
HAL Id: hal-02144834
https://hal.science/hal-02144834v1

Submitted on 31 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Anchor-Robust Project Scheduling Problem
Pascale Bendotti, Philippe Chrétienne, Pierre Fouilhoux, Adèle Pass-Lanneau

To cite this version:
Pascale Bendotti, Philippe Chrétienne, Pierre Fouilhoux, Adèle Pass-Lanneau. The Anchor-Robust
Project Scheduling Problem. Operations Research, 2019, �10.1287/opre.2022.2315�. �hal-02144834�

https://hal.science/hal-02144834v1
https://hal.archives-ouvertes.fr

The Anchor-Robust Project Scheduling Problem

Pascale Bendotti1,2 Philippe Chrétienne2 Pierre Fouilhoux2 Adèle Pass-Lanneau1,2

1EDF R&D, 7 boulevard Gaspard Monge, 91120 Palaiseau, France
2LIP6, CNRS, Sorbonne Université, 5 place Jussieu, 75005 Paris, France

{pascale.bendotti, adele.pass-lanneau}@edf.fr, {philippe.chretienne, pierre.fouilhoux}@lip6.fr

May 31, 2019

Abstract

A project scheduling framework is considered where processing times of jobs lie in some

uncertainty set. The decision maker needs to compute a baseline schedule in advance, while

guaranteeing that some jobs may not be rescheduled later. A subset of jobs is said to be

anchored with respect to a baseline schedule if for any realization of processing times in the

uncertainty set, the baseline schedule can be repaired in a second stage without changing

the starting times of anchored jobs. Each job has an anchoring weight. The Anchor-

Robust Project Scheduling Problem (AnchRobPSP) is to find in a first stage a baseline

schedule satisfying a given deadline, and a subset of anchored jobs with maximum total

weight. AnchRobPSP is considered for several uncertainty sets, such as box or budgeted

uncertainty set, and dedicated graph models are presented. AnchRobPSP is shown to

be NP-hard even for budgeted uncertainty. Polynomial or pseudo-polynomial algorithms

are devised for box uncertainty and special cases of budgeted uncertainty. Numerical

experiments for AnchRobPSP under budgeted uncertainty are presented. AnchRobPSP

solutions are compared to those of state-of-the-art robust techniques. Finally it is shown

how to achieve a trade-off between the number of anchored jobs and the makespan of the

baseline schedule.

Keywords: Project scheduling, robust optimization, rescheduling, anchored decisions.

1 Introduction

In project management, it is crucial to ensure the availability of equipment or staff, thus

requiring the computation of a schedule ahead of time. When the schedule is about to start,

some jobs may take longer to process than expected, hence the schedule may have to be

modified accordingly. However, in the context of an industrial complex project, rescheduling

jobs might be difficult or costly, hence the decision maker wants to guarantee the starting

1

times of the jobs that are the most difficult or expensive to reschedule. In this work we

investigate how to integrate this criterion in the choice of an initial schedule.

The scope of this work is project scheduling where a set of jobs J = {1, . . . , n} must be

scheduled while respecting precedence constraints, represented by a directed acyclic graph G.

The vertex-set of G is J̄ = J ∪ {s, t} where s (resp. t) is a predecessor (resp. successor) of

all jobs, representing the beginning (resp. the end) of the schedule. Each job i ∈ J has a

processing time pi ∈ R+, and ps = 0 by convention. Given a vector p ∈ RJ+, let G(p) be the

weighted digraph obtained from G by weighting every arc (i, j) with pi. A schedule of G(p)

is a vector of starting times x ∈ RJ̄+ such that xj − xi ≥ pi for every arc (i, j) of G(p), xs = 0

and xt = max
i∈J

xi + pi. Note that xt is the makespan of the schedule.

We consider a 2-stage framework where the processing times of jobs are uncertain. At

first stage, the decision maker has an instance G(p) to solve, called baseline instance. The

project is given a deadline M ≥ 0, and a baseline schedule is defined as a schedule of G(p)

with makespan at most M . At second stage, the instance is G(p+ δ) for some δ ∈ RJ+, where

δi is the disruption on the processing time of job i. As done classically in robust optimization,

we consider that the decision maker wants to hedge against a family {G(p+δ)}δ∈∆ of second-

stage instances, where the set ∆ is the uncertainty set. Given a baseline schedule x0, a subset

H of jobs is anchored with respect to x0 if all jobs in H are guaranteed to be executed at

their starting time in x0 whatever the realization δ ∈ ∆, i.e., for every δ ∈ ∆, there exists a

schedule xδ of G(p+ δ) such that x0
i = xδi for every i ∈ H. Each job i ∈ J has an anchoring

weight ai ∈ R+, and the objective of the decision maker is to maximize the total weight

a(H) =
∑

i∈H ai. Given a baseline instance G(p), an uncertainty set ∆, anchoring weights

a ∈ RJ+, and a deadline M , the Anchor-Robust Project Scheduling Problem (AnchRobPSP)

is to find a baseline schedule x0 and a subset H ⊆ J anchored with respect to x0, so that

a(H) is maximized.

In practice in large projects a baseline schedule is indeed computed in advance. An

example is the planning of maintenance operations for power plants operated by EDF, the

French electricity supplier. All operations must be completed during the planned shut-down

period of the plant. Anchored jobs are desirable from an operational point of view. For some

jobs, the decision maker wants to make the right decision at first try, i.e., schedule the job at

a starting time so that it will hopefully not be rescheduled later. This is the case for example

if some of the maintenance jobs are achieved by a subcontractor, who would charge extra

fees when the jobs are rescheduled. It may also be necessary to anchor jobs that involve a

workforce with very specific skills, and thus with limited availability. In this case, anticipation

is necessary to ensure that this workforce will actually be available in due time. The anchoring

weight ai represents the extra cost when job i is rescheduled in second stage, while anchored

jobs in a solution of AnchRobPSP are jobs that incur no extra cost.

2

In this work several uncertainty sets are considered. General uncertainty sets are any

∆ ⊆ RJ+. Upper-bounded uncertainty sets are sets for which an upper bound δ+
i on the

increase of the processing time for each job i is known. Box uncertainty sets are cartesian

products of intervals. Budgeted uncertainty sets are defined using a budget Γ on the number

of disruptions that may occur simultaneously. Note that the latter two are upper-bounded

uncertainty sets of practical interest.

This work fits within the scope of robust optimization, i.e., optimization where some

parameters lie in an uncertainty set. Different robust approaches have been proposed since

the work of Soyster (1973). These approaches are based on the choice of an uncertainty

set and on the design of a deterministic formulation, referred to as robust counterpart (see,

e.g., (Bertsimas and Sim (2004))). On the one hand, the uncertainty set must be “realistic”,

in the sense that it must contain relevant realizations. On the other hand, it must avoid

the pitfall of over-conservatism, i.e., find not too expensive solutions. Bertsimas and Sim

(2004) introduced budgeted uncertainty sets and obtained tractable robust counterparts of

combinatorial problems. They showed that the uncertainty budget can be used to control

the price of robustness, i.e., the increase of the cost of a robust solution w.r.t. the minimum

cost of a solution with no uncertainty. As pointed out in the survey from Gabrel et al.

(2014), the robust literature proposes robust-static problems, where all decisions are made

before uncertainty realization, and robust 2-stage problems, where some decisions can be

made in a second stage after the uncertainty is revealed. AnchRobPSP is thus a robust 2-

stage problem, with a specific objective function involving the subset of anchored jobs. Note

that AnchRobPSP can be related to the recoverable robustness of Liebchen et al. (2009). They

introduced a general definition of robust 2-stage problems where the second-stage problem is

solved by a given recovery algorithm, e.g., changing a fixed number of decisions.

In project scheduling, several approaches have been proposed to account for uncertainty,

see (Herroelen and Leus (2002)) for a survey. When processing times of jobs are uncertain,

the robust-static approach is to schedule all jobs to their worst-case processing times. It

leads to a schedule with a very large makespan, which is likely to be unapplicable in practice.

A robust 2-stage scheduling problem proposed in (Minoux (2007b)) looks for the smallest

makespan that can be guaranteed under budgeted uncertainty. This problem is efficiently

solvable (Minoux (2007a), Minoux (2007b)). It is worth noticing that this robust 2-stage

problem involves no first-stage schedule. The operational need for a precomputed baseline

schedule and a feature for maintaining decisions from one stage to the other was emphasized

in (Herroelen and Leus (2004)), under the name of stability of schedules. The authors studied

a stochastic framework where the objective is to minimize the expected value of the total

difference of starting times of jobs. The anchoring level was introduced in (Bendotti et al.

(2017)) as a combinatorial measure of the difference between two schedules. It is defined as

3

the number of identical starting times between the schedules. A so-called proactive problem

was defined to compute a baseline schedule at first stage. This proactive problem is close to

recoverable robust timetabling problems studied namely for railway applications (Liebchen

et al. (2009), D’Angelo et al. (2011)). Note that a major difference between AnchRobPSP

and recoverable robust problems is that in AnchRobPSP the anchored set H is determined

at first stage, while in the latter the set of jobs with unchanged starting times depends on the

disruption. Indeed, in practice it may be useful for the decision maker to know not only how

many jobs will keep the same starting times, but also which ones.

The aim of this work is to provide an in-depth study of AnchRobPSP and to illustrate its

relevance for anchoring decisions in project scheduling.

1. A first contribution is a formulation of AnchRobPSP using graph models. We provide

two graph models for the problem: the first one is applicable to general uncertainty

sets, while the second one is dedicated to budgeted uncertainty sets. We derive a

compact MIP formulation for budgeted uncertainty. These graph models are shown to

be convenient tools to exhibit hard cases and to devise algorithms.

2. We give complexity results and algorithms for AnchRobPSP under the considered un-

certainty sets. For box uncertainty sets, we show that AnchRobPSP is solvable in

polynomial time. For upper-bounded uncertainty sets, we show that AnchRobPSP is

co-NP-hard. For budgeted uncertainty sets, we show that the decision version of An-

chRobPSP is NP-complete, even for fixed budget and when the precedence graph is

just a path. We exhibit several polynomial cases. For series-parallel precedence graphs

we propose an algorithm which is pseudo-polynomial for fixed budget. For an uncer-

tainty set and its convex hull, we show that the feasible solutions of an instance of

AnchRobPSP are the same. We establish that AnchRobPSP is also NP-hard when the

uncertainty set is a polytope.

3. Finally we investigate the numerical resolution of AnchRobPSP for budgeted (and box)

uncertainty sets. We present insights into how solutions are impacted by the uncertainty

budget. We highlight that AnchRobPSP can be used as a tool for achieving a trade-off

between anchoring criterion and makespan, which is complementary to existing robust

models from the literature.

In Section 2, the graph models for AnchRobPSP are presented. In Section 3, hard cases

of AnchRobPSP are exhibited for upper-bounded and budgeted uncertainty. In Section 4,

polynomial or pseudo-polynomial algorithms for box uncertainty or special cases of budgeted

uncertainty are given. In Section 5, numerical experiments are presented.

4

2 Graph Models for the Anchor-Robust Project Scheduling

Problem

Let G̃ be a directed acyclic graph with vertex-set J̄ = J ∪{s, t} and let G̃(π) be the weighted

digraph obtained by adding arc-weight πij ∈ R+ to every arc (i, j) of G̃. Given a path P in

G̃(π), the length of the path P in G̃(π) is denoted by `
G̃(π)

(P). Given two vertices i, j ∈ J̄ ,

let L
G̃(π)

(i, j) be the length of the longest i−j path in G̃(π) (or −∞ if there is no i−j path

in G̃(π)). A schedule of G̃(π) is a vector x ∈ RJ̄+ such that xj − xi ≥ πij for every arc (i, j) of

G̃(π). Note that a project scheduling instance G(p) is a special case where πij = pi for every

arc (i, j). It is well-known that there exists a schedule of G̃(π) such that xt ≤M if and only

if L
G̃(π)

(s, t) ≤M . Given x ∈ RJ̄+ and H ⊆ J , let xH denote the restriction of vector x to H,

i.e., xH = (xi)i∈H . The following lemma is a straightforward generalization of a result from

(Bendotti et al. (2017)), and it will be used in the sequel.

Lemma 1. Given G̃(π), a set H ⊆ J and x0
H a vector of RJ+, there exists a schedule x of

G̃(π) such that xH = x0
H if and only if x0

j − x0
i ≥ LG̃(π)

(i, j) for every i, j ∈ H ∪ {s}.

Let (G(p),∆, a,M) be an instance of AnchRobPSP. It is assumed throughout the paper

that LG(p)(s, t) ≤M , namely, a baseline schedule always exists. Let us now give definitions of

the considered uncertainty sets. Let ∆ ⊆ RJ+. The set ∆ is referred to as a general uncertainty

set when no further condition is imposed. The set ∆ is an upper-bounded uncertainty set if

there exists δ+ ∈ RJ+ such that for every δ ∈ ∆, δ+
i ≥ δi for every i ∈ J , i.e., the duration

of job i in a second-stage instance is at most pi + δ+
i . Note that δ+ is not necessarily an

element of ∆ because it is unlikely that all jobs have maximum duration at the same time.

The set ∆ is a box uncertainty set if ∆ = Πi∈J [δ−i , δ
+
i] for some δ−, δ+ ∈ RJ+. The set

∆ is a budgeted uncertainty set associated with vector δ̂ ∈ RJ+ and integer Γ ∈ {1, . . . , n} if

∆ =
{

(δ̂iui)i∈J | ui ∈ {0, 1}J ,
∑

i∈J ui ≤ Γ
}

. Budget Γ corresponds to the maximum number

of disruptions that can occur at the same time (Bertsimas and Sim (2004)). In practice

budgeted uncertainty sets may seem unrealistic because durations of jobs can take only the

two values pi and pi + δ̂i. The set ∆ is a relaxed budgeted uncertainty set associated with

vector δ̂ ∈ RJ+ and integer Γ ∈ {1, . . . , n} if ∆ =
{

(δ̂iui)i∈J | ui ∈ [0, 1]J ,
∑

i∈J ui ≤ Γ
}

. In

the latter case the budget can be dispatched over a larger number of jobs, compared to that

in the budgeted uncertainty case.

2.1 A General-Purpose Graph Model

Let ∆ be a general uncertainty set. For every i, j ∈ J̄ , let L∆
ij = max

δ∈∆
LG(p+δ)(i, j). Let G∆

be the weighted digraph obtained by taking the transitive closure of the precedence graph G,

and adding the arc-weight L∆
ij on each arc (i, j) with j 6= t, and the arc-weight LG(p)(i, t) on

5

each arc (i, t). Given H ⊆ J , let G∆[H] denote the subgraph of G∆ induced by H ∪ {s, t}.
An example of an instance with 5 jobs and processing times p = (2, 1, 2, 1, 2) is represented in

Figure 1(a) with a precedence graph G(p) and in Figure 1(b) with the associated graph G∆

for the box uncertainty set ∆ = Πi∈J [0, δ+
i] with δ+ = (2, 1, 2, 1, 1).

(a) s 1 2 3

4

5

t0 2 1
2 1

2 2

(b) s 1 2 3

4

5

t0 4 2
4 1

4 2

4

6

10

10

6

10

10

7

6

6

5

4

Figure 1: (a) A precedence graph G(p) (b) The associated graph G∆ for ∆ = Πi∈J [0, δ+
i] with

δ+ = (2, 1, 2, 1, 1).

We prove the following result.

Theorem 1. Let H ⊆ J .

(a) Let x be a schedule of G(p). The set H is anchored w.r.t. schedule x if and only if

xj − xi ≥ L∆
ij for every i, j ∈ H ∪ {s}.

(b) The set H is anchored w.r.t. some baseline schedule x0 if and only if LG∆[H](s, t) ≤M .

Proof. Note first that equivalence (a) follows from Lemma 1. Indeed, the set H is anchored

w.r.t. x if and only if for every δ ∈ ∆, we have xj −xi ≥ LG(p+δ)(i, j) for every i, j ∈ H ∪{s},
which is equivalent to xj − xi ≥ max

δ∈∆
LG(p+δ)(i, j) = L∆

ij .

Let us now prove equivalence (b). Assume H is anchored w.r.t. a baseline schedule

x0. As a consequence of (a), it holds that x0
j − x0

i ≥ L∆
ij for every i, j ∈ H ∪ {s}. Also

x0
t − x0

i ≥ LG(p)(i, t) since x0 is a schedule of G(p). Hence x0
H∪{s,t} is a schedule of G∆[H]

and x0
t ≤M , thus LG∆[H](s, t) ≤M .

Conversely, assume LG∆[H](s, t) ≤ M . Let G̃ be the (multi)graph obtained from G(p) by

adding all the arcs of G∆[H]. The claim is that L
G̃

(s, t) ≤ M . Let P be an s−t path in G̃.

6

Let h1, . . . , hq be the vertices of H ∩ P , indexed in the order they appear in the path. Let

h0 = s and hq+1 = t for the simplicity of notation. Let Pk be the subpath of P from hk to

hk+1. Then for k < q, `
G̃

(Pk) ≤ L∆
hkhk+1

: indeed either Pk is the arc (hkhk+1) from G∆[H] of

length L∆
hkhk+1

, or Pk is a path in G(p), hence since ∆ ⊆ RJ+, an upper bound on the length

of Pk is L∆
hkhk+1

. Also `
G̃

(Pq) ≤ LG(p)(hq, t). Therefore, the length of P in G̃ is at most the

length of the path (s, h1, . . . , hq, t) in G∆[H]. It follows that L
G̃

(s, t) ≤ LG∆[H](s, t) ≤M . As

a consequence from the claim, there exists a schedule x0 of G̃ such that x0
t ≤ M , hence x0

is a baseline schedule. Also x0
j − x0

i ≥ L∆
ij for every i, j ∈ H ∪ {s} by definition of G̃, which

implies with (a) that H is anchored w.r.t. x0.

Referring to the example shown in Figure 1, consider the subset of jobs H = {1, 5}. The

longest s−t path in G∆[H] is (s, 1, 5, t) and has length 12. From Theorem 1, for the considered

uncertainty set ∆ the subset H = {1, 5} can then be anchored w.r.t. a baseline schedule if

and only if the deadline M is at least 12.

Note that the graph G∆ is dense since it is the transitive closure of the precedence graph.

Moreover, the computation of the arc-weights L∆
ij might already be a hard problem, depending

on the definition of ∆. Indeed computing a weight L∆
ij amounts to solving a maximization

problem on ∆. More details are provided in the complexity analysis presented in Section 3.1.

2.2 A Layered Graph for Budgeted Uncertainty

Let δ̂ ∈ RJ+, Γ ∈ {1, . . . , n} and let ∆ be the budgeted uncertainty set ∆ = {(δ̂iui)i∈J |
ui ∈ {0, 1}J ,

∑
i∈J ui ≤ Γ}. The objective of this section is to provide a dedicated graph

model for budgeted uncertainty.

The layered graph Glay is defined as follows. It contains Γ + 1 copies of the precedence

graph G(p), called layers, indexed by γ ∈ {0, . . . ,Γ}. The layer Γ is called upper layer, the

layer 0 is the lowest layer. The vertices in layer γ are denoted by sγ , 1γ , . . . , nγ , tγ . The arcs

of each copy of G(p) are called horizontal arcs. Additionally, for each arc (i, j) of G(p), for

each γ ∈ {0, . . . ,Γ − 1}, the layered graph contains a transversal arc (iγ+1, jγ) with weight

pi+ δ̂i. Given H ⊆ J , the layered graph Glay(H) associated with H is defined from the layered

graph Glay by adding, for each job i ∈ H, for each γ ∈ {0, . . . ,Γ − 1}, a vertical arc (iγ , iΓ)

with weight 0.

Referring to the instance presented in Figure 1, the corresponding layered graph Glay(H)

for H = {1, 5}, δ̂ = δ+ = (2, 1, 2, 1, 1) and Γ = 2 is represented in Figure 2, with copies of

jobs in H appearing in gray.

7

s0 20 30

40

t010

50

s1 21 31

41

t111

51

s2 22 32

42

t212

52

0 2 1
2 1

2 2

0 2 1
2 1

2 2

0 2 1
2 1

2 2

0

2+
2

1+
1

2+
2 1+

1

2+
2

2+
1

0

2+
2

1+
1

2+
2 1+

1

2+
2

2+
1

0

0

0

0

Figure 2: The layered graph Glay(H) associated with precedence graph from Figure 1, for
H = {1, 5} and Γ = 2.

A key property of the layered graph is stated in Lemma 2.

Lemma 2. Let i, j ∈ J̄ . In the layered graph Glay, the longest path from iΓ to a copy of j

has length L∆
ij .

Proof. First, let us prove that by construction of the layered graph, the length of any path P

from iΓ to a copy of j is upper-bounded by L∆
ij . For every job k on the path P , let δ∗k be equal

to δ̂k if P goes through a transversal arc outgoing from a copy of k, and δ∗k = 0 otherwise.

Then the length of P in the layered graph is equal to the length of the corresponding path

in G(p + δ∗). Also, path P uses at most Γ transversal arcs, hence δ∗ ∈ ∆ and the length

of P is at most L∆
ij . Let us now show that the equality holds by exhibiting for every i, j a

path P of the layered graph of length L∆
ij . The value L∆

ij is equal to `G(p+δ∗)(Q) for some

δ∗ ∈ ∆ and some path Q in the precedence graph. Let P be the path in the layered graph

obtained by starting at vertex iΓ and following the arcs of Q: path P follows a horizontal arc

if the corresponding job is not disrupted in δ∗, or a transversal arc if the corresponding job is

disrupted in δ∗. Then the length of P is equal to L∆
ij .

We note that the layered graph Glay can be interpreted as the state graph corresponding

to the dynamic programming algorithm from (Minoux (2007b)).

Theorem 2. Let ∆ be a budgeted uncertainty set. Let H ⊆ J .

(a) Let z be a schedule of G(p). The set H is anchored w.r.t. z if and only if there exists x a

8

schedule of Glay(H) such that xΓ
i = zi for every i ∈ J̄ .

(b) A set H is anchored w.r.t. some baseline schedule if and only if LGlay(H)(s
Γ, tΓ) ≤M .

Proof. (a) Assume the set H is anchored w.r.t. z, or equivalently with Theorem 1, that

zj − zi ≥ L∆
ij for every i, j ∈ H ∪ {s}. Let us prove that zj − zi ≥ LGlay(H)(i

Γ, jΓ) for every

i, j ∈ J̄ : indeed by Lemma 1 it is a sufficient condition for the existence of a schedule x of

Glay(H) such that xΓ
i = zi for every i ∈ J̄ . Let P be an iΓ−jΓ path in Glay(H), and let

h1, . . . , hq be the jobs of H corresponding to vertical arcs of P . Let h0 = i and hq+1 = j

for the ease of notation. Consider Pk, k ∈ {0, . . . , q} the subpath of P going from hΓ
k to

a copy of hk+1. By definition of the hk’s the path Pk uses no vertical arc: it is a path in

Glay. By Lemma 2, it comes `Glay(H)(Pk) ≤ L∆
hkhk+1

. By assumption on z it holds that

L∆
hkhk+1

≤ zhk+1
− zhk , hence `Glay(H)(Pk) ≤ zhk+1

− zhk . Summing up the inequality over

k ∈ {0, . . . , q} we obtain `Glay(H)(P) ≤ zhq+1 − zh0 = zj − zi. This holds for every iΓ−jΓ path

P , therefore zj − zi ≥ LGlay(H)(i
Γ, jΓ).

Conversely, assume the existence of such a schedule x. Let us prove that zj − zi ≥ L∆
ij for

every i, j ∈ H ∪ {s}. Let i, j ∈ H ∪ {s}, and consider γ ∈ {0, . . . ,Γ} such that there is

a path from iΓ to jγ which is a longest path between iΓ and a copy of j in Glay. Then

zj − zi = xΓ
j − xΓ

i = xΓ
j − x

γ
j + xγj − xΓ

i , where xΓ
j − x

γ
j ≥ 0 because of the vertical arc (jγ , jΓ),

and xγj − xΓ
i ≥ L∆

ij by definition of γ and with Lemma 2. Thus zj − zi ≥ L∆
ij and with

Theorem 1, the set H is anchored w.r.t. z.

Equivalence (b) can then be proven as follows. From (a), a subset H is anchored w.r.t.

a baseline schedule if and only if there exists a schedule of Glay(H) whose restriction to the

upper layer has makespan at most M . The existence of such a schedule is equivalent to

LGlay(H)(s
Γ, tΓ) ≤M .

Referring to the layered graph represented in Figure 2, the longest s2−t2 path is (s2, 12, 21,

31, 50, 52, t2), with length 11. From Theorem 2, for uncertainty budget Γ = 2, the subset

H = {1, 5} can be anchored w.r.t. a baseline schedule if and only if the deadline M is at least

11.

Let us now derive a compact mixed integer programming (MIP) formulation for An-

chRobPSP under budgeted uncertainty, using the layered graph. A real variable xγj ≥ 0 is

associated with every vertex jγ of the layered graph; a binary variable hj ∈ {0, 1} is associated

with every job j ∈ J , so that hj = 1 if j is anchored, and hj = 0 otherwise. Let A denote

the arc-set of the precedence graph G. Let Dj = L
G(p+δ̂)

(s, j) − LG(p)(s, j) for every j ∈ J .

Consider the following program.

9

(P) max
∑
i∈J

aihi

s.t. xγj − x
γ
i ≥ pi ∀(i, j) ∈ A, ∀γ ∈ {0, . . . ,Γ} (1)

xγj − x
γ+1
i ≥ pi + δ̂i ∀(i, j) ∈ A, ∀γ ∈ {0, . . . ,Γ− 1} (2)

xΓ
j − x

γ
j ≥ −Dj(1− hj) ∀j ∈ J , ∀γ ∈ {0, . . . ,Γ− 1} (3)

xΓ
t ≤M (4)

xγj ≥ 0 ∀j ∈ J̄ , ∀γ ∈ {0, . . . ,Γ}

hj ∈ {0, 1} ∀j ∈ J

Proposition 1. Program (P) is a valid MIP formulation for AnchRobPSP under uncertainty

budget Γ.

Proof. Proof. With Theorem 2, AnchRobPSP is equivalent to maximizing a(H) subject to

H ⊆ J , x schedule of Glay(H), xΓ
t ≤ M . Let us show that there exists a feasible pair (x,H)

of the problem with objective value a(H) if and only if there exists a feasible solution of

program (P) with objective value equal to a(H). First note that, given a feasible solution

(x, h) of the MIP, it holds that x is a schedule of Glay(H) where H = {i ∈ J | hi = 1}.
Indeed constraints (1) and (2) correspond to horizontal and transversal arcs respectively, and

constraints (3) correspond to vertical arcs for jobs i ∈ H. Conversely, consider H ⊆ J such

that there exists a schedule x of Glay(H), xΓ
t ≤M . Let x′ be the earliest schedule of Glay(H).

Note that x′Γt ≤ M . Let h be the indicator vector of H. Then (x′, h) is a feasible solution

of the MIP with objective value a(H). Indeed x′ clearly satisfies constraints (1)-(2)-(4), and

constraint (3) when hj = 1. It remains to prove that x′ also satisfies constraint (3) when

hj = 0. We have x′γj = LGlay(H)(s
Γ, jγ) ≤ LGlay(J)(s

Γ, jγ) ≤ L
G(p+δ̂)

(s, j). Indeed in Glay(J)

the longest sΓ−jγ path uses alternatively vertical and transversal arcs, hence its length is the

length of the corresponding s−j path in G(p + δ̂). Also x′Γj ≥ LG(p)(s, j), hence x′γj − x′
Γ
j

≤ L
G(p+δ̂)

(s, j)− LG(p)(s, j) = Dj .

Note that the number of constraints and variables in (P) is polynomial in n; also the values

Dj can be computed in polynomial time in a preprocessing step.

2.3 Convex Hull of the Uncertainty Set

In robust problems, it is frequently the case that the uncertainty set can be convexified without

changing feasible solutions of the problem (see, e.g., Remark 1 in (Pessoa et al. (2015))). A

consequence of the general-purpose graph model and Theorem 1 is that a similar result holds

for AnchRobPSP.

10

Proposition 2. Let ∆ be an uncertainty set and conv(∆) be the convex hull of ∆. The

instances (G(p),∆, a,M) and (G(p), conv(∆), a,M) of AnchRobPSP have the same feasible

solutions.

Proof. Note that since ∆ ⊆ conv(∆), all solutions for uncertainty set conv(∆) are feasible for

uncertainty set ∆, by definition of anchored sets. We now show the converse using the graphs

G∆ and Gconv(∆). The main claim is that L∆
ij = L

conv(∆)
ij for any pair i, j of jobs. Indeed L∆

ij =

max
δ∈∆

max
P∈Pij

`G(p+δ)(P) = max
P∈Pij

max
δ∈∆

`G(p+δ)(P) where Pij is the set of i−j paths of G(p). Given

P ∈ Pij , the quantity max
δ∈∆

`G(p+δ)(P) is the maximum of the linear function
∑

k∈P (pk + δk)

for δ ∈ ∆. Hence it equals the maximum over conv(∆), that is, max
δ∈conv(∆)

`G(p+δ)(P) =

max
δ∈∆

`G(p+δ)(P). Taking the maximum over Pij , we obtain L∆
ij = L

conv(∆)
ij . Consequently, the

graphs G∆ and Gconv(∆) are the same. From Theorem 1 it follows that it is equivalent to

solve AnchRobPSP on any of the two uncertainty sets.

Let us consider the budgeted uncertainty set associated with δ̂ ∈ RJ+ and budget Γ ∈
{1, . . . , n}. Proposition 2 implies the following corollary.

Corollary 1. AnchRobPSP for budgeted uncertainty set {(δ̂iui)i∈J | ui ∈ {0, 1}J ,
∑

i∈J ui ≤
Γ} and AnchRobPSP for relaxed budgeted uncertainty set {(δ̂iui)i∈J | ui ∈ [0, 1]J ,

∑
i∈J ui ≤

Γ} have the same feasible solutions.

Consequently, the layered graph from Section 2.2 can also be used for the relaxed budgeted

uncertainty set {(δ̂iui)i∈J | ui ∈ [0, 1]J ,
∑

i∈J ui ≤ Γ}.

3 Complexity of AnchRobPSP

To study the complexity of AnchRobPSP, we consider two distinct complexity issues, depend-

ing on whether the inputs of the problem contain G(p) and ∆, or directly the graph G∆ with

the arc-weights L∆
ij . On the one hand, if the values L∆

ij are part of the input, the decision

version of AnchRobPSP is in NP, since checking whether LG∆[H](s, t) ≤ M can be done in

polynomial time. On the other hand, if the values L∆
ij are not part of the input, we show

that for some uncertainty sets it is co-NP-hard to decide if a set H is anchored, and thus

AnchRobPSP is co-NP-hard. Let us start with this latter point.

3.1 AnchRobPSP is at least as hard as computing L∆
ij

Let D be a family of uncertainty sets. Let Worst-case Longest Path WLP(D) be the

following problem: given a precedence graph G(p), a job j ∈ J , ∆ ∈ D, L ≥ 0, is it true

that for every δ ∈ ∆, the longest s−j path in G(p + δ) has length at most L? Note that

this problem is to decide whether L∆
sj ≤ L. Let also Anch(D) be the decision version of

11

AnchRobPSP over the family of uncertainty sets D, that is: given a precedence graph G(p),

∆ ∈ D, M ≥ 0, a ∈ RJ+, A ≥ 0, is there H ⊆ J such that a(H) ≥ A and LG∆[H](s, t) ≤M?

Lemma 3. There exists a polynomial reduction from WLP(D) to Anch(D).

Proof. Let IWLP = (G(p), j,∆, L) be an instance of WLP(D). An associated instance IA =

(G′(p′),∆′,M ′, a′, A′) of Anch(D) problem is built as follows. Let G′ = G, and p′i = pi if job

i is a predecessor of j, and p′i = 0 otherwise (including p′j = 0). Let M ′ = L and ∆′ = ∆.

Finally let a′i = 1 for every i 6= d, and a′d = A′ = n, where n is the number of jobs in G(p).

For instance IA, the anchoring weights are such that a subset H of jobs satisfies a′(H) ≥ A′

if and only if it contains job j. If IWLP has a ‘yes’ answer, i.e., if L∆
sj ≤ L, then LG′∆′ [{j}](s, t) =

L∆
sj +LG′(p′)(j, t) ≤ L = M ′. Thus the singleton {j} yields a ‘yes’ answer for IA. Conversely,

if H is anchored and a′(H) ≥ A′, then j ∈ H. The value L∆
sj is the arc-weight of the arc (s, j)

of G′∆
′
[H], hence L∆

sj ≤ LG′∆′ [H](s, t) ≤M
′ = L.

Note the reduction can be modified so that anchoring weights are all equal to one in IA.

Indeed it suffices to replace job d by n duplicates of d, all with the same predecessors and

successors as d. The reduction then applies similarly.

Let us fix notation for the Knapsack problem in order to show the following theorem.

The Knapsack problem is: given a set I of m items, w ∈ NI , v ∈ NI , W ∈ N, V ∈ N, is

there a subset S ⊆ I of items such that w(S) ≤W and v(S) ≥ V .

Theorem 3. AnchRobPSP is co-NP-hard for upper-bounded uncertainty sets, even with unit

anchoring weights.

Proof. Proof. We claim that the complement of WLP(D) is NP-hard when D denotes the

family of sets ∆ defined by ∆ =
{

(δ̂iui)i∈J | ui ∈ {0, 1}J ,
∑

i∈J αiui ≤ β
}

for some α ∈ NJ

and β ∈ N. Every ∆ of that form is an upper-bounded uncertainty set. From the reduction

of Lemma 3, the claim will imply that AnchRobPSP is co-NP-hard in this case. Let us now

show this claim. The complement of WLP(D) is: given G(p), job j, set ∆ defined by δ̂,

α, β, and L ≥ 0, is there u ∈ {0, 1}J such that
∑

i∈J αiui ≤ β and L
G(p+δ̂u)

(s, j) > L?

The proof is a reduction from Knapsack. Let IKP = (I = {1, . . . ,m}, wi, vi,W, V) be an

instance of the Knapsack problem. The associated instance IWLP = (G(p), j, δ̂, α, β, L) of

WLP(D) is defined as follows. Let L = V − 1, let G(p) be a path (s, 1, . . . ,m, j, t) with

arc-weights pi = 0 for every i ∈ I, pj = 0. Let δ̂i = vi, αi = wi for every i ∈ I, and

β = W . Given u ∈ {0, 1}J , the constraint
∑

i∈J αiui ≤ β then writes
∑

i∈I wiui ≤ W , and

L
G(p+δ̂u)

(s, j) =
∑

i∈I(pi + δ̂iui) =
∑

i∈I viui. Hence there exists u ∈ {0, 1}J that yields a

‘yes’ answer for the complement of WLP(D) on IWLP if and only if it yields a ‘yes’ answer

for the instance IKP of the Knapsack problem.

12

3.2 NP-Completeness for Budgeted Uncertainty

In this section we show that for DΓ the family of budgeted uncertainty sets, the decision

version Anch(DΓ) of AnchRobPSP is NP-complete. First note that for every ∆ ∈ DΓ the

values L∆
ij can be computed in polynomial time, e.g., by the dynamic programming algorithm

from (Minoux (2007b)). Hence Anch(DΓ) is in NP. Anch(DΓ) is proven NP-complete in the

restricted case where the precedence graph is a path. We establish the following lemma.

Lemma 4. Let G be an s−t path (s, 1, 2, . . . , n, t). A subset {h1, . . . , hq} ⊆ J (with h1 < · · · <
hq) is anchored for a baseline schedule if and only if L∆

sh1
+L∆

h1h2
+· · ·+L∆

hq−1hq
+LG(p)(hq, t) ≤

M .

Proof. We show that L∆
ij ≤ L∆

ik + L∆
kj for every i ≤ k ≤ j. Indeed if Pij denotes the

(unique) i−j path in G, for some δ∗ ∈ ∆ it holds that L∆
ij = `G(p+δ∗)(Pij) = `G(p+δ∗)(Pik) +

`G(p+δ∗)(Pkj) ≤ L∆
ik + L∆

kj . This inequality implies that the longest s−t path in G∆[H] is

the path (s = h0, h1, . . . , hq, t = hq+1) going through all jobs of H. The result follows from

Theorem 1.

Theorem 4. Anch(DΓ) is NP-complete, even if the precedence graph is a path and Γ = 1.

Proof. The proof is a reduction from Knapsack. The problem Anch(DΓ) on a path with

Γ = 1 is stated as follows: given a precedence graphG(p) which is an s−t path, δ̂ ∈ RJ+, M ≥ 0,

a ∈ RJ+, A ≥ 0, is there a subset H ⊆ J such that a(H) ≥ A and LG∆[H](s, t) ≤M , where ∆ is

the budgeted uncertainty set defined by δ̂ and Γ = 1. Let IKP = (I = {1, . . . ,m}, wi, vi,W, V)

be an instance of the Knapsack problem. The associated instance IA = (J, pi, δ̂,M, ai, A) of

Anch(DΓ) is as follows:

• the set of jobs is J = {0, 1, . . . ,m,m + 1}, where we assume w.l.o.g. that the items

1, . . . ,m are sorted by decreasing weight: w1 ≥ · · · ≥ wm
• the precedence graph is the path (0, 1, . . . ,m+ 1) and pi = 0 for every i ∈ J

• δ̂i = wi for every i ∈ I, δ̂0 = 1 + max
i∈I

wi, δ̂m+1 = 0 (hence δ̂0 ≥ δ̂1 ≥ · · · ≥ δ̂m+1)

• M = W + δ̂0

• ai = vi for every i ∈ I, a0 = 0, am+1 = v̄ where v̄ = 1 +
∑

i∈I vi

• A = V + v̄

The size of IA is polynomial in the size of IKP . We prove three claims on instance IA.

(i) Let H ⊆ J and S = H ∩ I. Then a(H) ≥ A ⇐⇒ v(S) ≥ V and m + 1 ∈ H. Indeed

a(H) ≥ A writes v(S) + v̄1m+1∈H ≥ V + v̄. If m + 1 /∈ H then the inequality cannot be

satisfied since v̄ > v(S).

(ii) For every i, j ∈ J such that i < j, L∆
ij = δ̂i and L∆

si = δ̂0. Indeed by definition

L∆
ij = maxδ∈∆

∑
i≤k<j δk = maxi≤k<j δ̂k which equals δ̂i if i 6= s and δ̂0 otherwise.

13

(iii) Let H ⊆ J such that m + 1 ∈ H and let S = H ∩ I. Then LG∆[H](s, t) ≤ M ⇐⇒
w(S) ≤ W . Let H = {h1, . . . , hq} with h1 < · · · < hq. By Lemma 4 and claim (ii),

LG∆[H](s, t) = δ̂0 + δ̂h1 + · · · + δ̂hq−1 . Note that S = {h1, . . . , hq−1} since m + 1 ∈ H. Thus

LG∆[H](s, t) ≤M ⇐⇒ δ̂0 + δ̂(S) ≤M ⇐⇒ w(S) ≤W .

Let us now prove that the instance IKP of the Knapsack problem has a ‘yes’ answer if

and only if the instance IA of Anch(DΓ) has a ‘yes’ answer. If there exists some S ⊆ I such

that w(S) ≤ W and v(S) ≥ V , then let H = S ∪ {m + 1}: by (i) it comes a(H) ≥ A, and

by (iii) LG∆[H](s, t) ≤ M . Conversely assume there exists H ⊆ J such that a(H) ≥ A and

LG∆[H](s, t) ≤ M , and let S = H ∩ I. Then by (i) v(S) ≥ V and m + 1 ∈ H, and by (iii)

w(S) ≤W . Hence the problem Anch(DΓ) is NP-complete, even if the precedence graph is a

path and Γ = 1.

Using Corollary 1, a consequence of Theorem 4 is the following.

Corollary 1. AnchRobPSP is NP-hard under relaxed budgeted uncertainty.

3.3 Discussion on complexity aspects for given L∆
ij

We finally discuss some aspects of the complexity of the problem, when the values L∆
ij are

part of the input of the problem. From Theorem 1, the problem AnchRobPSP is equivalent

to finding a subset H ⊆ J such that LG∆[H](s, t) ≤M , and a(H) is maximized. Equivalently,

by considering the set I = J \ H of non-anchored jobs, the problem is to find I ⊆ J such

that LG∆[J\I](s, t) ≤ M , and a(I) is minimized. This can be recognized as the min Weight

Vertex Blocker to Longest Path Problem (WVBLP), which is a variant of network interdiction

problems studied in the literature (Israeli and Wood (2002), Boros et al. (2005)). Given an

instance of a maximization problem on a network, vertex blocker problems look for a subset

of vertices to remove, so that the optimum of the maximization problem in the remaining

graph falls below a given threshold. Hence AnchRobPSP corresponds to WVBLP on G∆,

thus raising the question of the complexity of the WVBLP on G∆ graphs.

Many vertex blocker problems have been shown to be NP-complete (Boros et al. (2005)),

but these results cannot be directly applied to AnchRobPSP, since it is the restriction of

WVBLP to very structured instances, namely the G∆ graphs. Recall that the G∆ are tran-

sitive closures of acyclic graphs, and their arc-weights are values L∆
ij . Theorem 4 provides

an NP-hard case of the problem WVBLP on G∆ instances. Note that the reduction involves

non-unit anchoring weights. The complexity of AnchRobPSP when the values L∆
ij are part of

the input, and with unit anchoring weights, is still an open question.

14

4 Algorithms for special cases of AnchRobPSP

In this section we provide an algorithm (Algorithm A+) to compute a feasible solution for

AnchRobPSP under upper-bounded uncertainty, and show that AnchRobPSP under box un-

certainty is a polynomial case where Algorithm A+ is exact. For budgeted uncertainty,

polynomial algorithms are exhibited for special cases, and a dynamic programming approach

is proposed for series-parallel precedence graphs.

4.1 Algorithm A+ for upper-bounded uncertainty

In this section the set ∆ is an upper-bounded uncertainty set, i.e., there exists δ+ ∈ RJ+ such

that δ+
i ≥ δi for every i ∈ J for every δ ∈ ∆. Let x denote the earliest schedule of G(p+ δ+).

A first remark is that if the makespan of x is at most M , then (x, J) is an optimal solution of

AnchRobPSP. Indeed x is then both a baseline schedule and a feasible second-stage schedule

for every δ ∈ ∆, since δ+ is an upper bound on ∆. However, in general the makespan of x

is larger than M and then not all jobs can be anchored. Let x denote the latest schedule of

G(p) such that xt = M . Consider the following algorithm.

Algorithm A+

Input: G(p), δ+, M .

Output: a solution (x,H) of AnchRobPSP.

Compute xi = LG(p+δ+)(s, i) for every i ∈ J̄ ;

Compute xi = M − LG(p)(i, t) for every i ∈ J̄ ;

Let xi = min{xi, xi} for every i ∈ J̄ ;

Let H = {i ∈ J | xi ≤ xi};

Return (x,H).

Let us first prove that Algorithm A+ provides a feasible solution for AnchRobPSP for any

upper-bounded uncertainty set.

Proposition 3. If ∆ is upper-bounded by δ+, Algorithm A+ returns a feasible solution of

AnchRobPSP.

Proof. Let (x,H) be the output of Algorithm A+. First we show that x is a baseline schedule.

It is clear that it has makespan at most M since xt ≤ xt ≤M . Also x and x are both schedules

of G(p), since δ+ ≥ 0. Hence x = min{x, x} is also a schedule of G(p). The set H is anchored

with respect to x: indeed let us consider for every δ ∈ ∆ the same second-stage schedule

x. It is a schedule of G(p + δ) because δ+ is an upper bound on ∆, and for every i ∈ H,

15

xi = xi. It follows that the pair (x,H) is a feasible solution of the instance (G(p),∆, a,M) of

AnchRobPSP.

Note that a feasible solution of AnchRobPSP for a budgeted uncertainty set can thus

be obtained by using Algorithm A+ with δ+ = δ̂, since δ̂ is an upper bound for ∆. It is

also worth mentioning that solutions computed with Algorithm A+ have a specific structure.

Namely, if H is the set returned by A+ and i /∈ H, one can check that no job on the longest

path from i to t in G(p) belongs to H.

We now prove that box uncertainty is a polynomial case, where Algorithm A+ is exact.

Theorem 5. For box uncertainty, Algorithm A+ solves AnchRobPSP in polynomial time.

Proof. Let us show that A+ returns an optimal solution when ∆ is the box Πi∈J [δ−i , δ
+
i].

First it is feasible by Proposition 3. Let j be a job not anchored by the algorithm, i.e., such

that xj > xj . Let x0 be an arbitrary baseline schedule. Then LG(p+δ+)(s, j) + LG(p)(j, t) =

xj+M−xj > M by assumption on j, and since x0 is a baseline scheduleM ≥ x0
t−x0

j+x
0
j−x0

s ≥
LG(p)(j, t)+x0

j−x0
s. It comes LG(p+δ+)(s, j) > x0

j−x0
s. From Lemma 1, there exists no schedule

xδ
+

of G(p+δ+) such that xδ
+

j = x0
j . Since δ+ ∈ ∆, job j cannot be in any anchored set. Since

all anchoring weights are non-negative, the solution returned by the algorithm is optimal.

Note that the proof only requires that ∆ is upper-bounded by δ+ and that δ+ ∈ ∆, which

is more general than ∆ being the box Πi∈J [δ−i , δ
+
i]. The proof of Theorem 5 also yields as a

corollary that the set H optimal for AnchRobPSP under box uncertainty is unique, and it is

the set returned by Algorithm A+.

4.2 Polynomial Cases for Budgeted Uncertainty

Under budgeted uncertainty, AnchRobPSP is NP-hard as shown in Theorem 4. In this section

we exhibit polynomial special cases.

4.2.1 Path precedence graph and unit anchoring weights.

We first investigate the case where the precedence graph is a path. The reduction from

Theorem 4 relies on the numerical values of anchoring weights. We show that in the case of

unit anchoring weights the problem becomes solvable in polynomial time.

Theorem 6. Let G be an s−t path, and let ∆ be a budgeted uncertainty set. If ai = 1 for

every i ∈ J , then AnchRobPSP is solvable in polynomial time.

Proof. Proof. Under budgeted uncertainty, the arc-weights of graph G∆ can be computed

in polynomial time. Consider then the problem of finding an s−t path in G∆ with length

16

at most M , and with a maximum number of arcs. This problem is solvable in polynomial

time as a polynomial case of the Resource-Constrained Longest Path Problem (Garey and

Johnson (1979)). The claim is that this problem is equivalent to solving the special case of

AnchRobPSP. Indeed from Lemma 4, there is a one-to-one correspondance between subsets

of jobs and s−t paths in G∆, and a subset H is feasible for AnchRobPSP if and only if the

corresponding path has length at most M in G∆. Hence maximizing a(H) = |H| amounts

to maximizing the number of arcs in the associated s−t path, under the constraint that the

length of the path is at most M .

Note that the result holds not only for budgeted uncertainty, but also for any uncertainty

set for which the arc-weights L∆
ij can be computed in polynomial time.

4.2.2 A special case with pi=0, δ̂i=1, Γ=1, ai=1.

Let the precedence graph G be any directed acyclic graph. Let us consider the special case

U-AnchRobPSP where pi = 0 and ai = 1 for every i ∈ J and ∆ is a budgeted uncertainty

with δ̂i = 1 for every i ∈ J and budget Γ = 1. An instance of U-AnchRobPSP is thus

formed with the graph G and the deadline M , assumed to be an integer. We will show that

U-AnchRobPSP is a polynomial case, by an equivalence with a poset problem. Recall that

a partial order ≺ can be naturally defined from the precedence graph G by setting i ≺ j if

there exists an i−j path in G. Let MaxSubposet be the problem of finding, given a poset and

an integer M , a max-size subposet in which all chains have size at most M .

Let (G,M) be an instance of U-AnchRobPSP, and let J∗ denote the set of jobs that have

a predecessor other than s in the precedence graph G. The arc-weights of G∆ are as follows:

the arcs from s to a job i /∈ J∗ have weight 0, all incoming arcs of t have weight 0, all other

arcs have weight 1. Consequently, given H ⊆ J , the length of an s−t path in G∆[H] is equal

to the number of vertices of J∗ in the path. It follows that LG∆[H](s, t) ≤M if and only if all

chains in the subposet (H ∩ J∗,≺) have size at most M . Finally, since G can be any directed

acyclic graph, the poset (J∗,≺) can be any poset. Thus U-AnchRobPSP is equivalent to

MaxSubposet.

Theorem 7. U-AnchRobPSP is solvable in polynomial time.

Proof. Note first that a subposet in which all chains have size at most M is exactly the union

of M antichains (some of the antichains being possibly empty). The problem of finding a

max-size union of M antichains in a poset can be solved in polynomial time, through a min

cost circulation algorithm (see Theorem 14.8 in (Schrijver (2003))). Using this result and the

equivalence between U-AnchRobPSP and MaxSubposet, the result follows.

17

4.3 Dynamic Programming for Budgeted Uncertainty and Series-Parallel

Precedence Graphs

This section is devoted to solving AnchRobPSP under budgeted uncertainty for series-parallel

precedence graphs. It is assumed that vectors p, δ̂, and the deadline M have integer values.

Series-parallel digraphs are defined recursively as follows. A digraph is series-parallel with

terminals s and t if one of the three assertions is satisfied:

• Its vertex-set is {s, t} and its arc-set is {(s, t)};

• (Series composition.) It is formed with two series-parallel digraphs G1 and G2, where

terminals t1 and s2 have been identified;

• (Parallel composition.) It is formed with two series-parallel digraphs G1 and G2, where

the two pairs of terminals s1 and s2, and t1 and t2, have been identified.

In the sequel it is assumed that the precedence graph G is series-parallel with terminals

s and t. Given two jobs i and j such that i ≺ j, let Jij denote the subset of jobs that are

successors of i and predecessors of j, with i, j /∈ Jij , i.e., Jij = {k ∈ J | i ≺ k ≺ j}. Let Gij

denote the subgraph of G induced by Jij ∪ {i, j}: it is series-parallel with terminals i and j.

The proposed algorithmic scheme relies on the layered graph from Section 2.2. With

Theorem 2, a subset H ⊆ J is anchored when there exists a schedule x of Glay(H) such

that xΓ
t ≤ M . Let us now introduce a value function suitable for a dynamic programming

approach. Given a pair of jobs i, j such that i ≺ j, and b = (bγ)γ∈{0,...,Γ} and b′ = (b′γ)γ∈{0,...,Γ}

two vectors of (Γ + 1) integer numbers, the value function is

Vij(b, b
′) = max a(H)

s.t. H ⊆ Jij
x schedule of Glay

ij (H)

xγi = bγ ∀γ ∈ {0, . . . ,Γ}

xγj = b′γ ∀γ ∈ {0, . . . ,Γ}

The last two conditions are called boundary conditions in the sequel: they enforce the

values of starting times of copies of i and j in schedule x. Let L = L
G(p+δ̂)

(s, t). Let b

and b′ be the vectors defined by bγ = 0 for every γ ∈ {0, . . . ,Γ}, b′Γ = M , and b′
γ

= L for

every γ ∈ {0, . . . ,Γ − 1}. The maximum weight of an anchored set is then exactly the value

Vst(b, b
′). Indeed note that the condition xγt ≤ L for every γ ∈ {0, . . . ,Γ − 1} can be added

w.l.o.g. By dynamic programming, the value function will be computed for vectors b, b′ in the

set B = {b = (bγ)γ∈{0,...,Γ} | bγ ∈ {0, . . . , L} ∀γ ∈ {0, . . . ,Γ}}. We now show how to compute

the value function in the base case, and prove decomposition properties with respect to series

and parallel composition.

18

Consider first the base case where the graph is just an arc (i, j).

Lemma 5 (Base case.). Let Gij be the digraph with vertex-set {i, j} and arc-set {(i, j)}. Let

b, b′ ∈ B. Then Vij(b, b
′) = 0 if b′γ − bγ ≥ pi for every γ ∈ {0, . . . ,Γ} and b′γ − bγ+1 ≥ pi + δ̂i

for every γ ∈ {0, . . . ,Γ− 1}. Otherwise Vij(b, b
′) = −∞.

Proof. Proof. Note that Jij = ∅, hence the value function is 0 if there exists a schedule

x of Glay
ij (∅) satisfying the boundary conditions, and −∞ otherwise. Also, the boundary

conditions fully define the schedule. Hence the value function is 0 if and only if b and b′ satisfy

the constraints of Glay
ij (∅), i.e., b′γ − bγ ≥ pi for every γ ∈ {0, . . . ,Γ} and b′γ − bγ+1 ≥ pi + δ̂i

for every γ ∈ {0, . . . ,Γ− 1}.

Assume Gij is obtained by a parallel composition, w.l.o.g. parallel composition of two

series-parallel digraphs G1
ij and G2

ij with terminals i and j. Let J1
ij and J2

ij denote respectively

their sets of inner vertices and V 1
ij and V 2

ij denote their value functions.

Lemma 6 (Parallel composition). For every b, b′ ∈ B, the value function satisfies Vij(b, b
′) =

V 1
ij(b, b

′) + V 2
ij(b, b

′).

Proof. Proof. Let H ⊆ Jij and (H1, H2) be the partition of H defined by H1 = H ∩ J1
ij ,

H2 = H ∩ J2
ij . Given x a schedule of Glay

ij , let x1 (resp. x2) denote the restriction of x to

copies of jobs in G1
ij (resp. G2

ij). It holds that x is a schedule of Glay
ij (H) such that xi = b

and xj = b′ if and only if x1 and x2 are schedules of Glay
ij (H1) and Glay

ij (H2) respectively, and

they satisfy x1
i = b and x1

j = b′, and x2
i = b and x2

j = b′. Hence the value function Vij(b, b
′)

decomposes over the subgraphs G1
ij and G2

ij , leading to the desired equality.

Assume Gij is obtained by series composition of two series-parallel digraphs Gik and Gkj

for a given k ∈ Jij .

Lemma 7 (Series composition). For every b, b′ ∈ B, the value function satisfies

Vij(b, b
′) = max

{
max
b′′∈B

{
Vik(b, b

′′) + Vkj(b
′′, b′)

}
; ak + max

b′′∈Banch

{
Vik(b, b

′′) + Vkj(b
′′, b′)

}}
where Banch = {b ∈ B | bγ ≤ bΓ ∀γ ∈ {0, . . . ,Γ}}.

Proof. Proof. Let H ⊆ Jij and let H1 = H ∩ Jik and H2 = H ∩ Jkj . Given x a schedule of

Glay
ij , let x1 (resp. x2) denote the restriction of x to copies of jobs in Gik (resp. Gkj). It

holds that x is a schedule of Glay
ij (H) such xi = b and xj = b′ if and only if: x1 (resp. x2)

is a schedule of Glay
ik (H1) (resp. Glay

kj (H2)), x1
k = x2

k = b′′ for some b′′ ∈ B, and either (i) or

(ii) is satisfied: (i) k /∈ H (ii) k ∈ H, b′′ ∈ Banch. Indeed when k ∈ H, both schedules x1 and

x2 must satisfy the vertical arcs constraints in k, which is equivalent to b′′ ∈ Banch. Case (i)

leads to the first term and case (ii) leads to the second term of the maximum; we thus obtain

the desired equality.

19

We can now prove Theorem 8.

Theorem 8. For fixed uncertainty budget Γ, AnchRobPSP can be solved in O(mL3Γ+3), where

m is the number of arcs in the precedence graph and L = L
G(p+δ̂)

(s, t).

Proof. Given a series-parallel digraph G, its binary decomposition tree is a binary tree whose

leaves are attached to arcs of the digraph, and internal nodes represent series or parallel

compositions. The binary decomposition tree of G is computable in linear time (Valdes et al.

(1982)) and it has 2m− 1 nodes, each of them corresponding to a subgraph Gij of G, which

is series-parallel with terminals i and j.

Let us now describe the overall algorithm, using the binary decomposition tree of the

precedence graph. Nodes of the decomposition tree are considered in a bottom-up fashion.

For every subgraph Gij associated with the current node of the tree, compute and store the

value Vij(b, b
′) for every pair of vectors b, b′ ∈ B. If Gij is obtained by parallel composition,

this can be done in O(1) time (Lemma 6). If Gij is obtained by series composition, this can

be done in O(|B|) time (Lemma 7). If Gij is as arc, this can be done in O(Γ) time (Lemma 5).

Finally return Vst(b, b
′).

The complete table of the value function has (2m − 1)|B|2 entries, and it can be filled

in O(m|B|2 max{|B|,Γ}). For fixed Γ, since |B| = O(LΓ+1), the total running time is

O(mL3Γ+3).

Note that the values of anchoring weights have no impact on the running time of the

proposed algorithm. Note also that the dynamic programming scheme can be refined, e.g., by

decreasing the size of the set B; however this would not change the final pseudo-polynomiality

result.

5 Anchor-Robust Solutions for Budgeted Uncertainty

In this section, we highlight the relevance of AnchRobPSP, under box or budgeted uncertainty,

based on numerical experiments. We study the impact of parameters (budget Γ, deadline M)

on solutions of the problem, and show that AnchRobPSP provides a convenient way to control

the price of robustness of a schedule.

5.1 General Settings of Numerical Experiments

For evaluation purpose, different categories of instances are considered, either randomly gener-

ated or taken from the literature. Let us first describe the precedence graphs of the instances.

• In PSP instances, the precedence graphs are taken from the PSPLib (Kolisch and

Sprecher (1996)), a benchmark for the Resource-Constrained Project Scheduling Prob-

20

lem. We consider 50 instances from the families j120i, with i ∈ {1, . . . , 5}, which are

the largest instances available (n = 120 jobs).

• In ER instances, the precedence graphs are randomly generated as follows. The num-

ber of jobs n ranges in {30, 60, 100, 200}. Precedence graphs are generated randomly

with Erdös-Rényi (ER) model, i.e., between each pair of jobs i < j the arc (i, j) is

added with probability pr = 10
n . Processing times of jobs are generated uniformly in

{1, . . . , 20}.

• In ERC instances, the precedence graphs are the same as ER instances, but with

modified processing times so that every job is on a Critical path. Processing times of

jobs are increased by repeating the two following steps until every job is on a critical

path: (i) find a job i with positive margin m = LG(p)(s, t)−(LG(p)(s, i)+LG(p)(i, t)) > 0

(ii) increment pi of a random value in {0, . . . ,m}.

For all instances, the uncertainty set ∆ is a budgeted uncertainty set for a given budget

Γ, and values δ̂i drawn uniformly from [0, 0.5pi]. We considered 50 PSP instances, and we

generated 10 ER instances and 10 ERC instances for each value of n ∈ {30, 60, 100, 200}, thus

resulting in a total of 40 ER instances and 40 ERC instances. Tests were performed with

unit anchoring weights. The deadline M is chosen between the minimum makespan Mmin

= LG(p)(s, t) and the smallest deadline Mmax for which all jobs can be anchored. When the

deadline M has to be fixed, it is defined arbitrarily as a convex combination of Mmin and

Mmax. Note that the value of Γ or M used in experiments will be specified in the sequel when

necessary.

Since PSP instances correspond to a reference for another problem, they have limited

relevance for our purpose: namely, they are medium size and they feature precedence graphs

with small degree. In constrast, ER instances provide a larger number of jobs, and the

expected value of the average degree in the precedence graph is driven by the constant n×pr,
which we arbitrarily fixed at 10. Finally ERC instances are motivated by applications to

industrial projects, where it can be observed that a lot of paths are critical or almost critical

in the baseline instance.

AnchRobPSP was solved either with the MIP formulation from Proposition 1 for Γ < n;

or with Algorithm A+ for Γ = n. Algorithms for AnchRobPSP were implemented with Julia

0.6.2, JuMP v0.18.1, and Cplex 12.8 for MIP solving. Numerical experiments were completed

on a PC with Intel Core i7-7500U CPU @ 2.70GHz 2.90GHz and 8 Go RAM.

For all numerical results presented in this section, AnchRobPSP or its variant was solved

optimally in less than 3 seconds for PSP instances, ER instances, and ERC instances with

n ∈ {30, 60}. It was solved optimally in less than 15 seconds for ERC instances with n = 100,

21

and less than 4 minutes for ERC instances with n = 200. Note that the aim was not to reduce

the computation time, but to evaluate the characteristics of the obtained solutions.

5.2 Impact of the uncertainty budget Γ

In this section we consider the case where the decision maker is given the deadline M , and has

to decide the value of the uncertainty budget Γ. It is clear that the higher the budget Γ, the

less jobs can be anchored, i.e., the optimum of AnchRobPSP is non-increasing with respect

to Γ. We now provide experimental results to quantify the impact of Γ on the optimum.

Let us first compare the maximum number of anchored jobs optAnch(Γ) for different values

of Γ. The value of M is chosen at 3
4Mmin + 1

4Mmax. Other convex combinations have been

tested and lead to similar results. Note that if M is very close to Mmax, almost all jobs can

be anchored and the impact of the budget on optAnch is very limited. We test small values

of Γ, namely Γ ∈ {1, 2, 3}, and values that are proportional to the number of jobs, namely,

Γ ∈ {d5%ne, 10%n, 20%n, 100%n}. Note that this latter case Γ = 100%n = n corresponds to

box uncertainty. Results are reported in Tables 1, 2, 3.

Budget Γ

1 2 3 d5%ne 10%n 20%n 100%n

PSP

j1201 106.5 102.5 100.2 98.6 98.6 98.6 98.6

j1202 101.0 99.0 99.0 99.0 99.0 99.0 99.0

j1203 103.8 100.1 98.5 98.1 98.1 98.1 98.1

j1204 97.0 94.0 94.0 94.0 94.0 94.0 94.0

j1205 107.0 101.0 99.0 99.0 99.0 99.0 99.0

Table 1: Value optAnch(Γ) for different values of budget Γ on PSP instances (n = 120)

Budget Γ

n 1 2 3 d5%ne 10%n 20%n 100%n

ER

30 19.8 17.8 17.0 17.8 17.0 16.6 16.6

60 47.8 44.9 42.9 42.9 41.1 40.5 40.5

100 86.1 82.6 80.1 75.5 73.1 73.0 73.0

200 182.1 177.7 172.7 162.3 161.5 161.5 161.5

Table 2: Value optAnch(Γ) for different values of budget Γ on ER instances

22

Budget Γ

n 1 2 3 d5%ne 10%n 20%n 100%n

ERC

30 11.6 11.0 10.8 11.0 10.8 10.8 10.8

60 23.3 22.1 22.1 22.1 22.1 22.1 22.1

100 42.6 37.0 36.0 35.6 35.6 35.6 35.6

200 83.8 71.8 70.1 69.8 69.8 69.8 69.8

Table 3: Value optAnch(Γ) for different values of budget Γ on ERC instances

Numerical experiments show that the range between optAnch(1) and optAnch(n) remains

small. Also, the maximum number of anchored jobs for Γ = n is already attained for small

values of Γ: on all considered instances, optAnch(20%n) is equal to optAnch(n). An inter-

pretation is that uncertainty sets with small budget contain already a large enough variety of

disruptions for AnchRobPSP.

A related question is whether an optimal solution computed for some budget Γ (e.g., Γ = 1)

will resist to more than Γ disruptions. Given an optimal solution (xopt, Hopt) computed

for budget Γ = 1, we simulate second-stage instances where ΓSimu disruptions occur, with

ΓSimu > Γ, then check whether the schedule xopt
H =

(
xopt
i

)
i∈Hopt

can be maintained. We run

1000 simulations and return the percentage of simulations where the answer is yes. Recall

that it is easy to check whether the schedule xopt
H can be maintained, with the condition from

Lemma 1. Numerical results can be found in Table 4.

Number of disruptions ΓSimu

n 2 3 5 10

PSP 120 99.8% 99.5% 98.5% 93.9%

ER

30 96.8% 91.1% 74.8% 38.6%

60 99.0% 96.8% 91.4% 70.0%

100 99.3% 98.4% 95.1% 81.8%

200 99.9% 99.6% 98.6% 94.0%

ERC

30 98.9% 96.8% 91.1% 76.0%

60 99.9% 99.5% 98.2% 92.9%

100 99.8% 99.1% 97.9% 90.2%

200 99.8% 99.5% 98.4% 93.2%

Table 4: Percentage of simulations where xopt
H can be maintained after ΓSimu disruptions, over

1000 simulations.

We note that the percentage remains over 90% for all instance sets with up to ΓSimu = 3

disruptions. Hence the starting times of anchored jobs xopt
H produced by AnchRobPSP for

23

Γ = 1 is likely to be maintained after more than Γ disruptions.

Budgeted uncertainty sets with Γ = 1 may seem too optimistic, because realizations with

only one disruption can be considered as relatively favourable. However the results from

Table 4 show that the obtained solution resists well in practice to more than one disruption.

Moreover Tables 1, 2, 3 show that increasing the budget only decrease moderately the value

of optAnch. Also optAnch(n) can be easily evaluated with A+. Hence Γ = 1 can be regarded

as a good candidate for choosing the uncertainty budget for AnchRobPSP.

5.3 Trade-off between Makespan and Anchor-Robustness

In this section, the uncertainty set is considered as fixed. We set Γ = 1 for experiments.

The problem AnchRobPSP can be naturally seen as a biobjective optimization problem, where

the decision maker must arbitrate between two contradictory objectives, that are the deadline

M and the anchoring criterion |H|. In this section, we give insights on how AnchRobPSP can

be used to achieve the trade-off between makespan and number of anchored jobs.

5.3.1 The price of (anchor-)robustness.

The price of robustness has been introduced in the work of Bertsimas and Sim (2004), as

a concept for measuring how solutions get worse (w.r.t. the objective function) when they

are made more robust. Let us consider the two robust models for project scheduling from

the literature, and compare them with AnchRobPSP in terms of their price of robustness.

The robust-static problem looks for the minimum makespan MRS of a schedule feasible for

every δ ∈ ∆. The robust 2-stage problem from Minoux (2007b) looks for the minimum

makespan M2S that can be achieved for every δ ∈ ∆ by some schedule xδ (recall that we

fixed Γ = 1). The associated prices of robustness are MRS
Mmin

and M2S
Mmin

respectively, and it holds

thatMRS
Mmin

≥ M2S
Mmin

.

Similarly, a price of anchor-robustness can be defined as follows. Let the anchoring target

be some α ∈ [0, 100]: it will correspond to the percentage of anchored jobs required in a

solution. Given a schedule x and a set H anchored w.r.t. x, let the minimum guaranteed

second-stage makespan be the minimum makespan that can be achieved for every δ ∈ ∆

by a second-stage schedule xδ such that xδH = xH . Let Mα be the minimum guaranteed

second-stage makespan over the pairs (x,H) where x schedule of G(p), the set H is anchored

w.r.t. x, and |H| ≥ α%n. Let then the price of anchor-robustness PoARα% be the ratio
Mα
Mmin

. Note that Mα (and thus PoARα%) can readily be computed by slightly modifying

the MIP from Section 2.2. The definition of PoARα% generalizes the price of robustness.

Indeed if α = 0 (resp. α = 100) the minimum guaranteed second-stage makespan Mα=0

(resp. Mα=100) is exactly the robust makespan M2S (resp. MRS) computed by the robust

2-stage (resp. robust-static) problem. Hence PoAR0% = M2S
Mmin

and PoAR100% = MRS
Mmin

.

24

Consequently, by varying the anchoring target α in [0, 100], it is possible to tune the

price of (anchor-)robustness, and get intermediary options between robust 2-stage solutions

and robust-static solutions, where all jobs are anchored. Numerical results are provided in

Table 5. They illustrate the classical fact that robust 2-stage and robust-static problems yields

very different outputs in terms of price of robustness: e.g., for ER instances with n = 30 jobs,

opting for a robust-static problem causes an increase of +28% of the makespan w.r.t. Mmin,

vs. only +4.7% for the robust 2-stage problem. In between are solutions of AnchRobPSP

for different values of the anchoring target. Note that it is possible to obtain solutions with

anchored jobs without increasing the price of robustness, e.g., for PSP instances, it is possible

to get 50% of jobs anchored while keeping the robust 2-stage makespan.

Anchoring target α

0 10 20 50 80 90 100

n (2-stage) (static)

PSP 120 1.049 1.049 1.049 1.049 1.060 1.119 1.313

ER

30 1.047 1.047 1.047 1.051 1.149 1.202 1.280

60 1.044 1.044 1.044 1.044 1.089 1.164 1.280

100 1.037 1.037 1.037 1.037 1.052 1.129 1.293

200 1.037 1.037 1.037 1.037 1.038 1.076 1.274

ERC

30 1.149 1.149 1.154 1.192 1.258 1.295 1.366

60 1.167 1.167 1.171 1.197 1.266 1.304 1.379

100 1.169 1.169 1.171 1.189 1.257 1.296 1.388

200 1.208 1.208 1.208 1.222 1.276 1.313 1.410

Table 5: Values of the price of anchor-robustness PoARα% for various values of the anchoring
target α.

5.3.2 A biobjective perspective on makespan and anchor-robustness.

When solving AnchRobPSP, it might be in practice that the deadline M is dictated by exo-

geneous factors and given to the decision maker. If so, the value of M is fixed regardless of

its impact on the anchoring criterion. Our claim is that information on the impact of M on

the anchoring criterion may be of great interest for the decision maker, who could consider

asking for a revision of the value of M .

By solving AnchRobSP for various values of M we obtain a Pareto front, where Pareto-

optimal solutions of AnchRobPSP are represented in the solution space for the two criteria.

It is clear that the optimal value of AnchRobPSP is non-decreasing w.r.t. M : for a very

short deadline M , only a small subset of jobs can be anchored; if M is sufficiently large all

jobs can be anchored. An example is presented in Figure 3 on an ERC instance with n = 60

25

jobs. While robust-static problem only provides one point of the Pareto front, AnchRobPSP

provides a wider variety of solutions, among which the decision maker may pick its preferred

one.

Examples of Gantt charts of four Pareto-optimal solutions are provided in Figure 4. In

every Gantt chart, jobs of H are in black. Solution S1 has makespan Mmin, hence only a few

jobs can be anchored (and since it is an ERC instance, only jobs with no predecessors can

be anchored). Solution S4 is a robust-static schedule. Solutions S2 and S3 are other possible

options. Note that the position of S3 in the Pareto front indicates that any solution with

more anchored jobs than S3 has a makespan at least 9 units greater than the makespan of S3.

This approach gives a new way to fix the deadline M , by choosing an anchoring target α,

and setting M to the smallest value for which there exists a Pareto-optimal solution with at

least α% anchored jobs.

300 310 320 330 340 350 360 370 380
0

10

20

30

40

50

60

S1

S2

S3

S4

Makespan of x

N
u
m

b
er

of
an

ch
o
re

d
jo

b
|H
|

Figure 3: Pareto front makespan/anchoring criterion for an ERC instance with n = 60.

6 Conclusion

This study of AnchRobPSP was carried out for a variety of uncertainty sets, with an emphasis

on budgeted uncertainty. Recall that in robust optimization, the robust 2-stage problem under

budgeted uncertainty is commonly used as it allows for a reduced conservatism w.r.t. the static

variant. In this work we showed that AnchRobPSP is NP-hard for budgeted uncertainty. This

is in contrast with the complexity of the robust 2-stage problem, which is polynomial. The

increase in complexity stems from binary decisions on whether a job is anchored or not, which

have to be made in AnchRobPSP because of the deadline and the uncertainty set. Even for

box uncertainty, AnchRobPSP differs from robust problems. Indeed the latter problems can

usually be summed up to solving the problem for the worst-case value of parameters, while

26

(S1)

(S2)

(S3)

(S4)

Figure 4: Gantt charts of four solutions from the Pareto front. Anchored jobs are in black.

27

AnchRobPSP requires a specific algorithm (Algorithm A+). Finally, the interest of small

uncertainty budget for AnchRobPSP, e.g., Γ = 1, was illustrated in numerical experiments.

Indeed even for small budget, an optimal solution of AnchRobPSP is to anchor all jobs

whenever the deadline M allows. AnchRobPSP can also be used to define the minimum

makespan to anchor a subset of jobs under a Γ = 1 budgeted uncertainty set.

In the line of the complexity analysis of AnchRobPSP, a perspective is to study the open

question of AnchRobPSP complexity when the values L∆
ij are part of the input (or computable

in polynomial time) and with unit anchoring weights. From a practical viewpoint, a perspec-

tive is to tackle large-scale instances: indeed industrial instances may feature thousands of

maintenance operations. Algorithms for AnchRobPSP could also be integrated in a decision

making tool, to assist planning managers in making the trade-off between multiple criteria,

including makespan and anchoring criterion. Anchor-robust variants of other problems could

also be formulated and studied. This includes, e.g., project scheduling problems with resource

constraints, or other applications beyond scheduling. The definition of an anchoring criterion

to evaluate which decisions are guaranteed, seems relevant in practice in a large variety of

combinatorial problems.

References

Pascale Bendotti, Philippe Chrétienne, Pierre Fouilhoux, and Alain Quilliot. Anchored reactive and

proactive solutions to the CPM-scheduling problem. European Journal of Operational Research,

261:67–74, 2017.

Dimitris Bertsimas and Melvyn Sim. The price of robustness. Operations Research, 52:35–53, 2004.

Endre Boros, Konrad Borys, Khaled M. Elbassioni, Vladimir Gurvich, and Gábor Rudolf. Inapprox-

imability bounds for shortest-path network interdiction problems. 2005.

Gianlorenzo D’Angelo, Gabriele Di Stefano, Alfredo Navarra, and Cristina Pinotti. Recoverable robust

timetables: An algorithmic approach on trees. IEEE Transactions on Computers, 60:433–446,

2011.

Virginie Gabrel, Cécile Murat, and Aurélie C. Thiele. Recent advances in robust optimization: An

overview. European Journal of Operational Research, 235:471–483, 2014.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman and Co., New York, NY, USA, 1979.

Willy Herroelen and Roel Leus. Project scheduling under uncertainty: Survey and research potentials.

European Journal of Operational Research, 165:289–306, 2002.

Willy Herroelen and Roel Leus. The construction of stable project baseline schedules. European

Journal of Operational Research, 156(3):550–565, 2004.

Eitan Israeli and R. Kevin Wood. Shortest-path network interdiction. Networks, 40(2):97–111, 2002.

Rainer Kolisch and Arno Sprecher. PSPLIB – a project scheduling problem library. European Journal

of Operational Research, 96:205–216, 1996.

28

Christian Liebchen, Marco Lübbecke, Rolf Möhring, and Sebastian Stiller. The concept of recoverable

robustness, linear programming recovery, and railway applications. Robust and Online Large-

Scale Optimization, 5868:1–27, 2009.

Michel Minoux. Models and algorithms for robust PERT scheduling with time-dependent task dura-

tions. Vietnam Journal of Mathematics, 35, 01 2007a.

Michel Minoux. Duality, Robustness, and 2-stage robust LP decision models. Application to Robust

PERT Scheduling. Annales du LAMSADE N.7, 2007b.

Artur Alves Pessoa, Luigi Di Puglia Pugliese, Francesca Guerriero, and Michael Poss. Robust con-

strained shortest path problems under budgeted uncertainty. Networks, 66(2):98–111, 2015.

Alexander Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer, 2003.

A. L. Soyster. Technical note – convex programming with set-inclusive constraints and applications to

inexact linear programming. Operations Research, 21(5):1154–1157, 1973.

J. Valdes, R. Tarjan, and E. Lawler. The recognition of series parallel digraphs. SIAM Journal on

Computing, 11(2):298–313, 1982.

29

