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1 Introduction

At present, there is a consensus that individuals’ well-being should be the central object

of interest for public policies. However redistributive policies might be applied to trans-

ferable resources – here referred to as income in a broad sense – that do not have a linear

correspondence with individuals’ well-being. Therefore, the study of resource redistri-

bution such as income transfers constitutes a non-trivial issue for analyses of well-being.

Kaplow (2010) provides a framework for the interplay between the assumptions made

on individual utility functions and the assumptions made on the social welfare functions

(SWFs) for the purpose of income redistribution. This analysis is consistent with SWFs

satisfying the Pigou–Dalton principle of income transfer, which states that a rich-to-poor

income transfer improves social welfare. Kaplow shows that the hypotheses related to

the utility function, being the same for all individuals in the society, play a direct role

in fulfilling the Pigou-Dalton principle of income transfer. Moreover, the assumptions

made on the shape of the SWF have a more subtle influence on such a fulfillment.

The Pigou–Dalton principle of utility transfer, as in Adler (2012), is among the axioms

that help characterize the shape of an SWF. This principle requires that a utility transfer

from a well-off agent to a less well-off one improves social welfare. Adler’s (2012) ethical

view can be decomposed into two aspects. On the one hand, some assumptions on the

utility function have to be made, and on the other hand, the Pigou–Dalton principle of

utility transfer has to be imposed to ensure that the SWF is shaped by a strictly concave

mapping of utilities. The first aspect aims at defining individuals’ well-being, which is

formally expressed as a utility function based on idealized preferences. The question of

whether utility should be determined by – empirically grounded – individuals’ ordinary

preferences or by – normative – idealized preferences is related to this aspect.1 The

second aspect aims at determining the shape of the SWF. The continuous, additive form

of the SWF (additive separability) and the Pigou–Dalton principle of utility transfer are

the key characteristics of the shape of prioritarian SWFs supported by Adler (2012),

that outline some priority to be imposed on worse-off agents.2 Alternatively, any (pure)

utilitarian SWF is designed by a linear transformation of utility so that the Pigou–Dalton

principle of utility transfer is not respected.

This approach with two aspects allows comparing policy recommendations provided

by prioritarian SWFs with those provided by utilitarian SWFs. The assumptions made

1In Kaplow (2010), utility is assumed to be the same function for every individual. This is an
empirical concept whereas the idealized preference is purely normative.

2See Blackorby et al. (2002), and e.g., Bosmans et al. (2018) who propose prioritarian poverty
measures.
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on the utility function are independent of whether the social planner is utilitarian or pri-

oritarian. In particular, as long as the utility function is assumed to be increasing and

concave (i.e., utility is assumed to be derived from income at a positive and decreasing

rate), both utilitarian and prioritarian social planners behave in accordance with the

Pigou–Dalton principle of income transfer. When income has a concave correspondence

with utility, the Pigou–Dalton principle of utility transfer is not equivalent to its corre-

sponding principle of income transfer, because the former is not necessary for the latter

to hold. This relation between these two principles is relevant to discussing the implica-

tions of second-order stochastic dominance in terms of income. The dominance criterion

ensures that a pair of income distributions is ranked if one distribution can be obtained

from the other through a sequence of income increments and/or rich-to-poor transfers,

otherwise it is inconclusive.

Higher-order dominance criteria are able to rank income distributions in cases where

the second-order dominance criterion fails to provide a ranking. Gayant and Le Pape

(2017) explore third-, fourth-, and higher-order dominance criteria, and especially their

normative content embodied by the generalized principle of income transfer à la Fish-

burn and Willig (1984). The generalized principle of income transfer encompasses (in a

recursive pattern): the second-order income transfer principle which is slightly weaker

than the Pigou–Dalton condition, and the third-order income transfer principle which is

similar in spirit to Kolm’s (1976) diminishing transfers principle. The latter states that

a given progressive transfer is increasingly valuable insofar as the recipient is poorer. It

is equivalent to saying that a rich-to-poor transfer between poorer individuals coupled

with a poor-to-rich transfer between richer individuals improve social welfare. One step

further, the fourth-order income transfer principle states that two rich-to-poor transfers

– one between much poorer individuals and the other one between much richer indi-

viduals – coupled with two poor-to-rich transfers between individuals with intermediate

incomes, improve social welfare. Higher-order transfer principles of income exhibit more

sensitivity to transfers occurring in the lower tail of the income distribution. Gayant

and Le Pape (2017) assert that these principles display an aversion to a general degree

of income inequality.

In practice, numerous redistribution policies involve complex sequences of income

transfers that are relevant to higher-order transfer principles. Let us take a simple

example with two generations x and y whose income distributions are respectively

(20, 20, 40, 60) and (10, 30, 50, 50). Every individual of generation x gives 1 unit of income

to one individual of generation y. Before redistribution, the aggregate distribution is

(10, 20, 20, 30, 40, 50, 50, 60) and after redistribution it becomes (11, 19, 19, 31, 39, 51, 51, 59).
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The second-order dominance criterion cannot rank this pair of aggregate income distri-

butions because the sequence of transfers needed to convert x into y involves two poor-

to-rich transfers: 1 unit is given by the third individual to the fourth one, and 1 unit

is given by the fifth individual to the sixth one. To analyze how a social planner would

rank both aggregate income distributions, the fourth-order income transfer principle is

necessary. Whenever the social planner respects the principle of transfer, and so refers to

the fourth-order dominance criterion, the social planner judges the income redistribution

to be welfare-improving.

In this paper, we compare Fishburn and Willig’s (1984) income transfer principles

with principles which follow the same pattern but rely on utility transfers. As with the

Pigou–Dalton principle of utility transfer, the latter are axioms that help characterize the

shape of an SWF. Alternatively, the income transfer principles result from the interplay

between the assumptions on the utility function and the utility transfer principles. This

raises two questions: (i) Which types of assumptions should we impose on the utility

function so that the utility transfer principle of any given order implies the corresponding

order of income transfer principle? (ii) Are the assumptions involved in an income

transfer principle’s being of a certain order such that they also imply the utility transfer

principle of the corresponding order? Two results are obtained. (i) Assuming that the

utility function is increasing concave with higher-order derivatives alternating in sign up

to a given order s ≥ 2 provides a sufficient condition for the utility transfer principle

of order s to imply the corresponding income transfer principle of order s. (ii) An

alternative characterization of the conditions under which additively separable SWFs

satisfy income transfer principles à la Fishburn and Willig (1984) is proposed. For any

given order, a critical shape of SWF that corresponds to a maximum degree of convexity

is determined such that the income transfer principle is satisfied, whereas SWFs beyond

this shape fail to respect the principle. Such a critical shape is mathematically expressed

with the aid of Bell polynomials, which are functions of the successive derivatives of

the utility function. This expression epitomizes the complexity of the interplay between

higher-order income and utility transfer principles. The assumptions underlying result (i)

impose weaker conditions on the shape of the SWF than those ensuring the fulfillment of

the utility transfer principle of order s. Hence, under these assumptions, it is shown that

SWFs satisfying a given order of income transfer principle do not necessarily satisfy the

corresponding order of utility transfer principle. The results are particularly appropriate

for providing ethical assessments in a risky framework, where individual well-being should

be function of some attitude to risk. The study of the interplay between utility and

income transfer principles of – at least – order 3 is necessary whatever the degree of
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risk under consideration in an intertemporal assessment. The results shed light on the

implications of assumptions such as individuals’ risk aversion, prudence, temperance,

and aversion to any given higher-degree risk (Ekern, 1980). These risk aversions are

illustrated and discussed through the prism of income/utility transfers relevant to debates

on water scarcity.

This paper is organized as follows. Section 2 presents the motivations, notation and

definitions. Section 3 presents the main results and a table summarizing them. Section 4

presents an illustration of resource redistribution and water scarcity in a risky universe.

Section 5 presents some conclusion.

2 Setup

Income is denoted by y ∈ Ω := [0, ymax] where ymax is the maximum conceivable one.

Let f ∈ F be a probability measure from Ω onto [0, 1], with F the set of real-valued

probability measures that give nonzero mass to only a finite set of incomes, and have a

total mass
∫ ymax

0
f(y)dy = 1. An (additively separable) extended form SWF, well-known

as the generalized utilitarian function, is a tool employed by a social planner in order to

rank income distributions:

W (f) =

∫ ymax

0

g ◦ u(y) f(y) dy. (1)

As determined by a social planner, g◦u(y) is the weighted utility generated by income y.

In our approach, see also Kaplow (2010), all individuals have the same utility function,

which is a particular position on how utility is inter-personally compared.3 Under this

assumption, utility is fully measurable and comparable. The function g formalizes

attitudes towards inequality. It is increasing in utility by assumption, i.e., g(1)(u(y)) > 0

for all y ∈ Ω, and it belongs to the set of s-times differentiable functions C s, with

s ∈ N := {1, 2, . . .}. Let us write g(s)(u) for the s-th derivative of g with respect to u.

From now on, utility is assumed to be non-negative, i.e., u(y) > 0 for all y ∈ Ω. Utility

functions are assumed to be strictly increasing, u(1)(y) > 0 for all y ∈ Ω , and they also

belong to C s.4

3Actually, this is not the only informational assumption made here. Blackorby et al. (2002) show that
an extended form SWF implies that transformed utilities g(u) are unit comparable between individuals.
The debate on the degree of interpersonal comparability of utility (and transformed utility) is beyond
the scope of the present paper.

4Because of the assumption that utility is strictly increasing in income, the SWF fulfills welfarist
principles. Then, the assumption made on u allows the sensitivity for utility and income distributions
to be studied in the same welfarist framework.
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2.1 Motivation for the extended form SWF

Why is it important to employ an extended form SWF for analyzing redistributive

policies? Because the conditions imposed on the utility function and those imposed on

the g function have different effects on the welfare assessment of an income and/or utility

redistribution. The shape of g has a straightforward effect on the assessment of utility

transfers, and it has an indirect, subtle influence on how an income redistribution is

judged. The function u has no effect on the valuation of utility transfers but it has a

direct influence on how an income redistribution is converted into a utility redistribution.

To illustrate the roles of g and u in assessing utility and income redistributions,

consider the following isoelastic functions u(y) and w(y) := g ◦ u(y)

u(y) =
y1−α

1− α
0 ≤ α < 1 ⇐⇒ u−1◦u(y) = [(1− α)u(y)]

1
1−α , 0 ≤ α < 1, (2)

w(y) =
y1−φ

1− φ
, 0 ≤ φ < 1. (3)

Consequently, the weighted utility is expressed as:5

g(u) =
[(1− α)u]

1−φ
1−α

1− φ
. (4)

Let us assume that the functions are parametrized such that φ = 0.75, whereby the

reduced form SWF is w(y) = 4y0.25. Then, the social welfare increases by 0.76 as the

result of an income transfer of amount 1 from an individual with 10, 000 to another with

1. The extended form SWF is g ◦ u(y) = 4[(1 − α)u(y)]
0.25

(1−α) . Several parametrizations

of u are consistent with this kind of transfer. Let us investigate two special cases. In

case A, αA = 0.5, so that u is strictly concave in income. Then, g is strictly concave,

gA(uA(y)) = 2.83u0.5
A (y), so that the change of social welfare is 0.76. In case B, αB = 0.8

implies that g is strictly convex in utility, gB(uB(y)) = 0.54u1.25
B (y), and the change in

social welfare also amounts to 0.76. Although both cases agree on the change of social

welfare that would result from the income transfer, the assessment of the welfare that

results from the utility transfers, similar in spirit, brings out an opposition between cases

A and B. The social welfare increases by 1.16 in case A as the result of a utility transfer

of amount 1 from an individual with a utility level of 10, 000 to another one with a

5The fact that the weighted function of utility generated by y relies on the two parameters φ and α
illustrates the non-trivial relation between w(y) and g ◦ u(y).
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utility level of 1. In case B, the social welfare decreases by 6.01 as the result of the

same utility transfer (Table 1), whereby the social welfare increases as the result of the

income transfer and decreases as the result of the utility transfer. This is because uB

converts the income transfer into a utility increment (welfare gain) of 0.74 that goes to

the individual with income level 1. Since gB is increasing, the social welfare increases by

0.76 as the result of this utility increment.6 On the other hand, since gB is convex, the

transfer of utility valued to be 1 is converted into a significant welfare loss (decrement)

for the individual with 10, 000 units of utility (−6.75) coupled with a slight increment

of welfare for the individual with 1 unit of utility (0.74).

Table 1. Assessments of utility and income redistributions

Case ↓ Transfer → ∆W : Utility transfer ∆W : Income transfer

A: 2.83u0.5
A (y) 1.16 0.76

B: 0.54u1.25
B (y) −6.01 0.76

∆W : social welfare variation (ex post minus ex ante social welfare).

Cases A and B describe the story of two different social planners; however both

behave in accordance with the income transfer principle i.e., second-order stochastic

dominance. The next subsection introduces generalized transfers of utility and income

in order to disentangle both behaviors for extended SWFs and higher-order stochastic

dominance.

2.2 Transfers and transfer principles

In what follows, transfers T (·) à la Fishburn and Willig (1984) are modified in order

to capture a wide range of redistributive principles based either on utility or on income.

The utility increment T 1(α, u(y), δ) postulates that the proportion α ∈ (0, f(y)] of the

population moves from utility u(y) to utility u(y) + δ, with δ > 0. For all f ∈ F and

for all y ∈ Ω, a probability measure h(y) is obtained from f(y) by a utility increment

whenever

h(y) =


f(y)− α at point u(y) ,
f(y) + α at point u(y) + δ ,
f(y) elsewhere.

(5)

Utility increments do not preserve the mean utility generated by f . For higher orders,

mean-preserving utility transfers are deduced recursively. As explained in Fishburn and

Willig (1984), a positive transfer of order 2, T 2(α, u(y), δ), is a particular case of a

6Rounding to two decimal places, uB(10, 000) ≈ uB(9, 999) = 31.55; uB(1) = 5 and uB(2) = 5.74.
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progressive transfer of utility. It is a utility transfer of amount δ > 0 from a better-off

(u(y) + 2δ) proportion α of the population to a worse-off (u(y)) proportion α. Hence,

a part of the population moves from the utility level u(y) to u(y) + δ and another part

moves from u(y) + 2δ to u(y) + δ. Let us remark that T 2 equalizes the utility levels of

the people involved in the transfer, and, as such, it is an equalizing utility transfer.

Figure 1: A positive utility transfer of order 2

As shown in Figure 1, a utility transfer of order 2 is the sum of an increment and a

decrement:

T 2(α, u(y), δ) = T 1(α, u(y), δ) +
(
−T 1(α, u(y) + δ, δ)

)
. (6)

In the same fashion, −T 2(α, u(y), δ) is a negative transfer of order 2 (involving utility

levels at least as high as u(y)).7 It is a transfer of a positive amount δ of utility that

increases inequality in utility levels of two proportions α of the population with the same

utility level u(y) + δ, and, as such, it is an inequality-increasing utility transfer.

Figure 2: A negative utility transfer of order 2

7Let us remark that the utility level presented as an argument of the transfer function is the lowest
one involved in the transfer.
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As shown in Figure 2, a negative utility transfer of order 2 can be expressed as follows:

− T 2(α, u(y), δ) = −T 1(α, u(y), δ) + T 1(α, u(y) + δ, δ). (7)

A transfer T 3(α, u(y), δ) encompasses (i) an equalizing utility transfer and (ii) an

inequality-increasing utility transfer involving a proportion of better-off recipients as in

(i).

Figure 3: A positive utility transfer of order 3

As shown in Figure 3,

T 3(α, u(y), δ) = T 2(α, u(y), δ) +
(
−T 2(α, u(y) + δ, δ)

)
. (8)

Fishburn and Willig (1984) provide a recursive and general formulation of T s+1. We

employ the same idea.

Definition 2.1. Generalized Utility Transfer of order s + 1. For all f ∈ F and

for all y ∈ Ω, we say that a mean-preserving utility transfer of order s+ 1 is given by:

T s+1(α, u(y), δ) := T s(α, u(y), δ)− T s(α, u(y) + δ, δ), s ∈ N.8 (9)

8The transfer should be such that, for r ∈ {1, · · · , s+ 1} even,(
s+ 1
r

)
α ∈ (0, f(y)] at point u(y) + rδ, and δ > 0.

This condition recalls that the proportion of the population who moves from a utility level should be
at most as high as the proportion of population at this utility level. Moreover it demands that no
proportion moves from a utility level generated by a higher income than ymax.
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Although we presented utility transfers first, Fishburn and Willig (1984) introduced

income transfers. Based on the same kind of transformation of probability measure as

Eq.(5), the income increment, T 1(α, y, δ) implies that a fraction α ∈ (0, f(y)] of the

population moves from income y to income y + δ, with δ > 0. Income transfers follow

the same pattern as utility transfers. Although a utility transfer of order 2 equalizes the

utility levels of the individuals involved, an income transfer of order 2 equalizes their

income levels. We now define the concept of an income transfer of order s+ 1.

Definition 2.2. Generalized Income Transfer of order s + 1. For all f ∈ F and

for all y ∈ Ω, we say that a mean-preserving income transfer of order s+ 1 is given by:

T s+1(α, y, δ) := T s(α, y, δ)− T s(α, y + δ, δ), s ∈ N.9 (10)

The definition of generalized transfer gives rise to the generalized transfer principle.

In this context, a principle is a judgement about the welfare consequences when a transfer

is carried out. If an income (resp. utility) transfer of any order from 2 to s + 1 does

not decrease social welfare, the income (resp. utility) transfer principle of order s + 1

is satisfied. Consequently, this principle should incorporate all income (resp. utility)

transfer principles of orders lower than s+ 1.

Definition 2.3. Generalized Utility and Income Transfer Principle of order

s+ 1. For all f ∈ F , for all y ∈ Ω and s ∈ N, the following implications hold for utility

and income transfers:

(UTPs+1) h = f + T `(α, u(y), δ) =⇒ W (h) > W (f), ` = 2, . . . , s+ 1;

(ITPs+1) h = f + T `(α, y, δ) =⇒ W (h) > W (f), ` = 2, . . . , s+ 1.

The second-order income transfer principle ITP2 states that a transfer does not de-

crease social welfare if the transfer equalizes the income levels of the individuals involved.

In contrast, the classical Pigou–Dalton transfer principle requires that a rich-to-poor in-

come transfer reduces the gap between both income levels in order to provide no social

welfare reduction. Clearly, the Pigou–Dalton principle of income transfer is stronger

9The transfer should be such that, for r ∈ {1, · · · , s+ 1} even,(
s+ 1
r

)
α ∈ (0, f(y + rδ)] and δ > 0.

This condition implies that y ∈ [0; ymax − sδ] whenever s is even, and y ∈ [0; ymax − (s− 1)δ] whenever
s is odd. It does not appear in Fishburn and Willig (1984) because they adopt an unbounded income
domain whereas here y ∈ [0; ymax].
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than ITP2. Moreover, ITP3 is a particular case of the diminishing transfers principle.10

These remarks remain valid when comparing UTP2 with the Pigou–Dalton principle of

utility transfer and UTP3 with the utility diminishing transfers principle.

The following set is introduced to analyze generalized transfer principles:

Γ`+1 :=

{
v ∈ C `+1

∣∣∣∣ (−1)`+1 v(`+1) (x) := (−1)`+1 ∂v
(`) (x)

∂x
6 0, ∀x ∈ R+

}
,

which is the class of real-valued functions whose `+ 1th derivative is non-positive (non-

negative) if `+1 is even (odd), where ` is a non-negative integer. To be precise, Fishburn

and Willig’s (1984) generalized transfer principles are defined on

Γ→s+1 :=
{
v ∈ C s+1

∣∣ v ∈ Γ`, ∀` = 1, . . . , s+ 1
}
,

which is the set of all s+1-times differentiable functions for which the first s+1 successive

derivatives alternate in sign. Formally, Γ→s+1 = Γ1 ∩ · · · ∩ Γs+1. The following theorem

determines the conditions under which income or utility transfers do not decrease social

welfare.

Theorem 2.1. For any given s ∈ N, the two following statements are equivalent:

(i) W satisfies UTP s+1.

(ii) g ∈ Γ→s+1.

Moreover, the two following statements are equivalent:

(iii) W satisfies ITP s+1.

(iv) g ◦ u ∈ Γ→s+1.

Proof. This is a direct application of Fishburn and Willig’s (1984) result (Theorem 1).

The SWF (1) satisfies UTP2 if and only if g is concave. Hence, the concavity of g

characterizes utility inequality aversion. The SWF (1) satisfies UTP3 if and only if g ∈
Γ→3. Restrictions on the second-order and the third-order derivatives provide downside

utility inequality aversion. This attitude amounts the exhibition of more emphasis on

utility inequality for the worse-off proportions of the population. In a general way, going

from condition g ∈ Γ→s to g ∈ Γ→s+1 when s > 3 is equivalent to placing even more

emphasis on inequality for the worst-off proportions of the population. The conditions

under which SWFs (1) exhibit income inequality aversion involve the concavity of g ◦ u.

Then, the social desirability of income transfers rely both on the form of g and that of

u, i.e., assumptions on the individuals’ utility function.

10One could object that the equalizing income transfer and the inequality-increasing transfer involve
different income gaps between the respective donors and recipients. But note that W (h) > W (f) with
h = f + T 3(α, y, δ) is equivalent to W (f + T 2(α, y, δ)) > W (f + T 2(α, y + δ, δ)), in which case both
equalizing income transfers involve the same income gaps between the respective donors and recipients.
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3 Results

Sufficient conditions for the fulfillment of ITP2 are provided by the concavity of g and u.

The following lemma states general conditions for the fulfillment of higher-order income

transfer principles.

Lemma 3.1. The following statement is true for all s ∈ N:

[Hs+1] u ∈ Γ→s+1 and g ∈ Γ→s+1 together imply g ◦ u ∈ Γ→s+1.

Proof. See Appendix A.

Both utility inequality aversion and decreasing marginal utility in income ensure

that equalizing income transfers do not decrease social welfare. However, this statement

does not deal with the possible interplay between attitudes to utility inequality and

assumptions on the utility function to make a judgment on income redistribution. Indeed,

assumptions of the concavity of u offset (at least partially) the role of the concavity of

g in ensuring the concavity of g ◦ u.

The same kind of limitation arises when a social planner considers w = g ◦ u as a

simple function of income. The concavity of w characterizes income inequality aversion

but this function does not make any distinction between utility inequality aversion and

assumptions on the utility function. Necessary and sufficient conditions may be derived

from Lemma 3.1 and Theorem 2.1 by employing Bell polynomials. For s, k ∈ N, the

(exponential) Bell polynomial of order s+ 1, k, denoted by Bs+1,k (·), is given by

Bs+1,k

(
u(1), u(2), . . . , u(s−k+2)

)
=∑ (s+ 1)!

p1!p2! · · · ps−k+2!

(
u(1)

1!

)p1 (
u(2)

2!

)p2
. . .

(
u(s−k+2)

(s− k + 2)!

)ps−k+2

,

where the summation is taken over all possible sequences of non-negative integers p1, . . . , ps−k+2

such that p1 +p2 + · · · = k and 1p1 +2p2 + · · · = s+1. We consider utility functions with

all derivatives up to s + 1th order that alternate in sign. The following theorem states

that an income transfer principle of any order does not necessarily imply the utility

transfer principle of the corresponding order.

Theorem 3.1. Let u ∈ Γ→s+1 and g ∈ {Γ→s ∩ C s+1} for some s ∈ N. Then, the two

following statements are equivalent:

(i) W satisfies ITP s+1.

(ii) (−1)s+1g(s+1)◦u 6 (−1)s+1g?(u(1), . . . , u(s+1)) and (−1)s+1g?(u(1), . . . , u(s+1)) > 0,

with

g?(u(1), . . . , u(s+1)) = −
∑s

k=1(g(k) ◦ u) ·Bs+1,k

(
u(1), u(2), . . . , u(s−k+2)

)
[u(1)]

s+1 .
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Proof. See Appendix A.

The line of thought of Theorem 3.1 can be set out in four steps. (i) SWFs (1) satisfy

ITPs+1 if and only if g◦u ∈ Γ→s+1. This is the result of Theorem 2.1. (ii) We provide the

conditions on g under which SWFs (1) satisfy an income transfer principle of some order.

Formally, (−1)s+1g(s+1)(u) 6 (−1)s+1g?(u(1), . . . , u(s+1)) if and only if SWFs (1) satisfy

ITPs+1. The function g? has a critical shape such that g ◦ u ∈ Γ→s+1. To be precise, the

value of g?(u(1), . . . , u(s+1)) for all y ∈ Ω can be understood as a boundary for satisfying

ITPs+1. (iii) The assumptions on the form of u ensure that the equivalence in step (ii)

is interpretable. Assuming that the utility functions are members of Γ→s+1 imposes a

restriction on the set of values of (−1)s+1g?(u(1), . . . , u(s+1)) for all y ∈ Ω. These values

should be non-negative and they are comparable with the constraints imposed on g under

which SWFs (1) satisfy an UTP of some given order. Step (iv) is a simple corollary:

The income distribution obtained by any T s+1(α, y, δ) stochastically dominates at the

order s+ 1 the same income distribution before transfer.

Theorem 3.1 recalls that the fulfillment of ITP2 by an SWF (1) does not mean

that this SWF exhibits utility inequality aversion, that is, the fulfillment of UTP2.

From step (i), ITP2 is satisfied by (1) if and only if g ◦ u ∈ Γ→2. From step (ii),

g(2)(u) 6 g?(u(1), u(2)) if and only if SWFs (1) satisfy ITP2. From step (iii), assuming

u ∈ Γ→2 implies that g?(u(1), u(2)) > 0 for all y ∈ Ω. In this case, g? is the most convex

function such that g ◦ u is concave. This case is depicted in Table 2, first row, first and

second columns.

Let us illustrate with four figures (Figures 4a–d) the result for order 2 with g(u) = u4

for all u > 0 and u(y) = y1/8 for all y > 0.
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Figure 4: Steps of the proof of Theorem 3.1

(a) Step (i) (b) Step (ii)

(c) Step (iii)
(d) Step (iv)

The interplay between g and u to produce the concavity of g ◦ u is depicted in

Figure 4a. The application of step (ii) yields: g(2)(u) = 12u2 6 g?(u(1), u(2)) = 28u2,

which is illustrated in Figure 4b. Integrating g?(u(1), u(2)) twice yields the most convex

g compatible with the fulfillment of ITP2. This function is g?(u) = 7
3
u4 + Ku + C

with K,C arbitrary constants of integration (see Figure 4c, with K = C = 0). As an

example, consider (1
4
, 10; 1

4
, 25; 1

4
, 25; 1

4
, 40) which is obtained from an income distribution

(1
4
, 10; 1

4
, 20; 1

4
, 30; 1

4
, 40) through T 2(1

4
, 20, 5) where, e.g., both distributions state that

one-quarter of the population has 10 (income). The fulfillment of ITP2 is consistent

with the fact that the Lorenz curve of the former distribution lies nowhere below the

14



Lorenz curve of the latter, see Figure 4d. 11

The scope of the results of Theorem 3.1 is beyond “order 2”. The fulfillment of

ITP3 by SWFs (1) does not mean that these SWFs exhibit downside utility inequality

aversion, that is, satisfy UTP3. If u belongs to Γ→3, the “critical shape function”, namely

g?, has a non-positive third derivative on Ω whereas downside utility inequality aversion

is characterized by g(3)(u) > 0. This case is depicted in Table 2, second row, first column.

Table 2 Interplay between Utility and Income Transfer Principles.

ITP2

Respect Violate
ITP3

Respect Violate Violate

U
T

P
2

V
io

la
te

U
T

P
3

V
io

la
te

g(2) > 0∗ g(2) > 0∗ g(2) > 0∗

but g(2) 6 g?(2) but g(2) 6 g?(2) and g(2) > g?(2)

g(3) 6 0 g(3) 6 0 g(3) 6 0
but g(3) > g?(3) and g(3) 6 g?(3)∗ and g(3) 6 g?(3)∗

R
es

p
ec

t V
io

la
te

g(2) 6 0 g(2) 6 0
g(3) 6 0 g(3) 6 0 Impossible

but g(3) > g?(3) and g(3) 6 g?(3)∗ when u ∈ Γ→2

︸ ︷︷ ︸
Theorem 3.1

R
es

p
ec

t

g(2) 6 0 Impossible Impossible
g(3) > 0 when u ∈ Γ→3 when u ∈ Γ→2

︸ ︷︷ ︸
Theorem 3.1

D
o
m

in
an

ce ︸ ︷︷ ︸
TSD

︸ ︷︷ ︸
SSD

Note: g?(2) ≡ g?(u(1), u(2)) and g?(3) ≡ g?(u(1), . . . , u(3)) ∗for at least some defined u(y)

The effect of Theorem 3.1 is general: The fulfillment of ITPs+1 by SWFs (1) does

not mean that these SWFs satisfy UTPs+1. This stems from the alternation in sign of

all derivatives up to order s+ 1 of the “critical shape function” g? when u is assumed to

belong to Γ→s+1. These derivatives alternate in sign, opposite to the constraints under

which SWFs (1) satisfy UTPs+1 (see Theorem 2.1).

As explained in the introduction, issues of risk-based ethical decision-making provide

a relevant context for applying the results of the paper. The next section illustrates this

point.

11Recall that the Lorenz curve plots the cumulative income share as a function of the cumulative
population share. Lorenz dominance is equivalent to second-order stochastic dominance.
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4 An illustration for risk-based ethical decision-making:

The case of water scarcity

In this section, Theorem 3.1 is applied to a problem of decision-making under risk,

namely, the problem of water scarcity. For the sake of simplicity, the volume of water

in Alfaland is assumed to be at risk due to climate change.12 As in the framework of

Adler and Treich (2014), consumption under risk is examined when the social planner

has an ex post view. In other words, he cares about the difference in realized utilities.

For simplicity, the SWF is ∑
t

g(u(ct)),

where ct is the water consumption in period t, with t = 1, 2. The attitude to risk of any

individual is represented by a vNM utility function u assumed to be cardinally equivalent

to individual well-being (Bernoulli assumption).13 The function g represents the social

planner’s attitude to inter-temporal utility inequality.

The aim of the social planner is to determine the optimal consumption c∗ in the first

period so that the inter-temporal social welfare is maximized. The problem is stated as

follows:

c∗ = argmax
c
g(u(c)) + Eg(u(w̃ − c)),

where Eg(u(w̃ − c)) stands for the expected value of g(u(w̃ − c)) and w̃ is a lottery

representing the risk to the volume of water in Alfaland. By monotonicity, individuals

consume the overall volume of water in both periods. For technical simplicity, the rate

of time preference is assumed to be null and the size of the population is constant over

time.

Adler and Treich (2014) propose optimal solutions for the special case where w̃ em-

bodies a second-degree risk in the terminology of Ekern (1980). As an example, ṽ has

more second-degree risk than w̃ if

ṽ =

(
2,

1

3
; 4,

0

3
; 6,

2

3

)
; w̃ =

(
2,

0

3
; 4,

2

3
; 6,

1

3

)
where, for instance, there are two units of Alfaland’s water with probability 1

3
under

ṽ. According to the above notation, w̃ is obtained from ṽ through a resource transfer

T 2(1
3
, 2, 2).

The precautionary savings literature states that optimal current consumption is re-

duced under risk if and only if, in our framework, g ◦u ∈ Γ→3 (this is a direct adaptation

12For more information on climate change and water-resource issues, see Alavian et al. (2009).
13Our results hold for both views: either u relies on the social planner’s attitude to risk or u relies

empirically on individuals’ attitude to risk (e.g., Kaplow and Weisbach, 2011).
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of Leland, 1968 and Kimball, 1990). Consequently, everything happens as if the social

planner were in front of a transfer of resource of order 3, and then the social planner aims

at reducing current water consumption if and only if ITP3 is fulfilled. Two questions

arise: (i) What hypotheses on individuals’ attitudes to risk are such that the distributive

judgments of the social planner imply a reduction of the current water consumption?

For individuals assumed to be risk-averse and prudent (u ∈ Γ→3), if the social planner

respects UTP3 (g ∈ Γ→3), then c∗ under w̃ is at least as high as c∗ under ṽ (Lemma

3.1). (ii) For these assumptions on individuals’ attitude to risk, what is the attitude

to inequalities of utility such that the social planner aims at reducing current water

consumption? Theorem 3.1 shows that assumptions on the degrees of risk-aversion and

prudence of individuals may be sufficient for any social planner who does not adopt

UTP3, i.e., g(3)(u(y)) < 0 for some u(y), to agree with any social planner who respects

UTP3: c∗ under w̃ is at least as high as c∗ under ṽ.14

Various economic shocks, such as more or less severe droughts and floods, may affect

the scarcity of water. Then, higher-degree risk effects than those explained above can

reasonably be considered for the repartition of water volume in Alfaland. Let us examine

how the social planner might act in these cases. For this purpose, the sign of the higher-

order derivatives of g ◦u becomes crucial. Eeckhoudt and Schlesinger (2008, Proposition

1) show that c∗ under w̃ is at least as high as c∗ under ṽ for every g ◦ u ∈ Γ→s+1 if and

only if ṽ has more sth degree risk than w̃. In our framework, the fact that ṽ has more sth

degree risk than w̃ is equivalent to saying that w̃ is obtained from ṽ through T s(α, y, δ).

However, in this two-period economy, everything happens as if the social planner were

in front of a resource transfer of order s + 1. Hence, c∗ under w̃ is at least as high as

c∗ under ṽ for every social planner who respects ITPs+1. For u ∈ Γ→s+1, Theorem 3.1

determines a class of functions g that yields an unanimous statement in favor of the

reduction of current consumption when an increase of sth degree risk is assessed.

Let us take an example in which ṽ has more third-degree risk than w̃. The lotteries

may be expressed as follows:

ṽ =

(
2,

6

15
; 4,

1

15
; 6,

4

15
; 8,

4

15

)
; w̃ =

(
2,

5

15
; 4,

4

15
; 6,

1

15
; 8,

5

15

)
.

Equivalently, w̃ can be obtained from ṽ through T 3( 1
15
, 2, 2). In the two-period economy,

everything happens as if the social planner were in front of a resource transfer of order

4. Hence, c∗ under w̃ is at least as high as c∗ under ṽ for every social planner who

14Let us consider a numerical example. Let g(u(y)) = u(y) − 1
3u(y)3, so that UTP3 is not fulfilled.

Moreover, u(y) = y
1
4 . The degrees of risk-aversion and prudence exhibited by u are such that c∗

under w̃ is equal to 1.51 while c∗ under ṽ is equal to 1.2. The consumption difference comes from the
precautionary part of the total water saving.
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respects ITP4. Theorem 3.1 shows that if individuals display risk-aversion, prudence,

and temperance (u ∈ Γ→4), then any social planner with g ∈ Γ→3 and with g(4)(u) 6

g?(u(1), . . . , u(4)) argues that c∗ under w̃ is at least as high as c∗ under ṽ. The critical

function g?(u(1), . . . , u(4)) is

g?(u(1), . . . , u(4)) =

− g(1)(u)B4,1(u(1), u(2), u(3), u(4)) + g(2)(u)B4,2(u(1), u(2), u(3)) + g(3)(u)B4,3(u(1), u(2))

(u(1))4

where

B4,1(u(1), u(2), u(3), u(4)) = u(4),

B4,2(u(1), u(2), u(3)) = 4u(1)u(3) + 3(u(2))2,

B4,3(u(1), u(2)) = 6(u(1))2u(2).

It is easily verifiable that g?(u(1), . . . , u(4)) is non-negative as a result of the hypotheses

on u. Moreover, Theorem 3.1 shows that assumptions on the degrees of individuals’

attitudes to risk may be sufficient for any social planner who does not respect UTP4,

i.e., g(4)(u(y)) > 0 for some u(y), to agree with any social planner who respects UTP4,

in words, c∗ under w̃ is at least as high as c∗ under ṽ.

5 Conclusion

This paper has provided a characterization of the conditions under which additively

separable social welfare functions satisfy generalized income transfer principles. Restric-

tions on the weighting function of the utility g yield conditions for satisfying generalized

utility transfer principles. However, conditions for satisfying generalized income transfer

principles are provided by restrictions on the weighting function composed with the util-

ity function of income. On these grounds, the main result determines the restrictions to

be imposed on the weighting function for the generalized income transfer principles to

be satisfied. This sheds some light on the interplay between the conditions imposed on

the utility function and those imposed on the weighting function – displaying attitudes

to utility inequality – as determinants of attitudes to income inequality.

When one considers utility functions with all derivatives up to s + 1th order that

alternate in sign, s being a positive integer, additively separable social welfare functions

that satisfy the income transfer principle of order s + 1 do not necessarily respect the

utility transfer principle of order s + 1. This statement is relevant to applied studies in

which income redistribution is justified by stochastic dominance of some order. Income
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redistribution consistent with stochastic dominance of order s+1 does not ensure a fairer

utility redistribution as defined by utility transfer principles of order s+ 1. Examples of

second-order stochastic dominance (SSD) and third-order stochastic dominance (TSD)

are depicted in Table 1, respectively in columns 1–2, and in column 1.

Finally, it remains the open problem of analyzing the interplay between ITP and

UTP when agents differ in needs. It can be shown that the interplay still holds at the

order 2 for particular extended form SWFs such as Atkinson (1970) extended form SWF.

However, the link between ITP and UTP is lost at the order 3 (see Appendix B).
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Appendix A. Proof of Lemma 3.1 and Theorem 3.1

For the sake of clarity, we do not make appear the argument of the u function in the

proofs. Obviously it does not change anything to the results.

Proof. Lemma 3.1:

We proceed by mathematical induction, i.e., we first prove that the statement Hs+1

is true for s = 1 and then we prove that if Hs+1 is assumed to be true for any

positive integer s, then so is Hs+2. Let w := g ◦ u. It is apparent from w(2) =

(g(1) ◦ u) · u(2) + (g(2) ◦ u) ·
[
u(1)
]

2 that H2 is true. Let us now assume that the statement

Hs+1 is true in order to show that Hs+2 holds. We proceed by remarking that:

(g ◦ u)(s+2) =
[
−g(1) ◦ u ·

(
−u(1)

)](s+1)
.

We then have:

(−1)s+2 (g ◦ u)(s+2) = (−1)s+2
[
−g(1) ◦ u ·

(
−u(1)

)](s+1)
.

Remembering Leibniz’ relation for the (s+1)-th derivative of the product of two functions

h · f :

(h · f)(s+1) =
s+1∑
k=0

(
s+ 1
k

)[
h(k) · f (s−k+1)

]
,
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then:

(−1)s+2 (g ◦ u)(s+2) = (−1)s+2

s+1∑
k=0

(
s+ 1
k

)[
(−g(1) ◦ u)(k) · (−u(1))(s−k+1)

]
.

Rearranging the terms yields:

(−1)s+2 (g ◦ u)(s+2) = (−1)
s+1∑
k=0

(
s+ 1
k

)[
(−1)k (−g(1) ◦ u)(k) · (−1)s−k+1 (−u(1))(s−k+1)

]
.

(A0)

Now we want to prove the relation Hs+2. Then we assume that −g(1) ∈ Γ→s+1 (i.e.

g ∈ Γ→s+2) and u ∈ Γ→s+2. The induction hypothesis Hs+1 is assumed to be true, then

for two functions f and h:

if f ∈ Γ→s+1 and h ∈ Γ→s+1 , then f ◦ h ∈ Γ→s+1.

Let f := −g(1) and h := u (actually if u ∈ Γ→s+2 then u ∈ Γ→s+1), then we obtain that

(−1)k (−g(1)◦u)(k) 6 0, for all k = 0, . . . , s+1. If u ∈ Γ→s+2, then (−1)s−k+2u(s−k+2) 6 0

for all k = 0, . . . , s+ 1. Since Eq.(A0) can be expressed as,

(−1)s+2 (g ◦ u)(s+2) = (−1)
s+1∑
k=0

(
s+ 1
k

)[
(−1)k (−g(1) ◦ u)(k) · (−1)s−k+2 u(s−k+2)

]
,

consequently, (−1)s+2 (g ◦ u)(s+2) 6 0. As the statement Hs+1 has been shown to be true

for s = 1 and that the statement Hs+2 has been proven to be true when Hs+1 is invoked,

then Hs+1 is true.

Proof. Theorem 3.1:

[(i) =⇒ (ii)] From Fishburn and Willig (1984), SW (F ) =
∫
w(y)dF (y) respects ITPi+1

if and only if (−1)i+1 w(i+1)(y) 6 0 for all i ∈ {1, . . . , s}. Setting w = g ◦ u, we get from

Lemma 3.1 that (−1)i(g ◦ u)(i) 6 0 for all i ∈ {1, . . . , s} since g ∈ Γ→s and u ∈ Γ→s

(actually u ∈ Γ→s+1). It remains to find the conditions such that ITPs+1 is respected,

i.e., (−1)i+1(g ◦ u)(i+1) 6 0 for i = s. We start the demonstration with Faà di Bruno’s

formula:

(g ◦ u)(i+1) =
i+1∑
k=1

(g(k) ◦ u) ·Bi+1,k

(
u(1), . . . , u(i−k+2)

)
,

where,

Bi+1,k

(
u(1), u(2), . . . , u(i−k+2)

)
=∑ (i+ 1)!

p1!p2! · · · pi−k+2!

(
u(1)

1!

)p1 (
u(2)

2!

)p2
. . .

(
u(i−k+2)

(i− k + 2)!

)pi−k+2

, (A1)
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with p1, . . . , pi−k+2 such that p1 + p2 + · · · = k and 1p1 + 2p2 + · · · = i + 1. Since

(g ◦ u)(i+1) = (g(i+1) ◦ u) · Bi+1,i+1(u(1)) +
∑i

k=1(g(k) ◦ u) · Bi+1,k

(
u(1), u(2), . . . , u(i−k+2)

)
,

then ITPi+1 is respected if and only if

(−1)i+1(g ◦ u)(i+1) 6 0

⇐⇒ (−1)i+1g(i+1) ◦ u 6 (−1)i+1

[
−
∑i

k=1(g(k) ◦ u) ·Bi+1,k

(
u(1), u(2), . . . , u(i−k+2)

)
Bi+1,i+1(u(1))

]
=: (−1)i+1g?(u(1), . . . , u(i+1)). (A2)

As Bi+1,i+1(u(1)) = [u(1)]i+1, thus:

g?(u(1), . . . , u(i+1)) = −
∑i

k=1(g(k) ◦ u) ·Bi+1,k

(
u(1), u(2), . . . , u(i−k+2)

)
[u(1)]i+1

.

In order to derive the sign of the boundary g?(u(1), . . . , u(i+1)), we have to find the sign

of Bi+1,k (·). Accordingly, we decompose the products of the functions u(·) in Bi+1,k (·)
in Eq.(A1) thanks to the following set:

Λ(k) :=

u(1), . . . , u(1)︸ ︷︷ ︸
p1

, u(2), . . . , u(2)︸ ︷︷ ︸
p2

, . . . , u(i−k+2), . . . , u(i−k+2)︸ ︷︷ ︸
pi−k+2

 .

The set Λ(k) is decomposed into two partitions. The first one is Λe := {u(j) ∈ Λ(k) : j ∈
E}, which is the set of all derivatives u(j) such that the integers j ∈ E, where E is the set

of even integers without zero. The second partition is Λo := {u(j) ∈ Λ(k) : j ∈ O} for

which j ∈ O, where O is the set of odd integers without zero. The cardinals of Λe and

Λo are denoted by |Λe| and |Λo|, respectively. We have by definition of Bell polynomials:

p1 + p2 + · · · = k = |Λe|+ |Λo| (A3)∑
∀u(j)∈Λ(k)

j = i+ 1. (A4)

Case 1: i+ 1 is even and k is even.

↪→ Let us assume that |Λe| is even. As k is even this implies, from Eq.(A3), that |Λo| is

even too. Since u ∈ Γ→s+1, we have the following implication: |Λe|∏
∀u(j)∈Λe

u(j) > 0 ,

|Λo|∏
∀u(j)∈Λo

u(j) > 0

 =⇒
[
Bi+1,k

(
u(1), u(2), . . . , u(i−k+2)

)
> 0
]
.
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↪→ Assume that |Λe| is odd, then |Λo| is odd from Eq.(A3). Then, we deduce, from

Eq.(A4), that: ∑
∀u(j)∈Λo

j

 is odd ,

 ∑
∀u(j)∈Λe

j

 is even

 =⇒

 ∑
∀u(j)∈{Λo∪Λe}

j = i+ 1

 is odd

 .
Since the term i + 1 has been assumed to be even, then it yields a contradiction: |Λe|
and |Λo| cannot be odd when i+ 1 and k are even.

Case 2: i+ 1 is even and k is odd.

↪→ Let us assume that |Λe| is odd. As k is odd, we get from Eq.(A3) that |Λo| is even.

Since u ∈ Γ→s+1, we have: |Λe|∏
∀u(j)∈Λe

u(j) 6 0 ,

|Λo|∏
∀u(j)∈Λo

u(j) > 0

 =⇒
[
Bi+1,k

(
u(1), u(2), . . . , u(i−k+2)

)
6 0
]
.

↪→ If |Λe| is even, then |Λo| is odd by Eq.(A3). This case is impossible since i+ 1 is even

whereas we obtain a contradiction: ∑
∀u(j)∈Λo

j

 is odd ,

 ∑
∀u(j)∈Λe

j

 is even

 =⇒

 ∑
∀u(j)∈{Λo∪Λe}

j = i+ 1

 is odd

 .
Case 3: i+ 1 is odd and k is even.

↪→ Let us assume that |Λe| is odd, then |Λo| is odd by Eq.(A3). Since u ∈ Γ→s+1, we

have: |Λe|∏
∀u(j)∈Λe

u(j) 6 0 ,

|Λo|∏
∀u(j)∈Λo

u(j) > 0

 =⇒
[
Bi+1,k

(
u(1), u(2), . . . , u(i−k+2)

)
6 0
]
.

↪→ If |Λe| is even, then |Λo| is even by Eq.(A3). We have a contradiction since i + 1 is

assumed to be odd whereas: ∑
∀u(j)∈Λo

j

 is even ,

 ∑
∀u(j)∈Λe

j

 is even

 =⇒

 ∑
∀u(j)∈{Λo∪Λe}

j = i+ 1

 is even

 .
Case 4: i+ 1 is odd and k is odd.

↪→ Let us assume that |Λe| is even, thus |Λo| is odd by Eq.(A3). Since u ∈ Γ→s+1, we

have: |Λe|∏
∀u(j)∈Λe

u(j) > 0 ,

|Λo|∏
∀u(j)∈Λo

u(j) > 0

 =⇒
[
Bi+1,k

(
u(1), u(2), . . . , u(i−k+2)

)
> 0
]
.
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↪→ If |Λe| is odd, then |Λo| is even by Eq.(A3). This yields a contradiction since i+ 1 is

assumed to be odd whereas: ∑
∀u(j)∈Λo

j

 is even ,

 ∑
∀u(j)∈Λe

j

 is even

 =⇒

 ∑
∀u(j)∈{Λo∪Λe}

j = i+ 1

 is even

 .
Final Remark: By definition, we have Bi+1,1(·) = [u(i+1)]1 and Bi+1,i+1(·) = [u(1)]i+1.

Since g ∈ Γ→s, we have therefore (−1)kg(k) ◦ u 6 0, for all k = 1, . . . , i. Then, from

Cases 1 to 4 that:

(−1)i+1(g(k) ◦ u) ·Bi+1,k

(
u(1), u(2), . . . , u(i−k+2)

)
6 0, ∀k = 1, . . . , i.

Hence, from Eq.(A2), (−1)s+1g?(u(1), . . . , u(s+1)) > 0.

[(ii) =⇒ (i)] Let us assume that:

(−1)s+1g(s+1) ◦ u 6 (−1)s+1

[
−
∑s

k=1(g(k) ◦ u) ·Bs+1,k

(
u(1), u(2), . . . , u(s−k+2)

)
[u(1)]

s+1

]
.

We have:

(−1)s+1

[
g(s+1) ◦ u

[
u(1)
]s+1

+
s∑

k=1

(g(k) ◦ u) ·Bs+1,k

(
u(1), u(2), . . . , u(s−k+2)

)]
6 0. (A5)

From Faà di Bruno’s formula, Eq.(A5) becomes:

(−1)s+1(g ◦ u)(s+1) 6 0. (A6)

From Fishburn et Willig’s (1984) Theorem 1 and Lemma 3.1, if g ∈ Γ→s, u ∈ Γ→s and

Eq.(A6), then W satisfies every ITP up to the order s+ 1, which ends the proof.

Appendix B. Interplay between UTP and ITP with

heterogeneous agents

It is shown below that when households differ in needs, there exists an interpretable

relation between UTP and ITP at the order 2, not at the order 3. Households are

described by income y ∈ Ω and type h ∈ H = {1, 2, . . . , H}. We assume that there

is a finite number of types H ≥ 2. Let F be the joint cumulative distribution function

F (y, h) that is the proportion of households whose income is at most y and whose type

does not exceed h. Formally,

F (y, h) =
h∑
r=1

∫ y

0

f(ε, r)dε, ∀h ∈H , ∀y ∈ Ω,
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where f(y, h) is the joint probability measure from Ω×H onto [0, 1]. Any given bivariate

f that gives nonzero mass to only a finite number of incomes, and has a total mass∑
r∈H

∫
y∈Ω

f(y, r)dy = 1 belongs to the set F ∗. For the sake of clarity, we restrict the

SWFs to the class WA of Atkinson (1970) SWFs:

WA(f) =


∑H

h=1

∫ ymax

0
[uh(y)]1−ρ

1−ρ f(y, h) dy if ρ ∈ R and ρ 6= 1;

∑H
h=1

∫ ymax

0
ln (uh(y)) f(y, h) dy if ρ = 1.

(B1)

The parameter ρ exhibits the attitude to inequality of utility. Households’ types are

defined following the definition of needs provided by Moyes (2012).

Definition 5.1. Households’ types (needs): For any given ` ∈ {1, 2} and y ∈ Ω:

(−1)`u
(`)
1 (y) 6 (−1)`u

(`)
2 (y) 6 · · · 6 (−1)`u

(`)
H (y) < 0 ; (B2a)

0 < u1(y) 6 u2(y) 6 · · · 6 uH(y). (B2b)

Utility transfers of order 2 and 3, inspired from Definition 2.1, are analyzed in the

cases where donors and recipients have different types. Let m be obtained from f ∈ F ∗

through an income increment T 1(α, y, δ, k):

m(y, k) =


f(y, k)− α at level y ,
f(y, k) + α at level y + δ ,
f(y, k) anywhere else.

Definition 5.2. Utility and Income transfer of order s between heterogeneous

agents. For all f ∈ F ∗, for all y ∈ Ω, and for given k and h ∈ H with k < h, utility

and income transfers of order s between heterogeneous agents are given by, respectively:

T s(α, u{k,h}(y), δ) := T s−1(α, uk(y), δ)− T s−1(α, uh(y) + δ, δ), s ∈ {2, 3}

T s(α, y, δ, k, h) := T s−1(α, y, δ, k)− T s−1(α, y + δ, δ, h), s ∈ {2, 3}.

Utility and income transfer principles of order 2 and 3 are defined as follows.

Definition 5.3. Utility and Income Transfer Principles. For all f,m ∈ F ∗, for

all y ∈ Ω, for given k, h ∈ H and s ∈ {2, 3}, the following implications hold for utility

and income transfers, respectively:

(UTPs) m = f + T `(α, u(y), δ) =⇒ W (m) > W (f), ` = 2, s;

(ITPs) m = f + T `(α, y, δ) =⇒ W (m) > W (f), ` = 2, s.
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Let us define the following set of SWFs:

W P
A = {W ∈ WA : ρ > 0}.

Proposition 5.1. If Eq.(B2a) and Eq.(B2b) hold, then the following assertions are

equivalent:

(i) WA respects UTP 2 and UTP 3.

(ii) WA ∈ W P
A .

Proof. See Dubois (2016, pp. 79-83).

Let us now introduce the following set:

W P∗
A =

W ∈ WA : ρ > ρ∗ = sup
y,δ,k<h

ln

(
u
(1)
k (y)

u
(1)
h (y+δ)

)
ln
(

uk(y)
uh(y+δ)

) , ρ∗ 6 0

 .

Proposition 5.2. If Eq.(B2a) and Eq.(B2b) hold, then the following assertions are

equivalent:

(i) WA respects ITP 2.

(ii) WA ∈ W P∗
A .

Proof. See Dubois (2016, pp. 87-89).

Proposition 5.3 shows that the interplay between UTP2 and ITP2 still holds in a

framework with agents who differ in needs. Clearly, W P
A ⊆ W P∗

A , therefore if a social

planner who behaves in accordance with Eq.(B1) respects UTP2, then the social plan-

ner respects ITP2, the converse being not true. However, a step further, the interplay

between ITP3 and UTP3 is lost.

Proposition 5.3. Consider that Eq.(B2a) and Eq.(B2b) hold. If WA respects ITP3,

then:

−ρ
uk(y)1+ρ

[u
(1)
k (y)]2 +

u
(2)
k (y)

uk(y)ρ
<

−ρ
uh(y + δ)1+ρ

[u
(1)
h (y + δ)]2 +

u
(2)
h (y + δ)

uh(y + δ)ρ
.

Proof. See Dubois (2016, p. 95).
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parétien avec séparabilité forte. Ph.D. dissertation. https://tel.archives-ouvertes.fr/tel-

01578428/document.

Eeckhoudt, L., Schlesinger, H., 2008. Change in risk and the demand for saving. Journal

of Monetary Economics. 55(7), 1329-1336.

Ekern, S., 1980. Increasing Nth Degree Risk. Economics Letters. 6, 329-333.

Fishburn, P., Willig, R., 1984. Transfer Principles in Income Redistribution. Journal of

Public Economics. 25, 323-328.

Gayant, J.-P., Le Pape, N., 2017. Increasing Nth degree inequality. Journal of Mathe-

matical Economics. 70, 185-189.

Kaplow, L., 2010. Concavity of utility, concavity of welfare, and redistribution of income.

International Tax and Public Finance. 17, 25-42.

Kaplow, L., Weisbach, A., 2011. Discount rates, social judgments, individuals’ risk pref-

erences, and uncertainty. Journal of Risk and Uncertainty. 42, 125-143.

26



Kimball, M.S., 1990. Precautionary savings in the small and the large. Econometrica.

58, 53-73.

Kolm, S.C., 1976. Unequal inequalities II. Journal of Economic Theory. 13, 82-111.

Leland, H.E., 1968. Saving and uncertainty: The precautionary demand for saving.

Quarterly Journal of Economics. 82, 465-473.

Moyes, P., 2012. Comparisons of heterogeneous distributions and dominance criteria.

Journal of Economic Theory. 147, 1351-1383.

Shorrocks, A., 1983. Ranking income distributions. Economica. 50, 3-17.

27


	Introduction
	Setup
	Motivation for the extended form SWF
	Transfers and transfer principles

	Results
	An illustration for risk-based ethical decision-making: The case of water scarcity
	Conclusion

