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Abstract

Top incomes are often related to Pareto distribution. To date,
economists have mostly used Pareto Type I distribution to model the
upper tail of income and wealth distribution. It is a parametric distri-
bution, with an attractive property, that can be easily linked to eco-
nomic theory. In this paper, we first show that modelling top incomes
with Pareto Type I distribution can lead to severe over-estimation of
inequality, even with millions of observations. Then, we show that the
Generalized Pareto distribution and, even more, the Extended Pareto
distribution, are much less sensitive to the choice of the threshold.
Thus, they provide more reliable results. We discuss different types of
bias that could be encountered in empirical studies and, we provide
some guidance for practice. To illustrate, two applications are inves-
tigated, on the distribution of income in South Africa in 2012 and on
the distribution of wealth in the United States in 2013.

JEL: C46, D31
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1 Introduction

Income and wealth distributions are skewed to the right, with thick upper
tails. They are often related to Pareto distribution. In his initial work,
Vilfredo Pareto suggested several distributions (Pareto 1895, 1896). The
term ”Pareto distribution” refers to both Pareto I and Generalized Pareto
distributions. Rytgaard (1990) wrote that the Pareto I distribution is the
common used definition of the Pareto distribution in Europe, and the Gen-
eralized Pareto distribution in America. To some extent, this distinction
could also be made between economists and statisticians.

To date, economists have mainly used the Pareto I distribution to fit the
upper tail of income and wealth distribution (Atkinson 2007, 2017). It is
a simple power function, with a single parameter, which can be related to
theoretical models that can explain the generation of his thick upper tail
(Jones 2015, Benhabib and Bisin 2018).

Recently, Jenkins (2017) addressed the question: What model should be
fitted to top incomes? In an empirical application, based on tax data in U.K.
over 1995-2011, he finds that the preferred specification is the Generalized
Pareto distribution (GPD). In this paper, we provide theoretical foundation
to this result, and we go further.

Our contribution is manifold. We first show that the Pareto I distribu-
tion is very sensitive to the choice of the threshold. In particular, a threshold
too low can lead to over-estimate the heaviness of the distribution and, thus,
to over-estimate inequality. This bias comes from a misspecification, it does
not disappear as the sample size increases. Next, we show that the GPD is
less sensitive to the threshold, but its estimation is less accurate. We also
show that the Pareto I behaves like the GPD only at (much) higher thresh-
old. Then, we introduce the Extended Pareto distribution (EPD), which
is even less sensitive to the threshold and which provides more reliable re-
sults. Finally, we discuss different types of bias that could be encountered
in practice, and we illustrate our findings through two applications, on in-
come distribution in South-Africa in 2012 and on wealth distribution in the
U.S. in 2013. A R package (TopIncomes) can be used to reproduced this
analysis1.

In section 2, we present Pareto I and Generalized Pareto distributions.
We discuss how sensitive they are to the choice of the threshold. In section
3, we introduce the Extended Pareto distribution. In section 4, we conduct
several simulation experiments. In section 5, we discuss different type of

1https://github.com/freakonometrics/TopIncomes.
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biases. In section 6, we derive formulas for Lorenz curves and top share
indices. In section 7, two applications are investigated. Section 8 concludes.

2 Strict Pareto models

Pareto models have been often used for modelling the upper tail of distribu-
tions in economic inequality and economic losses, in finance and insurance
(Albrecher et al. 2017, Beirlant et al. 2004, Kleiber and Kotz 2003). In this
section, we present Pareto Type I and Generalized Pareto distributions and
we discuss the close relationship between them. In the following, we consider
distributions with finite mean, that is, with Pareto tail parameter greater
than one (α > 1). For more details on properties of Pareto distributions,
see Arnold (2015).

2.1 Pareto I distribution

For Pareto Type I distribution bounded from below by u > 0, with tail
parameter α, the probability density function and the cumulative density
function (CDF) are, respectively, equal to

f(x) =
αuα

xα+1
and F (x) = 1−

(x
u

)−α
, for x ≥ u (1)

If a random variable X has (1) as CDF, we will write X ∼ P1(u, α).
In the economic inequality literature, Pareto Type I distribution has been

always used to fit the upper tail of income and wealth distributions.This
distribution has an attractive property: the average above a threshold is
proportional to the threshold, it does not depend on the scale parameter u,

E(X|X > u′) =
αu′

α− 1
, α > 1 (2)

where u′ ≥ u. For instance, if the inverted Pareto coefficient α/(α− 1) = 2,
the average income of individuals with income above $100,000 is $200,000
and, the average income of individuals with income above $1 million is $2
million (Piketty 2007, Atkinson et al. 2011). This nice property makes easy
calculation of the mean and leads to simple formulas of inequality measures
(see section 6). Moreover, simple theoretical economic models can be used
to explain the basic mechanism that gives rise to Pareto distributions (Jones
2015).
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2.2 Generalized Pareto distribution

For Generalized Pareto Distribution (GPD), also known as Pareto Type II
distribution, bounded from below by u ≥ 0, with scale parameter σ and tail
parameter α, the cumulative density function (CDF) is

F (x) = 1−
[
1 +

(
x− u
σ

)]−α
for x ≥ u (3)

where σ > 0 and α ∈ (0,∞].2 If a random variable X has (3) has its CDF,
we will write X ∼ GPD(u, σ, α). The GPD(0, σ, α) distribution is also called
“Lomax” in the literature (Lomax 1954).

From (1) and (3), we can see that Pareto I is used to model the distri-
bution of relative excesses X/u given X > u, while GPD is used to model
the distribution of absolute excesses X − u given X > u. And because of
the additional parameter, there is an affine transformation that links these
relative and absolute excesses. The GPD is “generalized” in the sense that
Pareto I distribution is a special case, when σ = u:

GPD(u, u, α) = P1(u, α) (4)

GPD lets the model decide if the upper tail is better modeled as a power law
from relative excesses (σ = u) or from absolute excesses (σ 6= u). Overall,
GPD is more flexible than Pareto I distribution.

The average above a higher threshold, u′ ≥ u, depends on all parameters
of the distribution,

E(X|X > u′) =
σ − u
α− 1

+
α

α− 1
u′, (5)

The linearity of this function characterizes the GPD class (see Guess and
Proschan 1988 and Ghosh and Resnick 2010).

In the statistical literature, GPD is often used to fit the upper tail of
heavy-tailed distributions (Beirlant et al. 2004). Indeed, one of the most
important result in the extreme value theory states that, for most heavy-
tailed distributions, the conditional excess distribution function, above a
threshold u, converges towards a GPD distribution as u goes to infinity
(Pickands 1975, Balkema and de Haan 1974), for some parameters α and σ,

Fu(x) −→ GPD (or Pareto II) as u→ +∞ (6)

2or α ∈ (1,∞] if we want to compute averages that have a probabilistic interpretation.
The limiting case α→∞ corresponds to an exponential distribution.
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where Fu(x) = P (X − u ≤ x|X > u). This result is known as the Pickands-
Balkema-de Haan theorem, also called the second theorem in extreme value
theory (as discussed in footnote 6, page 7). It provides strong theoretical
support for modelling the upper tail of heavy-tailed distributions with GPD,
or Pareto Type II distribution. In a very general setting, it means that there
are α and σ such that Fu can be approximated by the CDF of a GPD(u, σ, α),
see Embrechts et al. (1997, Theorem 3.4.13, p.165).

2.3 Threshold selection

Estimation of the upper tail of a distribution with a Pareto distribution
proceeds with a preliminary choice of the threshold u by the researcher. In
statistics, the choice of the threshold is notoriously difficult, and the results
are often quite sensitive to this choice in empirical studies.

The choice of the threshold means that only the k largest observations
are considered, and the distribution of those k observations is supposed
to be Pareto, with tail index α. There is a bias-variance trade-off: if the
threshold is too high, k is small and estimators can be very volatile, while if
the threshold is too small, there is less variability, but the bias can be large.
In practice, an optimal threshold would then be the lowest threshold that
does not generate significant bias in parameter estimates.

Whether to use a Pareto I or GPD model to fit the upper tail is related
to the choice of the threshold. From (1) and (3), we have seen that Pareto
I is a special case of GPD, when σ = u. They differ by an affine transfor-
mation when σ 6= u. A key property of Pareto distributions is that, if a
distribution is Pareto for a fixed threshold u, it is also Pareto with the same
tail parameter α for a higher threshold u′ ≥ u. For GPD, we have

F u = GPD(u, σ, α) ⇒ F u′ = GPD(u′, σ + u′ − u, α). (7)

where F u is the survival excess function above u.3 Thus, Pareto I and GPD
are the same for all u′ ≥ u, if σ = u. Otherwise, we have σ+ u′− u ≈ u′ for
very large values of u′ only. It follows that a GPD above a threshold will
behave approximately as a Pareto I above a higher threshold, much higher
as σ differs from u.

3Fu′ is a truncated Pareto distribution, with density equals to f(x)/(1−F (u′)). Note
that this property is quite intuitive, since the GPD distribution appears as a limit for ex-
ceeding distributions, and limit in asymptotic results are always fixed points: the Gaussian
family is stable by addition (and appears in the Central Limit Theorem) while Fréchet
distribution is max-stable (and appears in the first theorem in extreme value theory).
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To illustrate, Figure 1 shows boxplots of the maximum likelihood es-
timator (MLE) of the tail index α, from Pareto I (left) and GPD (right)
models, as the threshold increases.4 The values are obtained from 1,000
samples of 1,000 observations drawn from a GPD where σ differs from u,
GPD(0.5, 1.5, 2).

For Pareto I model (left), the MLE of the tail index is the Hill estimator,

α̂k =

[
1

k

n∑
i=n−k+1

log x(i) − log x(n−k+1)

]−1
(8)

from a sample {x1, · · · , xn}, with the ordered version x(1) ≤ x(2) ≤ · · ·x(n),
where only the k largest values are considered. We can see that the boxes
are always below the true value (dashed line), and the dispersion increases
as the threshold increases. It shows that, if the threshold is not very high,
Pareto I model provides severe bias in the estimation of the tail parameter.
For instance, with a threshold u = 0.5, we have α̂ ≈ 1, that is, the estimated
tail parameter is half as small as the true value, α = 2.

For GPD model (right), we can see that there is no bias, but the dis-
persion is much greater. Moreover, several values are extremes, it can be
more than twice the true value (circles in the plot, see footnote 4). Here, the
MLE of the tail index has no analytical solution, and numerical methods are
required for the estimation. It is known that the MLE of the GPD can be
very unstable and, in some cases, has no solution (Castillo and Hadi 1997,
Hosking and Wallis 1987, del Castillo and Daoudi 2009).

[Figure 1 about here.]

Overall, this Figure illustrates that Pareto Type I distribution behaves
like a GPD only at much higher threshold, when σ differs from u. From his
analysis on UK income data, Jenkins (2017) concludes that ”the Pareto I
model is as good as GPD only at extremely high incomes, beyond a range
of thresholds usually considered”. It is consistent with the values of σ − u
that he found, always very different from zero.5

4 Boxplots provide information on the median, skewness, dispersion and outliers. The
median is the band inside the box. The first and third quartiles (q1,q3) are the bottom
and the top of the box. The outlier detection is based on the interval [b; b] , where
b = q1 − 1.5IQR , b = q3 + 1.5IQR and IQR = q3 − q1 is the interquartile range. Any
values that fall outside the interval [b;b] are detected as outliers, they are plotted as
individual circles. The horizontal lines at the top and bottom of each boxplot correspond
to the highest and smallest values that fall within the interval [b; b] , see Pearson (2005).

5The plots of u − σ can be found in bottom Figures in Appendix H, in the online
supplementary material of Jenkins’ paper, pp.102-116.
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3 Pareto-type models

In the previous section, we have seen that lower threshold can be used with
GPD model, compared to Pareto I. Nevertheless, a (very) high threshold
may still be required to have (nearly) unbiased estimation of the tail pa-
rameter with GPD model. To select not too high threshold, we need to
consider Pareto-type models, rather than strictly Pareto models. It leads
us to consider higher order of regular variation, from which an Extended
Pareto distribution (EPD) can be derived. The EPD provides better fit of
the upper tail when the distribution becomes strictly Pareto in the very top
of the distribution only.

3.1 First- and second-order regular variation

The tail index α is related to the max-domain of attraction of the underlying
distribution, while parameter σ is simply a scaling parameter.6 The shape of
the conditional excess cumulative distribution function is a power function
(the Pareto distribution) if the threshold is large enough. Tails are then said
to be Pareto-type, and can be described using so called regularly varying
functions (see Bingham et al. 2013).

First and second order regular variation were originally used in extreme
value theory, to study respectively the tail behavior of a distribution and
the speed of convergence of the extreme value condition (see Bingham et al.
2013, de Haan and Stadtmüller 1996, Peng and Qi 2004, or section 2 in
de Haan and Ferreira 2006 for a complete survey). A function H is said to
be regularly varying (at infinity) with index γ ∈ R if

lim
t→∞

H(tx)

H(t)
= xγ or lim

t→∞
x−γ

H(tx)

H(t)
= 1. (9)

A function regularly varying with index γ = 0 is said to be slowly varying.

6Historically, extremes were studied through block-maximum - yearly maximum, or
maximum of a subgroup of observations. Following Fisher and Tippett (1928), up to some
affine transformation, the limiting distribution of the maximum over n i.i.d observations
is either Weibull (observations with a bounded support), Gumbel (infinite support, but
light tails, like the exponential distribution) or Fréchet (unbounded, with heavy tails,
like Pareto distribution). Pickands (1975) and Balkema and de Haan (1974) obtained
further that not only the only possible limiting conditional excess distribution is GPD,
but also that the distribution of the maximum on subsamples (of same size) should be
Fréchet distributed, with the same tail index γ, if γ > 0. For instance in the U.S., if the
distribution of maximum income per county is Fréchet with parameter γ (and if county
had identical sizes), then the conditional excess distribution function of incomes above a
high threshold is a GPD distribution with the same tail index γ.
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Observe that any regularly varying function of index −γ can be written
H(x) = x−γ`(x) where ` is some slowly varying function.

Consider a random variable X, its distribution is regularly-varying with
index −γ if, up-to some affine transformation, its survival function is regu-
larly varying. Hence,

lim
t→∞

x−γ
F (tx)

F (t)
= 1 (10)

or
F (x) = x−γ`(x), (11)

where F (x) = 1 − F (x). A regularly varying survival function is then a
function that behaves like a power law function near infinity. Distributions
with survival function as defined in (11) are called Pareto-type distributions.
It means that the survival function tends to zero at polynomial (or power)
speed as x → ∞, that is, as x−γ . For instance, a Pareto I distribution,
with survival function F (x) = x−αuα, is regularly varying with index −α,
and the associated slowly varying function is the constant uα. And a GPD
or Pareto II distribution, with survival function F (x) =

(
1 + σ−1x

)−α
, is

regularly varying with index −α, for some slowly varying function. But
in a general setting, if the distribution is not strictly Pareto, ` will not be
constant, and it will impact the speed of convergence.

In de Haan and Stadtmüller (1996), a concept of second-order regular
variation function is introduced, that can be used to derive a probabilistic
property using the quantile function,7 as in Beirlant et al. (2004). Following
Beirlant et al. (2009), we will consider distributions such that an extended
version of equation (10) is satisfied,

lim
t→∞

x−γ
F (tx)

F (t)
= 1 +

xρ − 1

ρ
, for some ρ ≤ 0, (12)

that we can write, up to some affine transformation,

F (x) = cx−γ [1− xρ`(x)], (13)

for some slowly varying function ` and some second-order tail coefficient
ρ ≤ 0. The corresponding class of Pareto-type distributions defined in (13)
is often named the Hall class of distributions, referring to Hall (1982). It
includes the Singh-Maddala (Burr), Student, Fréchet and Cauchy distribu-
tions. A mixture of two strict Pareto-I distributions will also belong to this
class.

7The quantile function U is defined as U(x) = F−1(1− 1/x).
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Since ρ ≤ 0, x 7→ 1− xρ`(x) is slowly varying, and therefore, a distribu-
tion F that satisfies (13) also satisfies (11). More specifically, in (13), the
parameter ρ captures the rate of convergence of the survival function to a
strict Pareto distribution. Smaller is ρ, faster the upper tail behaves like a
Pareto, as x increases. Overall, we can see that

• γ is the first-order of the regular variation, it measures the tail param-
eter of the Pareto distribution,

• ρ is the second-order of the regular variation, it measures how much
the upper tail deviates from a strictly Pareto distribution.

In the following, we will write RV(−γ, ρ). There are connexions between tail
properties of the survival function F and the density f (see also Karamata
theory for first order regular variation). More specifically, if F is RV(−γ, ρ),
with γ > 1, then f is RV(−γ − 1, ρ).

For instance, consider a Singh-Maddala (Burr) distribution, with sur-
vival distribution F (x) = [1 + xa]−q, then a second order expansion yields

F (x) = x−aq[1− qx−a + o(x−a)] as x→∞ (14)

which is regularly varying of order −aq and with second order regular vari-
ation −a, that is RV(−aq,−a).

Schluter (2018) shows that the bias, induced by higher order regular
variation in the Burr case (14), for the estimator of the inverted tail param-
eter ξ = 1/α in Pareto I distribution, obtained from an OLS regression of
log sizes on log ranks, is equal to

bk,n =
1

2
ξ

2− ρ
(1− ρ)2

(n
k

)ρ
, (15)

where the k largest observations are considered to fit a Pareto I and n is the
sample size. Since ρ ≤ 0, the bias is positive, it increases as ρ and k increases.
Thus, the distribution will be estimated heavier than it is really, as ρ tends
to zero, and the bias can be large if the threshold is not high enough. For
values of ρ close to zero, the bias of the tail parameter of Pareto I model is
then expected to be negligible for extremely high threshold only.

3.2 Extended Pareto distribution

Beirlant et al. (2009) show that (13) can be approximated by

F (x) = [x (1 + δ − δxτ )]−α for x ≥ 1 (16)
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where τ ≤ 0 and δ > max(−1, 1/τ).8 The main feature of this function
is that it captures the second-order regular variation of the Hall class of
distributions, that is, deviation to a strictly Pareto tail. For more details,
see also Albrecher et al. (2017, section 4.2.1).

From (16), we can define the Extended Pareto Distribution (EPD), pro-
posed by Beirlant et al. (2009), as follows:

F (x) = 1−
[x
u

(
1 + δ − δ

(x
u

)τ)]−α
for x ≥ u (17)

where τ ≤ 0 and δ > max(−1, 1/τ). If a random variable X has (17) has its
CDF, we will write X ∼ EPD(u, δ, τ, α).

Pareto I is a special case when δ = 0 and GPD is a special case when
τ = −1:

EPD(u, 0, τ, α) = P1(u, α) (18)

EPD(u, δ,−1, α) = GPD(1, u/(1 + δ), α) (19)

The mean over a threshold for the EPD distribution has no closed form
expression.9 Numerical methods can be used to calculate it. Since u′ ≥ u >
0, X given X > u′ is a positive random variable and

E[X|X > u′] =

∫ ∞
0

F u′(x)dx (20)

where F u′(x) = P[X > x|X > u′] for x > u, i.e.

F u′(x) =
F (x)

F (u′)
where F is the s.d.f. of X (21)

Thus

E[X|X > u′] = u′ +
1

F (u′)

∫ ∞
u′

F (x)dx (22)

The integral in (22) can be computed numerically. Since numerical integra-
tion over a finite segment could be easier, we can make a change of variable
(1/x) to obtain an integral over a finite interval:

Eu′ =

∫ ∞
u′

F (x)dx =

∫ 1/u′

0

1

x2
F

(
1

x

)
dx (23)

8Using the expansion (1 + ya)b ≈ 1 + bya, for small ya, in (16) yields (13).
9 Albrecher et al. (2017, section 4.6) give an approximation, based on (1+δ−δyτ )−α ≈

1− αδ + αδyτ , which can be very poor. Thus, we do not recommend to use it.
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The Extended Pareto distribution has a stable tail property: if a distri-
bution is EPD for a fixed threshold u, it is also EPD for a higher threshold
u′ ≥ u, with the same tail parameter α. Indeed, deriving a truncated EPD
distribution, we find

F u = EPD(u, δ, τ, α) ⇒ F u′ = EPD(u′, δ′, τ, α). (24)

where δ′ = δ(u′/u)τ/[1+δ−δ(u′/u)τ ]. A plot of estimates of the tail index α
for several thresholds would then be useful. If the distribution is Extended
Pareto, a stable horizontal straight line should be plotted. This plot is
similar to Hill plot for Hill estimates of α from Pareto I distribution. It is
expected to be more stable if the distribution is not strictly Pareto. Indeed,
Embrechts et al. (1997, p.194) and Resnick (2007, p.87) illustrate that the
Hill estimator can perform very poorly if the slowly varying function is not
constant in (11). It can lead to very volatile Hill plots, also known as Hill
horror plots.

4 Simulations

In this section, we use Monte Carlo experiments to study the sensitivity of
Pareto models to the choice of the threshold and to the degree of deviation
from a strict-Pareto distribution in the upper tail.

4.1 Sensitivity to the threshold

Figure 2 shows boxplots of values of the tail parameter α, estimated by maxi-
mum likelihood from Pareto I (left), GPD (middle) and EPD (right) models,
as the threshold increases. The x-axis is the percentage of the largest obser-
vations used to fit Pareto distributions. The values are obtained from 1,000
samples of 50,000 observations drawn from a Singh-Maddala distribution
that closely mimics the US 2013 income distribution, SM(2.07, 1.14, 1.75).10

This distribution is Pareto-type, with RV(-3.63,-2.07), see (14).

[Figure 2 about here.]

For Pareto I model (left), we can see that the income distribution is
estimated too heavy, whatever the threshold is (blue boxes are always below

10 These parameters are obtained from the estimation of a Singh-Maddala distribution
with the US incomes in 2013 provided by LIS cross-national center in Luxemburg (a = 2.07
and q = 1.75 are shape parameters, b = 1.14 is a scale parameter)
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the true value, given by the dashed line). This results is expected from
Schluter’s result in (15). Even when the Pareto I distribution is estimated
with the top 1% observations only (highest threshold, k = 500), the box is
clearly below the true value. In other words, the Hill estimator is biased
downward: the lower the threshold, the more biased it is.

For GPD model (middle), we can see that the income distribution is
estimated less heavy than it is in reality (green boxes are always above the
true value). It is only for very high thresholds that the estimates/boxes are
around the true value. Moreover, we can see that the dispersion is much
higher than for Pareto I model.

For Extended Pareto model (right), we can see that the estimation of the
tail parameter outperforms Pareto I and GPD models. Indeed, red boxes
are always much closer to the true value, compared to blue boxes (Pareto
I) and green boxes (GPD), for given threshold. The dispersion is slightly
larger than Pareto I, and much smaller than GPD. 11

[Figure 3 about here.]

It is important to note that the bias doesn’t disappear as the sample
size increases, since it is a misspecification problem. To illustrate, Figure 3
shows similar results from huge samples, that is, from samples of 1 million
of observations. Compared to Figure 2, Figure 3 shows clearly that the
dispersion decreases as the sample size increases, not the bias. Thus, having
several millions of observations does not reduce the bias.

4.2 Sensitivity to deviations from a strict-Pareto

Using a Singh-Maddala (Burr) distribution allows us to control the first-
and second- order of the regular variation, see (14). Moreover, this distribu-
tion is often used to estimate density of income distribution in parametric
approaches, see Cowell and Flachaire (2015).

In our experiments, we generate 10,000 samples of 50,000 observations
from Singh-Maddala distributions, SM(−ρ, 0.5,−α/ρ), with an upper tail
that deviates more and more from a strict-Pareto, that is, with an increasing
2nd-order RV parameter ρ = −2,−1,−0.75,−0.5. For each sample, we
estimate the tail index α by maximum likelihood based on Pareto I, GPD

11 We have also made similar experiments for two extensions of the GPD model, pro-
posed in the literature: Pareto IV (Arnold 2015) and Extended Generalized Pareto, or
EGPD3 (Papastathopoulos and Tawn 2013). We do not report the results here, since the
dispersion is always much larger and they are outperformed by Extended Pareto model.
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and EPD models, fitted on, respectively, the top 10%, 5% and 1% largest
observations:

- Pareto 1 models fitted on, respectively, the top 10%, 5%, 1% largest
observations are, respectively, denoted P1, P1’, P1”,

- GPD models fitted on, respectively, the top 10%, 5%, 1% largest ob-
servations are, respectively, denoted GPD, GPD’, GPD”,

- EPD models fitted on, respectively, the top 10%, 5%, 1% largest ob-
servations are, respectively, denoted EPD, EPD’, EPD”.

Atkinson et al. (2011, p.15) observe that, in practice, the tail index α
of income distributions typically vary between 1.5 and 3. When α < 2,
the variance is infinite. In the following, we first consider the case of finite
variance (α = 3) and the case of infinite variance (α = 1.5).

Finite variance

[Figure 4 about here.]

Figure 4 shows boxplots of the tail index estimates α̂, when the true
value is α = 3. The case ρ = −2 (top-left) is quite similar to the case used
in the previous subsection and the results have similar patterns as those
in Figure 2. The other cases, where ρ increases, are used to analyze what
happens when the deviation from a strict Pareto in the upper tail increases.
We can see that:

• Pareto I model (Hill estimator) shows severe under-estimation of the
tail index α, when ρ increases (boxes are increasingly below the hori-
zontal dashed line). As expected by Schluter (2018), the distribution
is estimated too heavy with a Pareto I model, see (15).

• GPD model exhibits less bias, but much more dispersion, when ρ in-
creases (boxes are closer to the dashed line, but wider). Several outliers
are far from the true value. It suggests that GPD can perform better
than Pareto I, but it can also provide very poor results.12

12See the discussion in section 2.3. Note that GPD seems to have no bias when ρ =
−1 (boxes are around the dashed line). It is not surprising, since the Singh-Maddala
distribution is a GPD when the shape parameter a = 1 in (14), which corresponds to
ρ = −1.
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• EPD model outperforms Pareto I model. The dispersion is slightly
increased, but the bias is largely reduced, when ρ increases. However,
the EPD model does not correct completely the bias when ρ is large
(boxes are still below the horizontal dashed line).13

Infinite variance

[Figure 5 about here.]

Figure 5 shows boxplots of the tail index estimates α̂, when the true
value is α = 1.5. The results are quite similar to the case of finite variance.
It provides poor results with Pareto I model. Fitted on the top 10% of
the sample (P1), with a large deviation to a strict-Pareto (ρ = −0.5), the
tail index is estimated smaller than 1, which suggests that the mean doesn’t
exist and Pareto models cannot be used. Note that similar results have been
obtained in empirical studies on wealth distribution. For instance, Cowell
(2013) finds α̂ = 0.48, 0.52, 0.73 from a Pareto I model fitted on, respectively,
top 10%, 5% and 1% observations of the U.S. wealth distribution.

Overall, the simulation results show that Pareto I model can lead to se-
vere over-estimation of the heaviness of the distribution, when the threshold
is not large enough and when the distribution deviates from a strict-Pareto.
At given threshold, the EPD model can provide significant improvement
over Pareto I model.

5 From theory to practice

In empirical studies, the analysis of Pareto-type upper tail is often inferred
from some plots. For Pareto Type I distribution, with tail parameter α,
rearranging (1) and applying a logarithmic transformation, we have

log(1− F (x)) = c− α log x (25)

where c = α log u. Given a sample {x1, · · · , xn}, let us consider the plot of
the log of incomes in the x-axis and the log of the survival function in the
y-axis:

{log x, log (1− F (x))} (26)

13This model is based on the approximation (1 + δ − δyρ)−α ≈ 1− αδ + αδyρ, which is
better as ρ is more and more negative when y > 1.
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or its empirical version {
log xi, log

(
1− F̂ (xi)

)}
(27)

This plot, known as the Pareto diagram (Cowell 2011) or Zipf plot (Cirillo
2013), shows the proportion of the population with x or more against x itself
on a double-logarithmic diagram. If the distribution is strictly Pareto, it
should exhibit a linear function, where the slope coefficient (taken positively)
is equal to the tail index α. If the distribution is not strictly Pareto, the
curve obtained from a Pareto diagram is not linear.14 This interpretation
can be carried over to the general case of Pareto-type distributions since
then ultimately for x→∞ the Pareto diagram is still linear with slope α at
some set of largest values (Albrecher et al. 2017, p.70).

In practice, tail index estimation is subject to three potential sources of
bias: misspecification bias, estimation bias and sampling bias.

5.1 Misspecification bias

Let us assume that the CDF is known, F (x).

[Figure 6 about here.]

Figure 6 shows a Pareto diagram, based on a Singh-Maddala distribution
that closely mimics the US 2013 income distribution, SM(2.07, 1.14, 1.75).10

This plot exhibits a concave curve, which becomes linear in the right part,
when log x > 1. As expected, it suggests that the distribution behaves like a
Pareto distribution in the upper tail. It also exhibits two linear functions, as
defined in (25), obtained when we consider two different threshods, log u =
−2, 1. Since α is both the slope of the linear function (taken positively) and
the tail index of the Pareto distribution, we can see that:

• α increases as the threshold u increases, until it is constant,

• the distribution is then estimated too heavy if u is not large enough.

The simulation results in Figures 2 and 3 are obtained with samples drawn
from the Singh-Maddala distribution used to draw the Pareto diagram in

14Another popular plot is the Pareto QQ-plot, {− log(1−F (xi)), log xi}. It is obtained
from the tail quantile function of Pareto I distribution, Q(p) = (1 − p)−1/α. Hence,
logQ(p) = − 1

α
log(1 − p). If the distribution is Pareto I, we expect to see a linear func-

tion with a slope coefficient equal to 1/α. Note that these plots may not be helpful to
distinguish between a Lognormal and a Pareto distributions (Cirillo 2013).
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Figure 6. The concavity of the Pareto diagram explains why the Pareto
I model (Hill estimator) under-estimates the tail index and, thus, over-
estimates the heaviness of the distribution.

Most Pareto diagrams based on the CDF exhibit typically a concave-like
curvature, at least for large x, when the distribution is heavy-tailed.15 Thus,
we may expect that distributions are often estimated too heavy with Pareto
I model, if the threshold is too low.16 This problem occurs because the
linear approximation is not appropriate. It is important to note that it is a
misspecification bias, which does not disappear as the sample size increases
to infinity (see section 4.1).

5.2 Estimation bias

In empirical studies, the CDF is in general unknown. We replace it by
a consistent estimate, F̂ (x). When we consider the estimation of α, the
replacement of the CDF by an estimate introduce another type of bias: an
estimation bias.

A standard choice is the EDF, which is a consistent estimator of the
CDF. If we sort a sample in ascending order, x(1) < x(2) < · · · < x(n), the
Pareto diagram is then the log of the ordered observations in the x-axis and
the log of the empirical survival function in the y-axis:17

Pareto diagram:

{
log x(i), log

(
1− i

n+ 1

)}
i = 1, . . . , n (28)

The Pareto diagram often exhibits an erratic behavior in the extreme
right part. It is because the EDF provides a poor estimation of the upper
tail of the CDF, especially when the distribution is heavy-tailed.18 Indeed,
sample quantiles poorly estimate higher population quantiles when the dis-
tribution is heavy-tailed.19

15Schluter (2019, appendix A) shows formal derivations on the concavity of Pareto QQ-
plots, with the Hall class of distributions. Using many different parameters and parametric
distributions, we always found concave Pareto diagrams, based on the CDF.

16Beirlant et al. (2004, p.113) argue that, in many cases, the Hill estimator overestimates
the population value of 1/α.

17With R, we can plot a Pareto diagram with: plot(log(sort(x)),log((n:1)/(n+1))),
and a Pareto QQ-plot with plot(-log((n:1)/(n+1)),log(sort(x))).

18This is why Davidson and Flachaire (2007) and Cowell and Flachaire (2007) proposed
to fit the upper tail with a parametric Pareto distribution to improve inference.

19The (asymptotic) variance of sample quantiles is equal to n−1F (x)(1− F (x))/f(x)2.
For Pareto I distribution, F (x) = 1−x−α, the variance is then equal to n−1(xα+2−x2)/α2,
which explodes as x→ +∞.
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To illustrate the consequences of this erratic behavior, let us consider the
value of the maximum income in the sample, x(n). The Pareto diagram tells
us that the proportion of population with the maximum income or more is
equal to 1/(n+ 1). It follows that,

• if the maximum income is too large (Bill Gate’s income belongs to the
sample),20 the proportion of the population with income more or equal
to x(n) is over-estimated: 1/(n+ 1) > 1−F (x(n)). Thus, the heaviness
of the upper tail is over-estimated.

• if the maximum income is too small (topcoding, censoring, truncation
or underreporting),21 the proportion of the population with income
more or equal to x(n) is under-estimated: 1/(n + 1) < 1 − F (x(n)).
Thus, the heaviness of the upper tail is under-estimated.

Figure 7 illustrates these features. A Pareto diagram is obtained from a
sample of 20,000 observations drawn from the Singh-Maddala distribution
SM(2.07, 1.14, 1.75).Firstly, we gradually increase the largest incomes, that
is, those such that log(x) > 2. The Figure shows that the presence of outliers
pushes the extreme part of the curve to the right, which becomes convex
before becoming concave again. Secondly, we topcode the largest incomes,
that is, every log-income greater than 2 is set equal to 2. The Figure shows
that the topcoding pushes the extreme part of the curve to the left, with a
more pronounced concavity.

[Figure 7 about here.]

Overall, the estimation bias can go in opposite directions. It will depend
on the exact nature of the problem. The presence of outliers in the sample
is known to biased downward classical estimators of the tail index (Hubert
et al. 2013). Thus, it tends to estimate the upper tail too heavy. To
the opposite, top-coding or underreporting from the rich22 tend to biased
upward estimators of the tail index. Thus, it tends to under-estimate the
heaviness of the upper tail.

In applications, the main question is which type of bias is the most
pronounced and to what extent? Examining the Pareto diagrams can help
to answer this question, as we will show in the application section.

20More precisely, if x(n) is greater than the n/(n+ 1)-percentile of the population.
21More precisely, if x(n) is smaller than the n/(n+ 1)-percentile of the population.
22Linking a restrictive subsample of Uruguay’s official household survey to tax data,

Higgins et al. (2018) show that the rich tend to underreport their income.
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5.3 Sampling bias

It is often argued that surveys do not capture well the top of income dis-
tributions, because the rich may be harder to reach or more likely to refuse
to participate (Atkinson 2007, Atkinson et al. 2011). If some members of
the population are more or less likely to be included than others, a sampling
bias is introduced in the estimation. To correct this bias, surveys often in-
clude weights to make the sample representative of the overall population.23

It is particularly important to use the weights when provided by data pro-
ducers, otherwise the estimated distribution maybe quite different from the
population distribution.

To illustrate, recall that a sample {x1, · · · , xn} is based on individual
observations xi of individuals who agreed to respond. Let X denote the
(true) variable of interest (individual income, or wealth), and D denote
the response (to the survey) variable (1 if the individual responds). Let Z
denote some possible covariates (age, gender, etc) and X the income. Since
all computations should be conditional on Z, we will skip it to avoid too
heavy notations.24

Following Horvitz and Thompson (1952), assume that the variable of
interest X has distribution Fθ. The Horvitz-Tompson estimator of θ should
be based on weights W = P[D = 1|X]−1. Here our sample of xi’s are be
seen as realizations of variables X|D = 1. Using Bayes formula, and the
weights, it will be possible to link the true distribution of income, and the
one of our sample. Hence,

P[X|D = 1] =
P[X] · P[D = 1|X]

P[D = 1]
∝ P[X]︸ ︷︷ ︸

=Fθ

·P[D = 1|X]︸ ︷︷ ︸
=W−1

(29)

Consider here some sort of proportional hazard model for the weight func-
tion, with either

P[D = 1|X = x] = Sx (30)

where S is some baseline with value in [0, 1], or

P[D = 1|X = x] = x−a (31)

If X is Pareto distributed with tail index α, with density proportional to
x−(1+α), then, with model (30), density of X|D = 1 should be proportional

23To correct the sampling weights for unit nonresponse, see Korinek et al. (2006, 2007)
24For instance, P[X|D = 1,Z] could be written PZ [X|D = 1], but instead of using PZ

in all computations, we will simply use P
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to
x 7→ x−(1+α) · Sx (32)

and the survey distribution has a Weibull distribution. With model (31),
density of X|D = 1 should be proportional to

x 7→ x−(1+α) · x−a (33)

which is another Pareto distribution.
In practical applications, even if the true distribution of X is Pareto I,

if the response variable is (strongly) correlated with the income, either the
sample is also Pareto I, with possibly another tail index, or there might be
some second order effect. Thus, to prevent this possible bias, weights can
be used. With a sample {(x1, w1), · · · , (xn, wn)}, where wi’s are given by
statistical institutes providing the datasets, our estimators should take them
into account. With maximum likelihood estimation, we need to rewrite the
likelihood function as the product of each individual contribution multiplied
by its weight. For instance, the weighted version of the Hill estimator would
be

α̃k,w =

[
n∑

i=n−k+1

w(i)

w̄k
log y(i) − log y(n−k+1)

]−1
(34)

where w̄k =
∑n

i=n−k+1w(i). The special case wi = c, where c is a constant
value, corresponds to the standard Hill estimator, as defined in (8). The
estimation of GPD and EPD distributions with weights, as well as plotting
Pareto diagram with weights, are not implemented in standard softwares.
We develop functions in R to do this, which we make available on GitHub.25

6 Lorenz curve and top shares

In this section, we derive inequality measures based on distributions being
Pareto in the upper tail (with finite mean, α > 1).

The top p100% income share can be defined as follows:

TSp =
pE(X|X > Q(1− p))

E(X)
(35)

25 All R programs developed in this paper are available at the following website
https://github.com/freakonometrics/TopIncomes
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where Q(t) is the quantile function, Q(t) = inf{x ∈ R : t ≤ F (x)}. A Lorenz
curve is defined by (p, L(p)), where L(p) = 1− TS1−p and p ∈ (0, 1). A top
income share is then related to a single value from the Lorenz curve.

From a sample of n incomes and weights, {(x1, w1), · · · , (xn, wn)}, the
sample top income share, based on the Empirical Distribution Function
(EDF), is computed as:

TS(edf)
p =

∑n
i=1wi xi 1(xi > Q̂(1− p))∑n

i=1wi xi
(36)

where 1(·) is an indicator function and Q̂(1− p) is a sample weighted quan-
tile.26 Without weights, the sample top income share can be computed from
(36), with wi = 1.

Let us consider a distribution where the upper tail, above a threshold
or cut-point Q(1 − q) = u, is modelled by a Pareto distribution P, and
the remaining distribution is modelled by another distribution F . For a
two-component sliced distribution, with a Pareto distribution P for the top
q100% and a distribution F for the bottom (1−q)100%, we need to consider
two cases. When the top p100% share is located in the upper tail modelled
by the Pareto distribution, we have

TSp≤q =
pEP(X|X > QP(1− p/q))
(1− q)EF (X) + qEP(X)

if p ≤ q (37)

When the top p100% share is located below the upper tail modelled by the
Pareto distribution, we have

TSp≥q = 1− (1− p)EF (X|X < QF (1− p))
(1− q)EF (X) + qEP(X)

if p > q (38)

If F is the empirical distribution function (EDF) and if the sample is
given with weights, the threshold u is a weighted quantile.27

Pareto I and GPD models: we consider that the upper tail, above
a threshold Q(1 − q) = u, is modelled by a GPD distribution, and the
remaining distribution is modelled by the empirical distribution function
(EDF). The quantile function of a GPD is equal to

QGPD(t) = σ(1− t)−1/α − σ + u (39)

26With
∑n
i=1 wi = 1, the weighted quantile Q̂(1 − p) is the ordered observation x(k)

satisfying
∑k−1
i=1 w(i) ≤ 1− p and

∑n
i=k+1 w(i) ≤ p.

27With
∑n
i=1 wi = 1, the cut-point u is the ordered observation x(l) satisfying∑l−1

i=1 w(i) ≤ 1− q and
∑n
i=l+1 w(i) ≤ q.
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Using (5) and (39) in (37) and (38), we obtain

TS(GPD)
p,q =


p

[α/(α− 1)]σ(p/q)−1/α + u− σ
(1− q)x̄q + qσ/(α− 1) + qu

if p ≤ q

1− (1− p) x̄p
(1− q)x̄q + qσ/(α− 1) + qu

if p > q

(40)

where x̄q (x̄p) is the weighted mean of the (1−q)100% ((1−p)100%) smallest
ordered observations.

Top shares from Pareto I model for top incomes are obtained from (40),
with σ = u.

EPD model: we consider that the upper tail, above a threshold Q(1−
q) = u, is modelled by an Extended Pareto Distribution (EPD), and the
remaining distribution is modelled by the empirical distribution function
(EDF). There are no closed form expressions for the quantile function and
for the mean of EPD distribution. However, we can use numerical methods.
The quantile function is defined as

QEPD(t) = {x ≥ u : (x/u)[1− δ + δ(x/u)τ ] = (1− t)−1/α} (41)

The equation in parenthesis can be solved numerically, by findings root for
the difference between the two terms, or by minimizing the square of the
difference.28

From (22), (23), (37) and (38), top p100% shares from EPD model are
defined as follows:29

TS(EPD)
p,q =


pu′ + qEu′

(1− q)x̄q + q(u+ Eu)
if p ≤ q

1− (1− p) x̄p
(1− q)x̄q + q(u+ Eu)

if p > q

(42)

where Eu and Eu′ are obtained by numerical integration from (23), and u′

is obtained from (41) with t = 1− p/q.

7 Applications

In this section, we consider two applications: the income distribution in
South-Africa in 2012 and, the wealth distribution in the United-States in
2013. A R package (TopIncomes) can be used to reproduced this analysis30.

28The function qepd of the ReIns R package minimizes the square of the difference, with
u = 1.

29Since the distribution is Pareto in the upper tail only, we have F (u′) = p/q.
30https://github.com/freakonometrics/TopIncomes.
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7.1 Income distribution in South-Africa

The income distribution in South-Africa in 2012 is obtained from the Luxem-
bourg Income Study (LIS) Cross-National Data Center in Luxembourg. We
use similar incomes as those used to generate the Key Figures, except that
we do not bottom- and top-code incomes.31 Income is equal to disposable
household income divided by the square root of the number of household
members (x = DHI/

√
NHHMEM). All households where disposable income is

missing or exactly equal to zero are excluded, and we use person-level ad-
justed weights (w = HWGT ∗ NHHMEM). The number of observations is equal
to n = 7,990.

Figure 8 shows values of the tail index estimated by (weighted) maximum
likelihood, α̂, as k the number of the largest observations used for Pareto
estimation increases. The vertical dashed lines marked q90, q95 and q99
correspond to, respectively, the 90%, 95% and 99% weighted quantiles.32

The Pareto I curve shows α̂ obtained from Pareto I model, also known as
Hill plot. The two other curves show α̂ obtained from GPD and EPD models.
We can see that the Pareto I curve decreases as k increases. It is never stable
and horizontal, the Hill plot is then not very revealing. The GPD curve is
unstable for k < 200, otherwise it increases as k increases. To the opposite,
the EPD curve looks stable when more than 200 observations are used to
fit the Pareto distribution, suggesting that the tail index is slightly greater
than 2. These results are consistent with those obtained by simulations, in
Figure 2 and 3.

[Figure 8 about here.]

Figure 9 shows values of the top 1% share, as k increases. The horizontal
line is the value of the sample top 1% share, given in (36). We can see that
the top 1% share obtained from Pareto I model increases as k increases.
Since more inequality is expected when the distribution is heavier (α is
smaller), these results are consistent with those obtained in Figure 8. To
the opposite, the top 1% obtained from GPD and EPD models are much
more stable. The values given by the EPD model are slightly higher than
those given by the GPD model.

[Figure 9 about here.]

31see http://www.lisdatacenter.org/data-access/key-figures/methods/
32Note that the 200 largest observations corresponds to the top 5% incomes (x ≥ q95),

but not to 5% of observations in the sample (n = 7,990) because of the weights.
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The following Table shows values from Figures 8 and 9 for three thresh-
olds, q90, q95 and q99, that is, when the Pareto distribution is fitted on,
respectively, the top 10%, 5% and 1% observations.

tail index top 1%
threshold q90 q95 q99 q90 q95 q99

Pareto I 1.742 1.881 2.492 0.192 0.171 0.146
GPD 2.689 2.935 19.249 0.142 0.141 0.139
EPD 2.236 2.255 4.198 0.148 0.149 0.139

We can see that the GPD and EPD models provides very stable values for
the top 1% shares, while the Pareto I is quite sensitive to the choice of the
threshold. The tail index values for q99 may appear odd. They are not
reliable, since they use k = 26 observations only. Finally, this Table is not
as informative as Figure 8: it does not capture decreases of the tail index
from GPD model, as the threshold increases, from q90 to q94.

33

Figure 10 shows a Pareto diagram, with the Pareto I, GPD and EPD
distributions fitted on the top 10% observations. We can see that the straight
lines of the Pareto I model decreases more slowly than the curves of the
GPD and EPD models, above the top 1% income (when log(x) ≥ q99). The
EPD model captures deviations from a strict Pareto distribution, it seems
to better fit the Pareto diagram. The extreme right part exhibits an erratic
behavior, but we should not pay attention to this part (see section 5.2).

[Figure 10 about here.]

Overall, we can see that a threshold too low leads to under-estimate the
tail index and to over-estimate the top share, with a Pareto I model. It
illustrates the misspecification bias, as explained in section 5.1, which is not
expected to disappear as the sample size increases. Figures (8), (9) and (10)
suggest that the EPD model provides more reliable results.34 The top 1% is
equal to 14.8%, with an EPD distribution fitted on the top 10% observations
(q90), which is slightly more than the sample top 1% share equals to 13.3%.

7.2 Wealth distribution in the United-States

The wealth distribution in the United-States in 2013 is obtained from the
Luxembourg Wealth Study (LWS) database. We use disposable household

33That is, the GPD curve that increases as k increases, for k > 200, in Figure 8.
34Figure 8 suggests that similar results could be obtained with Pareto I and GPD

models, with a higher threshold. However, the choice of the threshold is difficult based on
Pareto I and GPD models only, since the curves are never stable and horizontal.
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net worth divided by the square root of the number of household members
(x = DNW/

√
NHHMEM). All households where disposable net worth is missing

are excluded. We do not bottom- and top-code wealth, and we use person-
level adjusted weights (w = HWGT ∗ NHHMEM). The number of observations is
equal to n = 6,015.35

Figure 11 shows values of the tail index estimated by (weighted) max-
imum likelihood, α̂, as k the number of the largest observations used for
Pareto estimation increases. The vertical dashed lines marked q90, q95 and
q99 correspond to, respectively, the 90%, 95% and 99% weighted quantiles.
The Pareto I curve shows α̂ obtained from Pareto I model, also known as Hill
plot. The two other curves show α̂ obtained from GPD and EPD models.
We can see that the Pareto I curve decreases as k increases. It becomes quite
stable when the threshold is below q99 (above the top 1% observations), with
a tail index slightly greater than 1.5. The EPD curve also decreases as k
increases. It is not very stable when the threshold is between q95 and q99,
but it isn’t still decreasing, suggesting a tail index slightly greater than 1.5.
The GPD curve is not very different from the EPD curve, but it is slightly
less stable.

[Figure 11 about here.]

Figure 12 shows values of the top 1% share, as k increases. We can
see that the top 1% shares obtained from Pareto I model with a threshold
greater than q99, and from GPD and EPD models with a threshold greater
than q95, are very stable and very similar to the sample top 1% share (given
by the horizontal line). Otherwise, the top 1% share increases as k increases,
faster with Pareto I model.

[Figure 12 about here.]

The following Table shows values from Figures 11 and 12 for three thresh-
olds, q90, q95 and q99, that is, when the Pareto distribution is fitted on,
respectively, the top 10%, 5% and 1% observations.

35The data provider conducted a multiple imputation procedure to impute missing
values. The number of observations in the original file, equals to 30,075, is five times
the actual number of households, because the imputations are stored as five successive
implicates of each record (see the LWS database user guide). In our sample, we use the
first imputation of each record.
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tail index top 1%
threshold q90 q95 q99 q90 q95 q99

Pareto I 0.931 1.088 1.637 - 0.767 0.421
GPD 1.265 1.540 1.490 0.571 0.455 0.437
EPD 1.317 1.486 1.517 0.540 0.466 0.436

We can see that the Pareto I model is very sensitive to the choice of the
threshold, compared to the others. For instance, the Pareto I model with
q95 and q99 provides very different estimates of the top 1% share (76.7%
and 42.1%), while EPD model gives quite similar values (46.6% and 43.6%).
Moreover, Pareto I model with q90 gives inconsistent results: α̂ < 1, meaning
that the mean doesn’t exist and, thus, the top share is undefined. If we
assume that the top 1% of the population has less than 100% of income or
wealth, the tail index has to be greater than one, α > 1.

Figure 13 shows a Pareto diagram, with the Pareto I, GPD and EPD
models fitted on the top 3% observations (q97). We can see that the GPD
and EPD models provide a much better fit of the Pareto diagram, compared
to the Pareto I model.

[Figure 13 about here.]

Overall, we can see that the EPD model is much less sensitive to the
choice of the threshold.

Finally, it is important to notice that the measurement of inequality
of wealth is somewhat more challenging than the analysis of income or
consumption, because most sample data include a substantial fraction of
negative net worth.36 It makes the interpretation of standard measures of
inequality not so easy, see Cowell and Van Kerm (2015). For instance, with
negative observations, the top share is not defined over the interval [0, 1],
but over ] − ∞,+∞[.37 It can take any negative or positive value, even
greater than one.

8 Conclusion

Since income and wealth distributions are often assumed to be heavy-tailed,
economists have mainly used the Pareto Type I distribution, or Pareto I
model, to estimate the upper tail in empirical studies.

36In our sample, 747 observations are negative (12.4%)
37From (35), top share can take large positive (negative) values when the overall mean

is close to zero and positive (negative). It is equal to infinity when the overall mean is 0.
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In this paper, we first show that the Pareto I model (Hill estimator) is
very sensitive to the choice of the threshold. When the threshold is too low,
it can lead to severe under-estimation of the tail index and, thus, to severe
over-estimation of inequality.

Then, we provide evidence that the GPD model, based on the General-
ized Pareto Distribution, is less sensitive to the choice of the threshold. We
show that Pareto I model is as good as the GPD model but only for higher
threshold, much higher as the scale parameter differs from the threshold
(σ 6= u). However, the estimation of the GPD distribution turns out to be
quite inaccurate in our simulation results.

Next, we introduce the EPD model, based on the Extended Pareto Dis-
tribution proposed by Beirlant et al. (2009), which allows to capture de-
viations from a strict Pareto distribution. Our simulation results and two
applications show that the EPD model is much less sensitive to the choice
of the threshold, and its estimation is quite accurate.

Finally, we discuss the fact that the tail index estimation is sensitive to
several biases, which can go in opposite directions. To summarize, the tail
index estimation of a Pareto model is mostly: (1) downward biased, when the
threshold is not high enough and/or in the presence of outliers ; (2) upward
biased with topcoding, censored data and when the rich underreport their
income. It leads us to provide new highlights on several common beliefs.

It is widely believed that the tail index estimation of Pareto I model
based on surveys is biased upward, because these data are subject to topcod-
ing, censoring and underreporting of the rich. In a seminal paper, Atkinson
et al. (2011, footnote 8, p.11) write that: ”The Pareto parameter is esti-
mated using the ratio of the top 5 percent income share to the top decile
income share (. . . ). Because those top income shares are often based on
survey data (and not tax data), they likely underestimate the magnitude
of the changes at the very top.”38 It is true, under the (strong) assumption
that the distribution is strictly Pareto I above the top decile, and if there is
no outlier in the sample. Otherwise, the tail index can be biased downward,
and the upper tail might just as easily be over-estimated.

It is also widely believed that the tail index estimation is much more
reliable with tax data, because there is no topcoding or censoring and, above
all, these data are much less sensitive to misreporting. Indeed, tax data are
much less sensitive, if not at all, to estimation bias. However, they are still
sensitive to misspecification bias. Thus, a threshold too low may lead to
substantial downward bias of the tail index and to severe over-estimation of

38For more details on the Pareto parameter calculation, see Atkinson (2007, p.24).
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inequality, even with millions of observations. From tax data in the U.K.,
for several years 1995-2010, Jenkins (2017, p.279) finds that the optimal
thresholds for Pareto I model are at around the 99.5-percentile or higher,
that is, well above the thresholds commonly used. This suggests that fitting
Pareto models to tax data should be done with more caution than has been
done so far.
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Figure 1: Boxplots of maximum likelihood estimators of the tail in-
dex from Pareto I (left) and GPD (right) models, as the threshold in-
creases: 1,000 samples of 1,000 observations drawn from a GPD distribution,
GPD(0.5, 1.5, 2).
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Figure 2: Boxplots of maximum likelihood estimators of the tail index: 1,000
samples of 50,000 observations drawn from a Singh-Maddala distribution,
SM(2.07, 1.14, 1.75). From the left to the right, the x-axis is the threshold
(percentile) used to fit Pareto I (blue), GPD (green) and EPD (red) models.

Figure 3: Boxplots of maximum likelihood estimators of the tail index: 1,000
samples of 1,000,000 observations drawn from a Singh-Maddala distribution,
SM(2.07, 1.14, 1.75). From the left to the right, the x-axis is the threshold
(percentile) used to fit Pareto I (blue), GPD (green) and EPD (red) models.
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Figure 4: Finite variance (α = 3) - Boxplots of tail index estimates α̂
based on 10,000 samples of 50,000 observations drawn from Singh-Maddala
distributions with a upper tail that deviates more and more from a strict-
Pareto (as ρ increases). Pareto I (blue), GPD (green) and EPD (red) models,
fitted on, respectively, the top 10%, 5% and 1% of the sample.

33



●●●●

●●

●●●●●●●

●

●

●●

●

●●●

●

●

●

●

●●●●

●●

●●●

●

●●●

●●●●

●

●

●

●

●

●

●●

●

●●

●●●●

●

●

●●●●●

●

●●●

●●

●

●

●
●

●

●●●●

●●

●

●●●

●●

●

●
●

●●

●●●●●

●

●●●●●

●●

●

●●

●

●
●

●

●●●●

●

●●

●

●●●

●●●●●●●●●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●●●

●●●

●

●●

●●●●

●●

●●●

●

●

●
●

●●

●

●

●●●
●●●●●

●

●

●●

●

●

●●●
●

●●

●

●
●●
●●

●

●
●

●
●●●

●

●●●

●

●
●

●

●
●

●

●●
●
●●●●
●

●

●

●

●

●

●●

●
●

●●
●

●

●
●●
●

●

●

●

●

●●●●

●

●●●●● ●●●

●

●●

●●●●

●

●●●●●●●
●●●●●●●●

●

●●

●

●
●●
●
●●●●
●

●

●

●●●●●●●

●●

●●
●●
●
●

●●

●●●

●

●
●●●●

●

●●

●

●

●

●

●

●●●●
●
●

●●
●●
●
●

●

●●●
●●●●●
●
●●●
●
●
●●
●
●●●●●●
●●
●
●●

●

●
●

●

●
●●

●

●

●
●●
●
●

●

●
●●
●
●●

●

●
●●
●●●●●●

●

●
●
●●●●
●
●

●●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●
●●
●

●

●

●
●
●
●

●
●
●

●
●
●

●

●

●●
●

●

●

●●
●●●●
●●
●
●
●●

●

●●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●
●
●
●

●

●

●

●
●

●
●

●

●

●
●●

●
●

●●

●●

●

●

●
●●
●
●

●
●

●●●

●

●

●

●

●

●
●
●

●
●
●

●
●

●
●

●●
●
●

●●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●

●●●

●

●●●

●

●

●

●

●

●●

●

●

●●●

●●●

●

●●●●●

●●

●
●

●

●●

●

●●

●

●●●

●

●●●●●

●

●
●●●●●

●

●

●●

●●●●
●●

●●

●●●

●

●
●

●

●●

●

●●

●●

●

●

●
●
●●●
●●
●●●

●

●●

●

●
●●●●●
●
●●●

●

●●●

●●

●
●
●●●

●

●
●

●

●

●●●●

●

●
●
●●

●●

●
●
●●

●●

●●
●

●

●
●●●

●

●

●
●

●

●

●●

●

●

●
●
●
●
●

●

●
●●

●

●

●

●

●

●
●
●●●●

●

●●

●
●

●
●●

●

●●●
●

●

●

●
●

●

●●●
●●
●

●
●●
●

●●

●
●
●
●●●●

●

●

●

●
●
●

●●

●●●●

●

●

●

●

●

●
●
●

●

●

●

●●

P1 P1' P1'' GPD GPD' GPD'' EPD EPD' EPD''

1
.0

1
.5

2
.0

2
.5

ρ=−2

●●●●

●

●●●●●●

●

●

●●●●

●

●

●

●

●●●

●●

●●●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●●●●

●

●●●

●●

●

●

●
●
●●●●

●●

●

●●

●●

●

●
●

●●

●●

●●●●

●

●●●●●

●●

●

●

●

●●

●

●
●

●

●●●●

●

●●

●

●●●

●●●●●●●●●

●

●

●

●●

●

●●

●●

●●

●

●

●●●

●●

●●

●●

●●●●

●●

●●

●

●
●
●

●●

●

●

●●●
●●
●●●

●

●

●●

●

●

●●●●
●

●●

●

●
●●
●●

●

●
●
●
●●●

●

●●●●
●

●

●
●

●

●●
●
●●●
●

●

●

●

●

●

●●

●●

●●
●

●

●
●
●
●

●

●
●●

●

●●●●

●

●●●●● ●●●

●

●●

●●●●

●

●●●●●●●
●●●●●●●●

●

●●

●

●
●●
●
●●●
●

●

●

●●●●●●●

●●

●●
●●
●
●

●●

●●●

●

●

●●●●

●

●●

●

●

●

●

●

●●●●
●

●●
●●
●●

●

●●●
●●●●●
●
●●●
●
●
●●
●
●●●●●●
●●
●
●●

●

●
●

●

●
●●

●

●

●
●●
●
●

●

●
●●
●
●●

●

●
●●
●●●●●●

●

●
●
●●●●
●
●

●●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●
●●
●

●

●

●
●
●●
●

●
●
●

●
●
●

●

●

●●
●

●

●

●●
●●●●
●●
●
●
●●

●

●●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●
●●
●

●

●

●

●
●

●
●

●

●

●
●●

●
●

●●

●●

●

●

●
●●
●
●

●
●

●●●

●

●

●

●

●

●
●
●

●●

●
●

●
●

●●
●

●

●●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●

●●●

●

●●●

●

●

●

●

●

●●

●

●

●●●

●●●

●

●●●●

●●

●
●

●

●●

●

●●

●

●●●

●

●●●●●

●●

●
●●●●

●

●

●

●●●●
●●

●●

●●●

●

●
●●●

●

●

●●

●

●

●
●
●●●
●●
●●●

●

●●
●
●●●●●●
●
●●●

●

●●
●

●●

●
●
●●●

●

●
●

●

●

●●●●●
●
●●●●●

●

●●●●

●●

●●
●

●

●
●●●

●

●

●
●

●

●

●

●

●

●
●
●
●
●

●

●
●●

●
●

●

●

●

●
●
●●●●

●

●●

●
●

●●

●

●●●

●

●

●
●

●

●●●
●●
●

●
●●
●

●●

●
●
●
●●●●

●

●

●

●
●●

●●

●●●●

●

●

●

●

●

●
●
●

●

●

●

●●

P1 P1' P1'' GPD GPD' GPD'' EPD EPD' EPD''

1
.0

1
.5

2
.0

2
.5

ρ=−1

●●●●

●

●●●●●●

●

●

●●

●

●

●

●

●

●

●●●

●●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●●●

●

●●●

●●

●

●

●●●●

●●●

●

●●

●●

●

● ●

●●

●●

●●●

●

●●●●●

●

●

●●●

●

●

●

●

●

●●●●●●

●

●●

●

●●●

●●●●●●●●

●

●

●

●●●●

●●

●●

●

●

●●●

●●

●●

●●

●●●●

●●

●●

●

●
●
●

●●

●

●

●●●
●●
●●●

●

●

●●

●

●

●●●●
●

●●

●

●
●●
●●●

●

●
●
●●
●●●

●

●●●
●

●

●
●

●

●●
●
●●●
●

●

●

●

●

●

●●

●●

●●●
●

●

●
●
●
●

●

●
●●

●

●●●●

●

●●●●● ●●●

●

●

●●●●

●

●●●●●●
●●●●●●●●

●

●●

●

●●●
●
●●●
●

●

●

●●●●●●

●

●

●

●●●●
●
●

●●

●●●

●

●

●●●●

●

●

●

●

●

●

●

●●●●
●

●●
●●
●●

●

●●●●●●●
●
●●●
●
●
●●●●●●●●●
●●●●

●

●
●

●

●●

●

●

●
●●
●
●

●
●
●●
●
●

●

●
●●
●●●●●●

●

●
●
●●●●
●
●

●●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●
●●
●

●

●
●
●●
●

●
●
●

●
●
●

●

●

●●
●

●

●

●●
●●●●
●●
●
●
●●

●

●●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●
●●
●

●

●

●

●
●

●
●

●

●

●●●

●
●

●●

●●

●

●

●
●●
●
●

●
●

●●●

●

●

●

●

●

●●
●

●●

●
●

●
●

●●
●
●

●●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●

●●●

●

●●●

●

●

●

●

●

●●

●

●

●●

●●●

●

●●●

●

●
●
●●●

●

●●

●

●●●

●

●●●●●

●●

●
●●●●●

●

●

●●

●●●●●●

●●

●●●

●

●

●●●

●

●

●●

●

●

●●
●
●●●
●

●
●
●●●

●

●

●

●
●●●●●●●
●
●
●●

●●

●●
●

●●

●
●
●●●

●

●
●

●

●

●●●●●
●
●●●●●

●

●●●●

●●

●●
●

●

●●●●

●

●

●
●

●

●

●

●

●

●
●
●
●
●

●

●

●
●

●

●

●

●
●

●●●●

●

●●

●
●

●
●

●

●●●

●
●

●
●

●

●●●
●●
●
●●
●

●

●
●

●

●
●●●●

●

●

●

●
●●

●●

●●●●

●

●

●

●

●

●
●
●

●

●●

●

●●

P1 P1' P1'' GPD GPD' GPD'' EPD EPD' EPD''

1
.0

1
.5

2
.0

2
.5

ρ=−0.75

●●●●

●

●●●●●

●

●

●●

●

●

●

●

●

●

●●●

●●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●●●

●●

●

●

●●●●●

●

●

●

●

●●

●●

●

●
●

●●

●●

●●●●●●●●●

●●●

●

●

●●

●●●●●●●

●●

●●

●

●●●

●●●●●●

●

●●

●

●●●●

●●

●●

●

●●●

●●●

●●

●●

●●●

●●●●●

●●

●●

●

●
●●

●●

●

●

●●●
●●●●●
●

●

●●

●

●

●●●●●

●●

●

●
●●
●●

●

●
●
●●
●●●

●

●●●
●●
●

●

●●
●
●●●●
●

●

●

●

●

●

●●

●●

●●●●

●

●
●
●
●

●

●
●●

●

●●●

●

●●●

●

●

●

●

●●

●

●

●

●●●●

●

●●●●

●

●
●
●●●●●

●

●●

●

●●●●●●●
●

●

●
●●●●●

●

●

●

●●●●
●
●

●●

●●●

●

●

●●●●●

●

●

●

●

●
●

●●●●
●

●●
●●
●●

●

●●●●●●●●●●
●
●
●●●●●●●●●●
●

●●

●

●●

●

●

●●●
●
●

●
●●●●

●

●
●●

●

●●●●●●

●
●
●●●●

●

●

●

●●

●

●

●
●
●●

●
●

●

●

●

●
●●
●

●

●
●
●●●

●
●
●

●
●
●

●

●

●●
●

●

●

●●
●
●
●●
●●
●
●●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●●
●

●
●

●

●
●
●
●

●

●

●●●

●
●

●●

●●

●

●

●
●●
●
●
●
●

●

●

●

●

●

●

●●●

●●

●
●

●●

●
●
●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●●
●●●

●

●

●

●●●

●

●●●

●

●

●

●

●

●●

●

●

●●

●●●

●

●●●●●●●

●

●●●●●

●

●●●●

●

●

●●

●●●●●●

●●

●●●●●●●

●●

●●●

●

●

●

●●●

●

●

●●

●

●●
●●●
●
●
●
●●●

●

●

●

●●●●●●●●
●
●●

●

●●●
●
●●

●

●
●●

●

●

●●●●
●
●●●●●●●●

●●

●●●
●

●

●●●●

●

●
●

●

●

●

●

●

●
●
●
●
●

●

●
●

●
●

●
●
●
●

●●●●●●

●

●●

●
●

●
●

●●
●
●
●

●

●

●

●●●
●●
●
●●
●
●

●
●

●

●
●●
●
●

●

●

●

●
●●

●●

●●●●

●
●
●
●

●

●●

●

●●

●

●●

P1 P1' P1'' GPD GPD' GPD'' EPD EPD' EPD''

1
.0

1
.5

2
.0

2
.5

ρ=−0.5

Figure 5: Infinite variance (α = 1.5) - Boxplots of tail index estimates α̂
based on 10,000 samples of 50,000 observations drawn from Singh-Maddala
distributions with a upper tail that deviates more and more from a strict-
Pareto (as ρ increases). Pareto I model (blue), GPD model (green) and
EPD (red), fitted on, respectively, the top 10%, 5% and 1% of the sample.
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Figure 6: Pareto diagram based on the true CDF, with two linear approxi-
mations based on log x ≥ −2 and log x ≥ 1

Figure 7: Pareto diagram based on a sample (black), with an artificial in-
crease of the largest observations (blue) and with topcoding (green).
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Figure 8: Incomes in South-Africa 2012: MLE estimates of the tail index,
α̂, from Pareto I (blue), GPD (green) and EPD (red) models, as the number
of the k-largest observations used for Pareto estimation increases.

0 200 400 600 800

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Top 1% share

k largest values

sh
ar

e

Pareto 1
GPD
EPD

q90q95q99

Figure 9: Incomes in South-Africa 2012: Top 1% income shares obtained
from Pareto I (blue), GPD (green) and EPD (red) models, as the number
of the k-largest observations used for Pareto estimation increases.
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Figure 10: Incomes in South-Africa 2012: Pareto diagram, with Pareto I
(blue), GPD (green) and EPD (red) models fitted on the top 10% incomes.
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Figure 11: Wealth in the United States 2013: MLE estimates of the tail
index, α̂, from Pareto I (blue), GPD (green) and EPD (red) models, as the
number of the k-largest observations used for Pareto estimation increases.
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Figure 12: Wealth in the United States 2013: Pareto diagram, with Pareto
I (blue) and EPD (red) models fitted on the top 5% incomes.
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Figure 13: Wealth in the United States 2013: Pareto diagram, with Pareto
I (blue) and EPD (red) models fitted on the top 5% incomes.
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