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Standard positron emission tomography (PET) reconstruction techniques are based on maximum-likelihood (ML) optimization methods, such as the maximum-likelihood expectation-maximization (MLEM) algorithm and its variations. Most of these methodologies rely on a positivity constraint on the activity distribution image. Although this constraint is meaningful from a physical point of view, it can be a source of bias for low-count/high-background PET, which can compromise accurate quantification. Existing methods that allow for negative values in the estimated image usually utilize a modified loglikelihood, and therefore break the data statistics. In this work we propose to incorporate the positivity constraint on the projections only, by approximating the (penalized) log-likelihood function by an adequate sequence of objective functions that are easily maximized without constraint. This sequence is constructed such that there is hypo-convergence (a type of convergence that allows the convergence of the maximizers under some conditions) to the original log-likelihood, hence allowing us to achieve maximization with positivity constraint on the projections using simple settings. A complete proof of convergence under weak assumptions is given. We provide results of experiments on simulated data where we compare our methodology with the alternative direction method of multipliers (ADMM) method, showing that our algorithm converges to a maximizer which stays in the desired feasibility set, with faster convergence than ADMM. We also show that this approach reduces the bias, as compared with MLEM images, in necrotic tumors-which are characterized by cold regions surrounded by hot structures-while reconstructing similar activity values in hot regions.

I. INTRODUCTION

U NTIL the 1980's, tomographic image reconstruction, which includes positron emission tomography (PET), relied on filtered-backprojections (FBP), consisting in computing the generalized inverse of the Radon transform [START_REF] Natterer | The Mathematics of Computerized Tomography[END_REF]. As an inverse of an operator between two functional spaces, FBP does not include a non-negativity assumption on the image, but only computes an image that matches the observed projection data. As a result of the direct inversion, high frequencies in the data are amplified by the ramp filter present in the FBP operator.

With the publication of the iterative maximum-likelihood expectation-maximization (MLEM) algorithm for emission tomography [START_REF] Shepp | Maximum likelihood reconstruction for emission tomography[END_REF], [START_REF] Lange | EM reconstruction algorithms for emission and transmission tomography[END_REF] and its accelerated version [START_REF] Hudson | Accelerated image reconstruction using ordered subsets of projection data[END_REF], PET image reconstruction by maximum-likelihood (ML) techniques grew in popularity and replaced FBP in most clinical settings. By accounting for the statistical model of the emission data, MLEM delivers images with better noise and resolution properties, which can also be further controlled with the addition of a penalty term on the log-likelihood [START_REF] De Pierro | A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography[END_REF].

The MLEM algorithm consists in maximizing the expected log-likelihood, where the "expectation" is obtained from the activity estimate at the previous iteration. The underlying model assumes that the emissions at each voxel follow a Poisson distribution centered on the activity image. Hence, each MLEM iteration produces positive images. More generally, most iterative reconstruction algorithms impose positivity on the reconstructed image [START_REF] De Pierro | A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography[END_REF]- [START_REF] Ahn | Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms[END_REF].

The drawback of the positivity constraint is the induced bias in low-activity (cold) regions. This bias is further amplified when the regions are surrounded by high-activity (hot) regions, which artificially increase the activity in cold regions due to spillover (partial volume effects). This compromises quantitative studies such as kinetic modeling or tumor texture analysis in the presence of hypoxia or necrosis [START_REF] Soussan | Relationship between tumor heterogeneity measured on FDG-PET/CT and pathological prognostic factors in invasive breast cancer[END_REF], [START_REF] Hatt | Characterization of PET/CT images using texture analysis: the past, the present... any future?[END_REF]. Moreover, iterative reconstruction algorithms suffer from noise-induced bias, which affects quantification in low-statistic scans with high-background (random and scatter) fraction [START_REF] Carlier | Y90-PET imaging: Exploring limitations and accuracy under conditions of low counts and high random fraction[END_REF].

Several approaches allowing for negative activity values have been proposed in order to reduce bias, including modifications of the original MLEM algorithm to impose an upper-bound and a (negative) lower-bound [START_REF] Erlandsson | Low-statistics reconstruction with AB-EMML[END_REF], [START_REF] Wang | Low-count PET image reconstruction using sinogram shifting (abstract only)[END_REF], as well as Poisson/Gaussian mixture models [START_REF] Nuyts | Maximum-likelihood reconstruction based on a modified Poisson distribution to reduce bias in PET[END_REF], [START_REF] Van Slambrouck | Bias reduction for low-statistics PET: Maximum likelihood reconstruction with a modified Poisson distribution[END_REF]. However, these methods depend on some parameters (lower-bound for [START_REF] Erlandsson | Low-statistics reconstruction with AB-EMML[END_REF], [START_REF] Wang | Low-count PET image reconstruction using sinogram shifting (abstract only)[END_REF], likelihood mixture parameter for [START_REF] Nuyts | Maximum-likelihood reconstruction based on a modified Poisson distribution to reduce bias in PET[END_REF], [START_REF] Van Slambrouck | Bias reduction for low-statistics PET: Maximum likelihood reconstruction with a modified Poisson distribution[END_REF]) which affect the reconstructed image characteristics. Therefore, these parameters need to be optimally chosen. In addition, these methods break the statistical model and therefore are vulnerable to noise amplification. More recently, Lim et al. [START_REF] Lim | A PET reconstruction formulation that enforces non-negativity in projection space for bias reduction in Y-90 imaging[END_REF] have developed a penalized maximum-likelihood (PML) algorithm for PET that performs maximization of the penalized log-likelihood (PLL) with positivity constraint on the projections, by maximizing the PLL over its entire domain of definition. The optimization problem was reformulated as an augmented Lagrangian saddle point problem, which was solved with the help of an alternative direction method of multipliers (ADMM) [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF]. Consequently, its implementation depends on the choice of the augmented Lagrangian weight.

In this paper we propose an alternative to [START_REF] Lim | A PET reconstruction formulation that enforces non-negativity in projection space for bias reduction in Y-90 imaging[END_REF] to solve the PML problem with positivity constraint on the projections. We approximate the PLL function by an adequate sequence of objective functions without constraint on feasibility. This sequence is designed such that it hypo-converges to the original PLL (see Definition 1). The overall algorithm consists of approximately maximizing each objective function of the sequence successively and without constraint; the hypo-convergence of the sequence of objective functions allows the sequence of maximizers to converge to the PML with positivity constraint on the projections.

A preliminary version of this work was presented at the 2018 Nuclear Science Symposium and Medical Imaging Conference [START_REF] Bousse | Hypo-convergence for pet reconstruction with non-negativity constraints in projection space (abstract only)[END_REF]. We substantially extended this work by incorporating a mathematical analysis of our algorithm and a complete proof of convergence (Section II). We also added a comparison with the ADMM method proposed by Lim et al. [START_REF] Lim | A PET reconstruction formulation that enforces non-negativity in projection space for bias reduction in Y-90 imaging[END_REF] on simulated data (Section III-C), as well as a quantitative analysis on simulated oncology images with a necrotic tumor (Section III-D).

II. THEORY

A. PET Measurement

The radiotracer activity distribution to be reconstructed takes the form of a digital image vector f = [f 1 , . . . , f nv ] ∈ R nv , where n v is the number of voxels in the volume and ' ' is the matrix transpose symbol. The activity at voxel j (in kBq per unit of volume) is [f ] j = f j , the symbol [•] j representing the j-th element of a vector (or a matrix if double indexation). The activity image is indirectly observed through the PET imaging system comprising n b detector bins modeled by a system matrix H ∈ R n b ×nv + , where each entry [H] i,j represents the probability (up to a scale) that a photon pair resulting from an annihilation in the j-th voxel is detected by the i-th detector bin. The system matrix accounts for the scanner geometry, sensitivity, acquisition time and resolution as well as the attenuation factors. The number of detected photon pairs at each bin is a random vector g = [g 1 , . . . , g n b ] ∈ N n b that follows a Poisson distribution with independent entries, ∀i = 1, . . . , n b , g i ∼ Poisson(ḡ i (f )) .

(

) 1 
The parameter ḡi (f ) represents the expected counts at bin i and is defined as

∀i = 1, . . . , n b , ḡi (f ) [Hf ] i + r i , (2) 
where the r i 's represent the expected background events (randoms and scatter). The expected values ḡi (f ) and r i ≥ 0, i = 1, . . . , n b , are stored in vectors respectively denoted ḡ(f ) and r, so that (2) can be rewritten with the matrix formulation ḡ(f ) = Hf + r.

Remark 1. For the rest of the article we consider the following assumptions (see [START_REF] Ahn | Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms[END_REF]). For H ∈ R n b ×nv + we assume that min i (max j ([H] i,j )) > 0, i.e., no row of H is identically zero (there is no inane bin). For g ∈ N n b we assume that g H1 > 0, where 1 denotes a vector of ones, which is a sufficient condition for the strict concavity of the objective function in most settings, as demonstrated in [START_REF] Ahn | Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms[END_REF]. Additionally, we will consider functions with values in R = R ∪ {-∞}, in particular we extend the definition of log(x) to all x ∈ R considering log(x) = -∞ for x ≤ 0. Finally, • denotes the 2 -norm.

B. Penalized Maximum-Likelihood Reconstruction 1) Poisson Distribution: Given a measurement g, the like- lihood of an image f is L(g | f ) = i p(g i | ḡi (f )), with p(n | λ) = e -λ λ n /n!. Omitting the terms independent of f , the log-likelihood L is L(f ) log L(g | f ) = n b i=1 h i (ḡ i (f )) (3) 
where for all i = 1, . . . , n b , h i : R → R is defined as

h i (x)      g i log(x) -x if g i > 0 and x > 0 , -x if g i = 0 and x ≥ 0 , -∞ otherwise . (4) 
The likelihood function L is thereby finite on the subset D ⊂ R nv defined as

D {f ∈ R nv : ∀i ∈ {1, . . . , n b }, ḡi (f ) ≥ 0 and g i > 0 ⇒ ḡi (f ) > 0} .
which explicitly means each image f (even with negative entries) is in D provided that ḡi (f ) ≥ 0 and ḡi (f ) = 0 implies g i = 0, i.e., no annihilation is detected at bin i.

2) Standard Penalized Maximum-Likelihood with Positivity Constraint on the Image: Standard statistical image reconstruction in PET is formulated as the following constrained PML problem: maximize L(f )+U (f ) subject to f ∈ D and f ≥ 0 .

(5) where U : R nv → R is a penalty term often defined as

U (f ) = -γ nv j=1 m∈Nj ω j,m ψ(f j -f m ), (6) 
ψ : R → R + is assumed strictly convex, even, continuously differentiable (hence lim |x|→+∞ ψ(x) = +∞) 1 , j → N j ⊂ {1, . . . , n v } is a connected neighboring system (i.e., for all pair (j, j ) there is a path j = j 0 , j 1 , . . . , j K = j such that j k ∼ j k+1 , ∀k = 0, . . . , K -1, where here the '∼' symbol denotes the neighboring binary relation), ω j,m = 1/dist(j, m) and γ is a penalty strength parameter. The constraint in ( 5) is suitable to the definition of f , which represents a non-negative value that corresponds to the radioactivity at each voxel. It is also a convenient "box constraint" that can be enforced on each voxel independently. As a result, any optimization algorithm that ensures the k-th estimate f k at iteration k satisfies f k ≥ 0 will provide, if it converges, a solution f ≥ 0 which satisfies the constraint D.

A typical approach for ML and PML reconstruction in emission tomography is to utilize a sequence of suitable separable surrogate functions

Q(• | f k ) such that the new estimate f k+1 is obtained by maximization of f → Q(f | f k ).
When Q is a sum over the voxels j of sub-functions depending on a single [f ] j , the new estimate [f k+1 ] j is computed for each voxel j independently. This class of method is particularly suitable for box constraints such as in [START_REF] De Pierro | A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography[END_REF]. The surrogate functions Q(• | f k ) can be for example the expected loglikelihood, as used for MLEM [START_REF] Shepp | Maximum likelihood reconstruction for emission tomography[END_REF], [START_REF] Lange | EM reconstruction algorithms for emission and transmission tomography[END_REF], and the modified maximum-likelihood expectation-maximization (M-MLEM) [START_REF] De Pierro | A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography[END_REF] that includes a penalty term. It can also be a sum of paraboloid functions for each voxel [START_REF] Ahn | Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms[END_REF], [START_REF] Erdogan | Monotonic algorithms for transmission tomography[END_REF], [START_REF]Ordered subsets algorithms for transmission tomography[END_REF]. Other methods, for instance using ordered subsets [START_REF] Hudson | Accelerated image reconstruction using ordered subsets of projection data[END_REF], one-step-late [START_REF] Green | Bayesian reconstructions from emission tomography data using a modified EM algorithm[END_REF] and quasi-Newton line-search [START_REF] Tsai | Fast quasi-newton algorithms for penalized reconstruction in emission tomography and further improvements via preconditioning[END_REF], also rely on the non-negativity of f .

3) Penalized Maximum-Likelihood with Positivity Constraint on Projections: In a Poisson parameter estimation task, the positivity constraint is a source of bias which worsens with the presence of an additive constant term (background). Consider the following one-dimensional example: let Y be a Poisson random variable of parameter ax + b, with x, a, b > 0, and the task is to estimate x from Y . The unconstrained maximumlikelihood estimator x = (Y -b)/a is unbiased. On the other hand, the estimator with positivity constraint, x = max(0, (Yb)/a), has a strictly positive bias

E[x] -x = E 1 a (b -Y )1 [0,b[ (Y ) (7) 
≥ b a P({Y = 0}) = b a e -(ax+b) > 0
where 1 A denotes the indicator function of a set A. In addition, by noticing that b -Y ≤ b in [START_REF] Ahn | Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms[END_REF], we observe that the bias is upper-bounded:

E[x] -x ≤ b a .
Therefore the bias is small whenever b a. Otherwise, the estimator is more likely to suffer from a relatively larger bias as x approaches 0.

The above rationale translates to PET reconstruction, with x corresponding to the activity image f , a representing the true coincidence detection rate (multiplied by the acquisition time), 1 For our experiments we used ψ(x) = 1 2 x 2 and b corresponding to the expected background-event vector r (random and scatter). When the true coincidence fraction in the data vector g is high (relatively to the background), the constraint {f ≥ 0} in ( 5) is not strongly enforced, since this condition fits reasonably well with the data. On the contrary, in a low-count/high-background situation (therefore low true coincidence fraction), a solution of (5) actively tries to cross the boundaries of {f ≥ 0} in order to fit with the data, and the problem of noise-induced bias from such positivity constraint becomes more apparent in low-activity regions.

A solution is to replace the optimization problem [START_REF] De Pierro | A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography[END_REF] with

maximize L(f ) + U (f ) subject to f ∈ D . (8) 
Solving ( 8) is less constraining than solving (5) as it allows for solutions with negative values, provided that they belong to D. On the other hand, it is a challenging problem since the constraints are expressed through the system matrix H, as opposed to coordinate-wise constraints.

Several methods [START_REF] Erlandsson | Low-statistics reconstruction with AB-EMML[END_REF]- [START_REF] Van Slambrouck | Bias reduction for low-statistics PET: Maximum likelihood reconstruction with a modified Poisson distribution[END_REF] were proposed to allow for negative values in f , but they do not solve [START_REF] Soussan | Relationship between tumor heterogeneity measured on FDG-PET/CT and pathological prognostic factors in invasive breast cancer[END_REF]. In addition, they depend on manually set parameters which impact on the reconstructed image properties (bias and noise). Recently, Lim et al. [START_REF] Lim | A PET reconstruction formulation that enforces non-negativity in projection space for bias reduction in Y-90 imaging[END_REF] developed a methodology to solve [START_REF] Soussan | Relationship between tumor heterogeneity measured on FDG-PET/CT and pathological prognostic factors in invasive breast cancer[END_REF]. They demonstrated that in a low-count/high-background situation their methodology provides better quantification than using the modified likelihood approach [START_REF] Nuyts | Maximum-likelihood reconstruction based on a modified Poisson distribution to reduce bias in PET[END_REF], [START_REF] Van Slambrouck | Bias reduction for low-statistics PET: Maximum likelihood reconstruction with a modified Poisson distribution[END_REF] with a sub-optimal parameter. Their methodology was derived from an augmented Lagrangian formulation to separate the image f from the projection g and to transfer the constraint to an auxiliary variable which does not involve the system matrix H. The augmented Lagrangian obtained was then optimized with the help of an ADMM framework [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF]. However, the speed of convergence of ADMM depends on the augmented Lagrangian parameter and therefore should be chosen appropriately (see [START_REF] Ghadimi | Optimal parameter selection for the alternating direction method of multipliers (ADMM): Quadratic problems[END_REF], [START_REF] Xu | Adaptive ADMM with spectral penalty parameter selection[END_REF]).

C. Proposed Approach 1) Strategy:

We propose an alternative to [START_REF] Lim | A PET reconstruction formulation that enforces non-negativity in projection space for bias reduction in Y-90 imaging[END_REF] to solve [START_REF] Soussan | Relationship between tumor heterogeneity measured on FDG-PET/CT and pathological prognostic factors in invasive breast cancer[END_REF]. Instead of directly maximizing L, we maximize a sequence of approximate log-likelihood L k : R nv → R such that it converges to L in an appropriate sense. We define L k as

L k (f ) = n b i=1 h k i (ḡ i (f )), f ∈ R nv , (9) 
with h k i : R → R defined as

h k i (x) = h i (ϕ k (x)) = g i log ϕ k (x) -ϕ k (x) if g i > 0 , β k log ϕ k (x) -ϕ k (x) if g i = 0 , (10) 
and ϕ k : R →]0, +∞[ is an approximation of x → max(0, x) defined as

ϕ k (x) log(1 + exp(α k x))/α k ,
with α k → +∞ and β k 0 + . The concept of hypo-convergence is a key element in this article, and is defined in the following way.

Definition 1. Consider the functions F, F k : R n → R, k ∈ N. We say that (F k ) k hypo-converges to F , and we denote it as

F k h F , if for all x ∈ R n (i) lim sup k F k (x k ) ≤ F (x) for all x k → x, and (ii) lim inf k F k (x k ) ≥ F (x) for some x k → x . Remark 2. F k h F and G k h G does not necessarily imply F k +G k h F +G. Moreover, F k = F for all k does not imply F k h F . It is however true if F is upper semi-continuous (see Definition A.1). If F k h F and U is continuous then F k + U h F + U . When α k β k → +∞, the sequence (L k ) k hypo-converges to L.
This property is one of the main ingredients to demonstrate that maximizing L + U can be achieved by maximizing L k + U sequentially (the equivalent notion for minimization problems is epi-convergence), as stated in the following theorem.

Theorem 1. Let f k = arg max f ∈R nv L k (f ) + U (f ). Assume that α k β k → +∞. Then f k → f = arg max f ∈D L(f ) + U (f ) .
A complete proof is provided in Section II-D, with additional elements in Appendix A and B. In particular, we observe that under the mild conditions in Remark 1, L k + U and L + U have unique maximizers on R nv and D respectively. Remark 3. The choice [START_REF] Carlier | Y90-PET imaging: Exploring limitations and accuracy under conditions of low counts and high random fraction[END_REF] to approximate h i is non-unique and other approximations are possible. Another solution is the Poisson/Gaussian approximation introduced by Nuyts et al. [START_REF] Nuyts | Maximum-likelihood reconstruction based on a modified Poisson distribution to reduce bias in PET[END_REF] then re-utilized by Van Slambrouck et al. [START_REF] Van Slambrouck | Bias reduction for low-statistics PET: Maximum likelihood reconstruction with a modified Poisson distribution[END_REF]. The approximate h i is defined as

h δ i (x) = g i log(x) -x for x ≥ δ and h δ i (x) = -(x-gi) 2 2δ + g i log(δ) -δ + (δ-gi) 2 2δ
for x < δ. A similar framework can then be achieved by maximizing each

L δ + U as δ → 0, with L δ (f ) i h δ i (ḡ i (f )). 2) Solving the Sub-Problem: Solving (8) reduces to maxi- mizing the unconstrained problems maximize L k (f ) + U (f ), f ∈ R nv , (11) 
for a sequence of k's. This can be achieved with any unconstrained optimization algorithm.

In this work, we utilized a limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [START_REF] Nocedal | Numerical Optimization[END_REF] to solve [START_REF] Erlandsson | Low-statistics reconstruction with AB-EMML[END_REF], for which we give a brief description. Assume we are estimating f k from f k-1 . Let Φ k L k + U be the approximated PLL at iteration k we wish to maximize. We define the first estimate as f k,(0) = f k-1 . At inner-iteration q, given a current estimate f k,(q) , the new estimate f k,(q+1) is obtained as

f k,(q+1) = f k,(q) -s B k,(q) ∇Φ k (f k,(q) ) (12) 
with s = arg max

s∈[0,1] η(s) (13) 
and η(s) Φ k (f k,(q) -sB k,(q) ∇Φ k (f k,(q) )) ,

where B k,(q) is an approximate inverse Hessian of Φ k evaluated at f k,(q) . The matrix/vector product B k,(q) ∇Φ k (f k,(q) ) in ( 12) is directly computed (without storing B k,(q) ) from the m previous iterates f k,(q-p) , p = 0, . . . , m -1.

For this paper we utilized the implementation from [START_REF] Zhu | Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization[END_REF], which we also used in previous work [START_REF] Tsai | Fast quasi-newton algorithms for penalized reconstruction in emission tomography and further improvements via preconditioning[END_REF]. Full details on the derivation of B k,(q) ∇Φ k (f k,(q) ) can be found in [START_REF] Nocedal | Numerical Optimization[END_REF], Chapter 6. The L-BFGS algorithm seeks for an approximate solution of [START_REF] Nuyts | Maximum-likelihood reconstruction based on a modified Poisson distribution to reduce bias in PET[END_REF]. Our implementation used an iterative "backtracking" algorithm, consisting in gradually decreasing s from s init = 1 until it satisfies the Wolfe Conditions [START_REF] Nocedal | Numerical Optimization[END_REF], i.e.,

η(s ) ≥ η(0) + c 1 s η (0) (14) η (s ) ≤ c 2 η (0) (15) 
with 0 < c 1 < c 2 < 1 (we used c 1 = 10 -4 and c 2 = 0.9). These conditions ensure a sufficient increase of η(s) (condition ( 14)) as well as a sufficient decrease of the slope η (s) (condition [START_REF] Lim | A PET reconstruction formulation that enforces non-negativity in projection space for bias reduction in Y-90 imaging[END_REF]). Furthermore, it can be demonstrated that if s satisfies both ( 14) and ( 15) then the next L-BFGS inverse Hessian approximate B k,(q+1) is negative-definite (see [START_REF] Nocedal | Numerical Optimization[END_REF], page 138), thus guaranteeing an ascent direction. The iterative scheme (w.r.t. q) is repeated until either the convergence criterion f k,(q+1) -f k,(q) / max{ f k,(q+1) , f k,(q) , 1} ≤ τ is met or q reaches a preset maximum number N inner of iterations. The L-BFGS algorithm needs to be able to evaluate Φ k and to compute ∇Φ k , which is obtained by applying the chain rule on L and ϕ k . Each inner iteration q requires a minimum of 2 projections/backprojections. As a surrogate of CPU time, we counted the number of projections/backprojections (including during the backtracking algorithm to find s in ( 13)), to compare the algorithms performance in Section III.

3) Algorithm Summary: Our methodology, namely hypoconvergence for penalized maximum-likelihood (HypoC-PML), is summarized in Algorithm 1. Any sequence (α k ) k and (β k ) k such that α k β k → +∞ can be used. We primarily used α k = k 2 and β k = k -1 but other sequences were considered (see Section III-C). Operation Define on lines 6, 9, 11 and 13 designates the creation of a mapping whereas Solve(problem; x, N ) designates the output of an optimization algorithm applied to some optimization problem, initialized with a vector x and using a given solver (here L-BFGS) with N iterations.

Algorithm 1: HypoC-PML algorithm

Input: PET data g, penalty strength γ, #outer iterations Nouter,

#inner iterations N inner Output: Reconstructed image f 1 initialization ; 2 f ← 1 ; 3 for k = 1, . . . , Nouter do 4 α ← k 2 ; 5 β ← k -1 ; 6 Define ϕ : x → log(1 + exp(αx))/α ; 7 for i = 1, . . . , n b do 8 if g i > 0 then 9 Define h i : x → g i log ϕ(x) -ϕ(x) ; 10 else 11 Define h i : x → β log ϕ(x) -ϕ(x) ; 12 end 13 Define Φ : x → i h i (ḡ i (x)) + U (x) ; 14 f ← Solve(max x∈D Φ(x); f , N inner ) ; 15 end

D. Proof of Theorem 1

We proceed to prove Theorem 1 by verifying below all the conditions required in Lemma A.1: Theorem 2 will check the conditions for L k + U and L + U to have unique maximizers; Theorem 3 verifies the condition for the boundedness of the sequence (f k ) k ; Theorem 3 and Remark 2 will imply the hypo-convergence of L k + U to L + U (see Definition 1). Once all the conditions are satisfied, Theorem A.1 and Lemma A.1 readily imply that f k → f * . Theorem 2. The functions L + U and L k + U (see (3), ( 6) and (9)), are proper and strictly concave, upper semi-continuous and coercive (see Definition A.1).

Proof: It is clear that L and L k are proper and upper semi-continuous, while U is continuous. It is also clear that L and L k are concave functions (see lemma B.1) and, using the condition g H1 > 0 as in [START_REF] Ahn | Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms[END_REF], it follows that L + U and L k + U are strictly concave.

In the following the iteration number (superscript) k is fixed, and to prove coercivity we introduce the sequence subscript n and an arbitrary sequence

(f n ) n with f n → +∞. We want to prove that L k (f n ) + U (f n ) → -∞ and L(f n ) + U (f n ) → -∞. This is straightforward if U (f n ) → -∞, hence we assume U (f n ) -∞.
In such case there exists a sub-sequence (n p ) p and a voxel j such that [f np ] j → ±∞, let us say +∞, as p → +∞ (the case -∞ is similar), and (U (f np )) p is bounded. The neighboring system j → N j being connected (c.f. the definition of U ), we have

[f np ] j → +∞ for all j ((U (f np )) p is bounded, so if [f np ] j → +∞, then [f np ] j → +∞
for all j ∈ N j , and so on), so that [Hf np ] i → +∞ for at least one i, and L k (f np ) → -∞ and L(f np ) → -∞ as p → +∞. The same rationale applies for

[f np ] j → -∞. Since the sequence (f n ) n is arbitrary, we have demonstrated that L k (f )+U (f ) → -∞ and L(f ) + U (f ) → -∞ as f → +∞. Theorem 3. The sequence (L k ) k satisfies that L k h L and there exists G : R nv → R such that G + U is coercive and L k (f ) ≤ G(f ) for all f ∈ R nv .
Proof: To prove that L k h L we need to demonstrate that L and L k satisfy (i) and (ii) of Definition 1.

Property (i) is clear since lim sup k L k (f k ) = lim sup k i h k i (ḡ i (f k )) ≤ i lim sup k h k i (ḡ i (f k )) and Lemma B.1, parts b) and c), establishes that h k i h h i . Hence, if f k → f , then lim sup k L k (f k ) ≤ L(f ).
For property (ii), we observe that

lim inf k L k (f k ) = lim inf k i h k i (ḡ i (f k )) ≥ i lim inf k h k i (ḡ i (f k ))
. By the assumptions on H we have η

min i (max j ([H] i,j )) > 0, and if f ∈ R nv then f k f + β k η 1 satisfies ḡi (f k ) ≥ ḡi (f ) + β k , ∀i. Then Lemma B.1, parts b) and c), implies for this (f k ) k that lim inf k h k i (f k ) ≥ h i (ḡ i (f )), ∀i, hence lim inf k L k (f k ) ≥ L(f ).
We now prove the second part by letting G(f )

n b i=1 h 0 i (ḡ i (f ))
. Using Lemma B.1, part a), we have that G(f ) ≥ L k (f ), ∀k. And using an argument similar to that of the proof of Theorem 2, it follows that G + U is coercive.

III. RESULTS ON SIMULATED DATA

The benefit of utilizing negative values in PET for bias reduction in low-activity regions has already been demonstrated in previous work [START_REF] Erlandsson | Low-statistics reconstruction with AB-EMML[END_REF]- [START_REF] Lim | A PET reconstruction formulation that enforces non-negativity in projection space for bias reduction in Y-90 imaging[END_REF]. Our methodology solves the same optimization problem as the ADMM method from Lim et al. [START_REF] Lim | A PET reconstruction formulation that enforces non-negativity in projection space for bias reduction in Y-90 imaging[END_REF] (i.e., solving (8)), and thus converges to the same unique PML solution with the same properties (such as bias and noise). Therefore the objective of our simulations is to demonstrate that HypoC-PML achieves the desired results, which is the maximization of the PLL over the domain D, using a simple and easy to implement approach, and compare its convergence speed with ADMM. It is expected that HypoC-PML behaves similarly to standard PML algorithms over highactivity regions, but it should return a different reconstruction, possibly including negative values, over low-activity regions. In addition, HypoC-PML images are expected to be noisier over low-activity regions (such as the lungs) due to the absence of a lower-bound.

A. General Settings

All experiments were performed with 133×133×42 volumes, with 3.125-mm voxel-size. The projector H models a 5-mm full-width at half-maximum (FWHM) PET system with 210 angles of view (parallel projections) and includes attenuation factors (phantom-dependent) as well as the acquisition time. The measurements were generated from a ground truth activity

f truth [f truth 1 , . . . , f truth nv ] ∈ R nv
+ following the Poisson model [START_REF] Natterer | The Mathematics of Computerized Tomography[END_REF]. The projected data comprised 33% and 66% of background events (corresponding to realistic randoms+scatter proportions in 18 F-fludeoxyglucose ( 18 F-FDG) PET, see for example [START_REF] Karakatsanis | Dosage optimization in positron emission tomography: State-of-the-art methods and future prospects[END_REF]), in the form of a uniform vector r.

Activity images were reconstructed with M-MLEM, i.e., by solving the optimization problem (5) with positivity constraint on the image, using the optimization-transfer algorithm proposed in [START_REF] De Pierro | A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography[END_REF] and 400 iterations, and by solving the optimization problem [START_REF] Soussan | Relationship between tumor heterogeneity measured on FDG-PET/CT and pathological prognostic factors in invasive breast cancer[END_REF] with both HypoC-PML and ADMM. For each method we used the same quadratic penalty term U (see equation ( 6)) with ψ(x) = 1 2 x 2 and the standard 26 neighbors structure. Each methods used the same penalty weight γ. HypoC-PML was executed with (α k , β k ) = (k 2 , 1/k), (k 2 , 1/ log(k + 1)) and (k 3 , k -1/2 ), with N inner = 70 (maximum number of L-BFGS iterations on q) and N outer = 25. The corresponding reconstruction methods were denoted HypoC-PML-1, HypoC-PML-2 and HypoC-PML-3. ADMM was implemented as described in Section III-B.

We proceeded with 2 experiments: with a cylindrical phantom (Section III-C) and with the extended cardiac-torso (XCAT) phantom [START_REF] Segars | 4D XCAT phantom for multimodality imaging research[END_REF] (Section III-D). The aim of the first experiment was to analyze the behavior of each method. The second experiment focused on a specific clinical application and only M-MLEM and HypoC-PML were considered.

B. ADMM Implementation

We implemented the ADMM methodology proposed by Lim et al. [START_REF] Lim | A PET reconstruction formulation that enforces non-negativity in projection space for bias reduction in Y-90 imaging[END_REF] to solve [START_REF] Soussan | Relationship between tumor heterogeneity measured on FDG-PET/CT and pathological prognostic factors in invasive breast cancer[END_REF]. At iteration k, the activity image estimate f k is computed as

f k = arg min f ∈R nv ρ 2 Hf -v k-1 + u k-1 2 -U (f ) (16) 
whilst the auxiliary variable v and dual variable u are updated as

v k = arg max v≥-r n b i=1 h i (v i + r i ) - ρ 2 Hf k -v + u k-1 2 (17) 
u k = u k-1 + Hf k -v k . ( 18 
)
While ( 17) can be updated analytically by zeroing the derivatives w.r.t. each v i , the update ( 16) was computed iteratively.

We utilized the L-BFGS algorithm-initialized with f k-1 -on

Ψ k (f ) ρ 2 Hf -v k-1 +u k-1 2 -U (f ) (c.f. Section II-C2
). The parameter ρ is a penalty weight that tunes the proximity between v and Hf . Its value does not affect the final result but it should be appropriately updated at each iteration k for faster convergence. We proceeded as in [START_REF] Lim | A PET reconstruction formulation that enforces non-negativity in projection space for bias reduction in Y-90 imaging[END_REF] by using the parameter selection approach proposed by Boyd et al. [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF]:

ρ k+1 =      τ incr ρ k if a k > µ b k , ρ k /τ decr if b k > µ a k , ρ k otherwise , (19) 
with

a k = Hf k -v k , b k = -ρH [v k -v k-1 ], τ incr = τ decr = 2 and µ = 10.
The utilization of H and H in ( 17), ( 18) and ( 19) were taken into account in the CPU time (see Section II-C2). More specifically, the same projection Hf k was used to compute u k , v k and a k while a separate backprojection was used for b k .

We implemented 4 ADMM algorithms: (i) with a fixed value ρ = 1, N inner = 60 and N outer = 600 (in order to be close to the optimum), denoted ADMM-ρ fixed , and (ii) with an adaptive ρ, with N inner = 5 (N outer = 360), N inner = 30 (N outer = 60) and N inner = 90 (N outer = 20), respectively denoted ADMM-ρ adapt -5, ADMM-ρ adapt -30 and ADMM-ρ adapt -90. These algorithms, as well as HypoC-PML, converge to the same unique solution of (8). 1) Simulation: We utilized a digital phantom (see Fig. 1) consisting of a 26-cm diameter cylinder Ω containing two smaller cylinders Ω 1 and Ω 2 . While Ω 1 has a low-activity level (equals to 0.5), Ω 2 has a high-activity level (equals to 10), and the activity level of the remaining region Ω \ (Ω 1 ∪ Ω 2 ) is low (equals to 4). The total number of counts was 11 × 10 6

C. Experiment 1: Cylindrical Phantom

(including background events) and we used γ = 5 × 10 -4 first then γ = 5 × 10 -3 , which correspond to low-and highsmoothing. The attenuation in all of Ω was approximately the attenuation of water.

2) Results: a) Reconstructed Images: Reconstructed images obtained from M-MLEM, ADMM-ρ fixed and HypoC-PML-1 are shown in Fig. 2. Reconstructions are comparable to the naked eye over hot regions, but differ on cold regions (cold spot and background) where the ADMM-ρ fixed and HypoC-PML-1 image values can be negative, also resulting in more noise in cold areas as expected. The same observation can be made when analyzing the reconstructed profiles in Fig. 3. We observe that HypoC-PML (1, 2 and 3) and ADMM-ρ fixed reconstructions are identical, and coincide with M-MLEM over hot regions. With γ = 5 × 10 -4 , HypoC-PML and ADMMρ fixed reconstruct lower values (even negative) in the cold spot values to compensate for the spill-over from the surrounding activity. This phenomenon recedes with γ = 5 × 10 The mean values are reported in Table I. The mean activity in the cold spot is over-estimated by each method (with a more severe bias with 66% background events). For γ = 5×10 -4 we observe that the bias reduced with ADMM-ρ fixed and HypoC-PML, as compared with M-MLEM. However, the mean values are similar in the cold spot when using γ = 5×10 -3 , suggesting that a strong penalty brings the solutions closer. The mean activity values in the hot spot are similar, with perhaps slightly higher values with M-MLEM. x-axis position (mm) Finally, Fig. 4 shows the simulated projection data (66% background events) g at each bin i, as well the expected projection data ḡ(f ) = Hf + r from M-MLEM, ADMMρ fixed and HypoC-PML-1 (γ = 5 × 10 -4 ), respectively denoted ḡem , ḡadmm and ḡhc , as well as the difference ḡadmmḡhc . A similar figure was shown in [START_REF] Lim | A PET reconstruction formulation that enforces non-negativity in projection space for bias reduction in Y-90 imaging[END_REF]. It shows that ḡadmm and ḡhc appear identical and satisfy the new constraint Hf + r ≥ 0, while ḡem is above r due to the positivity constraint on f . b) Convergence Speed: In order to investigate the convergence speed of each method, we calculated the normalized squared-error (NSE) between the current image estimate f k and the PML image f = arg max D (L + U ):

NSE = f -f k 2 f 2 (20)
The PML image f is unique and can be obtained either from HypoC-PML or ADMM. We defined f as the image resulting from ADMM-ρ fixed in order to exclude convergence issues related to the parameter ρ k changing at each outer iteration k. We compared HypoC-PML-1, HypoC-PML-2 and HypoC-PML-3 with ADMM-ρ adapt -5, ADMM-ρ adapt -30 and ADMM-ρ adapt -90 as well as with ADMM-ρ fixed and M-MLEM, for 33% and 66% of background events and for γ = 5 × 10 -4 and 5 × 10 -3 . Fig. 5 shows the NSE evaluated at each inner iteration q and plotted against the total number of projections/backprojections, which represents the CPU time. For display purpose M-MLEM was ran with over 2,000 iterations.

Results show that the HypoC-PML methods behave similarly and achieve faster convergence than ADMM methods, regardless of the background and γ. When γ = 5 × 10 -3 , ADMMρ adapt -5 at early iterations is comparable to HypoC-PML, but it is outperformed by ADMM-ρ adapt -30 and HypoC-PML at later iterations. ADMM-ρ fixed has the slowest convergence rate while M-MLEM has the fastest (but converges to a different solution). While ADMM-ρ adapt methods achieve faster convergence than ADMM-ρ fixed , their convergence is non-monotonic as ρ is changed at each iteration. D. Experiment 2: XCAT Phantom 1) Simulation: We utilized the XCAT activity and attenuation phantoms (Fig. 6). The phantom contains 2 tumors (hot lesions): a 3 cm-diameter tumor in the liver and a 5 cmdiameter tumor in the lungs, the latter containing a necrosis (no activity). We generated data with N count = 20 × 10 6 20)) plotted against the total number of projections/backprojections at each inner iteration q, for each of the considered methods, with 33% and 66% background events, and γ = 5 × 10 -3 and γ = 5 × 10 -4 .

to 60 × 10 6 and N count = 60 × 10 6 counts, with 33% and 66% background events. HypoC-PML was implemented with (α k , β k ) = (k 2 , 1/k) (HypoC-PML-1). N noise = 40 independent noise realizations were simulated. The activity distribution was reconstructed using M-MLEM and HypoC-PML, but this time we imposed the activity to be 0 in the background (outside of the patient). We considered 2 error functions: the mean (relative) bias

Bias = 1 #R 1 N noise j∈R Nnoise =1 f [ ] j -f truth j , (21) 
and the mean absolute bias

AbsBias = 1 #R 1 N noise j∈R Nnoise =1 | f [ ] j -f truth j | , (22) 
where f [ ] j denotes the reconstructed activity at voxel j from the -th noise replicate, R is a region of interest (e.g., a tumor) and #R denotes the number of voxels in R. We also used the mean standard deviation (STD),

STD = 1 #R j∈R 1 N noise Nnoise =1 f [ ] j -fj 2 , (23) 
where 2) Results: M-MLEM and HypoC-PML reconstructed activity images are shown in Fig. 7. For each count level, we

f [ ] j = N -1 noise Nnoise =1 f [ ] j .
used γ = (N count /N ref count ) × γ ref , γ ref = 4 × 10 -3 and N ref count = 60 × 10 6
, in order to maintain the degree of smoothness. We used γ ref = 4 × 10 -3 and γ ref = 3 × 10 -3 for the 33% and 66% background events simulations respectively.

The images appear identical in hot regions (heart, liver and tumors) but the HypoC-PML images contain negative values in cold areas (the lungs and the tumor necrosis). The activity being lower in the lungs, HypoC-PML-reconstructed lung activity values are noisier than that of M-MLEM. This phenomenon is observed with any reconstruction method that allows for negative values in the activity image [START_REF] Erlandsson | Low-statistics reconstruction with AB-EMML[END_REF]- [START_REF] Lim | A PET reconstruction formulation that enforces non-negativity in projection space for bias reduction in Y-90 imaging[END_REF]. Fig. 8 shows the reconstruction profiles across the 2 lesions (foot to head) for M-MLEM and HypoC-PML with 60 × 10 6 counts. As observed in the images, the profiles appear similar in hot regions. However the HypoC-PML activity profiles show signs of variability in cold regions. In particular, the HypoC-PML activity in the necrosis appears significantly lower In order to assess the effect of γ on quantification, we plotted the mean absolute bias [START_REF] Xu | Adaptive ADMM with spectral penalty parameter selection[END_REF] in lesion 1 and the mean bias [START_REF] Ghadimi | Optimal parameter selection for the alternating direction method of multipliers (ADMM): Quadratic problems[END_REF] in the necrosis of lesion 2 against the STD (23) in a sub-region of the liver, for N count = 20 × 10 6 then N count = 60 × 10 6 , with 7 values of γ ranging from γ = 10 -3 to γ = 5 × 10 -2 (for N count = 20 × 10 6 ) then γ = 3 × 10 -3 to γ = 1.5 × 10 -1 for (N count = 60 × 10 6 ). The results are displayed in Fig. 9 and Fig. 10. While the bias/STD curves are comparable on lesion 1, we observe that the bias on the necrosis (lesion 2) using HypoC-PML is smaller than that of M-MLEM (for a similar noise level) for small γ-values. The curves coincide for large γ-values as the penalty is predominant in the cost function. This result indicates that allowing for negativity in the reconstructed image allows to reduce the bias in the necrosis while keeping the noise under control. 

IV. DISCUSSION

Our hypo-convergence based algorithm converges to a solution of the PML problem (8), i.e., with positivity constraints in the projection space. M-MLEM and HypoC-PML reconstructions coincide on high-activity regions, where the positivity constraint is not active, and differ on low-activity regions, where HypoC-PML can reduce the bias by allowing for negative values.

In terms of reconstructed images, HypoC-PML provides the same results as ADMM as both approaches aim at solving the same problem ( 8), but HypoC-PML converges faster. The main difference resides in the methodology used to solve the problem. While ADMM elegantly transfers the constraints to the projections space only, its convergence speed is heavily affected by fine tuning of ρ, which might be challenging. On the other hand, HypoC-PML appears more practical, provided that a solver to maximize L k is available, and convergence is guaranteed. Besides, in the experiments presented here, HypoC-PML appears to be robust with respect to the choice of the sequences (α k ) k and (β k ) k .

In principle, ADMM can be applied to impose the positivity constraint for any figure of merit other than the Poisson loglikelihood. Although HypoC-PML, as presented here, is tailored for the Poisson log-likelihood, the same methodology can be easily extended to other figures of merit with positivity constraints. For example, if h i in ( 3) is replaced by a continuous function u i : R → R (e.g., for a weighted leastsquares cost), then the sequence (u k i ) k defined for all k as u k i : x → u i (x) + β k log ϕ k (x) hypo-converges to ũi : R → R with ũi (x) = u i (x) for x ≥ 0 and ũi (x) = -∞ for x < 0 (under the same conditions prescribed for α k , β k ). Therefore, i u i (ḡ i (x)) can be maximized with positivity constraint ḡi (x) ≥ 0 by sequentially maximizing i u k i (ḡ i (x)) without constraints, using the same methodology.

Having negative values in PET images has no real quantitative meaning at the voxel level, nevertheless the bias reduction in low activity regions is useful for specific tasks, such as region-based dynamic imaging and tumor texture analysis.

V. CONCLUSION

We proposed a new methodology, namely, HypoC-PML, for PML PET reconstruction, with positivity constraints on the projections as opposed to positivity constraints on the image values, which allows for some degree of negativity in the reconstructed image. Our method consists of maximizing each term of a sequence of intermediary objective functions that hypo-converges to the PLL. Each intermediary objective function can be maximized without constraints. We gave a mathematical proof that the resulting images sequence converges to the solution of the main problem. Results on simulated data (geometrical and XCAT phantoms) showed that HypoC-PML and ADMM deliver activity images with lower bias than M-MLEM in cold area, but HypoC-PML converges faster than ADMM. Further work includes applications to quantitative analysis such as dynamic imaging and tumor homogeneity analysis.

APPENDIX A HYPO-CONVERGENCE AND MAXIMIZERS

The hypo-convergence is related to maximization problems through the following result:

Theorem A.1. Let F, F k : R n → R, k ∈ N be a collection of functions bounded from above. Assume that F k h F , and assume (x k ) k is a sequence in R n such that x k ∈ arg max(F k ) and x k → x . Then x ∈ arg max(F ).

Proof: In a more general setting this can be found in [START_REF] Rockafellar | Variational Analysis[END_REF], we present a direct proof in this simplified setting. We first observe that, since F k h F , we have

F (x ) ≥ lim sup k F k (x k ) ≥ lim inf k (sup R n (F k )) . Next, if sup R n (F ) < +∞, then for > 0, ∃z ∈ R n such that F (z) ≥ sup R n (F ) -. Since F k h F , there exists z k → z such that lim inf k F k (z k ) ≥ F (z) and sup R n (F ) -≤ F (z) ≤ lim inf k F k (z k ) ≤ lim inf k (sup R n (F k )).
Together, the above inequalities imply F (x ) ≥ sup R n (F )for > 0 arbitrary, hence we conclude that F (x ) ≥ sup R n (F ) and x ∈ arg max(F ). There are different settings under which hypo-convergence will furthermore imply that arg max(F k ) → arg max(F ) in some sense. We detail one such setting that is not the most general, but that is simple and it will be useful enough for us.

Definition A.1. Let F : R n → R. a) We say that F is proper and strictly concave if F is not identically -∞ and ∀x, y ∈ F -1 (R), ∀λ ∈ [0, 1] F (λx + (1 -λ)y) > λF (x) + (1 -λ)F (y) . b) We say that F is coercive if F (x) → -∞ as x → +∞. c) We say that F is upper semi-continuous if lim sup k F (x k ) ≤ F (x)
for all x and for all x k → x.

Lemma A.1. Assume F, F k : R n → R are proper and strictly concave, coercive and upper semi-continuous functions. Then, a) Uniqueness of the maximizers: there exists x , x k ∈ R n such that {x } = arg max(F ) and

{x k } = arg max(F k ), ∀k ∈ N. b) Convergence of bounded approximates: if F k h F and (x k ) k is a bounded sequence in R n , then x k → x . c) Boundedness of the approximates: if F k h F and there exists G coercive function such that G(x) ≥ F k (x) for all x ∈ R n then (x k ) k is a bounded sequence in R n .
Proof: Part a) is a standard result (see [START_REF] Rockafellar | Variational Analysis[END_REF]). For part b), since arg max(F ) = {x }, Theorem A.1 implies that any cluster point of the sequence (x k ) k has to be equal to x . But (x k ) k ⊂ R n is bounded and x is the only possible cluster point of the sequence, hence x k → x .

For part c), fix z ∈ F -1 (R) and

z k → z such that lim inf k F k (z k ) ≥ F (z) (such a sequence exists due to hypo-convergence), hence ∃K ∈ N such that F k (z k ) ≥ F (z) -1, ∀k ≥ K. Since G is coercive, the set B = {x ∈ R n : G(x) ≥ F (z) -1} is bounded. Then, for k ≥ K, F (z) -1 ≤ F k (z k ) ≤ F k (x k ) ≤ G(x k ) and we conclude that (x k ) k≥K ⊂ B and (x k ) k is bounded.

APPENDIX B HYPO-CONVERGENCE AND EQUI-COERCIVITY OF THE ELEMENTARY FUNCTIONS

In this section we demonstrate the hypo-convergence to h i (see ( 4)) of the sequence (h k i ) k (see [START_REF] Carlier | Y90-PET imaging: Exploring limitations and accuracy under conditions of low counts and high random fraction[END_REF]) and its equi-coercivity. For this purpose, we define α 0 min k (α k ), β 0 max k (β k ), and κ 0 = min k (α k β k ) and we will assume that α k β k → +∞. Moreover, by moving forward in the sequences, we can assume without loss of generality that κ 0 > 0, α 0 ≥ 1 and β 0 ≤ e. We also define the functions h 0 i : R → R which will play the role of G in Lemma A.1 for the collection (h k i ) k as:

h 0 i (x)      g i log ϕ 0 (x) -max(0, x) if g i > 0 & x ∈ R , β 0 log ϕ 0 (x) -x if g i = 0 & ϕ 0 (x) > 1 , κ 0 x if g i = 0 & ϕ 0 (x) ≤ 1 ,
where ϕ 0 follows the same definition as ϕ k below equation [START_REF] Carlier | Y90-PET imaging: Exploring limitations and accuracy under conditions of low counts and high random fraction[END_REF].

Lemma B.1. We have the following properties on h k i : a) For x ∈ R we have max(0, x) < ϕ k (x) ≤ max(0, x) + log(2)/α k . Also, for each k ∈ N, ϕ k (x) is strictly increasing in x, and if α k < α then ϕ k (x) > ϕ (x), ∀x ∈ R (i.e., strictly decreasing in α). b) If g i > 0, then h k i : R → R, k ∈ N, are strictly concave and continuous, and for all x ∈ R and all x k → x we have h k i (x k ) → h i (x). c) If g i = 0, then h k i (x) β k log ϕ k (x) -ϕ k (x) are such that h k i : R → R are strictly concave and continuous. And for all x ∈ R \ {0} and all x k → x we have h k i (x k ) → h i (x), while for x = 0 we have (i) lim sup log(e αx ) 1 + e -αx -log(1 + e αx ) < 0 .

Since ϕ k (x) = log(1 + e α k x )/α k , we conclude that if 0 < α k < α then ϕ k (x) > ϕ (x). b) For g i > 0. It is clear that the h k i : R → R are continuous. To check they are also strictly concave we compute

(h k i ) (x) = h i (ϕ k (x)) • (ϕ k (x)) 2 (x) + h i (ϕ k (x)) • ϕ k (x) where h i (x) = g i x -1, ϕ k (x) = e α k x 1 + e α k x = 1 1 + e -α k x , h i (x) = - g i x 2 , ϕ k (x) =
α k e -α k x

(1 + e -α k x ) 2 , then

(h i • ϕ k ) (x) = - g i (ϕ k (x)) 2 1 (1 + e -α k x ) 2 + g i ϕ k (x) -1 α k e -α k x (1 + e -α k x ) 2 = - g i (1 -e -α k x log(1 + e α k x )) (ϕ k (x)(1 + e -α k x )) 2 - α k e -α k x (1 + e -α k x ) 2 < 0 ∀x ∈ R ,
where we used that log(1 + y)/y < 1 for y > 0, i.e., h k i are strictly concave. Secondly, if x k → x ∈ R then part a) implies ϕ k (x k ) ∈ ]0, +∞[ and ϕ k (x k ) → max(0, x). From the definition of h i (with g i > 0) it follows that h k i (x k ) = h i (ϕ k (x k )) → h i (x) for x > 0 and h k i (x k ) → -∞ for x ≤ 0, i.e. h k i (x k ) → h i (x). Finally, since max(0, x) < ϕ k (x) ≤ ϕ 0 (x) and log(x) is increasing, it is clear that h k i (x) = g i log ϕ k (x) -ϕ k (x) ≤ g i log ϕ 0 (x) -max(0, x) = h 0 i (x), while For x < 0, if x k → x, then ϕ k (x k ) > 0 and

ϕ k (x k ) = log(1 + e α k x k ) α k ≤ e α k x k α k , hence h k i (x k ) = β k log ϕ k (x k ) -ϕ k (x k ) ≤ β k log e α k x k α k -ϕ k (x k ) ≤ -β k log(α k ) + x k β k α k -ϕ k (x k ) ≤ x k β k α k -→ -∞ ,
i.e., lim h k i (x k ) = h i (x). For x = 0, if x k → 0 then 0 < ϕ k (x k ) < 1 for k large enough, hence

h k i (x k ) = β k log ϕ k (x k ) -ϕ k (x k ) < 0
and lim sup k h k i (x k ) ≤ 0 = h i (0). On the other hand, for x k → 0 with x k ≥ β k we have

h k i (x k ) ≥ β k log ϕ k (β k ) -ϕ k (x k ) = β k log log(1 + e α k β k ) α k -ϕ k (x k ) ≥ β k log log(e α k β k ) α k -ϕ k (x k ) = β k log(β k ) -ϕ k (x k ) → 0 ,
hence lim inf k h k i (x k ) ≥ 0 = h i (0). To prove that the h k i 's are bounded by h 0 i we study three cases. If x < 0 then h k i (x) ≤ xβ k α k as above, and

h k i (x) ≤ xβ k α k ≤ κ 0 x = h 0 i (x) .
If 0 ≤ x ≤ ϕ -1 0 (1), we use that h k i (x) ≤ β k log(β k ) -β k (for all x ∈ R) and β k ≤ e, hence h k i (x) ≤ 0 ≤ κ o x = h 0 i (x) for x ∈ [0, ϕ -1 0 (1)]. For ϕ 0 (x) > 1, we have 0 < x < ϕ k (x) ≤ ϕ 0 (x) and log ϕ 0 (x) > 0, hence

h k i (x) = β k log ϕ k (x) -ϕ k (x) ≤ β k log ϕ 0 (x) -x ≤ β 0 log ϕ 0 (x) -x = h 0 i (x) .
And h 0 i is coercive since (using some calculations from above)

lim x→-∞ h 0 i (x) = lim x→-∞ κ 0 x = -∞, while lim x→+∞ h 0 i (x) ≤ lim x→+∞ β 0 log x + log(2) α 0 -x = -∞ .
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 1 Fig. 1. Experiment 1-Activity and attenuation phantoms.
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 2 Fig. 2. Experiment 1-Phantom activity images reconstructed from simulated data comprising 33% and 66% of background events, using M-MLEM, ADMMρ fixed and HypoC-PML-1, with γ = 5 × 10 -4 and γ = 5 × 10 -3 .
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 3 Fig. 3. Experiment 1-Reconstruction profiles of the cylindrical phantom.
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 4 Fig. 4. Experiment 1-(a) Simulated data g (66% background); (b)-(d) Expected sinograms Hf + r resulting from M-MLEM, ADMM-ρ fixed and HypoC-PML-1 (ḡem, ḡadmm and ḡhc ) with γ = 5 × 10 -4 (the red line represents the expected background r, while the blue curve represents the sinogram at each bin i) (e) Difference ḡadmmḡhc . This figure was inspired from [15].
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 5 Fig. 5. Experiment 1-NSE (as defined in (20)) plotted against the total number of projections/backprojections at each inner iteration q, for each of the considered methods, with 33% and 66% background events, and γ = 5 × 10 -3 and γ = 5 × 10 -4 .
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 6 Fig. 6. Experiment 2-(a) Activity and (b) attenuation XCAT phantoms.
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 78 Fig. 7. Experiment 2-Reconstructed activity with Ncount = 20 × 10 6 and 60×10 6 , 33% and 66% background events, using M-MLEM and HypoC-PML.
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 910 Fig. 9. Experiment 2-Mean bias (lesion 1) and mean absolute bias (necrosis in lesion 2) versus STD (sub-region of the liver) of the M-MLEM-and HypoC-PML-reconstructed activity images from the Ncount = 20 × 10 6 simulations, with γ ∈ [10 -3 , 5 × 10 -2 ]. Each point correspond to a single γ-value. The values were calculated following (21), (22) and (23), with N noise = 40 noise replicates. High STD points (right end of each curve) correspond to the low γ-values.

  k ) ≤ h i (0) for all x k → 0, and(ii) lim inf k h k i (x k ) ≥ h i (0) for all x k → 0, x k ≥ β k . Moreover, h k i ≤ h 0 i , ∀k ∈ N,andh 0 i is coercive. Proof: a) For x > 0 we have ϕ k (x) -x = log(1 + e α k x ) α k -log(e α k x ) α k = 1 α k log e -α k x + 1 ∈]0, log(2)/α k [ For x ≤ 0 we have 0 < e α k x ≤ 1 and ϕ k (x) = log(1 + e α k x )/α k ∈]0, log(2)/α k ]. In summary, for all x ∈ R, 0 < ϕ k (x) -max(0, x) ≤ log(2) α k .Additionally, for α > 0 and x ∈ R,

  log ϕ 0 (x) -max(0, x)] x→+∞ [g i log ϕ 0 (x) -max(0, x)] g i = 0. The same computations as in part b) imply that h k i : R → R are strictly concave and continuous. To study the limits is a bit different, and we need to consider three cases.For x > 0, if x k → x then ϕ k (x k ) → x and log ϕ k (x k ) → log(x) ∈ R, hence lim k h k i (x k ) = lim k [β k log ϕ k (x k ) -ϕ k (x k )] = 0 • log(x) -x = -x = h i (x) .

TABLE I EXPERIMENT 1 -

 I1 CYLINDRICAL PHANTOM MEAN ACTIVITY VALUES IN THE COLD AND HOT SPOTS.

					Cold spot			Hot spot
		background	33%	66%	33%	66%
		γ		5 × 10 -4	5 × 10 -3	5 × 10 -4	5 × 10 -3	5 × 10 -4	5 × 10 -3	5 × 10 -4	5 × 10 -3
		HypoC-PML-1	0.76198	0.92664	0.89122	1.1128	9.5015	9.1763	9.3541	8.838
		HypoC-PML-2	0.75992	0.92652	0.88364	1.1198	9.5045	9.1762	9.3526	8.8411
		HypoC-PML-3	0.75935	0.9213	0.88405	1.1126	9.5055	9.1868	9.3526	8.8472
		ADMM-ρ fixed	0.75973	0.92246	0.879	1.1191	9.5048	9.1831	9.3603	8.8402
		M-MLEM	0.86579	0.92013	1.0108	1.1162	9.5167	9.1951	9.3724	8.8544
		true value	0.5	0.5	0.5	0.5	10	10	10	10
	100	200	300	400					
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