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We consider a class of particle systems described by differential equations (both stochastic and deterministic), in which the interaction network is determined by the realization of an Erdős-Rényi graph with parameter pn ∈ (0, 1], where n is the size of the graph (i.e., the number of particles). If pn ≡ 1 the graph is the complete graph (mean field model) and it is well known that, under suitable hypotheses, the empirical measure converges as n → ∞ to the solution of a PDE: a McKean-Vlasov (or Fokker-Planck) equation in the stochastic case, or a Vlasov equation in the deterministic one. It has already been shown that this holds for rather general interaction networks, that include Erdős-Rényi graphs with limn pnn = ∞, and properly rescaling the interaction to account for the dilution introduced by pn. However, these results have been proven under strong assumptions on the initial datum which has to be chaotic, i.e. a sequence of independent identically distributed random variables. The aim of our contribution is to present results -Law of Large Numbers and Large Deviation Principle -assuming only the convergence of the empirical measure of the initial condition.

1. Introduction 1.1. Basic notations, the models and a first look at the main question. Large systems of interacting diffusions with mean field type interactions have been an important research topic in the mathematical community at least since the 60's. The program of identifying the emerging behavior for n → ∞, where n is the number of interacting units, has been fully developed under suitable regularity and boundedness assumptions on the coefficients defining the system. In particular, Law of Large Numbers, Central Limit Theorems and Large Deviation Principles have been established (see for example [START_REF] Sznitman | Topics in Propagation of Chaos[END_REF][START_REF] Méléard | Asymptotic Behaviour of Some Interacting Particle Systems; McKean-Vlasov and Boltzmann Models[END_REF][START_REF] Tanaka | Limit Theorems for Certain Diffusion Processes with Interaction[END_REF][START_REF] Dawson | Large Deviations from the Mckean-Vlasov Limit for Weakly Interacting Diffusions[END_REF][START_REF] Budhiraja | Large Deviation Properties of Weakly Interacting Processes via Weak Convergence Methods[END_REF]). A number of important issues remain unsolved, like the generalization to singular interactions (e.g. [START_REF] Jabin | Quantitative estimates of propagation of chaos for stochastic systems with W -1,∞ kernels[END_REF]) or understanding the delicate issue of considering at the same time large n and large time (e.g. [START_REF] Luçon | Long time dynamics and disorder-induced traveling waves in the stochastic Kuramoto model[END_REF]). But another direction in which mathematical results are still very limited is about relaxing the complete graph assumption for the interaction network -complete graph is just a different wording for mean field -and going towards more heterogeneous interaction networks. This is an issue that emerges in plenty of applied disciplines and giving a proper account of the available literature would be a daunting task: so we limit ourselves to signaling the recent survey [START_REF] Rodrigues | The Kuramoto model in complex networks[END_REF] which contains an extended literature.

We are therefore going to study the emerging behavior of interacting diffusion models when, like in complete graphs, every unit interacts with a diverging number of other units. The interaction network is described as a random graph, notably of Erdős-Rényi (ER) type; so we start with the basic notions on graphs.

Let ξ (n) = {ξ (n) i,j } i,j∈{1,...,n} denote the adjacency matrix of a graph V (n) , E (n) with n vertices (ξ (n) will also denote the graph itself):

V (n) := {1, . . . , n} and E (n) := (i, j) ∈ V (n) × V (n) : ξ (n) i,j = 1 .
(1.1)

We consider sequences of asymmetric ER random graphs with self loops with probabilities p n ∈ (0, 1) for n = 2, 3, . . .. More precisely, we just assume that {ξ (n) i,j } i,j∈{1,...,n} are Independent Identically Distributed (IID) Bernoulli random variables of parameter p n (with notation B(p n )). The arguments are easily adapted to the case in which ξ (n) j,j = 0 for every j and the results are unchanged.

Even if these graphs are not coupled for different values of n, it is practical to work with only one probability space and to couple these adjacency matrices (or random graphs). For example one can start from a sequence {U k } k∈N of IID U (0, 1) variables and define ξ (n) i,j = 1 U k(i,j) <pn , with k an arbitrary bijection from N 2 to N. The law of the graph is denoted by P, with E the corresponding expectation, and we will just write P( dξ)-a.s. meaning "almost surely in the realization of {ξ (n) } n=2,3,... ".

Given a realization of ξ (n) , consider the n-dimensional diffusion θ n t := {θ i,n t } i=1,...,n which solves for every i

dθ i,n t = F θ i,n t dt + 1 n n j=1 ξ (n) i,j p n Γ θ i,n t , θ j,n t dt + σ θ i,n t dB i t , (1.2) 
where {B i • } i∈N are independent standard Brownian motions (whose law is denoted by P) and independent also of ξ (n) (so, we are effectively working with P ⊗ P). For simplicity, we consider only deterministic initial conditions; but the results apply to random initial conditions once they are taken independent of Brownian motions and of ξ. Moreover, assume that:

(1) F , Γ and σ are real valued (uniformly) Lipschitz functions: the corresponding Lipschitz constants are denoted by L F , L Γ and

L σ ; (2) Γ is bounded, in particular Γ ∞ := sup x,y∈R |Γ(x, y)| < ∞; (3) σ -≤ σ(•) ≤ σ + with σ ± two positive constants (non degenerate diffusion). If σ(•)
is a constant, we include the case σ(•) ≡ 0.

Fix T > 0, the law of the n trajectories {θ n t } t∈[0,T ] for the quenched system is denoted by P ξ n , i.e. P ξ n ∈ P C 0 ([0, T ]; R n ) , and the associated empirical measure at time t by {µ n t } t∈[0,T ] , i.e. If the empirical measure of the initial conditions converges to a probability µ 0 , i.e.

µ n t : = 1 n n j=1 δ θ j,n t ∈ P (R) . ( 1 
lim n→∞ μn 0 = µ 0 ∈ P (R) , (1.5) 
and if R x 2 µ 0 ( dx) < ∞, then it is well known that, for every t > 0, μn t weakly converges in P (R) to µ t , the unique weak solution of the following McKean-Vlasov (or Fokker-Planck) equation

∂ t µ t (θ) = 1 2 ∂ 2 θ σ 2 (θ)µ t (θ) -∂ θ (µ t (θ)F (θ)) -∂ θ µ t (θ) R Γ(θ, θ ′ )µ t ( dθ ′ ) . (1.6)
The slightly stronger result that is proven is in fact: for every T > 0, if one considers µ n

• as an element of C 0 ([0, T ]; P(R)) (a complete separable metric space), then lim n µ n • = µ • (P-a.s. when σ is non degenerate). The notion of weak solution µ • ∈ C 0 ([0, T ]; P(R)) to (1.6), which can be found for example in [START_REF] Gärtner | On McKean-Vlasov limit for interacting diffusions[END_REF], is strictly related to the nonlinear diffusion formulation: the stochastic process {ϕ t } t∈[0,T ] that solves dϕ t = F (ϕ t ) dt + Γ (ϕ t , ϕ) ν t ( dϕ) dt + σ (ϕ t ) dB t , ν t = Law(ϕ t ) , for all t ∈ [0, T ] ,

(1.7)

with initial condition which is a square integrable random variable independent of the standard Brownian motion B • . Existence and uniqueness for this atypical stochastic differential equation is not obvious at all, but it is by now well known that if ν 0 = µ 0 , then the unique ν • ∈ C 0 ([0, T ]; P(R)) such that ν t is the law of ϕ t for all t ∈ [0, T ], is the unique weak solution of (1.6), i.e. ν t = µ t for all t ∈ [0, T ]. The literature on the results that we have just mentioned is vast, see e.g. [START_REF] Oelschläger | A martingale approach to the law of large numbers for weakly interacting stochastic processes[END_REF][START_REF] Sznitman | Topics in Propagation of Chaos[END_REF][START_REF] Méléard | Asymptotic Behaviour of Some Interacting Particle Systems; McKean-Vlasov and Boltzmann Models[END_REF][START_REF] Gärtner | On McKean-Vlasov limit for interacting diffusions[END_REF] for the non degenerate diffusion case and [START_REF] Dobrushin | Vlasov equations[END_REF][START_REF] Neunzert | Mathematical investigations on particle-in-cell methods[END_REF] for the σ(•) ≡ 0 case; in this last case there is no need to assume that

R x 2 µ 0 ( dx) < ∞.
In the sequel, we will also work with probabilities in P C 0 ([0, T ]; R) , that is considering the law of {ϕ t } t∈[0,T ] seen as a random trajectory on the path space C 0 ([0, T ]; R), rather than its time marginals µ t ∈ P(R).

Remark 1.1. Observe that knowing the law of (1.7) gives more information than the solution µ • of the McKean-Vlasov equation (1.6). Indeed, call P ϕ the law of {ϕ t } t∈[0,T ] , then P ϕ is an element of P (C([0, T ]; R)), whereas µ • ∈ C 0 ([0, T ]; P(R)). It is straighforward to obtain µ t from P ϕ by just observing

µ t (•) = P ϕ • π -1 t (•), (1.8) 
where π t : C([0, T ]; R) → R is the canonical projection at time t. Observe that a reverse statement is not always possible: µ • alone does not allow to compute multidimensional time marginals like P(ϕ s ∈ A, ϕ t ∈ B), for s, t ∈ [0, T ] and A, B ⊂ R. Existence, uniqueness and well-posedness of the problem for P ϕ can be found in [START_REF] Méléard | Asymptotic Behaviour of Some Interacting Particle Systems; McKean-Vlasov and Boltzmann Models[END_REF] and references therein. 

µ n 0 = µ 0 . (1.9) 
A result of this type has been already achieved: in the case σ(•) ≡ σ ≥ 0, [START_REF] Delattre | A note on dynamical models on random graphs and Fokker-Planck equations[END_REF] proved a LLN for the trajectories of (1.2) where ξ (n) is a (deterministic) sequence of graphs such that lim n→∞ sup i∈{1,...,n}

1 n n j=1 ξ (n) i,j p n -1 = 0 , (1.10) 
and with IID initial conditions (chaotic initial datum), that is θ j,n 0 = θ j 0 for every n and every j = 1, . . . , n where θ j 0 j∈N is a typical realization of an IID sequence of variables with law µ 0 . (1.11) Under conditions (1.10) and (1.11), it is proved that lim n µ n • = µ • in P-probability. We recall that, as stated right after (1.2), {θ j 0 } j∈N is independent of the driving Brownians and of the graph ξ.

This seems at first rather satisfactory. However in [START_REF] Delattre | A note on dynamical models on random graphs and Fokker-Planck equations[END_REF] it is discussed at length how this result in reality is, on one hand, surprising and, on the other, that it does not really solve the problem. This can be understood by considering that the homogeneous degree condition (1.10) is P ( dξ)-a.s. verified for ER type graphs when lim inf n np n / log n is larger than a well-chosen constant (see [START_REF] Delattre | A note on dynamical models on random graphs and Fokker-Planck equations[END_REF]Proposition 1.3]). But the class of graphs satisfying (1.10) goes well beyond ER graphs: in particular, it is straightforward to construct graphs with an arbitrary number of connected components that satisfy (1.10), see the following remark.

Remark 1.2. (1.9) and (1.10) are not sufficient to obtain a result in the direction we are aiming at. In fact, if ξ (n) is the graph in which two vertices are connected if and only if they have the same parity (which corresponds to lim n p n = 1/2), then, as long as µ 0 is not the uniform measure, one can easily arrange the initial condition in order to have different limit distributions on even and odd sites, or no limit at all. Thus, as n → ∞, the evolution will not be described by (1.6).

In a nutshell, the results in [START_REF] Delattre | A note on dynamical models on random graphs and Fokker-Planck equations[END_REF] are obtained under a weak assumption on the graph, but under strong assumptions on the initial condition. And this to the point of obtaining a result that is troublesome: a system with plenty of disconnected components behaves essentially like a totally connected one! Of course the solution of this apparent paradox is in the chaotic character of the initial condition that leads to a homogeneous and identical behavior of the initial datum on all components, and the fact that chaos propagates at least on a finite time horizon (see [START_REF] Delattre | A note on dynamical models on random graphs and Fokker-Planck equations[END_REF] for more on this issue). But there is no reason to expect mean field type behavior, assuming only (1.10) on the graph, without a strong statistical homogeneity assumption on the initial datum, as argued in Remark 1.2.

The aim of this paper is to attack the problem assuming only the convergence of the empirical measure of the initial datum, that is (1.9), but assuming that the graph is of ER type. Otherwise said, we want to make a minimal assumption on the initial condition and we try to exploity the chaoticity of the graph to achieve the result. We will attack the problem from more then one perspective, not only the direct LLN angle of attack, but also from the Large Deviations (LD) perspective. The vast literature related to our results is presented and discussed after the statements.

Main results

Let us denote d bL (•, •) the bounded Lipschitz distance which endows the weak convergence topology on P(R) (this choice is somewhat arbitrary: other distances can be used, for example the Wasserstein one, see [START_REF] Dobrushin | Vlasov equations[END_REF]). By this we mean that d bL (µ, ν) = sup h h dµ -h dν , where the supremum is taken over h : R →

[0, 1] such that |h(x) - h(y)| ≤ |x -y|.
We are now ready to state the LLN. Recall that µ n

• is a random element of C 0 ([0, T ]; P(R)) and that µ • , a non random element of C 0 ([0, T ]; P(R)), is the unique weak solution of the McKean-Vlasov equation (1.6).

Theorem 2.1. Assume that the initial datum is deterministic, that it satisfies (1.9) and, if σ(•) ≡ 0, that it satisfies also that R x 2 µ 0 ( dx) < ∞. Make the hypothesis that p n satisfies

lim inf n→∞ p n n log n > 0 , (2.1) 
and either that 0

< σ -≤ σ(•) ≤ σ + < ∞ or σ(•) ≡ 0. Then P ⊗ P-a.s. we have that lim n→∞ µ n • = µ • in C 0 ([0, T ]; P(R)). (2.2) 
The requirement of deterministic initial data is easily lifted to IID initial conditions under the assumption that they are independent of the graph (and, of course, of the driving Brownians).

From the viewpoint of the proof, Theorem 2.1 may be viewed as two different statements.

• in the case of σ(•) ≡ σ ∈ [0, ∞), the proof follows by coupling the system on the ER graph and the system on the complete graph; • in the case of 0 < σ -≤ σ(•) ≤ σ + < ∞, the result is a corollary of a Large Deviation Principle (LDP) stating that, at the Large Deviations (LD) level, the system on ER graph and the complete graph system are indistinguishable, see Theorem 2.2.

In the next subsection we present the result related to Large Deviations.

2.1. The Large Deviation Principle. Stating the LDP needs some preparation on the general LD approach (classical references are for example [START_REF] Dembo | Large Deviations Techniques and Applications, Stochastic Modelling and Applied Probability[END_REF][START_REF] Dupuis | A Weak Convergence Approach to the Theory of Large Deviations[END_REF][START_REF] Hollander | Large Deviations, Fields Institute Monographs[END_REF]). Given a complete, separable metric space χ, a rate function I is a lower semicontinuous mapping I : χ → [0, ∞] such that each level set K l = {x ∈ χ : I(x) ≤ l} is compact for all l ≥ 0 (sometimes I is called a good rate function). Given {P n } n∈N a sequence of probability measures on χ associated with its Borel σ-field, we say that P n satisfies a LDP (on χ) with rate function I if for every measurable set A ⊂ χ

-inf x∈A • I(x) ≤ lim inf n→∞ 1 n log P n (A • ) ≤ lim sup n→∞ 1 n log P n Ā ≤ -inf x∈ Ā I(x), (2.3) 
where A • is the interior of A and Ā is its closure.

Let us now recall that (1.4), or equivalently (1.2) on a complete graph, satisfies a LDP, we refer to [START_REF] Budhiraja | Large Deviation Properties of Weakly Interacting Processes via Weak Convergence Methods[END_REF]Theorem 3.1]. We choose to state the LDP for the empirical law of the process, that is for

L n := 1 n n j=1 δ θj,n • ∈ P C 0 ([0, T ]; R) , (2.4) 
but other LDP are possible. Namely, [7, Theorem 5.1] proves a LDP for the empirical measure μn

• seen as an element of C 0 ([0, T ]; P(R)) (recall (1.8)), yet our result includes this case. In Remark 1.1 we have pointed out the continuity of the projection π t and how to pass from P n to µ n

• ∈ C 0 ([0, T ]; P(R)), therefore a corollary of a LDP for Ln is a LDP on C 0 ([0, T ]; P(R)) for the law of μn

• with LD functional given by the contraction principle: see for example [START_REF] Dai Pra | McKean-Vlasov Limit for Interacting Random Processes in Random Media[END_REF][START_REF] Luçon | Quenched Large Deviations for Interacting Diffusions in Random Media[END_REF] for the mathematical procedure and [START_REF] Dawson | Large Deviations from the Mckean-Vlasov Limit for Weakly Interacting Diffusions[END_REF] for an explicit form of the LD functional in the full generality.

We set χ = P C 0 ([0, T ]; R) ; since C 0 ([0, T ]; R) is a metric space, χ is a complete, separable metric space once equipped (among various possibilities) with the bounded Lipschitz distance. Define the probability measure P n on χ by setting P n (•) := P(L n ∈ •), of course χ equipped with the σ-algebra of its Borel subsets, then [START_REF] Budhiraja | Large Deviation Properties of Weakly Interacting Processes via Weak Convergence Methods[END_REF]Theorem 3.1] shows that P n satisfies a LDP whose rate function concentrates on ν ∈ χ such that ν

• = ν • π -1 • ∈ C 0 ([0, T ]; P(R)) is solution of the McKean-Vlasov equation (1.6).
We are now ready to state the main result of this subsection. For every realization of the graph ξ define the probability P ξ n on χ, by setting P ξ n (•) := P (L n ∈ •), where L n (•) is defined as in (2.4), but replacing θj,n

• with θ j,n

• . In particular, P ξ n is the empirical measure of the trajectories θ j,n • solving (1.2).

Theorem 2.2. Assume that σ -> 0. If ξ is an ER graph that satisfies (2.1) and if the initial datum satisfies (1.9) and x 2 µ 0 ( dx) < ∞, then P ξ n satisfies the same LDP of P n P( dξ)-a.s..

2.2.

A look at the literature. We recall that for interacting particle systems on the complete graph, i.e. (1.4), many results on the LLN are available and many of them, as [START_REF] Delattre | A note on dynamical models on random graphs and Fokker-Planck equations[END_REF], include propagation of chaos properties. However, as already mentioned, propagation of chaos results are very demanding on the initial condition.

The literature is vast and difficult to be properly cited: we mention the seminal contribution [START_REF] Mckean | A Class of Markov Processes Associated with Nonlinear Parabolic Equations[END_REF] and we mention again [START_REF] Oelschläger | A martingale approach to the law of large numbers for weakly interacting stochastic processes[END_REF][START_REF] Sznitman | Topics in Propagation of Chaos[END_REF][START_REF] Méléard | Asymptotic Behaviour of Some Interacting Particle Systems; McKean-Vlasov and Boltzmann Models[END_REF][START_REF] Gärtner | On McKean-Vlasov limit for interacting diffusions[END_REF], that are also useful source of more references and that are not limited to propagation of chaos results, in the sense that also the case of deterministic initial data is treated. For the σ(•) ≡ 0 case, we mention the important original contributions [START_REF] Dobrushin | Vlasov equations[END_REF][START_REF] Neunzert | Mathematical investigations on particle-in-cell methods[END_REF] that gave origin to a vast literature that goes beyond our purposes.

Large deviation properties for mean field diffusions have been studied in the seminal work by Dawson and Gärtner [START_REF] Dawson | Large Deviations from the Mckean-Vlasov Limit for Weakly Interacting Diffusions[END_REF], but also in [START_REF] Hollander | Large Deviations, Fields Institute Monographs[END_REF][START_REF] Feng | Large Deviations for Stochastic Processes, Mathematical Surveys and Monographs 131[END_REF][START_REF] Luçon | Quenched Large Deviations for Interacting Diffusions in Random Media[END_REF] in the so called gradient case. In [START_REF] Budhiraja | Large Deviation Properties of Weakly Interacting Processes via Weak Convergence Methods[END_REF] the problem is attacked in great generality using an approach based on weak convergence and control theory.

The LLN case has already been adressed in the literature, even if few results seem to have been proven so far. As mentioned, [START_REF] Delattre | A note on dynamical models on random graphs and Fokker-Planck equations[END_REF] proves a LLN for µ n

• requiring the initial datum to be a product measure: the case σ(•) ≡ σ ≥ 0 is considered. In the same spirit, from the initial datum viewpoint, but for a time-varying graph and for multi-type processes, there is the work of [START_REF] Bhamidi | Weakly Interacting Particle Systems on Inhomogeneous Random Graphs[END_REF]. It is important to mention at this stage that in [START_REF] Bhamidi | Weakly Interacting Particle Systems on Inhomogeneous Random Graphs[END_REF] the interaction is renormalized by the number of neighbors of each site i: we normalize instead by the expected number of neighbors.

Turning to LD results, the recent work of [START_REF] Reis | Interacting Diffusions on Random Graphs with Diverging Degrees: Hydrodynamics and Large Deviations[END_REF] extends the LDP for Hamiltonian systems in random media, presented in [START_REF] Dai Pra | McKean-Vlasov Limit for Interacting Random Processes in Random Media[END_REF], to (sparse) random interactions which include symmetric ER random graphs. The convergence of the empirical measure is shown under the assumption lim n np n = ∞, without requiring any log divergence. However, they still focus on IID initial conditions and constant diffusion term σ(•) ≡ 1.

Focusing on the case σ(•) ≡ 0, we mention the contributions:

• in [START_REF] Brecht | Swarming on Random Graphs[END_REF] one finds the stability analysis for the stationary state of an ordinary differential equations system with ER interacting network, requiring a logarithmic divergence of p n n; • in [START_REF] Chiba | The Mean Field Analysis for the Kuramoto Model on Graphs I. The Mean Field Equation and Transition Point Formulas[END_REF] the Kuramoto model, i.e. Γ(x, y) = sin(x -y) and F (•) is a random constant (natural frequencies), is studied with an interaction network that is given by a graphon: this leads to a more general limit equation, but their approach includes the case of ER graphs (in this case the graphon is trivial) with p n that tends to a positive constant. In [START_REF] Medvedev | The continuum limit of the Kuramoto model on sparse random graphs[END_REF] the case of sparse graphs is considered: for ER graphs the condition is lim n p n √ n = ∞.

In many of the papers we cite, notably [START_REF] Delattre | A note on dynamical models on random graphs and Fokker-Planck equations[END_REF][START_REF] Dai Pra | McKean-Vlasov Limit for Interacting Random Processes in Random Media[END_REF][START_REF] Luçon | Quenched Large Deviations for Interacting Diffusions in Random Media[END_REF][START_REF] Chiba | The Mean Field Analysis for the Kuramoto Model on Graphs I. The Mean Field Equation and Transition Point Formulas[END_REF][START_REF] Medvedev | The continuum limit of the Kuramoto model on sparse random graphs[END_REF], another source of randomness is allowed: for example, in the Kuramoto model this corresponds to the important feature that each oscillator has a priori its own oscillation frequency and, more generally, with this extra source of randomness we can model systems in which the interacting diffusions (or units, agents,. . .) are not identical. This source of randomness is chosen independently of the graph and of the dynamical noise. All the results we have presented generalize easily to this case, but at the expense of heavier notations and heavier expressions. We have chosen not to treat this case for sake of conciseness and readability.

The rest of the paper is devoted to the proofs. Section 3 contains the proof of Theorem 2.1 in the case of constant (possibly degenerate) diffusion coefficient. Section 4 contains the proof of Theorem 2.2.

The Law of Large Numbers: the proof

This section is devoted to the proof of Theorem 2.1 in the case σ(•) ≡ σ ∈ [0, ∞): we recall that the case of non trivial and non degenerate diffusion is a corollary of the LDP (Theorem 2.2). We start with two preliminary lemmas that will be used for Proposition 3.3, from which Theorem 2.1 follows.

Lemma 3.1. Let K > 2. For all n ∈ N, it holds P   n j=1 ξ (n) i,j p n -1 ≥ Kn   ≤ exp - 3(K -2) 2 6 + 2(K -2) p n n . (3.1)
In particular, under hypothesis (2.1) and setting C := lim inf n→∞ pnn

log n ∈ (0, ∞], we have that, if K > K C := 2 + 2 3C + 4 9C 2 + 4 C , then P( dξ)-a.s. there exists n 0 = n 0 (ξ) < ∞ such that for n ≥ n 0 max   sup i=1,...,n n j=1 ξ (n) j,i p n -1 , sup i=1,...,n n j=1 ξ (n) i,j p n -1   ≤ Kn . (3.2)
Proof. We use Bernstein's inequality (see for example [START_REF] Boucheron | Concentration Inequalities: A Nonasymptotic Theory of Independence[END_REF]Corollary 2.11]) which says that if X 1 , . . . , X n are independent zero-mean random variables such that |X j | ≤ M a.s. for all j, then for all t ≥ 0

P   n j=1 X j > t   ≤ exp - 1 2 t 2 n j=1 E[X 2 j ] + 1 3 M t . Set X j = ξ (n) i,j pn -1 -2(1 -p n ).
X j is a zero-mean random variable and we can bound

P   n j=1 ξ (n) i,j p n -1 ≥ Kn   ≤ P   n j=1 X j ≥ (K -2)n   . (3.3)
We have

|X j | ≤ max(1/p n -3 + 2p n , 2p n -1) ≤ 1/p n =: M and E[X 2 j ] -1/p n = -5 + 8p n -4p 2 n ≤ -1, so E[X 2 j
] ≤ 1/p n and Bernstein's inequality together with an union bound show that

P   sup i=1,...,n n j=1 ξ (n) i,j p n -1 ≥ Kn   ≤ n exp - 3(K -2) 2 6 + 2(K -2) p n n . (3.4) 
The proof is now completed with some elementary computations and by applying the Borel-Cantelli Lemma.

Lemma 3.2. Assume (2.1) and let Proof. First, we rewrite

∆ i (s) := 1 n n j=1 ξ (n) i,j p n -1 Γ θi,n s , θj,n
T 0 ∆ i (s) ds as T 0 ∆ i (s) ds = 1 (np n ) 2 n j,k=1 ξi,j ξi,k d ijk , (3.7) 
where we have dropped the superscript (n), the dependency on T and we have introduced the notations ξi,j := ξ 

Let Ω n be the set

Ω n :=    ξ : 1 (np n ) 2 n i,j,k=1 ξi,j ξi,k d ijk > δ n n    , (3.10) 
We want to show that n∈N

P (Ω n ) < ∞. (3.11) 
Let K > 2 and consider the events

A n = n i=1 A n,i with A n,i =    ξ (n) : j ξ (n) i,j p n -1 > Kn.    . (3.12) 
We use

P (Ω n ) ≤ P Ω n ∩ A ∁ n + P (A n ) . (3.13) 
and Lemma 3.1 ensures that choosing K > K C (> 2) we have n∈N

P(A n ) < ∞, (3.14) 
so that one is left with proving that n∈N P Ω n ∩ A ∁ n < ∞. By Markov's inequality applied to P • |A ∁ n we see that

P(Ω n ∩ A ∁ n ) ≤ exp   -nδ n + log E   1 A ∁ n exp   1 (np n ) 2 n i,j,k=1 ξi,j ξi,k d ijk       . (3.15) 
Given (3.9), it suffices to show that

log E   1 A ∁ n exp   1 (np n ) 2 n i,j,k=1 ξi,j ξi,k d ijk     = n O 1 p n n = O 1 p n . (3.16) 
We exploit the independence w.r.t. i:

E   1 A ∁ n exp   1 (np n ) 2 n i,j,k=1 ξi,j ξi,k d ijk     = i E   1 A ∁ n,i exp   1 (np n ) 2 n j,k=1 ξi,j ξi,k d ijk     , (3.17) 
and use the inequality exp(x) ≤ 1 + |x| exp |x| which holds for all x ∈ R, together with Cauchy-Schwarz and obtain

E   1 A ∁ n,i exp   1 (np n ) 2 j,k ξi,j ξi,k d ijk     ≤ 1 + E   1 A ∁ n,i 1 (np n ) 2 j,k ξi,j ξi,k d ijk exp   1 (np n ) 2 j,k ξi,j ξi,k d ijk     ≤ 1 + E     1 (np n ) 2 j,k ξi,j ξi,k d ijk   2   1/2 E   1 A ∁ n,i exp   2 (np n ) 2 j,k ξi,j ξi,k d ijk     1/2 .
(3.18) Under the condition that we are in

A ∁ n,i , it holds that 2 (np n ) 2 j,k ξi,j ξi,k d ijk ≤ 2K 2 d ⋆ (3.19)
so that the exponential expectation can be bounded as exp 2K 2 d ⋆ . Estimating the moment expectation leads to

E     1 (np n ) 2 j,k ξi,j ξi,k d ijk   2   = 1 (np n ) 4 j,k,p,q E ξi,j ξi,k ξi,p ξi,q d ijk d ipq ≤ (3.20) ≤ d 2 ⋆ (np n ) 4 np n + 3(np n ) 2 ≤ 4d 2 ⋆ (np n ) 2 . (3.21) 
From (3.18), we get

E   1 A ∁ n,i exp   1 (np n ) 2 j,k ξi,j ξi,k d ijk     ≤ 1 + 2d ⋆ np n exp 2K 2 d ⋆ . (3.22) 
Putting everything back in (3.17), one obtains

E   1 A ∁ n exp   1 (np n ) 2 n i,j,k=1 ξi,j ξi,k d ijk     ≤ exp 2d ⋆ p n exp 2K 2 d ⋆ , (3.23) 
which gives (3.16).

We are now ready for Proposition 3. The proof follows from Proposition 3.3.

4.

Large Deviation results: proofs.

The proof of Theorem 2.2 relies on two results that contain most of the work. We first prove Theorem 2.2 assuming these two results, and prove them right after.

Proof of Theorem 2.2. Observe that we can write (1.2) as

dθ i,n t = F θ i,n t dt + 1 n n j=1 Γ θ i,n t , θ j,n t dt + σ θ i,n t c i (θ n t ) dt + σ θ i,n t dB i t , (4.1) 
with 

c i (θ n t ) := 1 nσ θ i,n t n j=1 ξ (n) i,j p n -1 Γ θ i,n t , θ j,n t . ( 4 
(M n T -M n T /2) with M n T = n i=1 T 0 c i (θ n t ) dθ i,n t and M n T = n i=1 T 0 c 2 i (θ n t ) dt . (4.3)
The following lemma is given for every realization of ξ (n) and it has a deterministic nature. Recall that χ = P C 0 ([0, T ]; R) and L n defined in (2.4). Then P n (•) := P(L n ∈ •) is the law of the empirical process associated to (1.4) Since we want the LDP to hold P( dξ)-a.s., we need to show that condition (4.4) holds in this sense. To this aim, we redefine the sets Ω n given in (3.10), as

Ω n := ξ : 1 n log E n [exp {C n M n T }] > δ n , (4.5) 
where δ n and 1/C n tend to zero: they have to do so in a slow way and arbitrarily slow will do for us (explicit choices will be given at the end of the proof). We need also

Ω * = ξ : there exists n 0 s.t. 1 n log E n [exp {C n M n T }] ≤ δ n for every n ≥ n 0 . (4.6) 
Lemma 4.2. Assuming (2.1) we have that P (Ω * ) = 1.

One readily sees that Lemma 4.2 provides the missing ingredient and the proof of Theorem 2.2 is complete.

Proof of Lemma 4.1. Recall (4.1)-(4.3). We have to show that (2.3) holds. Consider A a measurable set and recall that A • is the interior of A and Ā is its closure.

Let p, q > 1 such that 1 p + 1 q = 1. Then

P ξ n (A • ) = P ξ n {µ n t } t∈[0,T ] ∈ A • = E n 1 {µ n t } t∈[0,T ] ∈A • exp M n T -1 2 M n T (4.7)
and Hölder inequality gives

P ξ n (A • ) ≥ P n (A • ) p E n exp - q p M n T - 1 2 q p M n T -p q . ( 4.8) 
Now observe that Cauchy-Schwarz inequality together with the fact that an exponential martingale has expectation less or equal to 1 (see [START_REF] Ikeda | Stochastic Differential Equations and Diffusion Processes[END_REF]Theorem 5.2]) imply is true for all p > 1, the lower bound in (2.3) is established.

E n exp - q p M n T - 1 2 q p M n T ≤ E n exp 2q 2 p 2 + q p M n T 1 2 . ( 4 
The upper bound is almost the same: let p, q > 1 be such that 1 p + 1 q = 1. Similarly

P ξ n Ā ≤ P n Ā 1 p E n exp qM n T - 1 2 q M n T 1 q , ( 4.13) 
and, using the properties of exponential martingales as in (4.9), one gets with C = 2q 2 -q. And we conclude as before.

P ξ n Ā ≤ P n Ā 1 p E n exp (2q 2 -q) M n
Proof of Lemma 4.2. We want to show that n∈N

P (Ω n ) < ∞. (4.16)
As in the proof of Lemma 3.2, let K > 2 and consider the events A n defined in (3.12),

A n = n i=1 A n,i with A n,i =    ξ (n) : j ξ (n) i,j p n -1 > Kn.    .
Following the proof of Lemma 3. To lighten the notation we go back to using the centered random variables ξi,j := ξ (n) i,j -p n (cf. (3.8)). With these notations, M n T can be rewritten as 

M n T = 1 (p n n) 2

s 2 ,∆

 2 for every s ∈ [0, T ]. (3.5)Then, for every realization of the Brownian motions, it holds that lim i (s) ds = 0, P( dξ)-a.s..(3.6) 

8 )

 8 Observe that ξi,j are centered random variables and |d ijk | ≤ T Γ 2 ∞ =: d ⋆ . Let δ n be a sequence of positive numbers such that (recall (2.1))δ n ≫ 1 p n nand lim n→∞ δ n = 0. (

20 ) 1 √

 201 Observe that |c ijk | ≤ c ⋆ given the boundness of Γ and the conditions on σ.The estimation of (4.18) is exactly the same as in(3.16), where d ijk are replaced by C n c ijk (and d ⋆ by C n c ⋆ ). Following the same strategy, we geti E   1 A ∁ n,i exp   C n (np n ) 2 j,k ξi,j ξi,k c ijk     ≤ 1 + 2C n np n exp 2C n K 2 c ⋆ n . (4.21) Therefore log EE 1 A ∁ n exp (C n M n T ) ≤ 2C n p n exp 2C n K 2 c ⋆ . (4.22) Which gives (4.18) when C n = o(log(np n )) and 1 δn = o npn exp{c Cn} with c > 2K 2 c ⋆ : choose, for example, C n = log(np n ) and δ n = npn .

  The solution {θ i,n t } i=1,...,n is going to be tightly linked with { θi,n

	t	dt +	1 n	n j=1	Γ θi,n t , θj,n t	dt + σ θi,n t	dB i t .	(1.4)
	The law of { θn called annealed system: of course (1.4) is obtained from (1.2) by taking the expectation : = (1/n) n j=1 δ θj,n . Often (1.4) is t
	of the drift with respect to P.							

.3) P (R) denotes the set of probability measures over (R, B(R)) equipped with the (metrizable) topology of weak convergence: i.e., if µ n ∈ P (R) for every n, then lim n µ n = µ ∈ P (R) if h(x)µ n ( dx) → h(x)µ( dx) as n ↑ ∞ for every h(•) continuous and bounded function. Note that since ξ is random, µ n t is a random variable taking values in P (R), equipped with the σ-algebra of its Borel subsets. t } i=1,...,n which solves d θi,n t = F θi,n t } t∈[0,T ] is denoted by P n . Moreover μn t

  Lemma 4.1. Suppose P n (•) satisfies a LDP on χ with rate function I. If, for every C ∈ R, satisfies a LDP on χ with the same rate function as P n .

	lim n→∞	1 n	log E n [exp {C M n	T }] = 0,	(4.4)
	then P ξ n (•)				

and P ξ n (•) := P(L n ∈ •) is the one associated to (1.2), P n and P ξ n are probabilities on χ.

  By Markov's inequality applied to P • |A ∁ n we see thatP(Ω n ∩ A ∁ n ) ≤ exp -nδ n + log EE[1 A ∁

		n	exp(C n M n	T )] .	(4.17)
	so it suffices to show that			
	log EE[1 A ∁ n exp(C n M n	T )] = o(nδ n ) .		(4.18)

1, we use P (Ω n ) ≤ P Ω n ∩ A ∁ n + P (A n ) and (3.14), i.e. n∈N P(A n ) < ∞, so that one is left with proving that n∈N P Ω n ∩ A ∁ n < ∞.
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