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Motor Coordination Learning for Rhythmic Movements

Melanie Jouaiti! and Patrick Henaff?

Abstract— The perspective of ubiquitous robots raises the
issue of social acceptance. It is our belief that a successful robot
integration relies on adequate social responses. Human social
interactions heavily rely on synchrony which leads humans to
connect emotionally. It is henceforth, our opinion, that motor
coordination mechanisms should be fully integrated to robot
controllers, allowing coordination, and thus social synchrony,
when required. The aim of the work presented in this paper is
to learn motor coordination with a human partner performing
rhythmic movements. For that purpose, plastic Central Pattern
Generators (CPG) are implemented in the joints of the Pepper
robot. Hence, in this paper, we present an adaptive versatile
model which can be used for any rhythmic movement and
combination of joints. This is demonstrated with various arm
movements.

I. INTRODUCTION

In the last few years, social robotics has been widely
developed with the problematic of how to make robots more
acceptable. The question has been considered from pretty
much every angle, by trying to make the robots physically
attractive to humans, by working on robot gaze, robot speech,
robot grasping or robot walk. Another aspect, which should
not be neglected is the social adequacy and especially the
synchrony phenomena which tend to emerge consciously, or
unconsciously when humans interact with each other [1],
while walking [2], rocking chairs [3] or handshaking [4].
As it just so happens, rhythmic gestures inherently induce
dynamic coupling phenomena playing a fundamental role in
physical and social interpersonal interactions [5], [6].

While the term coordination refers to two events occurring
with a constant phase difference (which can differ from zero),
the term synchronization is more restrictive and imposes a
phase difference of 0 or 7. So synchronization between a
robot and a human performing rhythmic movements would
necessarily lead to motor coordination.

In our opinion, should a robot have the ability to respond
in a socially acceptable way in rhythmic interactions, i.e.
to adapt to the human, robot controllers able to produce
rhythmic movements and trigger the emergence of motor co-
ordination in the interaction are required. One chosen way to
achieve this consists in designing intrinsically rhythmic bio-
inspired robot controllers, such as Central Pattern Genera-
tors (CPGs) which also incorporate synchronization learning
abilities similarly to the plasticity mechanisms involved in
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the human motor nervous system for rhythmic movements
production and coordination.

The aim of this work is to learn motor coordination
with a human partner performing rhythmic arm movements
with changing frequency, amplitude and motion. Conse-
quently, plastic CPGs, i.e. CPGs which incorporate plasticity
mechanisms, are implemented in the joints of the Pepper
robot. Results show that the robot is indeed able to achieve
motor coordination with the human performing various arm
motions.

In the second part of this paper, related works are pre-
sented. In the third part, the CPG model, its architecture
and the equations used in this work are introduced. Then,
in the fourth part, the experimental setup as well as the
experimental results are presented. Finally, we discuss our
results.

II. RELATED WORKS

In [7], subjects were asked to wave their hand to the beat of
a metronome while the experimenter uttered disruptive words
and either waved her hand in phase or anti-phase or not at
all. It was observed that subjects remembered more words
and attributed a greater likability to the experimenter when
she was waving in phase. In [8], a robotic arm was able to
synchronize with an external signal and perform coordinated
drum beating with a changing frequency. They employed the
Dynamic Movement Primitives Framework presented in [9].

Closer to this work, [10] introduced a model designed to
reproduce rhythmic arm movements with the NAO robot. A
reservoir of oscillators provides one with a close frequency
and while the oscillator can be slightly entrained during the
interaction, the oscillators do not retain the frequency, going
back to their original properties right afterwards.

A CPG is a biological structure found in the spinal cord
of vertebrates. It can generate a rhythmic signal which can
be modulated by sensory feedbacks, without receiving any
rhythmic input. The role of CPGs in locomotion has been
proven and well studied and its implication in rhythmic upper
limb movements is also strongly suspected [11], [12]. CPGs
are based on a pair of two mutually inhibitory oscillating
neurons, called half-center [13], controlling the extensor
and flexor muscles. Non-linear CPGs, also called relaxation
oscillators, can synchronize with an oscillatory input or with
a coupled CPG, thus ensuring coordination.

Several oscillator models can produce movement coor-
dination [14], [15]. We chose the Rowat-Selverston (RS)
oscillating neuron model [16] which can exhibit the four
characteristic behaviors of a biological neuron, i.e. endoge-
nous bursting, plateau potential, post-inhibitory rebound and



quiescence [17], [18].

Moreover, McCrea and Rybak [19] proposed a bio-
inspired model of half-center CPG for mammal locomotion.
The CPG is divided into the extensor and flexor parts
and has four interneuron layers: Rhythm Generator, Pattern
Formation, Sensory Neurons and Motoneurons. It can also
takes sensory feedback into account. While this model is
widely used for locomotion [20], [21], [22], very few works
apply it to arm movements: to our knowledge, only [23] used
it to study the reaching movement.

III. MATERIALS AND METHODS

A. CPG Architecture

The general architecture for the CPG is represented Fig.
[[} In the experiments presented in this article, a SoftBank
Robotics Pepper robot is used. The output of the CPG is
thus considered as an angular position offset and the position
control mode to command the joints of Pepper is employed.
For a better understanding of this subsection, please refer to
[24] where the CPG model is extensively detailed.

1) Mathematical Models of the neurons: For the rhythm
generator neurons, Rowat-Selverston cells are used. Forcing
the oscillator and adding mutual inhibition between the
rhythmic cells, the RS neuron model can be written as
follows:
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Fig. 1. General CPG architecture. The CPG output values are used as
angular position commands. With A(F') the amplitude of F’
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with V the membrane potential and 7,, and 7, time
constants, Ay influences the output amplitude, while oy
determines whether the neuron is able to oscillate or not.
os influences the intrinsic frequency, ¢ € N, designating the
joint id. F; the CPG input, € a synaptic weight designed
to scale the input and the term in W models the mutual
inhibition between the extensor and flexor rhythmic cells.

Pattern Formation neuron PF, Sensory neuron SN and
Motoneurons MN are defined as follows [24]:
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with ay = —0.061342 and o, = 3. posmes, 1s the angular
position measured for the given joint.

While M N;, and MN,, would be the command of
the flexor and extensor muscles respectively in biological
systems, in robotics, it is customary to subtract both signals.
So the output would be:

output;(t) = MN;, — MN;, (6)

B. Plasticity mechanisms

Since the RS model is a generalized Van der Pol oscillator,
known properties of the Van der Pol can be applied. Hebbian
mechanisms inspired by [25] can be integrated to the bio-
inspired CPGs, enabling it to learn an external signal.

The learning rules proposed in [24] can be applied and
frequency learning, inspired by [25], is defined as:
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In equation the expression Ay tanh(ZLV) influences
the amplitude of V' and hence of the CPG output. It is thus



interesting to adapt the amplitude of the neuron oscillations
in accordance with the applied signal F;. The learning rule
for the amplitude Ay is the following:
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Finally, ¢ can be considered as a synaptic weight that
normalizes the external signal F;. The adaptation of € is
realized with:

= Atanh®(¢F;) (1 — ( F;)?) 9)
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1 and A are learning steps. v and £ are scaling factors.

C. Modular Architecture

In human vision, starburst cells are important in the com-
putation of direction-selectivity [26]. Those are interneurons
which respond to a visual stimulus moving in a specific
direction. In this work, we replicate this behavior with
the CPGs, making them direction-specific. The shoulder
pitch receives the vertical component of the hand position
as an input and the shoulder roll receives the horizontal
component. In the present experiments, three joints of the
left arm, the shoulder roll, the shoulder pitch and the elbow
yaw joints, are controlled by CPGs. The shoulder roll and
shoulder pitch joints are controlled by CPG; and CPG,
respectively (Fig. [2), that is, the shoulder pitch joint will
be dedicated to the vertical component of motion and its
output is the input of the CPG controlling the elbow yaw
joint (CPGs); the shoulder roll joint is responsible for the
horizontal part of motion.

Visual
Signal (F)

Fig. 2. CPG architecture. The shoulder pitch joint receives the vertical
visual signal Fy, as an input and its output is the input of the CPG con-
trolling the elbow yaw joint; the shoulder roll joint receives the horizontal
visual signal F'y as an input

Moreover, the right CPGs need to be used. For example,
while a circular motion requires all joints to be active, the
shoulder roll joint or the elbow yaw joint is sufficient for
waving. First, the input signal is normalized so that it is
always between -1 and 1. The amplitude of the input signal
is constantly computed over a moving window of 1 second

which allows rapid reconfiguration during the interaction.
Then, the output of each CPG is weighted by the movement
amplitude in the horizontal or vertical dimension, depending
on its specific direction. This scales the movement and
“removes” one dimension when the amplitude is too small.
The equation of the output thus becomes:

output;(t) =(, max_(Fi(k)) - min_(Fi(k)))
- (MN;, — MN;,)

IV. EXPERIMENTAL RESULTS

(10)

We validate our model with a human - robot interaction
for credibility and feasibility’s sake. Indeed, human motion
has higher variability than theoretical data. And this also
illustrates that the CPG is able to compensate the hand
detection failings. We demonstrate the CPG capabilities
through four different interactions, each highlighting a dif-
ferent aspect: frequency adaptation, movement adaptation,
amplitude adaptation, coordinated complex movements.

A. Experimental protocol

Fig. 3. Experiment setup with the human partner performing rhythmic
movements in front of Pepper. Each CPG controls one joint of Pepper to
generate rhythmic movements.

Experiments were carried out with the SoftBank Robotics
robot Pepper. The code was implemented in Python and run
with NaoQi (see Fig. [3). Pepper’s front camera provides a
visual signal at 10 fps. Using this video stream, the hu-
man hand position, obtained with a background subtraction
algorithm, is extracted. All image processing steps were
performed with OpenCV 3.4. In order to avoid noise (due to
lighting) in the detection, Pepper was placed facing a black
background. Besides, to ensure a quality signal, some basic
image processing steps were additionally performed. First,
if needed, the image was enhanced with Contrast Limited
Adaptive Histogram Equalization. Then, the hand of Pepper
moving in front of the camera could also be wrongly detected
as the moving human hand, so an additional thresholding
step was added to remove the white parts from the picture,
followed by a gaussian blur and morphological opening and
closing. Finally, so that the human arm or clothes would not
be mistaken for the hand and so that the best possible signal
would be obtained, the human partner was also wearing
black sleeves (Note that any other color works but the signal



obtained is not as clean). Furthermore, passing the signal
through a low-pass filter with 5 Hz cut-off frequency, helps
removing detection aberrations.
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Fig. 4. Top Left: phase portrait of the articular position, in green for the

first part (before 15 s) and blue for the second part. Top Right: in red, input
of the Shoulder Roll (SR) CPG; in blue, output of the Shoulder Roll (SR)
CPG. Bottom Left: og for the Shoulder Roll joint (red), the Shoulder Pitch
joint (blue), the Elbow Yaw joint (green). Bottom Right: in red, input of the
Shoulder Pitch (SP) CPG; in blue, output of the Shoulder Pitch (SP) CPG

Before the interaction starts, Pepper is at its resting po-
sition. If the robot detects a person agitating the arm, it
activates the CPGs and responds. Each interaction lasts 30
seconds and human partner was careful to maintain the same
movement frequency as much as possible. We designed four
interactions to highlight the capacities of the controller (see
the associated video E[)

The parameters used for both experiments are as follows:
™™ = 0.35, 79 = 3.5, W = 0.005, o = 1.0, A = 0.02,
p="5-1075. They were determined empirically.

B. Frequency Adaptation

The first interaction aims at demonstrating the frequency
adaptation abilities of the CPG controller. For that effect, the
human will perform one motion slowly for fifteen seconds
and then increase the frequency for the remaining time. This
can be observed on Figure []

The intrinsic frequency of the CPG controller depends on
parameter og. On Figure ] og decreases in the first part of
the interaction to adapt to the slow human movement and
stabilizes around 10. In the second part of the interaction,
it increases to accommodate the fast movement but doesn’t
stabilize since the human movement is not perfectly homo-
geneous and the frequency keeps increasing.

C. Amplitude Adaptation

In the second interaction, we will show the amplitude
adaptation capacities of the controller. This time, the human
will perform a circular gesture and reduce the movement
amplitude after fifteen seconds.

IThe associated video can be found at https://members.loria.
fr/mjouaiti/files/EPIROB19_1.mp4

The phase portrait of Figure [5] roughly represents the
movement performed by the robot. First, the robot is indeed
able to achieve a circular motion and two distinct ellipses
with different amplitude can be seen. The amplitude adapta-
tion can also be observed in the CPG outputs. The amplitude
of the command send to the robot effectively decreases when
the human motion amplitude decreases.

Note that the robot is not copying the human movement
because the amplitude of the robot movement doesn’t match
the amplitude of the human movement. However as shown
previously, if the human reduces the amplitude, the robot
will as well.
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Fig. 5. Top Left: phase portrait of the articular position, in green for the

first part (before 15 s) and blue for the second part. Top Right: in red, input
of the Shoulder Roll (SR) CPG; in blue, output of the Shoulder Roll (SR)
CPG. Bottom Left: og for the Shoulder Roll joint (red), the Shoulder Pitch
joint (blue), the Elbow Yaw joint (green). Bottom Right: in red, input of the
Shoulder Pitch (SP) CPG; in blue, output of the Shoulder Pitch (SP) CPG

D. Movement Adaptation

We tested the robot on rhythmic motions of three
levels of difficulty: easy with waving motion (horizon-
tal/vertical/diagonal), intermediate with a circular motion and
difficult with an infinity symbol motion.

In this third interaction, we will highlight the movement
adaptation capacities of the controller. This time, the human
will switch movement after fifteen seconds. We will not show
all the possible movements but we will illustrate the concept.

In the first fifteen seconds, the human performs a horizon-
tal waving gesture and then switches to a circular motion.
The two different movements can be observed on the phase
portrait of Figure [6] So the controller is able to adapt to
different human movements without any reconfiguration of
the CPG architecture.

E. Coordinated Complex Movements

In this last part, we show that the controller is able
to reproduce complex movements (infinity symbol) and to
still achieve coordination. The error measurement metric
for coordination between the human and robot movements
employed is the Phase Locking Value (PLV) [27]. It ranges
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Fig. 6. Top Left: phase portrait of the articular position, in green for the

first part (before 15 s) and blue for the second part. Top Right: in red, input
of the Shoulder Roll (SR) CPG; in blue, output of the Shoulder Roll (SR)
CPG. Bottom Left: og for the Shoulder Roll joint (red), the Shoulder Pitch
joint (blue), the Elbow Yaw joint (green). Bottom Right: in red, input of the
Shoulder Pitch (SP) CPG; in blue, output of the Shoulder Pitch (SP) CPG

from 0 (no coordination) to 1 (perfect coordination). The
instantaneous PLV can be defined as:

N
PLV(t) = % 263(431(1)—%(2)) (11)
with N the sliding window size, j = v/—1, ¢}, the instanta-
neous phase of signal k£ computed with the Hilbert transform.

The PLV for each joint can be observed on Figure
Let us remark that the PLV for the Shoulder Pitch joint
suggests that the two signals are badly coordinated. However,
looking at the curve of the CPG input and output, they appear
almost perfectly superimposed. This poor performance can
be explained by the fact that the signal is not a perfect
sinusoid. Similarly, note also that the PLV sometimes appears
crenelated, this is due to the hand position which was some-
times badly detected: these aberrations prevent the human
signal from being a perfect sinusoid, which the PLV requires
to work optimally.

Moreover, we can observe that the motion performed
by the robot is not perfectly symmetrical. This is due to
the human motion not being symmetrical either. The CPG
maintains human characteristics.

V. DISCUSSION AND CONCLUSION

This paper demonstrated the versatility of our model of
plastic CPG for motor coordination learning between a robot
and a human partner over a wide range of movements.

Results show that the robot achieves motor coordination
with the human partner through a visual signal of a hand
performing rhythmic movements. The robot is able to adapt
its frequency, amplitude and motion generation according to
the human motion. However, we do not achieve copying of
the motion but rather, the robot adapts to the frequency and
movement while retaining its own identity. This is similar to
what we observed in on-going research of human interactions
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Fig. 7. Top Left: phase portrait of the articular position. Top Right: in

red, input of the Shoulder Roll (SR) CPG; in blue, output of the Shoulder
Roll (SR) CPG. Bottom Left: PLV for the Shoulder Roll joint (red), the
Shoulder Pitch joint (blue), the Elbow Yaw joint (green). Bottom Right: in
red, input of the Shoulder Pitch (SP) CPG; in blue, output of the Shoulder
Pitch (SP) CPG

where individuals perform the same movement at the same
frequency but each maintaining their own characteristics.

Moreover, in our previous case study of handshaking [24],
the CPG was entrained due to the physical locking. In this
case, there is no physical contact so plasticity mechanisms
truly are responsible for the motor coordination and adapta-
tion. Were o, not learned, the robot would just move at its
own intrinsic frequency and there would be no coordination
whatsoever with the human partner.

Note also that in [24], we used force feedback and the CPG
output as a velocity command. Here, as there is no physical
interaction and the Pepper robot has neither velocity control
nor torque sensors, a similar setup could not possibly be
done. However, we still employ the same CPG successfully,
thus demonstrating its versatility and the wide range of
possibilities. Moreover, in on-going research, we are also
able to use the CPG output as a torque command.

Our system allows us to control the robot in real time
since our calculations are very fast: the CPG calculations
last under 5 ms and the image processing around 20 ms.

The scope of this work needn’t restrain itself to mere
arm motion. Pepper is a social robot and is more and more
used as such. Nowadays, it can be found in train stations,
shopping centers, hospitals, schools... This work could easily
be generalized to another set of joints or another robot
to realize any synchronized rhythmic actions. This could
be taken much further with whole-body coordination using
music or while ”walking”. People already tend to interact
with Pepper easily because of its appealing appearance; a
coordinated, more “human-like”, dare we say, interaction
might still enhance the quality of the experience.

In future works, we plan to reproduce discrete movements
as well as rhythmic movements and be able to switch
seamlessly between both. We will also improve the detection
quality and robustness and generalize it to expand this work
to whole upper-body control.
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