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COMPUTING HOMOGENIZED COEFFICIENTS VIA MULTISCALE

REPRESENTATION AND HIERARCHICAL HYBRID GRIDS

A. HANNUKAINEN, J.-C. MOURRAT, AND H.T. STOPPELS

Abstract. We present an efficient method for the computation of homogenized coefficients of
divergence-form operators with random coefficients. The approach is based on a multiscale
representation of the homogenized coefficients. We then implement the method numerically
using a finite-element method with hierarchical hybrid grids, which is a semi-implicit method
allowing for significant gains in memory usage and execution time. Finally, we demonstrate
the efficiency of our approach on two- and three-dimensional examples, for piecewise-constant
coefficients with corner discontinuities. For moderate ellipticity contrast and for a precision
of a few percentage points, our method allows to compute the homogenized coefficients on a
laptop computer in a few seconds, in two dimensions, or in a few minutes, in three dimensions.

1. Introduction

1.1. Statement of the main results. The goal of this paper is to define, study, and implement
an efficient approach to the calculation of homogenized coefficients for divergence-form operators
with random coefficients. That is, we consider operators of the form ∇⋅a∇, where a = (a(x))x∈Rd
is a random coefficient field on Rd taking values in the set of symmetric positive definite matrices.
We assume that this random coefficient field is uniformly elliptic, Zd-stationary, and of unit
range of dependence; see Subsection 2.1 for precise statements. Under these assumptions, there
exists a homogenized matrix a such that the large-scale properties of the heterogeneous operator
∇ ⋅ a(x)∇ resemble those of the homogeneous operator ∇ ⋅ a∇. We define a multiscale method
allowing to compute the homogenized matrix efficiently, and identify rigorously its rate of
convergence. We then explain how to implement the algorithm in practice, using the notion of
hierarchical hybrid grids, and demonstrate its performance on examples.

For these numerical examples, we consider coefficient fields that are piecewise constant on
a square tiling, in two dimensions, or on a cubic tiling, in three dimensions. This class of
examples is particularly challenging from a computational perspective. Indeed, solutions develop
singularities at the corners of the tiling which are essentially the worst possible in the class of
(isotropic) coefficient fields with fixed ellipticity contrast (see Subsection 5.1). Despite this, for
moderate ellipticity contrast and for a precision of a few percentage points, our algorithm runs
on a laptop computer and outputs a satisfactory approximation of the homogenized matrix
within a few seconds in two dimensions, and within a few minutes in three dimensions. Our
code is written in the Julia language and is freely available online, see the link in (6.1).

The method we explore here was introduced in [52] in the context of discrete finite-difference
equations. The main idea is to decompose the homogenized matrix into a series of terms, each
of which accounting for a different length scale. The terms associated with short length scales
naturally enjoy very small boundary layers and low computational effort. Those associated with
larger length scales are a priori more demanding, but only appear as small correction terms
in the decomposition, and can thus be computed on much smaller sample domains. Overall,
this second effect more than compensates for the increase in computational effort, so that the
majority of the computational time and memory is spent on the shortest length scales. A
prominent feature of the method is that minimal effort is spent on the calculation of boundary
layers. An additional benefit is that the method can be refined on the fly: if some calculations
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have already been performed and one realizes that more precision is necessary, then one does
not need to throw these past calculations away and restart from scratch.

We now describe this method more precisely. We fix ξ ∈ Rd of unit norm, and introduce the
quantities that will allow us to compute ξ ⋅ aξ. We let v−1 ∈H

−1
loc(R

d) be

(1.1) v−1(x) ∶= ∇ ⋅ (a(x)ξ),

and for each k ∈ N, we define inductively vk ∈H
1
loc(R

d) to be the unique stationary solution to

(1.2) (2−k −∇ ⋅ a∇) vk = 2−k vk−1 in Rd.

We also give ourselves a bump function χ ∈ C∞
c (Rd) with compact support in the unit ball

B(0,1) and such that

(1.3) ∫
Rd
χ = 1.

In (1.3) and throughout the paper, we use the shorthand notation

∫
Rd
χ = ∫

Rd
χ(x)dx.

For every r ⩾ 1, we set

(1.4) χr(x) ∶= r
−dχ (x

r
) .

The following theorem is our main theoretical result.

Theorem 1.1 (Efficient approximation of a). For every ε ∈ (0, d−1
2d ), there exists a con-

stant c(ε, ∥χ∥
H

⌈
d
2 +

1
4 ⌉

(Rd)
,Λ, d) > 0 such that the following holds. Let n ∈ N, and denote

(1.5) rk ∶= 2n−(
1
2
−ε)k

(k ∈ {0, . . . , n}),

(1.6) σ̂2
n ∶= ∫Rd

(−aξ ⋅ ∇v0 + v
2
0)χr0 +

n

∑
k=1

2k ∫
Rd

(vk−1vk + v
2
k)χrk .

For every t ⩾ 0, we have

(1.7) P [∣ξ ⋅ aξ + σ̂2
n − ∫Rd

(ξ ⋅ aξ)χr0 ∣ ⩾ t2
−nd

2 ] ⩽ 2 exp (−ct) .

Recall that we assume the law of the coefficient field (a(x))x∈Rd to be invariant under
translations by vectors of Zd. If we make the stronger hypothesis that the law is invariant under
translations by any vector of Rd, then we can replace each average against a smooth mask χr
in (1.6) by an average over the cube (−r, r)d. However, under our current more restrictive
assumption of invariance under translations by vectors of Zd, this replacement will only work
if we make sure that the side length of the box is an integer. In other words, we would need
to know the identity of the underlying lattice of periods (which without loss of generality was
fixed here to be Zd) and to make sure that the domain over which we take the average contains
an integer number of fundamental cells. In contrast, the formulation in Theorem 1.1 does not
require that we identify the lattice of periods.

A result comparable to Theorem 1.1 was proved in [52] in the context of discrete finite-
difference equations. Besides the adaptation to the continuous setting, there are two main
differences between the present result and the one obtained in [52]. The first one is that the
quantities on the right side of (1.6) are averages against a smooth mask, while only box averages
could be handled in [52]. The second and most important difference is that Theorem 1.1 gives
an exponential tail estimate for the probability in (1.7), while the result in [52] was limited to a
variance estimate. We expect the estimate (1.7) to be sharp, in the sense that we do not expect
that it is possible to replace t by tα on the right side of (1.7) for an exponent α > 1 that would
be independent of ε > 0.

The implementation of the method proposed in Theorem 1.1 requires the accurate cal-
culation of ∇v0 and of v0, . . . , vn in L2 over the progressively smaller and smaller balls
B(0, r0), . . . ,B(0, rn). As stated in (1.2), the equation satisfied by vk is posed over the full
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space Rd. In practice, we can approximate these problems by selecting a sufficiently large

constant Cbl (“bl” for “boundary layer”), and then solving for ṽk ∈H
1
0(B(0, rk +Cbl(1+n)2

k
2 ))

solution to

(1.8) (2−k −∇ ⋅ a∇)ṽk = 2−k ṽk−1 in B(0, rk +Cbl(1 + n)2
k
2 ),

with null Dirichlet boundary condition on ∂B(0, rk + Cbl(1 + n)2
k
2 ), and where we have set

ṽ−1 ∶= v−1. The error in this approximation decays exponentially fast as we increase Cbl (this

can be proved using that the Green function decays like exp(−2−
k
2 ∣x∣)). As a rule of thumb, one

should think of choosing Cbl of the order of
√

∣a∣, where ∣a∣ is a measure of the typical size of

the eigenvalues of a(x) (or, to be more specific, one can take Cbl to be of the order of
√

Λ).
The additional multiplicative factor of (1 + n) allows for a progressive increase of the boundary
layer as we increase n and aim for finer and finer approximations of a. A simple error analysis
suggests that the optimal choice for the size of the boundary layer should be an affine function
of n, and we chose it to be a multiple of (1+n) for simplicity, but more refined choices can save
some computations.

For simplicity, we implemented the version of the method described in Theorem 1.1 with
ε = 0. Strictly speaking, this case is not covered by Theorem 1.1, but a modification of the

arguments presented below would in this case yield (1.7) with 2−
nd
2 replaced by 2−

nd
2

(1−δ), for
arbitrary δ > 0. (The constant c > 0 on the right side would then depend on δ.)

The main power of the method comes from the fact that it splits the problem of calculating
ξ ⋅ aξ into multiple scales. Heuristically, the term vk (or ṽk) is meant to capture information

related to length scales of the order of 2
k
2 . When k is small, the elliptic problem (1.8) is

well-conditioned and has a very small boundary layer, of essentially unit size. As k is increased,
the elliptic problems in (1.8) become less well-conditioned and involve larger boundary layers.
Yet, this is more than compensated by the fact that the domain of interest is rapidly shrinking.
In practice, the main part of the computational effort is spent on calculating v0.

Compared with the discrete setting of finite-difference operators investigated in [52], the
case of continuous differential operators considered here poses crucial new challenges from a
computational perspective. With applications such as those in materials science in mind, it is
natural to consider piecewise constant coefficient fields. We choose to focus more specifically on
the case when the coefficient field is constant over each unit square or cube of the form z+[0, 1)d,
where z ∈ Zd. At least in dimension d = 2, this class is essentially the most difficult possible, in
the sense that solutions then have the worst possible regularity properties, given the ellipticity
contrast—see Subsection 5.1 for a more precise discussion. As a consequence of the roughness of
the solutions, a “coarsest possible” discretization of the coefficient field into finite elements with
constant coefficients would yield widely incorrect results. To wit, the algorithm as proposed
here would run just fine, but it would compute the homogenized matrix associated with the
particular finite-element discretization that is chosen; if the discretization is coarse, then this
homogenized matrix will be far from the homogenized matrix of the continuous operator.

To remedy this problem, we thus need to rely on much finer discretizations of the coefficient
field. Our method for doing so is strongly inspired by the idea of hierarchical hybrid grids
developed in [16, 15]. In a nutshell, the starting point is the observation that numerical schemes
on fully structured grids with constant coefficients are highly efficient, both from the point
of view of time and of memory usage. Unfortunately, the problem we wish to solve is not of
this type, since the coefficients vary accross the domain. The idea then is to deploy a hybrid
representation of the problem, using an unstructured coarse grid to represent the variations
of the coefficient field on the one hand, and then proceeding to refine each coarse element in
a “fully structured” manner. This allows for very significant gains in memory usage, which is
otherwise a fundamental bottleneck, and also in execution time.

We did not make any effort to fine-tune the parameters of the method presented in Theorem 1.1.
We indicate here some possible directions for doing so. First, the choice to use successive powers
of 2 in (1.2) can be replaced by any other real number larger than 1, up to suitable modifications
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of the expression in (1.6). Second, for the radii rk appearing in (1.6), we simply followed the

prescription of the theoretical result with ε = 0, that is, rk = 2n−
k
2 . A more fine-tuned method

would consist in evaluating the fluctuations of integral averages on the fly and adaptively tune rk
so that the fluctuations of the average get below a certain threshold of the order of 2−

nd
2 . Finally,

the requirements for accuracy are different for v0, which needs to be controlled in H1, and for
the subsequent vk’s which only need to be controlled in L2. We did not try to exploit this
feature either, and used approximations of the same quality for all terms.

Although we did not explore this possibility, we point out that the required computations
can be performed in parallel in a straightforward way. For instance, instead of computing

∫
Rd

(−aξ ⋅ ∇v0 + v
2
0)χr0 ,

if one has access to Ld processors, then one can compute

Ld

∑
`=1
∫
Rd

(−aξ ⋅ ∇v
(`)
0 + (v

(`)
0 )

2
)χ r0

L
,

where (v
(`)
0 )1⩽`⩽Ld are versions of v0 computed on Ld independent realizations of the coefficient

field. These computations can obviously be performed without any communication between
processors. (If one is given a very large snapshot of a single environment, then effectively
independent realizations can be obtained by considering sufficiently distant subregions of the
large sample.) See also [39] for more refined techniques allowing for the parallelization of
finite-element methods with hierarchical hybrid grids.

For simplicity, we assume here that the coefficient field is uniformly elliptic and with a finite
range of dependence. However, we expect the results presented here to hold in much greater
generality. In particular, we expect that a result comparable with (1.7), but possibly with a
more slowly decaying function of t on the right side, should hold whenever the local statistics
of the coefficient field satisfy a central limit theorem. For more strongly correlated coefficient

fields, the method is still of interest, but the choice of rk in (1.5) and the term 2−
nd
2 in (1.7)

will have to be suitably modified. (This makes the development of a more adaptive algorithm
particularly appealing, since such an algorithm could automatically select the optimal scalings
without supervision.) Also, in view of [9, 24], we expect that the results can be generalized to
the case of perforated domains of percolation type.

1.2. Related works. Over the last decade, an intensive research effort has been devoted
to developing theoretical quantitative results on stochastic homogenization. The multiscale
representation of the homogenized coefficients forming the basis of the method is inspired by
the “renormalization” approach to quantitative stochastic homogenization, as developed in
[14, 13, 10, 11]; see also [53] for a gentle introduction to this line of research and [12] for a
monograph. A related approach based on the parabolic flow was put forward in [38], see also
[12, Chapter 9], and will give us the most convenient statement for us to build upon here. A
different approach based on concentration inequalities was put forward in [35, 36, 33, 47, 37, 34],
inspired by earlier insights from statistical mechanics [54, 55].

It has been observed long ago that inappropriate boundary conditions for “approximate cell
problems” can cause important “resonant errors”, and initial attempts at bypassing the problem
involved the notion of oversampling [41, 42, 60, 26]. A powerful approach has been studied
in [19, 35, 36, 30, 31, 50, 32, 27], based on the introduction of a small zero-order term in the
equation. The method we propose here, by combining this idea with a multiscale decomposition,
enables to take fuller advantage of this idea. We refer to [52] for a detailed comparison between
the single-scale and the multiscale approaches. As is shown in [2], the benefits of the multiscale
approach can be seen even in the setting of periodic coefficient fields, if we operate under the
constraint that the lattice of periods is unknown.

One alternative method for computing homogenized coefficients, based on the idea of an
“embedded corrector problem”, is proposed in [22, 23]. Well-separated spherical inclusions are
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considered in the numerical examples. This allows for fairly different approaches to practical
calculations than what is pursued in the present paper (and also produces solutions that are
more regular than in our examples with corner discontinuities).

For coefficient fields that are very similar to those we investigate numerically here, the
standard representative volume method was combined with a tensor-based discretization scheme
in [43] to compute homogenized matrices, in two dimensions. The authors of [43] state that their
numerical approximation method displays an empirical rate of convergence in L2 of O(hβ) with
β ⩾ 3/2, where h measures the size of a discretized element. We believe that this is an artefact
of pre-asymptotic effects and moderate ellipticity contrast. Indeed, for any α > 0, solutions can
develop singularities that fail to be in H1+α, provided that the ellipticity contrast is sufficiently
large, and standard finite-element methods provide approximations of these singular solutions
that converge in L2 at a rate that is bounded below by ch1+α. In fact, for coefficient fields
arranged in a checkerboard-type pattern in two dimensions, as considered in [43] and in the
present paper, one can identify exactly the optimal exponent of regularity in terms of the
ellipticity contrast: solutions are Hβ-regular if and only if β < 1 + α, where α is given in (5.5),
as proved in [57] and recalled in Subsection 5.1 below. In particular, an asymptotic rate of

convergence in L2 of O(h3/2) can only be obtained for values of the ellipticity contrast Λ below

3 + 2
√

2. We also refer to the right frame of Figure 6.4 for an illustration of pre-asymptotic
effects and slow rates of convergence, for Λ = 90.

Several techniques have been explored to reduce the size of the fluctuations of estimators
for the homogenized matrix. In particular, control variate techniques and the selection of
special realizations of the coefficient field, called “quasi-random structures”, have been explored,
see [20, 45] for surveys. The latter approach, inspired by [59, 61] and, in the context of the
homogenization of elliptic operators, advocated for in [46], has recently received a spectacular
theoretical foundation in [28]. We would find it very interesting to investigate how these
techniques can be combined with those discussed in the present paper.

In a different direction, several works have considered the question of designing and effectively
computing certain expansions of the homogenized matrix, in situations where the random
medium can be seen as a small perturbation of a reference medium. The most typical scenario
is that of a homogeneous medium with a small density of inclusions [48, 58]. We refer to
[44, 56, 17, 7, 8, 4, 5, 51, 25, 6] for works in this area.

To conclude this introduction, we mention that the homogenized matrix can also be of use
as part of a modified scheme of multigrid type for computing solutions of elliptic equations
with rapidly oscillating coefficients. In short, the idea is to use the homogenized operator when
operating on the coarser grids [52].

1.3. Organization of the paper. In Section 2, we lay down the notation and make our
standing assumptions more precise. We also clarify the meaning of being a stationary solution
to (1.2), and recall the definition of the homogenized matrix. We next prove a general multiscale
representation of the homogenized matrix in Section 3. By “general”, we mean that the
finite-range dependence assumption on the coefficient field is not actually used there; assuming
ergodicity instead would be sufficient. This is no longer the case in Section 4, where we strongly
leverage on the finite-range dependence assumption to obtain sharp quantitative estimates
on the different terms appearing in the multiscale decomposition. This allows us to conclude
the proof of Theorem 1.1. In Section 5, we explain how to design a finite-element multigrid
algorithm using the structure of hierarchical hybrid grids. Finally, we present our numerical
results in Section 6. Our code is freely available in the GitHub repository indicated in (6.1).

2. Assumptions, notation, and definition of homogenized matrix

2.1. Precise statement of the assumptions. We fix a constant Λ ∈ [1,∞) and an integer
d ⩾ 1 throughout the paper. We denote by Ω the set of measurable mappings from Rd to the
set of d-by-d symmetric matrices which satisfy, for almost every x ∈ Rd,
(2.1) ∀ξ ∈ Rd, Λ−1

∣ξ∣2 ⩽ ξ ⋅ a(x)ξ ⩽ Λ∣ξ∣2 .
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For each Borel set U ⊆ Rd, we denote by FU the σ-algebra generated by the mappings

a↦ ∫
Rd
φa, φ ∈ C∞

c (U),

where C∞
c (U) denotes the set of smooth functions with compact support in U . We also use the

shorthand F ∶= FRd . For each y ∈ Rd, we denote by Ty ∶ Ω→ Ω the action of translation by y on

Ω, which is such that, for every x ∈ Rd,

Tya(x) = a(x + y).

Translations can also operate on events, that is, for every E ∈ F and y ∈ Rd, we set TyE ∶=

{Tya ∶ a ∈ E}.

We assume that we are given a probability measure P on (Ω,F) that, in addition to (2.1),
satisfies the following properties:

● stationarity with respect to Zd translations: for every z ∈ Zd, we have

(2.2) P ○ Tz = P ;

● unit range of dependence: whenever two Borel sets U,V ⊆ Rd are at least at distance 1
away from one another, we have that FU and FV are independent.

If the latter condition was satisfied with the constant 1 replaced by another fixed number, then
we could reduce to the present setting by scaling. Similarly, if stationarity was known to hold
along some lattice of Rd, then we could use a change of coordinates to set it to be Zd as in our
current assumption.

2.2. General notation and function spaces. We write N = {0,1, . . .}, and denote the open
Euclidean ball centered at x ∈ Rd and of radius r > 0 by B(x, r). We define the heat kernel at
time t > 0 and position x ∈ Rd by

(2.3) Φ(t, x) ∶= (4πt)−
d
2 exp(−

∣x∣2

4t
) .

For every Borel measurable set U ⊆ Rd, we denote by ∣U ∣ the Lebesgue measure of U . Whenever
∣U ∣ ∈ (0,∞), we set, for every f ∈ L1(U),

(2.4) ⨏
U
f ∶=

1

∣U ∣
∫
U
f =

1

∣U ∣
∫
U
f(x)dx.

For each p ∈ [1,∞), we define the rescaled Lp norm of a measurable function f as

∥f∥Lp(U) ∶= (⨏
U
∣f ∣p)

1
p

.

For each ` ∈ N ∖ {0}, we denote by H`(U) the classical Sobolev space, with rescaled norm

(2.5) ∥f∥H`(U)
∶=

`

∑
j=0

∣U ∣
−
`−j
d ∥∇

jf∥L2(U).

We denote by H`
0(U) the closure in H`(U) of the space C∞

c (U) of smooth functions with
compact support in U , and by H−`(U) the dual space to H`

0(U), equipped with the rescaled
norm

(2.6) ∥f∥H−`(U)
∶= sup{⨏

U
fg ∶ g ∈H`

0(U) such that ∥g∥H`(U)
⩽ 1} .

In the expression above, we used the notation ⨏U fg to denote the duality pairing between

H−`(U) and H`
0(U) that is normalized in such a way that whenever f and g are smooth, the

evaluation of this duality pairing coincides with the value of the integral ⨏U fg.
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2.3. Notation for random variables. In order to have concise means to express the size of
random variables at our disposal, we write, for each real random variable X and s, θ > 0,

X ⩽ Os(θ) ⇐⇒ E [exp (θ−1 max(X,0))s)] ⩽ 2.

We also write

X = Os(θ) ⇐⇒ X ⩽ Os(θ) and −X ⩽ Os(θ).

The notation is homogeneous: we have X ⩽ Os(θ) if and only if θ−1X ⩽ Os(1). Informally, the
statement that X ⩽ Os(1) means that the right tail of the law of X decays like exp(−xs). The
following lemma makes this precise; see [12, Lemma A.1] for a proof.

Lemma 2.1. For every random variable X and s, θ ∈ (0,∞),

X ⩽ Os(θ) Ô⇒ ∀x ⩾ 0, P [X ⩾ θx] ⩽ 2 exp (−xs) ,

and

∀x ⩾ 0, P [X ⩾ θx] ⩽ exp (−xs) Ô⇒ X ⩽ Os (2
1
s θ) .

The notion of Os-bounded random variables is stable under averaging, as the next lemma
shows (see [12, Lemma A.4] for a proof).

Lemma 2.2. Let s ∈ [1,∞), µ be a measure over an arbitrary measurable space E, θ ∶ E → (0,∞)

be a measurable function and (X(x))x∈E be a jointly measurable family of nonnegative random
variables. We have

∀x ∈ E, X(x) ⩽ Os(θ(x)) Ô⇒ ∫ X dµ ⩽ Os (∫ θ dµ) .

The key mechanism by which we will witness stochastic cancellations is by appealing to the
following lemma.

Lemma 2.3. For every s ∈ (1, 2], there exists a constant C(s) < ∞ such that the following holds.
Let θ > 0, R ⩾ 1, Z ⊆ RZd, and for each x ∈ Z, let X(x) be an F(x + (−R,R)d)-measurable
centered random variable such that X(x) = Os(θ(x)). We have

(2.7) ∑
x∈Z

X(x) = Os (C ( ∑
x∈Z

θ(x)2
)

1
2
) .

This lemma is a consequence of [12, Lemmas A.7 and A.11]. Notice that when specializing
Lemma 2.3 to the case when θ(x) ≡ θ does not depend on x, and denoting by N the cardinality

of Z, we can rewrite the right side of (2.7) as Os (CN
1
2 θ). The term N

1
2 is consistent with the

scaling of the central limit theorem.

2.4. Definition of homogenized matrix. We now introduce notions related to stationary
random fields and solutions, and recall the definition of the homogenized coefficients in terms of
correctors. A stationary random field is a measurable mapping f ∶ Rd ×Ω→ Rn (for some n ∈ N)
such that for every x ∈ Rd, z ∈ Zd and a ∈ Ω,

f(x + z,a) = f(x,Tza).

We may also simply say that the mapping f is stationary. For instance, the mapping x↦ a(x)
itself is stationary, so the terminology is consistent with the definition in (2.2). As is standard
with random objects, most of the time we do not display that a random field f depends explicitly
on a, and simply write f(x) in place of f(x,a). Extending the notation introduced in (2.4),
whenever f ∈ L1

loc(R
d) is a stationary random field, we write

(2.8) ⨏
Rd
f ∶= lim

r→∞
⨏
∣x∣⩽r

f(x)dx = E [∫
[0,1]d

f(x)dx] .

That this limit exists and equals the expectation on the right side follows from the ergodic
theorem, see [3]. For every p ∈ [1,∞], we write

L
p
∶= {f ∶ f ∈ Lploc(R

d
) is a stationary random field} ,
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equipped with the norm

∥f∥Lp ∶= (⨏
Rd

∣f ∣p)

1
p

.

In the case p = ∞, the right side is interpreted as

lim
r→∞

∥f∥L∞(B(0,r)),

which is also the essential supremum of the random variable ∥f∥L∞([0,1]d). We denote by L2
pot

the completion in L2 of the set

{∇f ∶ f ∈ C∞
(Rd) is a stationary random field} .

We also define
H

1
∶= {f ∈ L

2
∶ ∇f ∈ L

2} ,

equipped with the norm

∥f∥H1 ∶= (⨏
Rd

(∣f ∣2 + ∣∇f ∣2))

1
2

.

Any element of L2
pot can be represented as the gradient of some function f ∈H1

loc(R
d), and such

a function f is defined uniquely up to a constant. However, due to the inderteminacy of this
constant, the function f itself may fail to be a stationary field, that is, we do not necessarily
have f ∈ H1. We will always write elements of L2

pot in the form ∇f , bearing this caveat in mind.

The functions (vk, k ∈ N) are defined as elements of H1. The equation (1.2) is interpreted, for
k = 0, as

∀w ∈ H
1, ⨏

Rd
(wv0 +∇w ⋅ a∇v0) = −⨏

Rd
∇w ⋅ aξ,

and, for every k ⩾ 1, as

(2.9) ∀w ∈ H
1, ⨏

Rd
(2−kwvk +∇w ⋅ a∇vk) = ⨏

Rd
2−kwvk−1.

For each f ∈ L2, we define the norm dual to the H1 norm by setting

∥f∥H−1 ∶= sup{⨏
Rd
fg ∶ ∥g∥H1 ⩽ 1} ,

and we denote by H−1 the completion of L2 with respect to this norm. An example of an
element of H−1 is v−1, see (1.1). By definition, for each g ∈ H1, the mapping

(2.10)

⎧⎪⎪
⎨
⎪⎪⎩

L2 → R
f ↦ ⨏

Rd
fg

extends to a continuous linear functional over H−1. Abusing notation slightly, we keep the same
notation for the extension. By an integration by parts, we see that (2.9) also makes sense for
k = 0, provided that the right side is understood in this extended sense (which is the canonical
duality pairing between the spaces H1 and H−1).

Using the identity (2.8) and stationarity, one can check the following integration by parts
formula: for every f ∈ H1 and G ∈ (H1)d, we have

(2.11) ⨏
Rd
∇f ⋅G = −⨏

Rd
f ∇ ⋅G.

If we only assume G ∈ (L2)d, then this formula allows to interpret ∇ ⋅G as an element of H−1;
similarly, if f ∈ L2, then we can interpret ∇f as an element of (H−1)d.

The gradient of the corrector in the direction of ξ ∈ Rd is the unique ∇φ(ξ) ∈ L2
pot that is a

weak solution of

(2.12) −∇ ⋅ a(ξ +∇φ(ξ)
) = 0.

This equation is interpreted as

for every ∇f ∈ L
2
pot, ⨏

Rd
∇f ⋅ a(ξ +∇φ(ξ)

) = 0.
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The existence of ∇φ(ξ) can be obtained by considering, for every λ ∈ (0,1], the approximation

φ
(ξ)
λ ∈ H1 which is a weak solution of the equation

(2.13) λφ
(ξ)
λ −∇ ⋅ a(ξ +∇φ

(ξ)
λ ) = 0.

It is indeed straightforward to verify that ∇φ
(ξ)
λ is bounded in L2 uniformly over λ ∈ (0, 1], and

that any weak limit must be a solution of (2.12). Moreover, the weak convergence of ∇φ
(ξ)
λ to

∇φ(ξ) in L2 as λ tends to 0 can be improved to strong convergence, see e.g. [52, (8.5)]. That is,
we have

(2.14) lim
λ→0

⨏
Rd

∣∇φ
(ξ)
λ −∇φ(ξ)

∣
2
= 0.

By definition, the homogenized matrix a is such that, for every ξ ∈ Rd,

(2.15) ξ ⋅ aξ = ⨏
Rd

(ξ +∇φ(ξ)
) ⋅ a(ξ +∇φ(ξ)

).

For the remainder of the paper, we will keep the unit vector ξ ∈ Rd fixed, and drop it from the
notation: in particular, we now simply write φ in place of φ(ξ).

3. Multiscale representation

In this section, we give a multiscale representation of the homogenized matrix. That is, we
rewrite a as the sum of a first term taking the form of an average of very local objects, and
correction terms that involve progressively larger and larger length scales. This increase of
the relevant length scale means that producing one relevant sample for the calculation of the
correction term becomes progressively more difficult. Yet, the actual size of these correction
terms becomes smaller and smaller, and thus fewer samples need to be averaged out in order to
approximate the expected value of the quantity up to a given accuracy. Moreover, this beneficial
effect more than compensates for the increase in computational effort required to obtain a single
sample, and this is the main reason for the efficiency of the approach presented here.

Proposition 3.1 (Multiscale representation of a). Recall that we fixed ξ ∈ Rd of unit length,
and that v−1, v0, v1, . . . are defined in (1.1)-(1.2). For each n ∈ N, the limit

(3.1) Dn ∶= lim
λ→0

⨏
Rd
vn (λ −∇ ⋅ a∇)

−1 vn

exists and is finite. Moreover,

(3.2) ξ ⋅ aξ = ⨏
Rd
ξ ⋅ aξ −

n

∑
k=0

2k ⨏
Rd

(vk−1vk + v
2
k) −Dn.

Remark 3.2. In the summand indexed by k = 0 on the right side of (3.2), we have

⨏
Rd
v−1v0 = −⨏

Rd
aξ ⋅ ∇v0,

and the left side of the identity above is interpreted as the duality pairing between H−1 and H1,
as explained below (2.10). All the other terms on the right side of (3.2) involve functions in L2

and are thus understood as in (2.8).

Remark 3.3. One can show in great generality (using only the ergodicity of the coefficient field
instead of the short-range dependence assumption) that

lim
n→∞

Dn = 0.

We do not provide the argument for this fact here. The interested reader can reconstruct it from
the quantitative analysis of this term provided in the next section; see also [52, Theorem 5.1].
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Proof of Proposition 3.1. By (2.12), we have

(3.3) ⨏
Rd
∇φ ⋅ a(ξ +∇φ) = 0.

Using also (2.15), we deduce that

(3.4) ξ ⋅ aξ = ⨏
Rd

(ξ +∇φ) ⋅ a(ξ +∇φ) = ⨏
Rd
ξ ⋅ aξ − ⨏

Rd
∇φ ⋅ a∇φ.

For each λ > 0, we define the resolvent operator

Rλ ∶ {
H−1 → H1

f ↦ (λ −∇ ⋅ a∇)−1f.

The function u = Rλf is interpreted as the unique element of H1 such that, for every v ∈ H1,

⨏
Rd

(λuv +∇u ⋅ a∇v) = ⨏
Rd
fv,

the right side of this identity being understood as explained below (2.10). For every λ,µ > 0,
we have the resolvent formula

(3.5) Rλ = Rµ + (µ − λ)RλRµ.

In particular, we have RλRµ = RµRλ. Moreover, the operator Rλ is self-adjoint, in the sense
that for every f, g ∈ H−1,

(3.6) ⨏
Rd
fRλg = ⨏

Rd
gRλf.

By (3.3) and (2.14), we have

⨏
Rd
∇φ ⋅ a∇φ = −⨏

Rd
aξ ⋅ ∇φ = − lim

λ→0
⨏
Rd

aξ ⋅ ∇φλ = lim
λ→0

⨏
Rd
v−1Rλv−1.

The completion of the proof will follow from this identity and a repeated application of the
resolvent formula. To start with, given any family of numbers λ,µ0, . . . , µn ∈ (0,∞), an inductive
argument based on the identity (3.5) yields that

(3.7) Rλ = (
n

∑
k=0

(µ0 − λ)⋯(µk−1 − λ)Rµ0 ⋯Rµk) + (µ0 − λ)⋯(µn − λ)Rµ0 ⋯RµnRλ.

For the summand with k = 0, the product (µ0 − λ)⋯(µk−1 − λ) appearing above is interpreted
as being 1. Note that, for every k ∈ N, we have

(3.8) vk = 2−kR2−kvk−1.

We define recursively

v−1,λ ∶= v−1, ∀k ∈ {0, . . . , n}, vk,λ ∶= (2−k − λ)R2−kvk,λ.

For each λ ∈ (0,2−n), we now apply the formula (3.7) with the choice

(µ0, . . . , µ2n) = (1,1,2−1,2−1, . . . ,2−n,2−n),

and also use the commutation between resolvents and the symmetry (3.6) to obtain that

⨏
Rd
v−1Rλv−1 =

n

∑
k=0

(2−k − λ)−1
⨏
Rd

(vk−1,λvk,λ + v
2
k,λ) + ⨏Rd

vn,λRλvn,λ.

Note that vk,λ is a scalar multiple of vk, and that this scalar tends to 1 as λ tends to 0. Hence,
the left side and each summand in the sum indexed by k on the right side of the identity above
converges as λ tends to 0. It follows that the limit

lim
λ→0

⨏
Rd
vn,λRλvn,λ = lim

λ→0
⨏
Rd
vn,Rλvn =∶Dn

is well-defined and finite, and using also (3.4), that the formula (3.2) holds. �
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4. Quantitative estimates

Recall that we have fixed a vector ξ ∈ Rd of unit norm throughout the paper. The proof of
Theorem 1.1 relies on estimates on the solution u of the initial-value problem

(4.1) {
∂tu −∇ ⋅ a∇u = 0 in (0,∞) ×Rd,
u(0, ⋅) = ∇ ⋅ aξ on Rd.

The study of this problem was initiated in [50] where suboptimal estimates were derived. The
sharp exponent of decay in time was obtained in [33], with polynomial moments controlled.
With a very different proof, the stochastic integrability of this result was improved to almost
Gaussian tails in [38]. A variation of this argument is exposed in [12, Chapter 9].

Theorem 4.1 ([38]). (1) For every σ ∈ (0,2), there exists C(σ,Λ, d) < ∞ such that for every
t ⩾ 1 and x ∈ Rd,

∣u(t, x)∣ ⩽ Oσ (Ct−
1
2
− d

4 ) .

(2) For every δ > 0, there exist σ(δ, d) > 2 and C(δ,Λ, d) < ∞ such that for every t ⩾ 1 and
x ∈ Rd,

(4.2) ∣u(t, x)∣ ⩽ Oσ (Ct−
1
2
− d

4
+δ

) .

We will only use the first part of Theorem 4.1 once, in the course of the proof of Proposition 4.5,
in the form of the L2 estimate

(4.3) ⨏
Rd
u2

(t, ⋅) ⩽ Ct−1− d
2 .

In order to conclude for exponentially decaying tails as in the statement of Theorem 1.1, it
is crucial to be able to choose an exponent σ ⩾ 2 in the estimate on the size of u (and for
convenience, we will in fact choose σ > 2); this is the main motivation for stating the second
part of Theorem 4.1. The first part of Theorem 4.1 matches the results found in [38] and [12,
Theorem 9.1]. In order to obtain the second part of the statement as a consequence, we can use
the following basic deterministic estimate, a proof of which can be found in [12, Lemma 9.2].

Lemma 4.2 (Deterministic bounds on u). There exists C(Λ, d) < ∞ such that for every t > 0,

∥u(t, ⋅)∥L∞(Rd) + t
1
2 ∥∇u(t, ⋅)∥L∞(Rd) ⩽ Ct

− 1
2 .

Proof of part (2) of Theorem 4.1. Let σ > 2 and τ ∈ (0,2) be exponents that will be fixed in
terms of δ > 0 and the dimension d in the course of the proof. By the first part of the theorem,
there exists a constant C(τ,Λ, d) < ∞ such that for every t ⩾ 1 and x ∈ Rd,

∣u(t, x)∣ ⩽ Oτ (Ct
− 1

2
− d

4 ) .

Explicitly, this means that

E [exp ((C−1t
1
2
+ d

4 ∣u(t, x)∣)
τ
)] ⩽ 2.

It follows from Lemma 4.2 that the random variable ∣u(t, x)∣ is bounded, uniformly over t ⩾ 1
and x ∈ Rd. Hence, for a constant C(τ, σ,Λ, d) < ∞,

E [exp (C−σtτ(
1
2
+ d

4
)
∣u(t, x)∣σ)] ⩽ 2,

that is,

∣u(t, x)∣ ⩽ Oσ (Ct−
τ
σ
( 1
2
+ d

4
)
) .

This is (4.2) with δ given by

δ = (1 −
τ

σ
)(

1

2
+
d

4
) .

Since σ > 2 and τ < 2 can be chosen arbitrarily close to 2, any exponent δ > 0 can be represented
in this way. �
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We also record the following useful lemma allowing to localize the dependency of u on the
coefficient field; see [12, Lemma 9.4] for a proof.

Lemma 4.3 (Localization of u). There exist a constant C(Λ, d) < ∞ and, for each r ∈ [2,∞),
t ∈ (0, r2] and x ∈ Rd, an F(B(x, r))-measurable random variable u′(r, t, x) such that

(4.4) ∣u(t, x) − u′(r, t, x)∣ ⩽ Ct−
1
2 exp(−

r2

Ct
) ,

and

(4.5) ∣∇u(t, x) − ∇u′(r, t, x)∣ ⩽ Ct−1 exp(−
r2

Ct
) .

The function vk can be represented as a time integral of the function u(t, ⋅), and the main
contribution to this integral is for t ≃ 2k. The previous results concerning the function u can
thus be translated into information on vk.

Proposition 4.4 (quantitative bounds on vk). (1) There exists C(Λ, d) < ∞ such that for
every k ∈ N,

(4.6) ∥vk∥L∞(Rd) ⩽ C2−
k
2 .

(2) There exist C(Λ, d) < ∞ and, for each r ∈ [2,∞), k ∈ N and x ∈ Rd, an F(B(x, r))-
measurable random variable vk(r, x) such that

(4.7) ∣vk(x) − vk(r, x)∣ ⩽ C2−
k
2 exp (−C−12−kr2) ,

and

(4.8) ∣∇vk(x) − ∇v
′
k(r, x)∣ ⩽ C2−k exp (−C−12−kr2) .

(3) For every δ > 0, there exist σ(δ, d) > 2 and C(δ,Λ, d) < ∞ such that for every k ∈ N and
x ∈ Rd,

(4.9) ∣vk(x)∣ ⩽ Oσ (C2−k(
1
2
+ d

4
−δ)

) .

Proof. We decompose the proof into three steps.

Step 1. Transfering information on u(t, ⋅) onto information on the vk’s relies on the observation
that, for every λ > 0 and f ∈ L2,

(4.10) Rλf = (λ −∇ ⋅ a∇)
−1f = ∫

+∞

0
e−λtP (t)f dt,

where P (t) = exp (t∇ ⋅ a∇) is the semigroup associated with the evolution operator ∂t −∇ ⋅ a∇.
This identity can be extended to the case f = ∇ ⋅ aξ, and we thus have in particular that

(4.11) v0 = ∫

∞

0
e−t u(t, ⋅)dt.

Since integrals of the form of (4.10) or (4.11) will be iterated multiple times, it is convenient to

rewrite them using probabilistic notation. That is, denoting by T (λ) an exponential random
variable of parameter λ which is independent of any other quantity in the problem, and by E
the expectation over this random variable only, we can rewrite (4.10) in the form

(4.12) λRλf = E [P (T (λ)
)f] .

Denote by (Tk)k∈N a family of independent exponential random variables, of respective parame-
ters (2−k)k∈N, and for every k ∈ N, set

(4.13) Sk ∶=
k

∑
j=0

Tj .

We keep denoting by E the expectation over these random variables. Recalling (3.8) and using
the semigroup property of (P (t))t⩾0, we deduce that for every k ∈ N,

(4.14) vk = E [P (Sk)v−1] = E [u(Sk, ⋅)] .
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In view of this relation, we can now transfer information about u onto vk provided that we have
some information on the typical behavior of Sk. As a useful guide for the intuition, we remark
that

E[Sk] =
k

∑
j=0

2j = 2k+1
− 1,

so heuristically, we hope that any bound on u(t, ⋅) transfers into a bound on vk after the
substitution of t by 2k.

Step 2. We prove (4.9). In view of Theorem 4.1 and (4.14), we need to know that Sk is rarely
much smaller than 2k. The following result is shown in [52, (5.12)]: for every β > 0, there exists
a constant C(β) < ∞ such that for every k ∈ N,

(4.15) E [(1 + Sk)
−β] ⩽ C2−kβ.

By Theorem 4.1 and Lemma 2.2, we have, for every x ∈ Rd,

E [∣u(Sk, x)∣ 1{Sk⩾1}] ⩽ Os (CE [(1 + Sk)
− 1

2
− d

4
+δ

]) ⩽ Os (C2−k(
1
2
+ d

4
−δ)

) .

To control the behavior of this term on the event Sk ∈ [0, 1], we use that the Tj ’s are nonnegative
and independent to write, for every s ⩽ 1,

P [Sk ⩽ s] ⩽
k

∏
j=0

P [Tj ⩽ s] ⩽
k

∏
j=0

(1 − exp (−2−js)) ⩽
k

∏
j=0

2−js = 2−
k(k+1)

2 sk+1.(4.16)

This and Lemma 4.2 imply that

(4.17) E [∣u(Sk, x)∣ 1{Sk⩽1}] ⩽
∞

∑
j=0

E [∣u(Sk, x)∣ 1{2−j−1<Sk⩽2−j}]

⩽ C2−
k(k+1)

2

∞

∑
j=0

2
j
2 2−j(k+1)

⩽ C2−
k(k+1)

2 .

This is largely sufficient to complete the proof of the estimate in (4.9). The proof of (4.6) is
similar, only simpler, using Lemma 4.2 in place of Theorem 4.1.

Step 3. We prove (4.7). Recalling the notation u′(r, t, x) introduced in Lemma 4.3, we define,
for each r ∈ [2,∞) and x ∈ Rd, the F(B(x, r))-measurable random variable

vk(r, x) ∶= E [u′(r, Sk, x)1{Sk⩽r2}] .

We need an upper bound for the probability of the event that Sk is large. We obtain this by
writing, for every s ⩾ 0,

(4.18) P [Sk ⩾ s] ⩽ E [exp (2−(k+1)
(Sk − s))] =

k

∏
j=0

2−j

2−j − 2−(k+1)
exp (−2−(k+1)s)

=
k+1

∏
j=1

1

1 − 2−j
exp (−2−(k+1)s) ⩽ C exp (−2−(k+1)s) .

We now decompose the error into

∣vk(x) − vk(r, x)∣ ⩽ E [∣u′(r, Sk, x) − u(Sk, x)∣1{Sk⩽r2}] +E [∣u(Sk, x)∣1{Sk>r2}]

⩽

⌊2−kr2⌋

∑
j=0

E [∣u′(r, Sk, x) − u(Sk, x)∣1{j2k⩽Sk⩽(j+1)2k}] +E [∣u(Sk, x)∣1{Sk>r2}] ,

and analyze each of these terms in turn. By Lemma 4.3 and (4.18), we have

⌊2−kr2⌋

∑
j=0

E [∣u′(r, Sk, x) − u(Sk, x)∣1{j2k⩽Sk⩽(j+1)2k}] ⩽ C2−
k
2

⌊2−kr2⌋

∑
j=0

exp(−
r2

Cj2k
−
j

2
)

⩽ C2−
k
2 exp(−

r2

C2k
) .
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Moreover, by Lemma 4.2 and (4.18), we have

E [∣u(Sk, x)∣1{Sk>r2}] ⩽ Cr
−1 exp (−2−(k+1)r2

) .

Combining these estimates yields (4.7). The proof of (4.8) is similar, except that we appeal to
(4.5) instead of (4.4). �

We denote

w0 ∶= −aξ ⋅ ∇v0 + v
2
0, ∀k ∈ N ∖ {0}, wk ∶= vk−1vk + v

2
k.

For every k ∈ N, we have that wk ∈ L
1, and by Proposition 3.1, for Dn as in (3.1),

(4.19) ξ ⋅ aξ = ⨏
Rd
ξ ⋅ aξ −

n

∑
k=0

2k ⨏
Rd
wk −Dn.

We next estimate the size of the remainder term Dn.

Proposition 4.5 (Remainder estimate). There exists C(Λ, d) < ∞ such that for every n ∈ N,

0 ⩽Dn ⩽ C2−
nd
2 .

Proof. We keep denoting by Sk the random variable defined in (4.13), and we let S′k be an

independent copy of Sk. We also let T (λ) be an independent exponential random variable of
parameter λ, and denote the expectation with respect to these random variables by E. We
recall that the introduction of these random variables allows us for convenient representations
such as those in (4.12) and (4.14). Combining these representations with the definition of Dk

in (3.1), we obtain that

Dk = lim
λ→0

λ−1
⨏
Rd
E [P (Sk)v−1P (T (λ)

+ S′k)v−1] .

Since P (t) is self-adjoint in L2, we have

⨏
Rd
E [P (Sk)v−1P (T (λ)

+ S′k)v−1] = ⨏
Rd
E

⎡
⎢
⎢
⎢
⎢
⎣

(P (
Sk + S

′
k + T

(λ)

2
) v−1)

2⎤
⎥
⎥
⎥
⎥
⎦

= ⨏
Rd
E [u2

(
Sk + S

′
k + T

(λ)

2
, ⋅)] ,

and thus

(4.20) Dk = ∫

+∞

0
⨏
Rd
E [u2

(
Sk + S

′
k + t

2
, ⋅)] dt ⩾ 0.

In order to estimate the integral over t ∈ [0,1], we use independence to get that

P [Sk + S
′
k ⩽ s] ⩽ (P [Sk ⩽ s])

2 ,

and then proceed as in (4.16) and (4.17). For the remaining part, we use (4.3) and the triangle
inequality to deduce that

Dk ⩽ C ∫
∞

1
E [(Sk + S

′
k + t)

−1− d
2 ] dt ⩽ C ∫

∞

1
E

⎡
⎢
⎢
⎢
⎢
⎣

(Sk +
t

2
)
−1− d

2
⎤
⎥
⎥
⎥
⎥
⎦

dt.

Integrating in t and then appealing to (4.15), we obtain

Dk ⩽ CE [(Sk + 1)−
d
2 ] ⩽ C2−

kd
2 ,

as announced. �

In the next proposition, we replace the global averages ⨏Rd appearing in (4.19) by averages
against a heat kernel mask. Recall the definition of Φ in (2.3).
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Proposition 4.6 (CLT cancellations). For every δ > 0, there exist σ(δ, d) > 1 and C(δ,Λ, d) < ∞
such that for every k ∈ N ∖ {0}, x ∈ R and s > 0,

(4.21) ∣∫
Rd
wk(y)Φ(s, x − y)dy − ⨏

Rd
wk∣ ⩽ Oσ

⎛
⎜
⎝
C2−k(1+ d

2
−δ)

(
s

2k log2(2 + k)
+ 1)

− d
4⎞
⎟
⎠
.

For k = 0, the same estimate holds with the additional restriction s ⩾ 1.

Proof. We first record the following elementary observation: for every σ, θ > 0 and random
variables X and Y , we have

(4.22) ∣X ∣ ⩽ O2σ(θ) and ∣Y ∣ ⩽ O2σ(θ) Ô⇒ ∣XY ∣ ⩽ Oσ(θ
2
).

Indeed, this follows from

E [exp ((θ−2
∣XY ∣)

σ
)] ⩽ E [exp(

1

2
(θ−1

∣X ∣)
2σ
+

1

2
(θ−1

∣Y ∣)
2σ

)]

⩽ E [exp ((θ−1
∣X ∣)

2σ
)]

1
2 E [exp ((θ−1

∣Y ∣)
2σ

)]

1
2
⩽ 2.

We decompose the rest of the proof into three steps.

Step 1. We set

(4.23) r′k ∶= 2
k
2 log(2 + k).

In this step, we observe that the statement (4.21) is valid when
√
s ⩽ r′k. Indeed, for k ⩾ 1, the

statement (4.21) with
√
s ⩽ r′k follows from (4.9), (4.22) and Lemma 2.2. For k = 0, we also

need a bound on ∇v0, which is provided by the following deterministic estimate: there exists a
constant C(Λ, d) < ∞ such that for every x ∈ Rd,

(4.24) ∥∇v0∥L2(x+◻0)
⩽ C.

This estimate is a consequence of the Caccioppoli inequality and (4.6).

Step 2. We reformulate (4.21) into an equivalent form that will be more convenient for the
analysis. For every k ∈ N, we denote

w̃k ∶= wk −E[wk].

We show that it suffices to prove Proposition 4.6 for
√
s ⩾ r′k and with (4.21) replaced by

(4.25) ∫
Rd
w̃k(y)Φ(s, x − y)dy = Oσ

⎛
⎜
⎝
C2−k(1+ d

2
−δ)

(

√
s

r′k
+ 1)

− d
2⎞
⎟
⎠
.

For every k ⩾ 1, the mapping x↦ E[wk(x)] is Zd-periodic, and by (4.9), it is uniformly bounded

by C2−k(1+ d
2
−δ). In the case k = 0, the mapping x↦ E[w0(x)] is Zd-periodic and in L2([0, 1]d),

as follows from (4.6) and the fact that v0 ∈ H
1. Hence, for every k ∈ N, there exists a constant

C(k,Λ, d) < ∞ such that for every x ∈ Rd and s ⩾ 1,

∣∫
Rd

E[wk(y)]Φ(s, x − y)dy − ⨏
Rd
wk∣ ⩽ C2−k(1+ d

2
−δ) exp (−C−1s) .

See for instance [12, Exercise 3.7] for a proof. As a consequence, the statements (4.21) and
(4.25) are equivalent, up to an adjustment of the constant C.

Step 3. Without loss of generality, it suffices to prove (4.25) for x = 0. For each r ⩾ r′k, we
define

w̃′
k(r, x) ∶= w

′
k(r, x) −E [w′

k(r, x)] .

By (4.7)-(4.8), there exists C(Λ, d) < ∞ such that for every k ∈ N and r ⩾ r′k,

(4.26) ∣w̃k(x) − w̃
′
k(r, x)∣ ⩽ C2−100dk exp (−C−12−kr2) .



16 A. HANNUKAINEN, J.-C. MOURRAT, AND H.T. STOPPELS

In this step, we leave aside the case k = 0 and show that there exists C(δ,Λ, d) < ∞ such that
for every k ⩾ 1, r ⩾ r′k and s > 0,

(4.27) ∫
Rd
w̃′
k(r, x)Φ(s, x)dx = Oσ

⎛

⎝
C2−k(1+ d

2
−δ)

(
s

r2
+ 1)

− d
4⎞

⎠
.

We denote the cube of side length r centered at the origin by

◻r ∶= (−
r

2
,
r

2
)
d

.

By (4.26) and the same argument as in Step 1 of this proof, we may assume that s ⩾ r2. We
decompose the left side of (4.27) into

∫
Rd
w̃′
k(r, x)Φ(s, x)dx = ∑

z∈rZd
∫
z+◻r

w̃′
k(r, x)Φ(s, x)dx.

By (4.9), (4.22) and Lemma 2.2, there exists σ > 1 such that, for each z ∈ Zd,

∫
z+◻r

w̃′
k(r, x)Φ(s, x)dx = Oσ (C2−k(1+ d

2
−δ)

∥Φ(s, ⋅)∥L1(z+◻r)) .

By Lemma 2.3, we obtain that

∑
z∈rZd

∫
z+◻r

w̃′
k(r, x)Φ(s, x)dx = Oσ

⎛
⎜
⎝
C2−k(1+ d

2
−δ) ⎛

⎝
∑
z∈rZd

∥Φ(s, ⋅)∥2
L1(z+◻r)

⎞

⎠

1
2⎞
⎟
⎠
.

We conclude that (4.27) holds by observing that, since s ⩾ r2,

∑
z∈rZd

∥Φ(s, ⋅)∥2
L1(z+◻r)

⩽ Crds−
d
2 .

Step 4. In this step, we show that there exists C(δ,Λ, d) < ∞ such that for every k ⩾ 1, r ⩾ r′k
and s > 0,

(4.28) ∫
Rd

(w̃′
k(2r, x) − w̃

′
k(r, x))Φ(s, x)dx = Oσ

⎛

⎝
C2−k(1+ d

2
−δ)

(
s

r2
+ 1)

− d
4

exp(−
r2

C2k
)
⎞

⎠
.

The argument is similar to that of the previous step, only simpler, using only (4.26) and not
requiring any appeal to (4.9).

Step 5. We complete the proof. It is clear from (4.26) that

w̃k(x) = lim
r→∞

w̃′
k(r, x).

We thus decompose w̃k(x) into

w̃k(x) = w̃
′
k(r

′
k, x) +

+∞

∑
j=0

(w̃′
k(2

j+1r′k, x) − w̃
′
k(2

jr′k, x)) .

Applying (4.27) to the first term, (4.28) to each of the summands, and summing the result, we
obtain (4.25) for k ⩾ 1. In the case k = 0, the same reasoning applies, using also the deterministic
estimate on ∇v0 provided in (4.24), and the estimate (4.8) to localize the dependency of this
term on the coefficient field. �

We have now obtained almost optimal information on the behavior of wk when tested against
the heat kernel. Since we want to understand the behavior of this field against an arbitrary
mask, we now upgrade this information into an H−` estimate using the following lemma, which
is a rescaled version of [12, Remark D.6]. In order to keep the presentation of the argument as
simple as possible, we only state this lemma for L2-based Sobolev spaces with integer-valued
regularity exponents. Recall the definitions of the rescaled H` and H−` norms in (2.5) and (2.6).
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Lemma 4.7 (Sobolev norm from heat-kernel convolutions). For every ` ∈ N, there exists a
constant C(`, d) < ∞ such that for every f ∈H−`

loc(R
d) and r > 0, we have

∥f∥2
H−`(B(0,r))

⩽ Cr−d∫
Rd

exp(−
∣x∣

r
)∫

r2

0
s`−1

∣f ∗Φ(s, ⋅)∣2(x)dsdx.

Combining this lemma with Proposition 4.6 yields the following estimate.

Lemma 4.8 (Sobolev norm for wk). For every δ > 0, there exist σ(δ, d) > 1 and, for every ` ∈ N
satisfying ` > d

2 , a constant C(δ, `,Λ, d) < ∞ such that for every k ∈ N and r ⩾ 1, we have

r−` ∥wk − ⨏
Rd
wk∥

H−`(B(0,r))
⩽ Oσ

⎛
⎜
⎝
C2−k(1+ d

2
−δ) ⎛

⎝

r

2
k
2 log(2 + k)

+ 1
⎞

⎠

− d
2⎞
⎟
⎠
.

Proof. For convenience, we set f ∶= wk − ⨏Rd wk, and use the notation r′k introduced in (4.23).

We first consider the case k ∈ N ∖ {0}. For r ⩽ r′k, by Proposition 4.6, we have for every x ∈ Rd
that

∫

r2

0
s`−1

∣f ∗Φ(s, ⋅)∣2(x)ds = Oσ/2 (C2−2k(1+ d
2
−δ)
∫

r2

0
s`−1 ds) = Oσ/2 (C2−2k(1+ d

2
−δ)r2`

) .

For r ⩾ r′k, we have instead that

∫

r2

0
s`−1

∣f ∗Φ(s, ⋅)∣2(x)ds = Oσ/2
⎛

⎝
C2−2k(1+ d

2
−δ)
∫

r2

0
s`−1

(

√
s

r′k
+ 1)

−d

ds
⎞

⎠

= Oσ/2
⎛

⎝
C2−2k(1+ d

2
−δ)r2`

(
r

r′k
)

−d
⎞

⎠
,

where we used that ` > d
2 and r ⩾ r′k for the second equality. We then obtain the result by an

application of Lemma 4.7. The case k = 0 is obtained in the same way, except that we treat the
integral over s ∈ [0,1] separately using the gradient estimate in (4.24). �

We are now ready to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Recall that we denote by χ ∈ C∞
c (Rd) a smooth bump function of unit

mass with compact support in the unit ball B(0, 1), and that we write χr ∶= r
−dχ(r−1 ⋅). By the

definition of the rescaled H` norm in (2.5), for every ` ∈ N and r ⩾ 1, we have

∥χr∥H`(B(0,r)) = r
−`
∥χ∥H`(B(0,1)).

We select ` to be the smallest integer such that ` > d
2 (that is, ` = ⌈d

2 +
1
4
⌉), and write

∣∫
Rd
wkχr − ⨏

Rd
wk∣ ⩽ r

−`
∥χ∥H`(B(0,1)) ∥wk − ⨏Rd

wk∥
H−`(B(0,r))

.

An application of Lemma 4.8 thus yields, for each δ > 0, that there exists σ(δ, d) > 1 and a
constant C(δ, ∥χ∥H`(Rd),Λ, d) < ∞ such that for every k ∈ N and r ⩾ 1,

∣∫
Rd
wkχr − ⨏

Rd
wk∣ ⩽ Oσ

⎛
⎜
⎝
C2−k(1+ d

2
−δ) ⎛

⎝

r

2
k
2 log(2 + k)

+ 1
⎞

⎠

− d
2⎞
⎟
⎠
.

We fix ε ∈ (0, d−1
2d

), n ∈ N, and recall from (1.5) the notation

rk ∶= 2n−(
1
2
−ε)k.
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Substituting r with rk in the previous display, we obtain that

∣∫
Rd
wkχrk − ⨏Rd

wk∣ ⩽ Oσ
⎛
⎜
⎝
C2−k(1+ d

2
−δ)

(
2n−k+εk

log(2 + k)
+ 1)

− d
2⎞
⎟
⎠

⩽ Oσ (C2−
nd
2
−k(1−δ+ εd

2
) log

d
2 (2 + k)) .

We select δ ∶= εd
4 > 0, so that

n

∑
k=0

2k ∣∫
Rd
wkχrk − ⨏Rd

wk∣ ⩽ Oσ (C2−
nd
2 ) .

In view of Lemma 2.1 and of the fact that σ > 1, this implies the existence of a constant
c(ε, ∥χ∥H`(Rd),Λ, d) < ∞ such that for every n ∈ N and t ⩾ 0,

P [
n

∑
k=0

2k ∣∫
Rd
wkχrk − ⨏Rd

wk∣ ⩾ t2
−nd

2 ] ⩽ 2 exp (−ct) .

A similar but simpler argument shows that

P [∣∫
Rd

(ξ ⋅ aξ)χr0 − ⨏Rd
ξ ⋅ aξ∣ ⩾ t2−

nd
2 ] ⩽ 2 exp (−ct2) .

Combining these estimates with (4.19) and Proposition 4.5 completes the proof of Theorem 1.1.
�

5. Hierarchical hybrid grids

In this section, we explain our strategy for the numerical approximation of solutions of elliptic
equations. For definiteness, given a coefficient field a(x), and a domain U ⊆ Rd, we consider the
problem of computing an approximation of the solution u ∈H1

0(U) of the equation

(5.1) {
−∇ ⋅ a(ξ +∇u) = 0 in U,

u = 0 on ∂U.

Since generalizations such as the addition of lower-order terms or non-zero boundary conditions
pose no particular additional difficulty, we will not discuss these further. In the first subsection,
we observe the necessity to opt for highly refined discretized approximations to the continuous
equation. We then explain efficient ways to compute these highly refined approximations. Our
approach is in line with the earlier work [16, 15] and based on hierarchical hybrid grids. That
is, we start from an unstructured coarse mesh and refine it in a self-similar way a number of
times; we then exploit this piecewise-structured hierarchical construction extensively at every
step of the algorithm (assembly of the finite-element matrix, matrix-vector products, restriction
and interpolation operators).

5.1. Roughness of solutions. In many practical instances, the heterogeneity of the coefficient
field is due to the fact that the material of interest is a mixture of several different types of
substances: see for instance the library of images at [1]. In view of this, we focus on the case of
piecewise-constant coefficient fields.

In this case, the discontinuities of the coefficient field compound the difficulties inherent to
solving equations with rapidly oscillating coefficients. In order to measure the extent of these
difficulties, consider the problem of approximating the solution u ∈H1([−1,1]2) to

(5.2)

⎧⎪⎪
⎨
⎪⎪⎩

−∇ ⋅ a(x)∇u = 0 in [−1,1]2,

u(x) = x1 + x2 on ∂ ([−1,1]2) ,

where the coefficient field a(x) is given by

(5.3) a(x) = ∣
9 Id if x ∈ [−1,0]2 ∪ [0,1]2,
Id otherwise.
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Figure 5.1. Left: the solution u of (5.2)-(5.3) minus the affine function x ↦ x1 + x2, with
initial coarse mesh refined five times. Middle: the solution along the line x1 = x2 for x1 > 0,
compared with the function r0.40966, on a logarithmic scale. Right: the (approximate) relative
error, in H1 and in L2 respectively, for the problem in (5.2)-(5.3). Successive dots on a given
line correpond to successive refinements of the triangular mesh, starting from a coarse mesh of
8 triangles.

We start from a coarse mesh made of 8 triangles of equal sizes (two triangles in each of the
translates of [0,1]2). We then refine a given mesh by subdividing each triangle into 4 smaller
triangles, adding a new vertex at the midpoint of each edge. We consider multiple iterations
of this refinement procedure, and for each level of refinement, we compute the associated
finite-element solution, using piecewise affine elements. The approximation of the solution
minus the affine function x = (x1, x2) ↦ x1 + x2 after five levels of refinement is represented
on the left frame of Figure 5.1. The rough behavior of the solution near the origin is clearly
visible. We also display the value of the solution along the line x1 = x2 on the middle frame of
Figure 5.1—see below around (5.5) for the prediction of the exponent 0.4 . . . appearing there.
The right frame of Figure 5.1 displays the relative error, measured in H1 and in L2 respectively,
compared with the true solution. In order for the relative error to be below 10% in the H1

norm, it is necessary to use at least six levels of refinement. At six levels of refinement, the
linear system that needs to be solved already involves 215 unknowns.

We can understand the roughness of the solution theoretically in a precise way. We consider
more generally the situation when the coefficient field is given by

(5.4) a(x) = ∣
Λ Id if x ∈ [−1,0]2 ∪ [0,1]2,
Id otherwise,

for some Λ ∈ [1,∞). A blow-up analysis near the origin suggests to look for solutions in the unit
ball B(0,1) of the form rαf(θ), where r ⩾ 0 and θ ∈ [0,2π) are the standard polar coordinates:
x1 = r cos θ and x2 = r sin θ. Denoting

a(θ) ∶= ∣
Λ if θ ∈ [0, π2 ] ∪ [π, 3π

2
] ,

1 otherwise,

we find that the smallest exponent α > 0 such that rαf(θ) is a solution in B(0,1) for some
function f is given by

α2
= inf

⎧⎪⎪
⎨
⎪⎪⎩

∫
2π

0 (f ′)2a

∫
2π

0 f2a
∶ f ∈H1

per([0,2π]) s.t. ∫
2π

0
fa = 0

⎫⎪⎪
⎬
⎪⎪⎭

.

Moreover, rαf(θ) is indeed a solution of the equation in B(0, 1) when f is the unique minimizer
of the variational problem above. The value of this exponent was computed in [57]: it is

(5.5) α =
4

π
arctan(

1
√

Λ
) .

Notice that the function rαf(θ) belongs to H1+α−ε(B(0, 1)) for every ε > 0, but does not belong
to H1+α(B(0, 1)). We therefore expect a finite-element scheme with elements of size h to provide
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an approximation in H1 at a precision of the order of hα (and at precision of the order of h1+α

in L2). The particular case we investigated numerically corresponds to Λ = 9, which gives

(5.6) α =
4

π
arctan(

1

3
) ≃ 0.4096655294 . . .

In fact, it was shown in [57] that the exponent in (5.5) is the smallest possible exponent for
Hölder regularity one can get if one allows for abritrary coefficient fields which are everywhere a
multiple of the identity and satisfy the ellipticity condition

(5.7) Id ⩽ a(x) ⩽ Λ Id.

In this sense, coefficient fields that are piecewise constant on a checkerboard structure are
worst possible from the point of view of regularity (and therefore of difficulty of numerical
approximation). For general coefficient fields satisfying (5.7) but not necessarily being a multiple
of the identity matrix at each point, it was shown in [57] that the smallest possible exponent

for Hölder regularity is α = Λ− 1
2 . An explicit coefficient field satisfying (5.7) and admitting

a solution of the form rΛ−
1
2 f(θ) was first given in [49]. This exponent governs the rate of

convergence of the finite-element approximation as the mesh is successively refined: for instance,
for an ellipticity contrast of Λ = 100, we cannot hope for an asymptotic convergence rate better
than h0.1 in general, and no better than h0.127... in the case of the coefficient field in (5.4). The
situation is even worse in dimension d = 3, at least from a theoretical point of view. Indeed, to
the best of our knowledge, it is an open question to show that when d = 3 (or for any d ⩾ 3), the
regularity exponent can be bounded from below by a negative power of the ellipticity contrast.

5.2. Number of unknowns. We are ultimately interested in solving elliptic equations with
random coefficients. In order to calculate the homogenized matrix, we will need to average
over large domains, so as to tame the fluctuations of the coefficient field. As a toy example,
consider the problem of calculating the standard average of the coefficient field, denoted by ⨏Rd a
above, see (2.8). By the scaling of the central limit theorem, in order to measure this quantity
within a precision δ > 0, we need to average over at least Cδ−2 unit cells. Similarly, as was
shown in [52, Proposition 1.1], it is impossible to compute an approximation of the homogenized
matrix at precision δ if one observes only o(δ−2) unit cells (the statement in [52] is written for
finite-difference equations, but the proof applies essentially verbatim to the continuous setting).

Roughly speaking, if we want to compute a within a precision of, say, 10%, we are bound to
have to examine at least of the order of 102 unit cells. In two dimensions, if the mesh we use is
refined six times as described in the previous subsection, this means that we must be facing
problems involving of the order of 215 ⋅102 ≃ 3 ⋅106 unknowns. Notice that each further refinement
of the mesh multiplies this number by 4, and that reducing the size of the fluctuations by a
factor of 2 also multiplies this number by 4. Finally, this rough estimation hides multipicative
constants that may be large. (On the other hand, the random coefficient fields we investigate
numerically in the next section are not made of a systematic periodic repetition of the worst-case
coefficient field in (5.3), and this will mitigate the difficulty somewhat.)

5.3. Motivations for hybrid methods. The upshot of the previous subsections is that we
ought to be able to solve for elliptic problems with many degrees of freedom. As is well-known,
the numerical approximation of elliptic equations in domains with simple geometry and with
constant coefficients can be performed very efficiently using a variety of techniques, including
the geometric multigrid method (see [29] for several benchmarks). Indeed, for equations with
constant coefficients, stencil-based operations can replace the need to assemble and store the
finite-element matrix. Moreover, the data can be organized locally in agreement with the
underlying geometry and accessed in a consistent way, resulting in few integer operations and
highly optimized usage of the processor cache memory.

For more complex geometries or varying coefficients, completely unstructured approaches
can be used instead. In this case, the problem of storing the finite-element matrix in memory
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becomes a major limitation. Moreover, data access becomes highly unpredictable and requires
more integer operations, two factors that cause a dramatic drop in performance [16, 15].

Following [16, 15], we seek to remedy this problem by using a hybrid approach. The idea,
called Hierarchical hybrid grids in [16, 15], is to proceed as in the completely unstructured case
on the coarse mesh, but then rely on structured techniques within each constant-coefficient
patch. This approach has multiple advantages. Firstly, we only need to assemble and store the
finite-element matrix associated with the coarsest mesh. Similarly, we do not need to store
the full computational grid in memory. This results in large gains in memory usage, which is
otherwise the main limiting factor on the computing architectures we use. Moreover, we store
a vector of the finite-element space in a bi-dimensional array indexed by the identity of the
coarse element and then the position within it. This allows to obtain efficiency gains similar
to those observed in the completely structured case, in particular regarding fast matrix-vector
multiplications, and restriction and interpolation operators in the multigrid method.

5.4. Hierarchical hybrid grids. We now explain how to implement this approach more
precisely. We also refer to [40] for a more thorough discussion, as well as [16, 15].

We start with some definitions. We say that T = {K1, . . . ,Kn} is a simplicial partition of
the set U ⊆ Rd if the following three conditions hold: (1) for every i ∈ {1, . . . , n}, the set Ki is a
simplex in Rd (that is, the convex envelope of a set of (d + 1) points—a triangle in dimension
d = 2 and a tetrahedron in dimension d = 3); (2) for every i ≠ j, the interiors of Ki and Kj are
disjoint; (3) the union ⋃ni=1Ki is the closure of the set U . For convenience, we often drop the
word “simplicial” and simply say “partition” instead of “simplicial partition”. A partition can
be represented as a list of nodes nodes {ni}1⩽i⩽N ⊆ Rd and a list of (d + 1)-tuples of indices
that define the identity of the corner points of every simplex in the partition. We say that two
partitions T1 and T2 are nested, and write T1 ⊑ T2, if for every K ∈ T1, there exists T ∈ T2 such
that K ⊆ T .

We denote by K̂ the standard simplex, that is, the convex envelope of the nodes e0, . . . ,ed,
where (e1, . . . ,ed) is the canonical basis of Rd, and e0 is the null vector. Let T̂ be a partition

of K̂, and TH be a partition of an arbitrary domain. We say that a partition Th is the locally
uniform partition associated with (TH , T̂ ), and write Th = lup(TH , T̂ ), if Th ⊑ TH and, for every

K ∈ TH , there exists an affine mapping FK ∶ Rd → Rd such that the image of T̂ under FK is
{T ∈ Th ∶ T ⊆K}. See Figure 5.2 for an illustration. Notice that the mapping FK appearing

above must be such that FK(K̂) =K. Such an affine mapping is entirely specified by prescribing

which nodes of K̂ are sent to which nodes of K.

Note that the locally uniform partition Th is completely specified by the knowledge of (TH , T̂ ).

This allows for vast memory gains for storing the partition, since only the reference simplex K̂
is meshed finely, while the global partition TH remains coarse. In addition, as discussed below,
this format will be very convenient for a variety of operations, including for implementing the
restriction and interpolation operators in the multigrid method.

5.5. Assembly of the finite-element matrix. We proceed to define the finite-element matrix,
and then describe how to store it efficiently using the structure of locally uniform partitions,
under the assumption that the coefficient field is constant on each coarse element.

Let T be a partition of the domain U ⊆ Rd. We think of this partition as being relatively
coarse, having a level of detail just sufficient to resolve the variations of the coefficient field. For
clarity of exposition, we start by considering the case in which this coarse partition is not refined
further. Denote by {ni}1⩽i⩽N ⊆ Rd the nodes of the partition T . We look for an approximation
of the solution of (5.1) in the finite-dimensional space V (T ) ∩H1

0(U), where

(5.8) V (T ) ∶= {u ∈H1
(U) ∶ u∣K is affine for every K ∈ T } .

A standard basis for V (T ) is formed by the nodal functions {ϕi}1⩽i⩽N ⊆ V (T ), which are
specified by the condition

ϕi(nj) = 1i=j , for every i, j ∈ {1, . . . ,N}.
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K̂

K

Figure 5.2. Left: the standard simplex K̂ has been refined twice. Right: an unstructured
coarse mesh, and the image of the twice-refined standard simplex through the affine mapping FK
for one particular coarse element K.

Denoting by x the vector encoding the finite-element approximation of (5.1) in the basis formed
by

{ϕi ∶ ni is an interior point of U},

we identify x as the solution of the problem

Ax = b, where Aij = ∫
U
∇ϕi ⋅ a∇ϕj and bi = ∫

U
∇ϕi ⋅ aξ.

Notice that the size of the vectors and of the symmetric matrix appearing above is the number
of nodes in the interior of U ; this is how the null Dirichlet boundary condition is enforced.

For each K ∈ T , denote by {nKi }0⩽i⩽d ⊆ Rd the extremal points of the simplex K. This
defines a mapping σ ∶ T × {0, . . . , d} → {1, . . .N}, which to each (K, i) associates the node
number of the node nKi in the global ordering {nj}1⩽j⩽N . Denote by ϕKi the restriction to

K of the basis function ϕσ(K,i). The functions (ϕKi ) are called local shape functions. The
contribution of the element K ∈ T to the entries of the matrix A can be represented by the
matrix A(K) ∈ R(d+1)×(d+1) such that, for every i, j ∈ {0, . . . d},

(5.9) A
(K)

ij = ∫
K
∇ϕKi ⋅ a∇ϕKj .

The global matrix A can then be reconstructed by the identity

(5.10) A = ∑
K∈T

RTKA
(K)RK ,

where RK ∈ RN×(d+1) is the canonical matrix representing the linear mapping

{
RN → Rd+1

x ↦ ∑
d
i=0 xσ(K,i)ei+1.

We denote the local shape functions associated with the standard simplex by ϕ̂i ∶= ϕ
K̂
i , for every

i ∈ {0, . . . d}, and call them reference shape functions. In dimension d = 2, these reference shape
functions are x ↦ 1 − x1 − x2, x ↦ x1, and x ↦ x2. We also denote by FK ∶ x ↦ BKx + vK the
unique affine mapping that sends the nodes e0, . . . ,ed of the standard simplex to the nodes
nK0 , . . . ,n

K
d , so that in particular, FK(K̂) =K (see Figure 5.2). Notice that, for every x ∈K,

(5.11) ϕKi (FK(x)) = ϕ̂i(x), so that BT
K(∇ϕKi )(FK(x)) = ∇ϕ̂i(x).
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By this change of variables, for every i, j ∈ {0, . . . d}, we can rewrite the integral on the right
side of (5.9) as

(5.12) A
(K)

ij = ∣detBK ∣ ∫
K̂
B−T
K ∇ϕ̂i ⋅ aB

−T
K ∇ϕ̂j .

In the case when the partition T is sufficiently fine that a(x) is constant equal to a(K) when x
varies in K, we set

(5.13) c(K)
∶= ∣detBK ∣B−1

K a(K)B−T
K ∈ Rd×d,

and the previous display becomes

(5.14) A
(K)

ij = ∫
K̂
∇ϕ̂i ⋅ c

(K)
∇ϕ̂j .

We can expand this expression into

(5.15) A(K)
=

d

∑
p,q=1

c(K)
p,q Â

pq,

where, for each p, q ∈ {1, . . . d}, the matrix Âpq ∈ R(d+1)×(d+1) is such that, for every i, j ∈

{0, . . . , d},

(5.16) Âpqij ∶= ∫
K̂
∂xpϕ̂i ∂xq ϕ̂j .

Notice that, using (5.9) and (5.15), we can compute the finite-element matrix A from the

knowledge of {c(K)}K∈T and {Âpq}1⩽p,q⩽d.

We now generalize these observations to the case when the partition T is locally uniform,
say T = lup(TH , T̂ ). We keep writing {ni}1⩽i⩽N for the nodes of the fine partition T , and we

denote by {n̂i}1⩽i⩽N̂ ⊆ K̂ the nodes of the partition T̂ of the standard simplex. For each K ∈ TH ,
the fine partition T induces a fine partition of K by restriction; this partition is in fact the
image of T̂ under the mapping FK appearing in the definition of local uniform partition. Hence,
the nodes of this partition are nKi ∶= FK(n̂i), where i ranges in {1, . . . , N̂}. This naturally

induces a mapping σ ∶ TH × {1, . . . N̂} → {1, . . .N} wich, to each (K, i), associates the index of
the node nKi in the numbering provided by {ni}1⩽i⩽N . The mapping σ is clearly surjective,
but it is not a bijection: indeed, the nodes that belong to the boundary of multiple coarse
elements are represented multiple times. On the other hand, every node that belongs to the
interior of a simplex of the coarse partition has a unique representation in the form nKi for

some (K, i) ∈ TH × {1, . . . , N̂}. As the partition T̂ becomes finer and finer, the approximation

N ≃ ∣TH ∣ N̂ therefore becomes more and more accurate. (The notation ∣TH ∣ stands for the
number of elements in TH .)

For each K ∈ TH and i ∈ {1, . . . , N̂}, we denote by ϕKi the restriction to K of the basis
function ϕσ(K,i). The contribution of the coarse element K ∈ TH to the finite-element matrix

can represented by the N̂ -by-N̂ matrix A(K) such that (5.9) holds for every i, j ∈ {0, . . . , N̂}.

The relation (5.10) still holds, where now RK ∈ RN×N̂ is the canonical matrix representing the
linear mapping

(5.17)

⎧⎪⎪
⎨
⎪⎪⎩

RN → RN̂

x ↦ ∑
N̂
i=1 xσ(K,i)ei.

For every i ∈ {1, . . . , N̂}, the reference shape function is defined by setting ϕ̂i ∶= ϕ
K̂
i . The

identities (5.11) to (5.16) still hold, the only difference being that K now ranges in TH and the

indices i and j now range in {1, . . . , N̂}.

It thus follows that the finite-element matrix associated with the locally uniform partition T
can be represented by storing only the set of d-by-d matrices {c(K)}K∈TH and the set of N̂ -by-N̂

matrices {Âpq}1⩽p,q⩽d. Moreover, these matrices can be constructed directly in a straightfoward
manner, without having to construct the fine partition T . Finally, in the practical cases we
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have in mind, the matrices Âpq are highly regular and have only of the order of CN̂ non-zero
entries. The amount of memory required to store this data is proportional to

d2 (∣TH ∣ +CN̂) .

If we were to ignore the locally uniform structure of the fine partition T , the cost of storing its
finite-element matrix would be proportional to N instead. Recalling that N ≃ ∣TH ∣N̂ , we see
that the semi-structured approach results indeed in a significant gain in memory usage.

5.6. Matrix-vector product. Pursuing with the setting of the previous section, we now
discuss how to store vectors and perform matrix-vector operations with the finite-element
matrix, which we recall is represented in memory by the matrices {c(K)}K∈TH and {Âpq}1⩽p,q⩽d.
As discussed above,

(5.18) A = ∑
K∈TH

d

∑
p,q=1

c(K)
pq RTKÂ

pqRK ,

where RK is the matrix representing the linear mapping in (5.17). In view of (5.18), instead

of representing finite-element vectors as N -dimensional vectors, we encode them in an N̂ -by-
∣TH ∣ array. That is, we represent each x ∈ RN by an array X such that the columns of X,

denoted by {X(∶, j)}1⩽j⩽∣TH ∣ ⊆ RN̂ , are equal to the vectors {RKjx}1⩽j⩽∣TH ∣. Here we used the
notation {Kj}1⩽j⩽∣TH ∣ to denote an enumeration of the (unstructured) set TH . Naturally, the
entries that are associated with nodes that belong to multiple coarse elements are repeated in
this representation; this parallels the observation that the mapping σ defined in the previous
subsection is surjective but not bijective.

The operation of A onto a vector can then be evaluated in two steps: first, we compute the
N̂ -by-N̂ matrix Y defined, for every j ∈ {1, . . . , ∣TH ∣}, by

Y (∶, j) =
d

∑
p,q=1

c
(Kj)
pq ÂpqX(∶, j).

The column Y (∶, j) is however not equal to the desired outcome of RKjAx, due to the presence
of nodes that belong to multiple coarse elements. In the second step, we compute

(5.19) (AX)(∶, j) = ∑
K`∈T

RKjR
T
K`
Y (∶, `).

In the actual implementation of this second step, we do not need to construct the matrices RKj
explicitly. Instead, we implement this formula by identifying the nodes that are found at the
interface between two or more elements of the coarse partition. In order to do so, we distinguish
between different types of interfaces, according to whether they are to be found on faces, edges,
or point vertices. (Naturally, face-type interfaces are only relevant in dimension d = 3.) For a
more precise description of this aspect, we refer to [16, 15, 40].

5.7. Multigrid method. The geometric multigrid method is a technique for the numerical
approximation of elliptic problems [21]. It uses a sequence of nested partitions Tn ⊑ ⋯ ⊑ T0, as
well as restriction and interpolation operators which allow to transfer a function defined on a
given grid to a function defined on a coarser and finer grids respectively.

The setting of locally uniform partitions is particularly conducive to efficient implementations
of the geometric multigrid method. Indeed, we first give ourselves a sequence of nested partitions
of the reference element T̂n ⊑ ⋯ ⊑ T̂0. These nested partitions are constructed as follows: we fix
T̂0 ∶= {K̂} to be the trivial partition, and then inductively construct T̂k+1 from T̂k by adding

new nodes at the middle of the edge of each element of T̂k, and, in dimension d = 2, by replacing
each triangle with a partition of this triangle made of 4 triangles, or in dimension d = 3, by
replacing each tetrahedron with a partition of this tetrahedron made of 8 tetrahedra [18]. The
nested partitions we use to implement the geometric multigrid method are then

Tn = lup(TH , T̂n) ⊑ ⋯ ⊑ T1 = lup(TH , T̂1) ⊑ T0 = lup(TH , T̂0) = TH .
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Recall that we denote by V (T ) the finite-element space associated with the partition T , see
(5.8). We start by defining interpolation and restriction operators associated with the nested
partitions of the standard simplex. For each k < n, we define the interpolation operator
Îk ∶ V (T̂k) → V (T̂k+1) to be the canonical injection. The restriction operator can then be
taken as the transpose of the interpolation operator, up to a normalization constant (see
[21, Definition 6.3.1] for more precision). Similarly, we define the interpolation operator
Ik ∶ V (Tk) → V (Tk+1) to be the canonical injection. Recall that we represent a given vector

xk ∈ V (Tk) as an N̂k-by-∣TH ∣ matrix Xk such that Xk(∶, j) = R
(k)
Kj

xk ∈ RN̂k where N̂k is the

number of vertices of the partition T̂k of the standard simplex, and we wrote R
(k)
Kj

instead of

RKj to emphasize the dependency on k of this operator. In this representation, we can evaluate
the interpolation operator very simply by setting, for every j ∈ {1, . . . , ∣TH ∣},

(IkXk)(∶, j) = Îk (Xk(∶, j)) .

Up to a normalization constant, we wish to use the transpose of Ik as our restriction operator.
In view of the format in which we store elements of V (Tk+1), this is not absolutely straightfoward
to compute, since it involves some amount of communication between vertices belonging to
different elements of the coarse partition. We now explain how to perform this computation
efficiently by reducing it to the same calculation as that arising in matrix-vector multiplication,
see (5.19). Given a load vector b and an element xk+1 ∈ V (Tk+1), we aim to compute the
residual

(5.20) rk ∶= I
T
k (b −Axk+1) .

We use the same data format to store the load vector, that is, we represent it by a family
(b(k+1,K))K∈TH of vectors of size N̂k+1 such that

b = ∑
K∈TH

(R
(k+1)
K )

T
b(k+1,K).

For the model problem (5.1), this means that we set, for every i ∈ {1, . . . , N̂k+1},

b
(k+1,K)

i ∶= ∫
K
∇ϕ

(k+1,K)

i ⋅ aξ,

where again we wrote ϕ
(k+1,K)

i instead of ϕKi to make the depency on k more explicit. Recall
that the vector xk+1 in (5.20) is stored in memory as an array whose columns are given by

R
(k+1)
K xk+1. Using also (5.10), we obtain that

rk = ∑
K∈TH

I
T
k (R

(k+1)
K )

T
b(k+1,K)

− ∑
K∈TH

I
T
k (R

(k+1)
K )

T
A(k+1,K)R

(k+1)
K xk+1.

Moreover, one can verify that

R
(k+1)
K Ik = Îk+1R

(k)
K .

We thus conclude that

rk = ∑
K∈TH

(R
(k)
K )

T
r
(K)

k , with r
(K)

k ∶= (Îk+1)
T
(b(k+1,K)

−A(k+1,K)R
(k+1)
K xk+1) .

Each term r
(K)

k is relatively easy to compute, since Îk+1 is an operator of moderate dimension.
We have now reached a situation analogous to that in the previous section: the remaining

problem is that it is not true in general that r
(K)

k = R
(k)
K rk. This can be arranged by proceeding

as in (5.19).

For the smoothing steps in the multigrid method, we use a few steps of conjugate gradient
descent. Finally, we use a direct solver for the coarse-grid problem. In our numerical experi-
ments, the above-described implementation of the geometric multigrid method showed robust
convergence behavior.



26 A. HANNUKAINEN, J.-C. MOURRAT, AND H.T. STOPPELS

6. Numerical tests

In this section, we report on numerical results for the method presented in this paper. The
code was written in the Julia language, and is available at this address:

(6.1) https://github.com/haampie/Homogenization.jl

In all the examples we consider, the coefficient field is Zd-stationary, where d ∈ {2,3} is the
dimension. For convenience, we replace averages against the mask χrk in (1.6) and (1.7) by

averages over the cube (−rk, rk)
d. While strictly speaking, this situation is not covered by

Theorem 1.1, it is not difficult to show that the statement is still correct in this case (in fact,
the argument is then somewhat simpler). For simplicity, we also fix ε = 0 in (1.5). As discussed
below (1.8), it is not difficult to modify the proof and cover this case as well, at the cost of
an arbitrarily small loss of exponent in (1.7). We also slightly modify the definition of the
approximations ṽk in (1.8), by using a square or a cube instead of a ball for the domain: that
is, for every k ∈ {0, . . . , n}, we set

L(k,n) ∶= 2n−
k
2 +Cbl(1 + n)2

k
2 ,

and solve for ṽk ∈H
1
0((−L(k,n), L(k,n))

d) solution to

(6.2) (2−k −∇ ⋅ a∇)ṽk = 2−k ṽk−1 in (−L(k,n), L(k,n))d,

with null Dirichlet boundary condition on ∂ ((−L(k,n), L(k,n))d). The estimator we wish to
calculate, slightly modified from (1.6), is then defined by

(6.3) σ̂2
n ∶= ⨏

(−2n,2n)d
(−aξ ⋅ ∇ṽ0 + ṽ

2
0) +

n

∑
k=1

2k ⨏
(−2n−

k
2 ,2n−

k
2 )

d (ṽk−1ṽk + ṽ
2
k) .

In order to obtain numerical approximations of the functions ṽk, we use the finite-element
method with hierarchical hybrid grids presented in Section 5. In all the examples we consider,
the coefficient field is piecewise constant on z + [0,1)d, for every z ∈ Zd. We thus start from a
coarse partition of the domain which consists, in dimension d = 2, in splitting each unit square
into two triangles, or in dimension d = 3, in splitting each unit cube into six tetrahedra. This
provides us with a coarse partition of the domain, which was denoted by TH in Section 5. We
then proceed to refine this partition iteratively by decomposing, in dimension d = 2, each triangle
into four smaller triangles, or in dimension d = 3, each tetrahedron into eight smaller tetrahedra
(and we do so in practice by constructing a refined partition Th of the standard simplex K̂
iteratively, which provides us with an implicit fine partition of the whole domain using the
notion of locally uniform partition, see Subsection 5.4). We denote the number of iterative levels
of refinement performed in this way by Nref . This defines an approximation of the quantity σ̂2

n

defined in (6.3), which we denote by σ̂2(n,Nref). Strictly speaking, this quantity also depends
on the choice of the boundary layer size Cbl, but we keep this implicit in the notation.

Theorem 1.1 bundles together an estimate for the mean error and an estimate for the standard
deviation or our approximation σ̂2

n. The approximation has been set up so that both quantities

are of the same order, that is, 2−
nd
2 . Additionally to this error comes the error due to the finite-

element discretization: for each fixed Nref , the quantity σ̂2(n,Nref) computes an approximation
of the homogenized matrix of the discretized system with Nref levels of refinement. While we
did not prove this, it is clear that all the arguments use to prove Theorem 1.1 would remain
valid for the discretized system, and thus σ2(n,Nref) allows to approximate the homogenized
matrix a(Nref) of the discretized system with a mean error and a standard deviation that both

scale like 2−
nd
2 as n tends to infinity. However, there is also a discrepancy between a(Nref) and

the homogenized matrix a of the continuous equation, which is manifested in our algorithm in
the fact that we do not have perfect access to the solutions ṽk of (6.2). Moreover, as explained
in Subsection 5.1, the rate of convergence of approximate solutions in terms of Nref can become
arbitrarily slow as the ellipticity contrast gets large.

https://github.com/haampie/Homogenization.jl
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Figure 6.1. Empirical distribution of σ̂2(n,Nref) when d = 2, α = 1 and β = 9, for different
values of n and Nref . We recall that Nref is the number of times the finite-element mesh has
been refined.

As said above, we consider coefficient fields that are piecewise constant on unit cubes; more
precisely, we assume that for every z ∈ Zd, we have

∀x ∈ z + [0,1)d, a(x) = bz,

for some family (bz)z∈Zd . This family is random and constructed in the following way, given
two parameters α ⩽ β ∈ (0,∞): the random variables (bz)z∈Zd are independent; the matrix bz
is diagonal; the diagonal entries of bz, which we denote by (bz,ii)1⩽i⩽d, are independent; and
finally, for every i ∈ {1, . . . , d},

P [bz,ii = α] = P [bz,ii = β] =
1

2
.

As discussed in Subsection 5.1, this example is particularly interesting since it is in some sense
the coefficient field which allows for the most pathological singularities in the solutions for a
given ellipticity ratio Λ = β/α. Notice that, in order to demonstrate that our numerical code
is not restricted to the case when a(x) is a multiple of the identity, we have dropped this
restriction here (and it would not be difficult to accomodate for matrices that are not diagonal).
An additional very interesting feature of this class of examples is that it is one of the very
rare cases where the homogenized matrix is known exactly: in dimension d = 2, it is given by
a =

√
αβ Id [12, Exercise 2.10]. (No such simple formula is expected to exist in dimension d = 3,

and in fact, we are not aware of any genuinely three-dimensional coefficient field where the
homogenized matrix is known exactly.)

6.1. Two-dimensional case, moderate contrast. We fix d = 2, α = 1, and β = 9. We thus
have in this case that a =

√
αβ Id = 3 Id. Using the notation in (2.8), we also observe that

⨏ a = 5 Id, and therefore we expect that σ̂2(n,Nref) converges to 2 as n and Nref tend to infinity.
We fix the boundary layer constant Cbl ∶= 4, and plot a histogram of σ̂2(n,Nref) for different
values of n and Nref , see Figure 6.1. Each histogram is obtained by sampling 200 realizations of
the estimator. For each value of n and Nref , we also report the empirical mean and variance
of σ̂2(n,Nref). Notice that the estimator has a bias to overestimate the value of a, which is
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Figure 6.2. Variance (left) and mean error (right) of σ̂2(n,Nref) for different values of n

and number of mesh refinements Nref . The variance decays approximately with the rate 2−dn

predicted by Theorem 1.1.
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Figure 6.3. Error in the mean, for n = 4, as a function of the boundary layer constant Cbl

(left), and as a function of the number of mesh refinements (right). The error is essentially
independent of the value of Cbl ⩾ 4. The dependency in Nref is in good agreement with the
predicted convergence rate in hα, for α ≃ 0.409.

consistent with the fact that the remainder term Dn in the series expansion (3.2) is nonnegative,
see Proposition 4.5 (the sign of the discretization error was not predicted theoretically).

From the results displayed on Figure 6.1, one can check that the quantity σ̂2(n = 4,Nref = 3)
falls within the interval [1.84,2.02] with 95% probability. Taking for granted that we can
estimate ⨏Rd a = 5 Id more easily, we obtain an estimation for ξ ⋅aξ which falls within the interval
[2.98, 3.16] with 95% probability, the true value being 3. This estimator thus produces a result
with a relative error of 5% from the true value with 95% probability. It takes about 2 s to
compute this quantity on a laptop computer with 16 Go of memory and using a single processor
clocking at 2.40 GHz.

We next investigate more precisely the scalings of the standard deviation and mean error
of σ2(n,Nref). (By definition, the mean error is ∣E[σ2(n,Nref)] − 2∣ for this example). On the
left frame of Figure 6.2, we see that the variance decays like 2−dn = 2−2n, as predicted by the
theoretical results. On the left frame of Figure 6.2, we display the mean error as a function of n
and of the number of refinements. Our theoretical arguments predict that the mean error is

the sum of a term of the order of 2−
nd
2 = 2−n, of the discretization error which depends on Nref ,

and of the boundary layer error related to the choice of Cbl. We display the dependency of the
mean error in these parameters more precisely on Figure 6.3, for the value n = 4. We see on
the left frame of Figure 6.3 that the choice of Cbl = 4 is already sufficient to ensure that the
boundary layer error is negligible compared with the discretization error. On the right frame of
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Figure 6.4. Left: mean and standard deviation of σ̂2(n = 4,Nref = 5), for different values
of α. Notice that the logarithmic scale inflates the absolute value of the error on the left of
the graph. Right: the mean error for α = 0.1, as a function of Nref . For small values of α, the
finite element approximation converges very slowly, due to the singularities at the corners of
the cherckerboard tiling. For α = 0.1, we expect the asymptotic error rate to scale like h0.1337.

Figure 6.3, we observe that the discretization error decays approximately like h0.409, where h is
the element size, as predicted in the discussion around (5.6).

6.2. Two-dimensional case, high contrast. We continue with the two-dimensional setting,
we also keep β = 9, but we now progressively decrease α in the interval [10−2, 1]. More precisely,
we vary α in twenty logarithmically equally spaced steps between the values 1 and 10−2. We
keep the parameters n = 4 and Nref = 5 fixed, and use 200 samples of the estimator to compute
the empirical average and standard deviation.

In the code provided provided in the GitHub repository (6.1), the choices α = 1 and β = 9 are
hard-coded, but these values can be modified by changing line 488 (or, in the three-dimensional
case, line 487) of the file src/examples/homogenized coefficients.jl.

For these twenty values of α ∈ [10−2, 1], the left frame of Figure 6.4 displays the mean and the
standard deviation of σ̂2(n,Nref), with the choices of n = 4 and Nref = 5. The estimator captures
the true value of the homogenized matrix quite well, for a large span of values of α, although
relative errors become large when α approaches 10−2. This is in part due to the fact that the
true homogenized matrix tends to zero as α is decrased to zero, and thus even a constant error
in absolute value would translate into a relative error which blows up. A more fundamental
reason for the increase of the error is that solutions become more and more singular, and thus
accurate discretizations become more challenging. On the right frame of Figure 6.4, we plot the
relative error in the mean, for α = 0.1 and different values of Nref . We expect the asymptotic
convergence rate to scale approximately like h0.1337..., where h is the size of a finite-element cell.
Despite the slow asymptotic rate, a faster pre-asymptotic regime allows to bring the relative
error within a few percentage points after five levels of refinement.

6.3. Three-dimensional case, small contrast. We now turn to the investigation of three-
dimensional problems. To further make the case that the scaling of the discretization error
is strongly affected by the ellipticity contrast, we start by investigating a regime of relatively
small contrast: we fix α = 1 and β = 2. As in the two-dimensional case, we plot a histogram for
σ̂2(n,Nref), for different values of n and Nref , see Figure 6.5. Each histogram is obtained by
combining 200 samples of the estimator.

As a rule of thumb, we expect that the approximation a ≃ ⨏Rd a improves as we increase the
dimension and reduce the contrast. This is confirmed by the numerical results, which suggest
that for the example considered, the difference ⨏Rd a − a is about 4% of the magnitude of the

homogenized matrix a itself. We also see that the convergence of σ̂2(n,Nref) is relatively rapid
as Nref increases. Finally, the variance decays roughly like 2−dn = 2−3n, in agreement with the
theoretical prediction.
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Figure 6.5. Empirical distribution of σ̂2(n,Nref) when d = 3, α = 1 and β = 2, for different
values of n and Nref .
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Figure 6.6. Empirical distribution of σ̂2(n,Nref) when d = 3, α = 1 and β = 9, for different
values of n and Nref .
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6.4. Three-dimensional case, moderate contrast. We now turn to more sizable values
of the ellipticity contrast, in three dimensions, fixing α = 1 and β = 9. Figure 6.6 displays a
histogram of σ̂2(n,Nref) for different values of n and Nref , using 200 samples per histogram.

Notice that the empirical variance of σ̂2(n,Nref) does not depend much on Nref . A linear
regression based on the values for Nref = 2 suggests that this variance decays with n like C3−γn

for γ ≃ 3.2. This is in agreement with the theoretical prediction of γ = d = 3.

In the three-dimensional case, we are not aware of any analytic expression for the homogenized
matrix. The numerical results we obtained and a naive extrapolation suggest that

⨏
Rd

a − a ≃ 1.35 Id, and thus a ≃ 3.65 Id.

Assuming that this is correct, a ±5% error interval for a is [3.47, 3.83]. An average of four samples
of the quantity 5 − σ̂2(n = 2,Nref = 3) falls within this interval with probability above 95%, and
takes about 20 min to compute on a laptop computer with 16 Go of memory using a single
2.40 GHz processor. A single sample of the quantity 5 − σ̂2(n = 2,Nref = 4) falls within the
smaller interval [3.62,3.80] with 95% probability, and takes about 38 min to compute with the
same piece of hardware. Moreover, the computational time can be significantly reduced by
optimizing on the boundary layer size.
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