + ‖u0‖2L2(Ωε).

In particular, if we use the Poincaré inequality on Ω and Cauchy-Schwarz, we obtain for a

constant C(diam(Ω)) > 0:

‖Sε‖L2(0,T ;H1
0 (Ωε)) ≤ C

(
‖g‖L2(Qε) + ‖u0‖L2(Ωε)

)
≤ C

(
‖g‖L2(Q) + ‖u0‖L2(Ω)

)
.

In addition, looking at (2.8)1 we obtain that ∂tSε ∈ L2(0, T ;H−1(Ωε)) and the existence of a

constant C(diam(Ω)) > 0 such that:

‖Sε‖WΩε
≤ C

(
‖g‖L2(Q) + ‖u0‖L2(Q)

)
.

Consequently, Sε is uniformly bounded in WΩ due to (A.2); thus, Sε has at least a weakly

convergence sequence in WΩ. Moreover, thanks to item 1 of Lemma 2.8, we have that the

sequence is convergent in L2(Q).

In order to end the proof, it suffices to see that for all u ∈ WΩ such that there is a sequence

Sεi such that Sεi ⇀ u in WΩ (with εi → 0), then u = S. To get the equality, we prove that u

satisfies (A.1):
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• As for the variational condition of (A.1), let us pick φ ∈ D(Q). We remark that d(suppx φ, ∂Ω) >

0, for:

suppx φ := {x : ∃t ∈ [0, T ] : φ(t, x) 6= 0}.

In particular, if i is sufficiently large, we have that suppx φ ⊂ Ωεi . Consequently, by (A.1)1

(applied in Ωεi and then taking into account the support of φ) we obtain for i large enough

the equality: ∫ T

0
〈∂tSεi , φ〉H−1(Ω),H1

0 (Ω) +

∫
Q
∇Sεi · ∇φ =

∫
Q
gφ.

Thus, if we take the weak limit in WΩ, we get the equation:∫ T

0
〈∂tu, φ〉H−1(Ω),H1

0 (Ω) +

∫
Q
∇u · ∇φ =

∫
Q
gφ.

Since φ is arbitrary, u satisfies (A.1)1.

• As for the initial condition of (A.1), we recall that because of item 2 of Lemma 2.8,

v ∈ W 7→ v(0, ·) ∈ L2(Ω)

is a continuous operator. Therefore, since the weak limit is preserved by linear continuous

operators between Hilbert spaces, we have that Sεi(0, ·) ⇀ u(0, ·) in L2(Ω). Moreover,

Sεi(0, ·) = u01Ωεi
→ u0 in L2(Ω) by Remark 2.5. Consequently, from the uniqueness of

the weak limit, we obtain that u(0, ·) = u0.
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