Adel Noureddine
email: adel.noureddine@univ-pau.fr

Adel Noureddine Static

Static and Dynamic Green Semantic Model for Software

come L'archive ouverte pluridisciplinaire

Context

• ICT energy demands and their green house gaz emissions (GHCE) are rising exponentially [START_REF] Belkhir | Assessing ICT global emissions footprint: Trends to 2040 & recommendations[END_REF][START_REF] Vereecken | Overall ICT footprint and green communication technologies[END_REF],

• Computers and data centers accounts for the majority of ICT energy consumption [START_REF]Network of Excellence in Internet Science. D8.1 Overview of ICT energy consumption[END_REF],

• Most current approaches address energy for specific use cases or individual system layers, • There is a need to address energy holistically in computing systems.

Problem Statement

• Huge and heterogeneous data are shared in smart environments (data centers, IoT, software), • Software specifications (quality, performance) are rarely used in runtime adaptations.

What if?

Use EXIF-style metadata for software?

Proposition and Goals

Attach a textual model to software, with static quality description of software, and dynamic performance predictions:

• Semantic model to group static and dynamic software metrics,

• Performance and energy prediction models for software,

• Comprehensive software semantic model to be used on runtime for autonomous adaptations.

Green Software Semantic Model

Our green software semantic model is composed of four main categories:

General metadata

• Metadata about software, its authors, license information and copyright, or documentation, • Data collected from source code, readme and configuration files (pom.xml, package.json, Makefile).

Software Quality Information

• Code quality and static software metrics,

• Gathered from source code using software analyzers (Frama-C, SonarQube), • Structural data: metrics describing how the source code is written (SLOC, conditions, APIs), • Quality data: how well the code is written (code complexity, duplication, technical debt), • Test data: how well the code has been tested and covered (unit tests, coverage metrics).

Software and Hardware Dependency Information

• Dependencies upon the software/hardware ecosystem,

• Collected from readme and configuration files, and software analyzers,

• Software dependency such as libraries or frameworks, operating systems, or virtual environments, • Hardware dependency such as material architecture, recommended or minimum requirements.

Performance and Energy Prediction Data Models

• Empirical models built using statistical and regression analysis on performance and energy traces, • Two types of models: a coarse model for higher level components' predictions, and a fine-grained model for source code and APIs' predictions.