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mbonnet@ensta.fr

Abstract

The Fast Multipole Method coupled with the Symmetric Galerkin BEM is employed in this work to simulate
fatigue crack growth. The resulted crack propagation code is accelerated with a fast matrix update, a parallel
implementation and a sparse matrix format. By using multiple nodes, this code accommodates also multiple
surface-breaking cracks. The numerical tests presented herein allow the propagation of multiple cracks in
single or multilayer domains.
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1. Introduction

Despite the general prominence and versatility of the FEM in many application areas of science
and engineering, configurations characteristics such as unbounded media or crack propagation are
factors making the BEM very effective and efficient. In fracture mechanics, high mesh density is
needed for the FEM to accurately compute the Stress intensity factors (SIFs) or the energy release
rate to simulate the crack growth. Also, the simulation of crack propagation entails demanding and
labor-intensive repeated domain remeshing [1]. The BEM-based approaches, on the other hand,
are well suited for linear elastic fracture mechanics for several reasons: (i) the dimension reduction
leads to simpler data preparation; (ii) the remeshing task is more straightforward than for the FEM,
even for 3D geometries, since only the crack surfaces need remeshing during the crack growth; (iii)
stresses ahead of cracks and other singularities can be computed accurately. Many developments
have been devoted to improve the ability of the BEM in crack propagation simulation. Li and
Keer [2] model the growth in shear mode of a crack embedded in an unbounded medium. Mi and
Aliabadi [3] and Mi [4] adopted the dual approach to enforce the traction equation in addition
to the traditional Somigliana displacement identity at points of the fracture surface, an approach
that puts constraints on BEM discretization by requiring C1 smoothness of the displacement field
at the collocation points.

The symmetric Galerkin version of the BEM (SGBEM) has further advantages. It produces a
symmetric coefficient matrix (see e.g. Yoshida et al. [5] or Frangi et al. [6] for crack problems), a
feature that halves the computational and memory costs when using direct solvers and facilitates
BEM/FEM coupling [7, 8, 9]. Moreover, the variational framework underlying the SGBEM permits
mathematical analysis of e.g. the well-posedness of the continuous problem and the convergence
of discretization schemes [10, 11]. For fractured domains where cracks are treated as loci of dis-
placement discontinuities, the symmetry property still holds provided the unknowns on the crack
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surfaces are the displacement jumps φ := u+ − u−. Another advantage of the SGBEM over the
traditional collocation BEM for crack problems is that all integral operators of the SGBEM, even
the hypersingular ones, can be treated using standard C0 boundary element interpolations. For
this reason, the SGBEM can easily model the crack tip behavior and provide smoother solutions
in the vicinity of geometric discontinuities. Frangi [12] applied the SGBEM to a simple case of
fatigue crack growth. Similar methods were proposed by Roberts et al. [13], and Kitey et al. [14] for
modeling crack growth in particulate composites. Xu et al. [15] applied the SGBEM to investigate
2D crack propagation, while Tavara modeled cohesive crack growth in homogeneous media [16].

Over recent decades, the performance of boundary analysis is further improved with the advent
of the Fast Multipole Method (FMM) [17] and other acceleration methodologies. The classical
bottlenecks of the BEMs caused by the fully-populated matrix are alleviated as the FMM splits all
element integrals into near-field and far-field interactions, the latter being clustered in a recursive,
multilevel fashion. This process results in (i) a lessened storage complexity, typically defined by
the sparse near-field matrix, and (ii) faster solution based on iterative solvers (complexity of order
O(N) instead of O(N2) per iteration, N being the number of BEM unknowns). This makes
boundary element analysis applicable with very good performance to large BEM models (see e.g.
the application of FMM to elastodynamics [18]).

In this work, the FM-SGBEM treatment of cracked three-dimensional elastostatic media previ-
ously presented in [19] is extended to the simulation of fatigue crack growth. The adopted fatigue
propagation criterion is the commonly-used [12, 3, 20, 21] Paris law. The FM-SGBEM formulation
for cracked domains is summarized in Sec. 2. The main aspects of the crack propagation algorithm
are then presented in Sec. 3. Section 4 is then devoted to several method enhancements. Finally,
Sections 5 and 6 report numerical experiments featuring, respectively, stationary or propagating
multiple cracks in homogeneous or piece-wise homogeneous domain.

2. Fast multipole symmetric Galerkin BEM

2.1. Symmetric Galerkin BEM
Consider a fractured elastic solid Ω subjected to prescribed tractions tD on the boundary St

and displacement constraints uD on Su (Fig. 1). The boundary of Ω (including the crack Sc) is
thus defined as S = St ∪ Su ∪ Sc. The crack surface Sc supports a displacement discontinuity φ,
usually referred to as the crack opening displacement (COD) and defined as

φ(x) = u(x+)− u(x−),

Figure 1: Solid containing a crack: notationDomain
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where u+(x) and u−(x) are the traces of u on the upper and lower sides of Sc (the unit normal to Sc
pointing by convention from the lower to the upper side). Details of the mathematical developments
of the SGBEM can be found in many references, e.g. [22, 10]. The variational boundary integral
formulation for the cracked elastic solid is written as: find u ∈ Vu, φ ∈ Vc, t ∈ Vt such that

Buu(u, ũ) + Btu(t, ũ) + Bcu(φ, ũ) = Fu(ũ)

But(u, t̃) + Btt(t, t̃) + Bct(φ, t̃) = Ft(̃t)

Buc(u, φ̃) + Btc(t, φ̃) + Bcc(φ, φ̃) = Fc(φ̃)





for all ũ ∈ Vu, φ̃ ∈ Vc, t̃ ∈ Vt (1) eq15

The bilinear forms Buu etc. and linear functionals Fu are usual integral operators written in weak
form. Their explicit expressions are provided in [23, 24]. For example, we have

Btt(t, t̃) =

∫

Su

∫

Su

tk(x)Uki (x, x̃)t̃i(x̃)dSx̃dSx

Btu(t, ũ) = −
∫

Su

∫

ST

tk(x)T ki (x, x̃)ũi(x̃)dSx̃dSx (2) eq7

Bφφ(φ, φ̃) =

∫

Sc

∫

Sc

[Rφ]iq(x)Bikqs(r)[Rφ̃]ks(x̃)dSx̃dSx

where the unknowns u, t and φ have respective supports St, Su and Sc; U
k
i (x, x̃) and T ki (x, x̃) are

the ith component of the Kelvin fundamental displacement and traction, respectively, at x ∈ R3

created by a point force applied at x̃ ∈ R3 along the kth coordinate direction, given by

Uki (x, x̃) =
1

16πµ(1− ν)r
[r̂ir̂k(3− 4ν) + δik]

T ki (x, x̃) = − 1

8π(1− ν)r2
nj(x)[3r̂ir̂kr̂j + (1− 2ν)(δikr̂j + δjkr̂i − δij r̂k)]

having set r = x− x̃, r = ‖r‖, r̂ = r/r. The bilinear forms (2) are all defined in terms of O(r−1)
weakly singular kernels, following a preliminary regularization based on the Stokes theorem together
and indirect regularization [25]. The surface curl operator R arises as a result of this manipulation
and is defined as:

[Ru]ks(x̃) = ejfsnjuk,f (x̃)

while the weakly singular fourth-order tensor B is given in component form by

Bikqs(r) =
1

8π(1− ν)r
[2δqsr̂ir̂k + 2(δikδqs − 2νδisδkq − (1− ν)δiqδks)]

The function spaces in problem (1) can be taken as Vu = H̃1/2(Su;R3), Vc = H̃1/2(Sc;R3),
Vt = H−1/2(St;R3) in terms of Sobolev spaces of fractional index whose definition is given in
e.g. [11]. The associated test functions ũ, φ̃, t̃ belong to the same spaces. To implement Galerkin
discretizations of problem (1), natural finite-dimensional subspaces of Vu,Vc are provided by con-
tinuous interpolations of u over St and φ over Sc (with a zero trace on the edges ∂St, ∂Sc), while
piecewise-continuous interpolation of t over Su is sufficient for defining appropriate subspaces of
Vt [10]. The SGBEM can therefore approximate all integral operators with standard boundary
element interpolations, whereas collocation methods for cracks put more severe constraints on the
discretization options. The system of discretized equations arising from (1) is symmetric, and has
the form

K.X = F (3) SGBEM:discr
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where X∈RN collects all unknown degrees of freedom (DOFs) on St, Sc and Su while the matrix
K ∈ RN×Nsym and the vector F ∈ RN result from discretizing the bilinear forms and the linear func-
tionals, respectively, of the entering problem (1). All these features make SGBEM superior to the
collocation approach. The matrix K is, however, fully populated (albeit symmetric), which places
a practical limit of N = O(104) on the size of SGBEM models solvable on ordinary computers, the
computing work and memory required both becoming excessive otherwise.

2.2. Fast multipole method

The fast multipole method (FMM), introduced in [17], aims at improving the performance of
boundary element analyses by avoiding the need to evaluate the kernel functions anew for each pair
of boundary points encountered. The FMM avoids such repetitions by introducing poles x0, x̃0

(Fig. 2) at which contributions of clusters of points are gathered. It rests on (i) decomposing
the relative position vector r := x − x̃ as r = x′ + r0 − x̃′ (Fig. 2) and (ii) reformulating the
kernel functions as truncated series of products of functions of the local position vectors x′, x̃′.
The cluster-wise treatment of contributions to integral operators is only valid for well-separated
clusters. This motivates a recursive definition of such clusters using an octree-based partition of
the space (smaller but nearer clusters becoming eligible to multipole expansions), which is the
essence of the multi-level FMM used here (see Fig. 3 for a schematic description). The multi-level

x0

x̃0

x̃
x r

r0

Figure 2: Decomposition of the position vector (left); Interactions by FMM scheme (right)pole2

Figure 3: Two-level multipole algorithm (left); Multipole operations M2M, M2L and L2L (right)fmm_ope
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elastostatic FMM enjoys as a result a O(N) computational complexity. The FMM implicitly splits
the SGBEM matrix K into K = Knear + KFMM, where KFMM gathers the contributions arising
from multipole expansions and Knear the close-range influence coefficients that have to be computed
by traditional BEM quadrature. The matrix KFMM is of course not actually set up; rather, the
FMM evaluates products KFMM.X that are used by an iterative solver (usually GMRES) applied
to (3). Details of the FMM applied to elastostatic BIEs can be found in e.g. [5, 23].

3. Crack propagation implementation
sec:growth

3.1. Evaluation of stress intensity factorssifs
Several works are devoted to the SIFs, see for example Rooke’s Compendium [26] or [27]. The

strain and elastic stress fields are singular along the crack front. We use the classical approach based
on quarter-point elements along the crack front [28] in order to better capture the behavior near the
crack front (see Fig. 4). The SIFs are hence evaluated through extrapolation from the displacement
discontinuity field expressed in a local coordinate system (ν(s),n(s), t(s)). For example KI is
evaluated [22, 23] by

K2
I =

µ

8(1− ν)

√
2π

a

(
4φ5 − φ1

)
· n (4) eq_sif_2p

where K2
I is the mode I SIF at the node 2, φ1,φ5 are the nodal CODs at nodes 1 and 5, the nodes

being numbered as shown in Fig. 4.
One can alternatively use only the COD value at the quarter-point node, whereby KI at the

node 2 is evaluated as

K2
I =

µ

4(1− ν)

√
2π

a
φ5 · n. (5) eq_sif_1p

3.2. Propagation Criterionprop_criterion
Suitable criteria for crack propagation are still being debated, especially for 3D configurations.

A simple criterion for fatigue crack growth is the Paris law [29]. Many other propagation criteria

Figure 4: Quarter-point element at the crack front. Vectors ν,n, t constitute the local coordinate
frame at node 3. Their directions respectively correpond to the opening, sliding and
tearing local modes of fracture propagation.crack_prop_config
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are proposed, see e.g. [3, 30, 31, 32, 33]. Paris postulated that sub-critical crack growth under
fatigue loading can be predicted in terms of the ranges of stress intensity factors (SIFs) in the
same way that thresholds on SIFs or energy release rate characterize brittle fracture. Abundant
experimental evidence supports the view that the crack growth rate can be correlated with the
cyclic variation in the SIFs, e.g. through

da

dN
(s) = A∆Km(s) (6) Parislaw

where s is the arc length coordinate along the crack front ∂Sc, N is the current number of loading
cycles, da/dN is the fatigue crack advancement rate per cycle, ∆K(s) = Kmax(s) − Kmin(s) is
the SIF range for the current cycle, while A and m are parameters that depend on the material,
environment, frequency, temperature and stress ratio.

The local configuration of the crack front described as in Fig. 4. The geometrical advance of
the crack is described by moving points of the crack front in the local (ν(s),n(s)) plane orthogonal
to the front. The direction and length of the local crack advancement are represented respectively
by the angle θ0(s) and the step ∆a(s). The angle θ0(s) is assumed to be given by the maximum
circumferential stress criterion [12, 34]

tan
θ0

2
=

1

4

(
KIeff

KII
− sign(KII)

√(KIeff

KII

)2
+ 8

)
,

where KIeff = KI + B|KIII| is an “effective” or “equivalent” local mode I stress intensity factor
which accounts for the tearing mode being active (KIII 6= 0), B being a material parameter. The
local geometrical advancement ∆a along cos θ0(s)ν + sin θ0n is determined from the Paris law (6):

∆a(s) = A
(
∆K2

I (s) + ∆K2
II(s)

)m/2
∆N.

3.3. Propagation algorithm
trad_prop_algo

The algorithm for fatigue crack growth is incremental, the task of each step being to predict
the crack growth induced relative to the current configuration by a new sequence of ∆N loading
cycles. For each increment, the SGBEM analysis is first performed on the current configuration.
The resulting CODs are then used to determine, through the evaluation of corresponding SIFs, the
local propagation angle θ0. At this point, treating the Paris law in explicit fashion, two possibilities
arise: either (i) set ∆N and deduce ∆a or (ii) set ∆a and deduce ∆N . Choice (i) may produce
a too-large crack increment ∆a if ∆N is inappropriately set, leading to numerical inaccuracies
and significant remeshing work. We thus prefer to follow the approach (ii), by fixing a priori the
maximum propagation length ∆amax, finding the node(s) where ∆K(s) is largest, evaluating the
corresponding ∆N from (6) at that node, and then computing the extensions ∆a(si) by applying (6)
at all crack front nodal positions si. The obtained values of θ0(si) and ∆a(si) are then used to
define a row of new quarter-point elements extending the current crack. At crack front nodes si

shared by two elements, quantities such as θ0(si) relative to each element may not coincide exactly
due to the discontinuity of ν at s = si; in such cases, the adjacent values are averaged. The
quarter-points of formerly-frontal elements are moved to the middle of the element side while the
crack mesh is updated by adding a row of quarter-point elements. The incremental process is
repeated until the final number of loading cycles is reached.
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Figure 5: Efficient Knear updating.fast_knear_idea

4. Improvements and optimizations
sec_optim

Our multilevel fast multipole SGBEM code extends previous work [24, 19] by implementing
the fatigue crack growth treatment described in Sec. 3 together with computational improvements
(described next in Secs. 4.1 to 4.3) and the handling of surface-breaking cracks (Sec. 4.4). It is
written in Fortran and incorporates algorithms from the BE community such as (i) the singular
integration schemes of Andrä and Schnack [35, 6], (ii) the index of severity [36] for adjusting the
Gaussian quadrature density to the interelement distance, (iii) the nested flexible GMRES (FGM-
RES) which uses Knear as a preconditioner [18] and (iv) the extension to multizone configurations of
the SGBEM [37]. These features and attendant performance enhancements are reported in [24, 19].
Matrix-vector operations are performd using subroutines from the BLAS library. The FGMRES
algorithm used is available at www.cerfacs.fr and described in [38].

4.1. Efficient update of Knearsec:update
At each increment, a layer of new elements is added to the mesh and the system (3) must be

updated; this in particular requires re-setting the matrix Knear of near interactions. Recomputing
Knear is wasteful since many of the influence coefficients are equal to those for the previous mesh
configuration. Therefore, starting from the second increment, the interactions between pairs of old
elements are re-used. Only the parts of the matrix that are related to the newly added or modified
elements are computed, see Fig. 5.

Re-using the interactions between pairs of old elements for the computation of Knear is a simple
idea, but one must be sure to retain the same conditions as the initial configuration. For example,
the octree structure must be kept fixed during the crack advancement simulation so that any pair of
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elements initially treated as near or far retain that attribute. Also, quarter-point elements are used
at the crack front (Sec. 3.2); they are converted to standard eight-noded elements each time a new
row of quarter-point elements is added (Sec. 3.3), so their contribution to Knear is modified after
a propagation increment and cannot be simply re-used. To account for this, the contribution of
modified elements are saved in Compressed Sparse Row Format in another matrix, and subtracted
from the old Knear. Then those elements are set as new elements so that their new contribution
is computed and assembled into the updated Knear. By re-using most of the interactions, the
cost of re-constructing Knear is greatly reduced (90% of time reduction is achieved in some of our
simulations) especially for cases with small numbers of cracks.

4.2. ParallelizationMPI
Parallelization aims at dividing a computation into mutiple subtasks that can be performed

concurrently, thereby reducing the overall elapsed time. Many parallel algorithms exist for the
boundary element method, see for example [39, 40, 41, 42]. The goal here is to speed up the
existing code by avoiding big changes. To this end, we effect a multiprocessing parallelization
by using OpenMP. OpenMP is an application program interface (API) for parallel computing
on shared memory architectures, which simplifies writing multi-threaded applications by using
compiler directives and library routines. Before parallelization, the sequential code is re-organized
to reduce the number of operations. Only the M2M, M2L and L2L operations involved in the
computation of far interactions, which are time-consuming, have been parallelized. Simulations
done on a 20-core Intel Xeon E5-2630v4 processor running at 2.2 GHz (with 128 Go installed
memory) have shown a speedup factor of about 13.0 on the parallelized part.

4.3. Upper bounded incremental coordinate formatsec:sparse
In large scale simulations, the memory usage requires close attention, especially in a context of

parallel computing. In our code, the compressed sparse row (CSR) format is used for storing the
matrices, but a dense format is used for their construction, causing large amounts of allocated but
unused memory. Due to parallelization, the dense format causes peaks of allocated memory. To
avoid this, an upper bounded incremental coordinate (UBI-COO) format is designed for matrix
construction. The coordinate format (COO), which stores each non-zero matrix entry with its
coordinates, is well known for setting up sparse matrices. Using dense format is simple: a dense
matrix is allocated and is converted to CSR format at the end of the construction. With the UBI-
COO, the coordinate format is used in an incremental way. A parameter sets the maximal amount
of data in the COO. When the limit is reached, the COO matrix is converted to CSR and the
CSR is merged with the existing CSR. At this step, multiples entries are also merged. The COO
is then reinitialized for the rest of the construction. Based on Sparsekit subroutines [43], necessary
subroutines for the manipulation of the matrices in COO or CSR format are written. This upper
bounded incremental coordinate format erases memory peaks in the matrix construction phases.

4.4. Surface-breaking crackssec:surfbreak
Surface-breaking cracks (SBCs) are among the critical sources of structural degradation. Their

detection and the prediction of their evolution are of great interest in civil engineering. Many
investigations have been devoted to SBCs. For example, Raju and Newman [44] provided stress
intensity factors by using the FEM, Feng and Hong [45] presented an expression of the surface
crack opening displacement in a plate under tension and bending, Frangi [12] used the SGBEM to
simulate a surface-breaking crack, Ramezani [46] used the dual BEM to evaluate stress intensity

8



Figure 6: Surface-breaking crack: multiple
nodal unknownssur_bre_cra_treatment

Figure 7: Surface-breaking crack exam-
ple: geometryedge_crack_geo

factors of surface cracks in round bars. We therefore have included SBC analysis in our code. This
mainly requires a proper treatment of the DOFs at nodes on the intersection St ∩ Sc between the
crack and the outer surface (Fig. 6). Each node of this intersection carries three unknowns, namely
the displacements uupper and ulower of the upper and lower faces of the breaking crack (the node
belonging to St) and the COD φ (the node also belonging to Sc), linked by

φ = uupper − ulower (7) eq_sbc_du

Such nodes are treated as triple nodes (Fig. 6), and (7) is then used to eliminate one of those
unknowns in the SGBEM system (3).

To validate this feature, we consider a semi-circular horizontal edge crack (Fig. 7) of radius
r breaking at the center of a plate (whose dimensions are H ×H × b, with H = 10r, b = 2, 5r)
under tension σ = 1. The adopted plate and crack dimensions are such that the model reasonably
represents an edge crack in an infinite plate. The mesh features 1 395 eight-noded elements (1 200
elements for the plate surface and 195 for the crack, see Fig. 8) and 12 651 DOFs. The tolerance
for the iterative solver is set to ε = 10−3.

For this example, the difference with respect to an internal crack is that the SIF varies along
the crack front, with the maximum value at the surface-breaking point. This variation can be
represented in terms of the normalized stress intensity factor (NSIF) given by

K?
I (s) =

KI

2σ

√
π

r
.

In Fig. 9, values of K?
I computed using the present FM-SGBEM are compared with numerical

results by Frangi [12] and with approximate values by Sun and Jin [32] and Anderson [47]. The
obtained NSIF based on extrapolation equation 4 (noted Present FM-SGBEM 2pts) agrees within
1% (except at the surface-breaking node) with the computed values of [12] while the NSIF based
on equation 5 (noted Present FM-SGBEM 1pt) follows the trend of the curve until the surface-
breaking node.

Our FM-SGBEM code accommodates multiple surface-breaking cracks, an important feature
for civil engineering applications. To illustrate this, consider two surface-breaking cracks in a plate
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(a) semi-circular edge crack mesh (b) zoom on crack mesh

Figure 8: Plate with surface-breaking crack: meshsbc_mesh

Figure 9: Surface-breaking crack: normalised SIF K?
I along the crack frontsbc_res_fig

(see Fig. 10a, where a part of the surface is removed so that the interior can be seen). Figure 10b
presents the COD on the cracks and the vertical displacement on the plate. A zoom on the crack
is shown in Fig. 10c. The case of interface-crossing cracks, also very useful, is left to future work.
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(a) model (b) COD, vertical displacement on plate (c) zoom on crack and COD

Figure 10: Plate with two surface-breaking cracksSBC:double

5. Numerical tests: stationary cracks
sec_num_res

This section reports numerical tests on configurations involving stationary cracks, all carried out
using the previously-described multilevel FM-SGBEM code. The material properties are assumed
linear, isotropic, and either homogeneous or (for multizone cases) piecewise homogeneous. The
cyclic tensile load is set to a constant amplitude of p. For the FMM procedure, the maximal
number of elements in a leaf cell is set to 100 (or 30 for large problems) while the GMRES relative
tolerance is ε = 10−3. The meshes are created using Gid. Outputs are visualized using Medit.
Eight-noded quadrilateral elements are used to model cracks, with quarter-point elements used
along the crack front to better evaluate SIFs. Computing times are measured on an Intel Xeon (20
cores, 2.2 GHz) computer with 128 Go of RAM; however most of the analyses are run sequentially
(see sec. 4.2).

In results presented thereafter, Tpre is the time needed to compute the right hand-side vector
and the coefficients matrix Knear, Niter is the number of outer FGMRES iterations and Tsol the
corresponding CPU time, Ttot is the total CPU time including pre-processing (input reading, octree
construction, etc.) and post-processing (results writing in files). The time Ttot is compared to the
value T oldtot achieved with the previous code version [19] by means of the factor

SpeedUp := T oldtot /Ttot.

5.1. Homogeneous domain with crack array
homog:array

In this example, we consider a crack array embedded in a cube (side length 3 m) clamped at its
base and subjected to a uniform tensile load p = 1 MPa on the top face. The material parameters
are E1 = 10 000 MPa, ν1 = 0.3 . The crack array contains Nc = n3

c randomly-oriented penny-
shaped cracks (r = 25 mm) on a cubic grid of step dc. The center of the crack array coincides
with that of the cube. Each crack of the array (see Fig. 11, where the separation dc is reduced)
is meshed with 48 elements and 161 nodes (Fig. 12a), except in simulation 5 for which the crack
meshes feature 768 elements and 2 369 nodes (Fig. 12b). The cube and crack arrangements are
shown in Fig. 13. Table 1 shows computational data for the corresponding FM-SGBEM analyses.
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Table 1: Homogeneous cube with array of stationary cracks: computational data

# Nc N max elem Tpre (s) Niter Tsol (s) Ttot (s) SpeedUp

1 8 19 302 100 83 24 84 169 8.7
2 64 40 974 100 98 41 509 611 10.5
3 1 000 403 206 30 1 209 38 2 931 4 478 16.1
4 1 728 684 942 30 2 299 39 4 823 8 721 13.7
5 1 000 1 075 206 30 3 539 42 6 471 15 446 10.8
6 8 000 3 112 206 15 20 160 38 24 840 52 500 15.9tab_res_elas_cube_hom

5.2. Multizone domain with crack array
heter:array

The configuration for this example is identical to the previous one except for the fact that the
cube is now made of two dissimilar layers (E1 = 1 000 MPa, ν1 = 0.15 ; E2 = 2×E1 and ν2 = 2×ν1),
see Fig. 14. Table 2 shows computational data for FM-SGBEM analyses.

Table 2: Two-layered cube with array of stationary cracks: computational data

# Nc N max elem Tpre (s) Niter Tsol (s) Ttot (s) SpeedUp

1 8 17 508 100 79 35 129 209 7.7
2 64 39 180 100 205 34 257 465 14.1
3 1 000 401 412 30 870 50 3 177 4 497 11.3
4 1 728 683 148 30 1 773 44 5 490 8 814 10.8
5 2 744 1 061 928 30 2 438 72 17 130 21 498 9.6tab_res_elas_cube_mz

5.3. 3-layered multicracked road
heter:road

In this example, we consider Nc rectangular cracks (3 000×60 mm2) embedded in a portion of
three-layered heterogenous road of dimensions 3 555×3 300×2 786 mm3, subjected to a wheel load

Figure 11: 2×2×2 crack arraycrack_array_2x2x2

(a) 48 elements (b) 768 elements

Figure 12: Circular crack meshesmesh_crack_circ48e
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(a) 8 cracks (b) 2744 cracks

Figure 13: Homogeneous cube with array of stationary crackscrack_prop_3000_2x2x2_model

(a) 8 cracks (b) 1000 cracks

Figure 14: Two-layered cube with array of stationary cracksmz2_crack_prop_3000_2x2x2_model

Table 3: Three-layered road: layer characteristics

Thickness (mm) E (MPa) ν

Layer 1 66 6610 0,35
Layer 2 500 180 0,3
Layer 3 2220 80 0,25

characteristics_road

of p = 0.6 MPa at the top face (Fig. 15). The layer characteristics are given in Table 3. The road
is meshed with 4 276 four-noded elements and 4 216 nodes, while each crack is meshed with 120
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(a) Model
(b) Geometry

Figure 15: Three-layered roaddc_model_chaussee

Table 4: Three-layered road with multiple stationary cracks: computational data

# Nc N max elem Tpre (s) Niter Tsol (s) Ttot (s) SpeedUp

1 1 15 669 500 121 69 283 404 7.3
2 3 18 243 500 151 70 355 507 6.9
3 7 23 391 500 148 65 366 515 8.6
4 15 33 687 500 210 67 635 846 10.3
5 30 52 992 500 396 79 1 416 1 813 13.7tab_res_elas_road

eight-noded elements and 429 nodes (Fig. 16a). The cracks are embedded in the first, thinnest,
layer; their spatial arrangement is shown on Figs 16b,c. Table 4 shows computational data for
FM-SGBEM analyses, with Nc ranging from 1 to 30.

6. Numerical tests: fatigue crack propagation
sec_num_res:fatigue

We now present tests on fatigue crack propagation, undertaken under the same conditions as
those of Sec. 5. In addition, we denote by Ninit and Nend the number of DOFs for the initial
configuration and at the end of the propagation simulation, respectively, while Tpre, Tsol and Ttot

are now the preparation, solution and total CPU times, respectively, cumulatively spent for the
entire crack growth analysis, i.e. over all growth increments.

6.1. Initially-circular crack in a cylinder
We consider a circular crack of radius 1mm in a homogeneous cylinder (E = 2MPa, ν = 0.3 ) of

dimensions R = 60mm, H = 120mm subjected to tension σ = 2MPa. The cylinder is meshed with
192 four-noded elements and 194 nodes, while the crack is meshed with 128 eight-noded elements
and 417 nodes (Fig. 17a). The material properties for the Paris law are A = 10−8 mm/cycle and
m = 4.5. For this simulation, ∆amax is taken equal to r/10 and the SIF for a penny-shaped crack
in an infinite medium can be used [48]:

∆KI =
2

π
σ
√
πr, ∆KII = 0.
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(a) Mesh of rectangular crack in (x, z) plane

(b) Positions of rectangular cracks (c) Road with 15 rectangular cracks

Figure 16: Three-layered road with multiple stationary rectangular cracks: arrangementroad_15_rec_cracks_pos_zoom

The computed fatigue growth (crack radius against number of loading cycles) is plotted in Fig. 17b
and compared to the analytic solution derived from the above SIF formulas.

6.2. Multicrack propagation in homogeneous domain

For this example, the initial configuration of the cracked solid is the homogeneous cube-shaped
solid with a crack array used in Sec. 5.1. For comparison purpose, the propagation length is
taken equal to r/4 as the previous version of the code. Table 5 shows computational data for the
propagation analyses. The previous version of the code was not run for simulations 3 and 4, as it

(a) Model (b) Fatigue life validation

Figure 17: Cylinder with initially-circular crackParis_cylindre
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(a) Propagated 8-crack array (b) Zoom on a propagated crack

Figure 18: Multi-crack propagation in homogeneous cubepic_crack_prop_cube1

would have required too much time. The final shape of the propagated cracks depicted in Fig. 18.

6.3. Multicrack propagation in multizone domain

Our code can also deal with propagation in multizone domain provided cracks do not cross
interfaces. For an illustration, we use as initial configuration the cracked two-layered solid of
Sec. 5.2 and compute the subsequent fatigue crack propagation. Table 6 shows computational data
for the propagation analyses.

6.4. Application: Cracked road

In this application, we consider initially penny-shaped cracks (with radius r = 10 mm and
the distance dc = 250 mm between them) embedded in the heterogenous road of Sec. 5.3, whose
characteristics are again given by Table 3, subjected to a wheel load of p = 0.6 MPa (Fig. 15).
The crack centers are located on the mid-plane of the first layer (Fig. 19). Fatigue propagation
is computed with Ncycles = 10 and ∆amax = r/4. The material properties for the Paris law

Table 5: Homogeneous cube with array of propagating cracks: computational data

# Nc Ninit Ncycles Nend Tpre Tsol Ttot SpeedUp

1 8 19 302 10 29 670 398 479 889 35.3
2 64 40 974 10 123 918 2 286 5 872 8 217 52.6
3 512 199 950 12 1 010 958 22 159 45 158 71 905 —tab_res_prop_cube_hom

Figure 19: Initially penny-shaped cracks in top layer of three-layered roadroad_3rcracks_2d
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Table 6: Multizone Cube with array of propagating cracks: computational data

# Nc Ninit Ncycles Nend Tpre Tsol Ttot

1 8 17 508 10 27 876 330 599 939
2 64 39 180 10 122 124 2 259 4 907 7 223tab_res_prop_cube_mz

Table 7: Three-layered road with multiple propagating cracks: computational data

# Nc Ninit Nend Tpre(s) Tsol(s) Ttot(s)

1 1 15 441 18 033 201 667 883
2 3 17 559 25 335 345 1 382 1 749
3 5 19 677 32 637 1 241 3 166 4 434tab_res_prop_road

are A = 10−8mm/cycle and m = 4.5. Table 7 presents computational data for the propagation
analyses. The final shape of the propagated cracks and the crack opening displacement in z direction
are shown in Fig. 20 for simulation 1 (one crack) and in Fig. 21 for simulation 2 (three cracks).

Figure 20: Propagation of single crack in three-layered road: views from two directionsroad_1crack_res2

7. Conclusion

This research has shown that the fast multipole SGBEM (FM-SGBEM) is able to deal with
crack propagation problems in linear fracture mechanics efficiently and fast. The performance
of the FM-SGBEM is improved to deal with large-scale multicrack propagation. The method is
able to solve million-DOF problems in a few hours on a single workstation. To address realistic
applications, more-elaborate propagation criteria will be investigated in future work; moreover,
adaptive mesh refinement methods such as that developed in [49] for the BEM can be implemented
to control the accuracy of computed solutions. The propagation of surface-breaking cracks and
crossing interface cracks will be studied. Thus applications on civil engineering structures will be
carried out.
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Figure 21: Propagation of multiple cracks in three-layered road: COD in z directionroad_3crack_res
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